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a b s t r a c t

Wind energy plays an increasing role in the supply of energy world wide. The energy output of a wind
farm is highly dependent on the weather conditions present at its site. If the output can be predicted
more accurately, energy suppliers can coordinate the collaborative production of different energy sources
more efficiently to avoid costly overproduction. In this paper, we take a computer science perspective on
energy prediction based on weather data and analyze the important parameters as well as their
correlation on the energy output. To deal with the interaction of the different parameters, we use
symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on
publicly available weather and energy data for a wind farm in Australia. We report on the correlation of
the different variables for the energy output. The model obtained for energy prediction gives a very
reliable prediction of the energy output for newly supplied weather data.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable energy, such as wind and solar energy, plays an
increasing role in the supply of energy world wide. This trend will
continue because global energy demand is increasing, and the use of
nuclearpowerand traditional sources of energysuchas coal andoil is
either considered unsafe or leads to a large amount of CO2 emission.

Wind energy is a key player in the field of renewable energy. The
capacity of wind energy production has been substantially
increased during the last years. In Europe, for example, the capacity
of wind energy production has doubled from 2005 to 2007 [13].
However, levels of production of wind energy are hard to predict as
they rely on potentially unstable weather conditions present at the
wind farm. In particular, wind speed is crucial for energy produc-
tion based on wind, and it may vary drastically over time. Energy
suppliers are interested in accurate predictions, as they can avoid
overproduction by coordinating the collaborative production of
traditional power plants and weather-dependent energy sources.

Our aim is to map weather data to energy production. We wish
to show that even data that is publicly available for weather
stations close towind farms can be used to give a good prediction of
the energy output. Furthermore, we examine the impact of
different weather conditions on the energy output of wind farms.
F. Neumann).
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We are particularly, interested in the correlation of different
components that characterize weather conditions such as wind
speed, pressure, and temperature.

A good overview on the different methods that were recently
applied in forecasting of wind power generation can be found in [3].
Statistical approaches use historical data to predict the wind speed
on an hourly basis or to predict energy output directly. On the other
hand, short term prediction is often done based on meteorological
data, and learning approaches are applied. Kusiak, Zheng, and Song
[9] have shown how wind speed data may be used to predict the
power output of a wind farm based on time-series prediction
modeling. Neural networks are a very popular learning approach
for wind power forecasting based on given time series. They
provide an implicit model of the function that maps the given
weather data to an energy output.

Jursa and Rohrig [4] have used particle swarm optimization and
differential evolution to minimize the prediction error of neural
networks for short-term wind power forecasting. Kramer and Gie-
seke [8] used support vector regression for short-term energy
forecast and kernel methods and neural networks to analyze wind
energy time series [7]. These studies are all based onwind data and
do not take other weather conditions into account. Furthermore,
neural networks have the disadvantage that they give an implicit
model of the function predicting the output, and these models are
rarely accessible to a human expert. Usually, one is also interested in
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1 All models reported in this paper were generated using two calls of Symbolic
Regression with only the following arguments: input matrix, response vector,
execution time, number of independent evolutions, an option to archive models
with a certain prefix-name, and a template specification.
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the function itself and the impact of the different variables that
determine the output. We aim to study the impact of different
variables on the energy output of the wind farm. Surely, the wind
speed available at the wind farm is a crucial parameter [1,12]. Other
factors that influence the energy output are, for example, air pres-
sure, temperature and humidity. Our goal is to study the impact and
correlation of these parameters with respect to the energy output.

Genetic programming (GP) (see [10] for a detailed presentation)
is a type of evolutionary algorithm that can be used to search for
functions that map input data to output data. It has been widely
used in the field of symbolic regression and the goal of this paper is
to show how it can be used for the important real-world problem of
predicting energy outputs of wind farms from weather data. The
advantage of this method is that it comes up with an explicit
expression mapping weather data to energy output. This expres-
sion can be further analyzed to study the impact of the different
variables that determine the output. To compute such an expres-
sion, we use the tool DataModeler [2], which is the state of the art
tool for doing symbolic regression based on genetic programming.
We will also use DataModeler to carry out a sensitivity analysis
which studies the correlation between the different variables and
their impact on the accuracy of the prediction.

