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Abstract

Randomized rumor spreading is an efficient way to distribute information in net-
works. Recently, a quasirandom version of this protocol has been proposed. It was
proven that it works equally well or even better in many settings.

In this work, we exhibit a natural expansion property for networks, which ensures
that quasirandom rumor spreading informs all nodes of the network in logarithmic
time with high probability. This expansion property is satisfied, among others, by
many expander graphs, random regular graphs, and Erdős-Rényi random graphs.

1 Introduction

Randomized rumor spreading or random phone call protocols are simple ran-
domized epidemic algorithms designed to distribute a piece of information in a
network. Many build on the simple approach that informed nodes call random
neighbors and make them informed (also called push model). Since most of
the existing literature regards the push model, so do we in this work. In spite
of the simple concept, these broadcasting algorithms succeed in distributing
information extremely fast. In contrast to many natural deterministic ap-
proaches, they are also highly robust against transmission failures.

Such algorithms have been applied successfully both in the context where
a single news has to be distributed from one processor to all others (cf. [6]),
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and in the one where news may be injected at various nodes at different times.
The latter problem occurs when maintaining data integrity in a distributed
databases, e.g., name servers in large corporate networks [1, 8]. For a more
extensive, but still concise discussion of various central aspects of this area,
we refer to the paper by Karp, Schindelhauer, Shenker, and Vöcking [7].

1.1 Quasirandom Rumor Spreading

Rumor spreading protocols often assume that all nodes have access to a central
clock. The protocols then proceed in rounds, in each of which each node
independent from the others can perform certain actions. In the classical
randomized rumor spreading protocol, in each round each node contacts a
neighbor chosen independently and uniformly at random. The latter node
becomes informed if the first was.

In [2], the authors proposed a quasirandom version of randomized rumor
spreading. It assumes that each node has a (cyclic) list of its neighbors.
Except that each node starts at a random position in the list, this list describes
the order in which the node contacts its neighbors. We make no particular
assumption on the structure of the list. This allows to use any list that is
already present to technically organize the communication of one node with
its neighbors. In such, this protocol is rather simpler than the classical, fully
random model.

Surprisingly, even though the amount of independent randomness is greatly
reduced, similar or even better results could be shown. For the graph being an
n–vertex hypercube, O(log n) rounds suffice to inform with probability 1− 1

n
all

nodes. For random graphs G ∈ G(n, p), p � (ln(n)+ω(1))/n), O(log n) rounds
suffice with probability 1 − o(1). Similar results are known for the classical
model [5], except that for random graphs one requires p � (1 + ε) ln(n)/n,
ε > 0 constant.

These theoretical results are complemented by an experimental investiga-
tion [3], which observes that the quasirandom model typically needs less time
than the fully random one. For example, we have a runtime reduction by more
than 10% for the 12-dimensional hypercube.

1.2 Our Results

In this paper, we greatly expand the first results of [2]. We exhibit a nat-
ural expansion property that guarantees that quasirandom rumor spreading
succeeds in O(log n) iterations.
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Our expansion property roughly speaking requires that small sets of ver-
tices have many neighbors, that for large sets of vertices the external vertices
have many neighbors in the set, and finally that the vertex degrees are of
similar order (see Definition 3.1 for the details).

These requirements are fulfilled by random graphs G(n, p), where p can be
as small as (ln(n) + ω(1))/n, (regular) expander graphs and random regular
graphs. Hence our result also subsumes (and improves in terms of the failure
probability) the result on random graphs in [2].

For all these graphs, we show that with probability 1 − n−γ, where γ can
be an arbitrary constant, the quasirandom rumor spreading model succeeds in
informing all vertices from a single initially informed one in O(log n) rounds.
This result holds independent of how the cyclic lists look like.

2 Precise Model and Preliminaries

Our aim is spreading a rumor in an undirected graph G = (V, E) with a
quasirandom model. Let n = |V | denote the number of vertices. In the
quasirandom model, each vertex v ∈ V is equipped with a cyclic permutation
πv : Γ(v) → Γ(v) of its neighbors Γ(v). This can also be seen as a list of its
neighbors.