We proceed as follows. In Section 2, we give a basic introduction
into the field of genetic programming and symbolic regression, and
describe the DataModeler. Section 3 describes our approach of
predicting energy output based on weather data and in Section 4
we report on our experimental results. Finally, we finish with
some concluding remarks and topics for future research.

2. Genetic programming and DataModeler

Genetic programming [6] is a type of evolutionary algorithm that
is used in the field of machine learning. Motivated by the evolution
process observed in nature, computer programs are evolved to solve
agiven task. Suchprogramsareusuallyencodedas syntaxexpression
trees. Starting with a given set of trees called the population, new
trees called the offspring population are created by applying varia-
tion operators such as crossover andmutation. Finally, a new parent
population is selected from among the previous parents and the
offspring based on how well these trees perform for the given task.

Genetic programming has its main success stories in the field of
symbolic regression. Given a set of input output vectors, the task is
to find a function that maps the input to the output as best as
possible, while avoiding over fitting. The resulting function is later
often used to predict the output for a newly given input. Syntax
trees represent functions in this case, and the functions are changed
by crossover andmutation to produce new functions. The quality of
a syntax tree is determined by how well it maps the given set of
inputs to their corresponding outputs.

The task in symbolic regression can be stated as follows. Given
a set of data vectors ðx1i; x2i;/; xki; yiÞ˛Rkþ1, 1 � i � n, find
a function f : Rk/R such that the approximation error, e.g. the root
mean square errorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðyi � f ðxiÞÞ2
n

s

with xi ¼ ðx1i; x2i;/; xkiÞ, is minimized.
We chose to use a tool called DataModeler for our investigations.

It is based on genetic programming and designed for solving
symbolic regression problems.

2.1. DataModeler

Evolved Analytics’ DataModeler is a complete data analysis and
feature selection environment running underWolframMathematica
8. It offers a platform for data exploration, data-driven model
building,model analysis andmanagement, response exploration and
variable sensitivity analysis, model-based outlier detection, data
balancing and weighting.

Data-driven modeling in DataModeler is done by symbolic
regression via genetic programming. The Symbolic Regression
function offers several evolutionary strategies which differ in the
applied selection schemes, elitism, reproduction strategies, and
fitness evaluation strategies. An advanced user can take full control
over symbolic regression and introduce new function primitives,
new fitness functions, selection and propagation schemes, etc., by
specifying appropriate options in the function call. However, we
used the default settings and the default evolution strategy, which
in DataModeler is called ClassicGP.1

In the symbolic regression performed here, a population of
individuals (syntax trees) evolves over a variable number of
generations at the Pareto front in the three dimensional objective
space of model complexity, model error, and model age [5,11].

Model error in the default setting ranges between 0 and 1, with
the best value being 0. It is computed as 1�R2, where R is a scaled
correlation coefficient. The correlation coefficient of the predicted
output is scaled to have the same mean and standard deviation as
the observed output.

The model complexity is the expressional complexity of models,
and it is computed as the total sum of nodes in all subtrees of the
given GP tree. The model age is computed as the number of
generations that the model survived in the population. The age of
a child individual is computed by incrementing the age of the
parent contributing to the root node of the child. We use the age as
a secondary optimization objective, as it is used only internally for
evolution. At the end of symbolic regression runs, results are dis-
played in the two-objective space of user-selected objectives, in our
case, these objectives are model expressional complexity and 1�R2.

The population-specific parameters of our genetic programming
system are chosen as follows. The default population size is 300. The
default elite set size is 50 individuals from the ‘old’ population
closest to the 3-dimensional Pareto front in the objective space.
These individuals are copied to the ‘new’ population of 300 indi-
viduals, after which the size of the new population is decreased
down to thenecessary300. This is donebyselectingmodels fromthe
Pareto layers until the initially specified amount of models is found.

The selection of individuals for propagation is done by means of
Pareto tournaments. By default, 30 models are randomly sampled
from the current population, and Pareto-optimal individuals from
this sample are determined as winners to undergo variation until
a necessary number of new individuals are created.

Models are coded as parse trees using the GPmodel structure,
which contains placeholders for information about model quality,
data variables and ranges used to develop the model, and some
settings of symbolic regression. For example, the internal GPmodel
representation of the first Pareto front model from a set of models
from Fig. 3 with an expression �25.2334 þ 3.21666 windGust2 is
presented in Table 1. Note that the first vector inside the GPmodel
structure represents model quality. Model complexity is 11, model
error is 0.300409. Theparse treeof the samemodel is plotted in Fig.1.

When a specified execution threshold of a run in seconds is
reached, the independent evolution run terminates and a vector of
model objectives in the final population is re-evaluated to contain
only model complexity and model error. The set of models can
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Fig. 3. A super set of models generated in the first stage of experiments with 10
independent evolutions using all inputs. Red dots are Pareto front models, which are
non-dominated trade-offs in the space of model complexity and model error.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 1. Model tree plot of the individual from Table 1. Model complexity is the sum of
nodes in all subtrees of the given tree (11). Model error is computed as 1�R2 ¼ 0.30.
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further be analyzed for variable drivers, most frequent variable
combinations, behavior of the response, consistency in prediction,
accuracy vs. complexity trade-offs, etc.

When the goal is the prediction of the output in the unobserved
region of the data space, it is essential to use ‘model ensemble’
rather than individual models for this purpose. Because of the built-
in niching, complexity control, and independent evolutions used in
DataModeler’s symbolic regression, the final models are developed
to be diverse (with respect to structural complexity, model forms,
and residuals), but they all are global models, built to predict
training response in the entire training region. Due to diversity and
high quality, rich sets of final models allow us to select multiple
individuals to model ensembles. Prediction of a set of individuals is
then computed as a median or a median average of individual
predictions of ensemble members, while disagreement in the
predictions (standard deviation in this paper) is used to specify the
confidence interval of prediction. When models are extrapolated,
the confidence of predictions naturally deteriorates and confidence
intervals become wider. This allows first, a more robust prediction
of the response (since overfitting is further mitigated by choosing
models of different accuracy and complexity into an ensemble), and
second, more trustworthy predictions, since they are also supplied
with confidence intervals.

To select ensembles we used a built-in function in DataModeler
that focuses on themost typical individuals of themodel set aswell as
on individuals that have the fewest correlated residuals. Because of
space constraints, we refer the reader to [2] for further information.

3. Our approach

The main goal of this paper is to use public data to check the
feasibility of wind energy prediction by using an industrial-
Fig. 2. Data variables are heavily correlated (Blue: positively, Red: negatively).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
strength off-the-shelf non-linear modeling and feature selection
tool. In our study, we investigate and predict the energy production
of the wind farm Woolnorth in Tasmania, Australia based on
publicly available data. The energy production data is made
publicly available by the Australian Energy Market Operator
(AEMO) in real time to assist in maintaining the security of the
power system.2 For the creation of our models and the prediction,
we associate the wind farm with the Australian weather station
ID091245, located at Cape Grim, Tasmania. Its data is available for
free for a running observation time window of 72 h.3

3.1. Data

We collected both the weather and energy production data for
the time window from September 2010 to July 2011. The output of
the farm is available with a rate of one measurement every 5 min,
and theweather datawith a rate of onemeasurement every 30min.

The wind farm’s production capacity is split into two sites,
which complicated the generation of models. The site “Studland
Bay” has a maximum output of 75 MW, and “Bluff Point” has
amaximum output of 65MWand is located 50 km south of the first
site. The weather station is located on the first site. For wind
coming from the west (which is the prevailing wind direction), the
difference in location is negligible. But if the wind comes from the
north, there is an immediate energy and wind increase, plus
another energy increase 1e2 h later (the time delay depends on the
actual wind speed). Similarly, if the wind comes from the south,
there will be an increase in the energy production (although
no wind is indicated by the weather station) and then, 1e2 h
later, an energy increase accompanied by a measured wind speed
increase.

3.2. Data pre-processing

To perform data modeling and variable selection on collected
data, we had to perform data pre-processing to create a table of
weather and energy measurements taken at the same time
2 Australian Landscape Guardians: AEMO Non-Scheduled Generation Data:
www.landscapeguardians.org.au/data/aemo/(last visited August 31st, 2011).