At the start of the protocol each vertex v chooses a first neighbor iv uni-
formly at random from Γ(v). This is the neighbor it contacts at time t = 1. In
each following time step t = 2, 3, . . ., the vertex v contacts a vertex πt−1

v (iv).
For the quasirandom push model the result of one vertex contacting another
one is as follows. If v was informed at time t−1, then πt

v(iv) becomes informed
at time t (provided it was not already informed).

This model slightly deviates from the description in the introduction, where
each vertex chooses the starting point on its list only when it becomes in-
formed. However, the two variants are clearly equivalent and in the proofs
it is advantageous to assume that all vertices start contacting their neighbors
already when they are uninformed.

Throughout the paper, we use the following notation. For a vertex v of a
graph G = (V, E), we denote by Γ(v) := {u ∈ V | {u, v} ∈ E} the set of its
neighbors and by deg(v) := |Γ(v)| its degree. For any S ⊆ V , let degS(v) :=
|Γ(v) ∩ S|. Let δ := minv∈V deg(v) be the minimum degree, d := 2|E|/n be
the average degree, and Δ := maxv∈V deg(v) be the maximum degree. All
logarithms log n are natural logarithms to the base e in the following. As we
are only interested in the asymptotic behavior, we will sometimes assume that
n is sufficiently large.
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3 Expanding Graphs

Instead of analyzing specific graphs, we have distilled three simple properties.
If these are satisfied, we can prove that quasirandom rumor spreading succeeds
in informing all vertices in a logarithmic time. This is independent of which
vertex is initially informed and independent of the order of the lists.

Definition 3.1 (expanding graphs) We call a connected graph expanding
if the following properties hold.

(P1) For all constants Cα with 0 < Cα � d/2 there is a constant Cβ ∈ (0, 1)
such that for any connected subset S ⊆ V with 3 � |S| � Cα n/d, it holds
that |Γ(S) \ S| � Cβ d |S|.

(P2) There are constants Cδ ∈ (0, 1) and Cω > 0 such that for any subset
S ⊆ V , the number of vertices in Sc which have at least Cδd(|S|/n) neighbors
in S is at least |S|c − Cωn2

d|S| .

(P3) d = Ω(Δ). If d = ω(log n) then d = O(δ).

Some important graph classes satisfy these properties. Random graphs
in the classical Erdős-Rényi model G(n, p) are expanding with probability
1 − o(1), if p � (log n + ω(1))/n. By setting p = 1, this includes complete
graphs. Let G be a d-regular graph and λ(G) := max {|λ2|, |λn|} be the second
largest eigenvalue of its adjaceny matrix. We call G an expander if λ(G) �
min{d/C, C ′√d}, where C > 1, C ′ > 0 are arbitrary constants. Naturally,
expanders are expanding. Since a random d-regular graph is an expander
with probability 1 − o(1), it also is expanding with probability 1 − o(1).

Our main result is that quasirandom rumor spreading works well on ex-
panding graphs.

Theorem 3.2 Let γ � 1 be a constant. The probability that the quasirandom
push model started at an arbitrary vertex of an expanding graph informs all
other vertices within O(log n) rounds is 1 −O(n−γ).

The proof uses the expansion properties roughly speaking as follows. (P1)
ensures that while only a small number of vertices is informed, these have most
of their neighbors uninformed. Consequently, most of the messages sent inform
a new vertex. (P2) ensured that if many vertices are informed, then most of
the remaining ones have many informed neighbors. Consequently, they cannot
remain uninformed for too long. However, for all this to work properly, the
vertex degrees have to be similar, as prescribed by (P3). More details on the
proof can be found in [4].
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4 Conclusion and Outlook

In this work, we made significant progress to understand quasirandom rumor
spreading. We have shown that on a large class of graphs called expanding
graphs, quasirandom rumor spreading succeeds in O(log n) rounds. From a
broader view-point, this work again shows that a reduced amount of random-
ness can yield superior algorithms, and that these can still be analyzed in spite
of the inherent dependencies.

A question not regarded so far for the quasirandom broadcasting model is
how many transmissions are necessary to inform all nodes. Results analyzing
how the pure model can be enhanced to reduce the number of transmissions
only exist for the fully random model. Hence this seems to be natural direction
for future research.

We should note, though, that the quasirandom push model naturally never
needs more than 2m = nd messages. Hence for really sparse networks, e.g., ex-
pander graphs with constant degree d, the quasirandom model without greater
optimization immediately yields a protocol that is both time and message ef-
ficient.
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