3 Australian Government, Bureau of Meteorology: weather observations for Cape
Grim: www.bom.gov.au/products/IDT60801/IDT60801.94954.shtml (last visited
August 31st, 2011).

http://www.landscapeguardians.org.au/data/aemo/
http://www.bom.gov.au/products/IDT60801/IDT60801.94954.shtml


Table 1
Internal regression model representation in DataModeler for the model with an expression �25.2334 þ 3.21666$windGust2 (see also Fig. 1).
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Fig. 4. Selected set M1 of ‘best’ models in all variables and two modeling objectives.
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intervals. Energy output of the farm is measured at the rate of
5 min, including the time stamps of 0 and 30 min of every hour
when the weather is measured. Our approach was to correlate
weather measurements with the average energy output of the farm
reported in the [0, 25] and [30, 35]min intervals of every hour. Such
averaging makes modeling more difficult, but uses all available
energy information.

Different time scales used in the weather and energy data were
automatically converted to one scale using a DateList function in
Wolfram Mathematica 8, which is the scientific computing envi-
ronment in which DataModeler operates.

Because of many missing, erroneous, and duplicate time stamps
in the weather data, we obtained 11,022 commonmeasurements of
weather and averaged energy produced by the farm from October
2010 to June 2011. These samples were used as training data to
build regression models. From 18 variables of the weather data at
Cape Grim, we excluded two variables prior to modeling: more
than 75% of values for the Pressure MSL variable were missing and
the Wind Direction variable was non-numeric.

As test data we used 1408 common half-hour measurements of
weather and averaged energy in July 2011.

3.3. Data analysis and model development

As soon as weather and energy data from different sources were
put in an appropriate inputeoutput form, we were able to apply
a standard data-driven modeling approach to them.
A good approach employs iterations among three stages: Data
Collection/Reduction, Model Development, andModel Analysis and
Variable Selection. In hard problems, many iterations are required
to identify a subspace of minimal dimensionality where models of
appropriate accuracy and complexity trade-offs can be built.

Our problem is challenging for several reasons. First, it is hard to
predict the total wind energy output of the farm in the half-hour
following the moment whenweather is measured, especially when
the weather station is several kilometers away from the farm.
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Fig. 5. Presence of input variables in the selected set M1.
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Second, public data does not offer any information about the wind
farm except for wind energy output. Third, our training data covers
the range of weather conditions observed only between October
2010 and June 2011, while the test data contains data from July,
implying that our models must have good generalization capabil-
ities as they will be extrapolated to the unseen regions of the data
space. And lastly, our most challenging goal is to use all 16 publicly
available numeric weather characteristics for energy output
prediction, althoughmanyof themareheavilycorrelated (see Fig. 2).

Multi-collinearity in hard high-dimensional problems is a major
hurdle for most regression methods. Symbolic regression via GP is
one of the very few methods that does not suffer from multi-
collinearity and which is capable of naturally selecting variables
from the correlated subset for final regression models.

Because ensemble-based symbolic regression and robust vari-
able selection methodology are implemented in DataModeler, we
settled on a standard model development and variable selection
procedures using default settings.

The modeling goals of this study are:

(1) to identify the minimal subset of driving weather features that
are significantly related to the wind energy output of the wind
farm,

(2) to let genetic programming express these relationships in the
form of explicit inputeoutput regression models, and

(3) to select model ensembles for improved generalization capa-
bilities of energy predictions and to analyze the quality of
produced model ensembles using an unseen test set.
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Our approach is to achieve these goals using two iterations of
symbolic regressionmodeling. At the first exploratory stage, we run
symbolic regression on training data to identify driving weather
characteristics significantly related to the energy output. At the
second modeling stage, we reduce the training data to the set of
selected inputs and run symbolic regression to obtain models, and
model ensembles for predicting energy output.

4. Experimental results

4.1. Experimental setup

The setup of symbolic regression used the default settings of
DataModeler except for the number of independent runs, execution
time of each run, and the template operator at the root of the GP
trees. We executed 10 independent evolutionary runs of 2000 s in
both stages. The root node of all GP trees was fixed to a Plus. The
primitives for regression models consisted of an extended set of
arithmetic operators:

fPlus;Minus; Subtract;Divide; Times; Sqrt; Square; Inverseg:
The maximum arity of Plus and Times operators is limited to 5.
Model trees have terminals labeled as variables or constants

(random integers or reals), with a maximum allowed model
complexity of 1000. Population size is 300; elite set size is 50.
Population individuals are selected for reproduction using Pareto
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Fig. 8. Selected set M2 of ‘best’ models in up to two-dimensional input space and two
modeling objectives.



Fig. 9. Visualization of models in M2 niched per driving variable combination. Note, that windGust2 alone is insufficient to predict energy output with the accuracy that is achieved
when windGust2 and dewPoint are used. The model error is computed using training data.
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tournaments with a tournament size of 30. Propagation operators
are crossover (at rate 0.9), subtree mutation (rate 0.05), and depth-
preserving subtree mutation (rate 0.05). At the end of each inde-
pendent evolution, the population and archive individuals are
merged to produce a final set of models. At each stage of experi-
ments the results of all independent evolutions aremerged together
to produce a superset of solutions (see an example in Fig. 3).

For model analysis, we applied additional model selection
strategies to these supersets of models. We describe the additional
model selection strategies, discovered variable drivers, final
models, and the quality of predictions in the next section.

4.2. Feature selection

The initial set of experiments targets the feature selection, using
all 16 input variables and all training data from October 2010 to
June 2011. In the allowed 2000 s, each symbolic regression run
completed at most 217 generations.

The 10 independent evolutions generated a superset of 4450
models. We reduced this set to robust models only, by applying
interval arithmetic to removemodels with potential for pathologies
and unbounded response in the training data range. This generated
2559 unique robustmodels, and from thosewe selected the final set
M1. This set contained 587 individuals with the model error not
exceeding 0.30, and model complexity not exceeding 350, that lie
closest to the Pareto front in model complexity versus model error
objective space. The set M1 is depicted in Fig. 4 with Pareto front
individuals indicated in red. The limit of 350 on model complexity
Table 2
Model ensemble (six models) selected from M2. Constants are rounded to one decimal

Model

�32:1þ 2:9ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
windGust2

p
þwindGust2Þ

112:0� 3:5*10�5ð�1956:3þ dewPoint2 þwindGust22Þ2
�6:4þ 1:3*10�4ð9�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
windGust2

p
Þ2windGust22,ð�9:9þ dewPointþ 2windGust2Þ

�4:5þ 4:3*10�4ð�8:9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
windGust2

p
Þð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
windGust2

p
þ 0:1windGust2ÞwindGust2,ð�

�3:1þ 1:5*10�4ð�3 dewPoint windGust22 þ ð9�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
windGust2

p
Þ2windGust22,ð�16:3þ d

�11:2þ 9:4*10�7ð9�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
windGust2

p
Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
windGust2

p
,ð39:4þ 4dewPointþ 7windGust2Þ

�

preserved the best model of the run (the rightmost red dot), but
excluded dominated individualswithmodel complexities up to600.

We used the set M1 to perform variable presence and variable
contribution analysis to identify the variable drivers significantly
related to energy output. The presence of input variables in models
from M1 is visualized in Figs. 5 and 6. We can observe from Fig. 6
that the six most frequently used variables are (in order of
decreasing importance) windGust2, windGust, dewPoint, month,
relativeHumidity, and pressureQNH. While we observe that these
variables are most frequently used in a good set of candidate
solutions inM1, it is somewhat hard to define a threshold on these
presence-based variable importances to select variable drivers. For
example, it is unclear whether we should select the top three, four,
or five inputs.

For a crisper feature selection analysis, we performed a variable
contribution analysis using DataModeler to see how much each
variable contributes to the relative error of the model where it is
present. The median variable contributions computed using the
model setM1 aredepicted in Fig. 7. Theplot clearly demonstrates that
the contribution of other variables, besides the top three mentioned
above and identified using variable presence analysis, is negligible.

Results of the first stage of experiments suggest that the
weather inputs windGust2, windGust, and DewPoint are 1) the
most frequently present inM1 and 2) have the highest contribution
to the relative errors of models in M1 and are sufficient to achieve
the accuracy of M1. In other words these inputs are sufficient to
predict energy output with accuracy between 70% and 80% R2 on
the training data.
place.

c etrain etest

24 0.299 0.426
42 0.247 0.472
63 0.209 0.146

12þ dewPoint2 þwindGust22Þ 78 0.207 0.149
ewPointþ 2windGust2ÞÞ 121 0.205 0.145
1
9
þ dewPointþ ð10þ 2windGust2Þ2

�
124 0.211 0.145
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The high correlation between the windGust and windGust2
variables motivated us to select only one of them for the second
round of modeling, together with dewPoint, to generate prediction
models. Symbolic regression does not guarantee that only one
particular input variable out of the set of correlated inputs will be
present in finalmodels. It might be that either only one out of two is
sufficient to predict the response with the same accuracy, or that
both are necessary for success. Our choice was to select windGust2
(as the most frequent variable in the models) together with dew-
Point for the second stage of experiments, and to see whether the
predictive accuracy of new models in the new two-dimensional
design space would not decrease, when compared to the accuracy
of M1 models developed in the original space of 16 dimensions.

4.3. Energy output prediction

The second stage of experiments used only the two input vari-
ables windGust2 and dewPoint, with all other symbolic regression
settings identical to the first stage experiments. As a result, a new
set of one and two-variable models were generated. We again
applied a selection procedure to the superset of models by selecting
only 25% of robust models closest to the Pareto front with the
training error of at most 1�R2 ¼ 0.30 and model complexity of at
most 250. The resulting set of 587 simplest models, denoted asM2,
is depicted in Figs. 8 and 9.

Fig. 9 is obtained using the VariableContributionTable function
of DataModeler, and it exposes the trade-offs for input subspaces
and prediction accuracy for energy prediction.

We emphasize here that this it is up to the domain expert to
choose an appropriate input space for the energy prediction
models. This decision will be guided by the costs and risks
associated with different levels of prediction accuracy, and by the
time needed to performmeasurements of associated design spaces.
The responsibility of a good model development tool is to supply
experts with robust information about the trade-offs.

At the last stage of model analysis, we used the Crea-
teModelEnsemble function of DataModeler to select an ensemble of
regression models from M2, allowing only models with model
complexities not exceeding 150. As can be seen in Fig. 8, an increase
of model complexity does not provide a sufficient increase in the
training error. Since our goal is to predict energy production over
a completely new interval of weather conditions (here: July 2011)
we choose the simplest models to avoid potential overfitting.

The selected model ensemble consists of six models presented
in Table 2. The values of model complexity c, training error etrain,
and test error etest for six models in the ensemble are listed in this
table as well. The test error is evaluated post facto, after the models
are selected into the model ensemble.

The created model ensemble can now be evaluated on the test
data. As mentioned in Section 2.1 ensemble prediction is computed
as a median of predictions of individual ensemble members, while
ensemble confidence is computed as a standard deviation of indi-
vidual predictions. We report the normalized root mean squared
error of ensemble prediction on the test data as RMSETest ¼ 12.6%.

Fig. 10 presents the predicted versus observed energy output in
July 2011, with whiskers corresponding to ensemble confidence.
Note that the confidence intervals for prediction are very high for
many training samples. This is normal and should be expected
when prediction is evaluated well beyond the training data range.
Fig. 11 presents ensemble prediction versus actual energy produc-
tion over time in July 2011.

5. Conclusions

In this study, we showed that wind energy output can be pre-
dicted from publicly availableweather datawith accuracy up to 80%
R2 on the training range and up to 85,5% on the unseen test data.
We identified the smallest space of input variables (windGust2 and
dewPoint) where reported accuracy can be achieved, and provided
clear trade-offs in prediction accuracy when decreasing the input
space to the windGust2 variable. We demonstrated that an off-the-
shelf data modeling and variable selection tool can be used with
mostly default settings to run the symbolic regression experiments
as well as variable importance, variable contribution analysis,
ensemble selection, and validation.

We are pleased that the presented framework is so simple that it
can be used by literally everybody for predicting wind energy
production on a smaller scaledfor individual wind turbines on
private farms or urban buildings, or for small wind farms. For future
work, we are planning further study of the possibilities for longer-
term wind energy forecasting.
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