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We present a new randomized diffusion-based algorithm for balancing indivisible tasks 
(tokens) on a network. Our aim is to minimize the discrepancy between the maximum 
and minimum load. The algorithm works as follows. Every vertex distributes its tokens 
as evenly as possible among its neighbors and itself. If this is not possible without 
splitting some tokens, the vertex redistributes its excess tokens among all its neighbors 
randomly (without replacement). In this paper we prove several upper bounds on the load 
discrepancy for general networks. These bounds depend on some expansion properties 
of the network, that is, the second largest eigenvalue, and a novel measure which we 
refer to as refined local divergence. We then apply these general bounds to obtain 
results for some specific networks. For constant-degree expanders and torus graphs, these 
yield exponential improvements on the discrepancy bounds. For hypercubes we obtain a 
polynomial improvement.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

During the last years, large parallel networks became widely available for industrial and academic users. An important 
prerequisite for their efficient usage is to balance their work efficiently. Load balancing is also known to have applications 
to scheduling, routing, numerical computation, and finite element computations.

In this paper we analyze a very simple neighborhood-based load balancing algorithm. We assume that the processors 
are connected by an arbitrary d-regular network. In the beginning, every vertex has a certain number of tokens (load) and 
the goal is to distribute the tokens as evenly as possible. More precisely, we aim at minimizing the difference between the 
minimum and maximum load, which we call discrepancy.

Neighborhood-based load balancing algorithms normally operate in parallel steps. In each step, every processor is allowed 
to probe the load of all of its neighbors (diffusion load balancing), or to probe the load of one neighbor (dimension exchange). 
Then each processor has to decide how much load it will forward to the neighbors in question. Here we consider a very 
natural diffusion-based approach where every processor tries to balance the load locally. This means that along each edge, 
a load of load-difference/(d + 1) is sent to the vertex with less load. This is exactly the approach in the continuous diffusion 
model where tokens can be split arbitrarily. This method balances the load perfectly.
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In contrast to continuous diffusion, we consider the (arguably more realistic [25]) case of discrete diffusion where to-
kens are indivisible. Quantifying by how much the integrality assumption decreases the efficiency of load balancing is an 
interesting question and has been posed by many authors (e.g., [12,16,20,23–25]).

In the common edge-oriented view of e.g. [13,15,24], for each edge one has to decide between transferring either 
�load-difference/(d + 1)� or �load-difference/(d + 1)� tokens (referred to as rounding up or rounding down). Rounding up 
results in a load balancing algorithm that keeps sending tokens back and forth between processors with a small load dif-
ference. Another disadvantage is that the approach can generate “negative loads” for vertices with only a few tokens. On 
the other hand, always rounding down cannot balance better than d · diam(G), where diam(G) denotes the diameter of the 
underlying graph G . To overcome these problems we adopt a vertex-oriented view in this paper. We present a randomized 
diffusion load balancing algorithm where the vertices (not edges) decide randomly how much they are sending.

1.1. Related work

Due to the vast amount of literature on load balancing, we consider only previous work dealing with diffusion load 
balancing, or randomized algorithms for neighborhood-based load balancing. We do not consider the dimension exchange 
model in general, or token distribution model where only one token can be sent to a neighbor per step.

Continuous diffusion. The diffusion model was first studied by Cybenko [5] and, independently, Boillat [3]. Cybenko [5]
(see also [23,25]) shows a tight connection between the convergence rate of the diffusion algorithm and the absolute 
value of the second largest eigenvalue λmax of the diffusion matrix P with Pi j = 1/(d + 1) if {i, j} ∈ E . Subramanian and 
Scherson [25] observe similar relations between convergence time and certain properties of the underlying network like 
electrical and fluid conductance.

Muthukrishnan et al. [23] refer to the above diffusion model as the first order scheme and generalize it to the so called 
second order scheme. Here the load transferred over an edge (i, j) in step t does not only depend on the load difference of i
and j, but also on the amount of load transferred over the edge in step t − 1. Diekmann et al. [7] extend the idea of [23]
and propose a general framework to analyze the convergence behavior of a wide range of diffusion type methods.

Discrete diffusion. In order to approximate the idealized process by a discrete process with indivisible load, Rabani 
et al. [24] consider a diffusion algorithm (called RSW algorithm in the following) which always rounds down the indi-
visible load on each edge. To quantify the deviation of the discrete load from the idealized process, they propose a natural 
measure, the local divergence Ψ1. The local divergence measures the sum of load differences across all edges in the network, 
aggregated over time. They give a general bound on the divergence in terms of λmax, which denotes the absolute value of 
the second largest eigenvalue of the diffusion matrix P. By a more careful analysis, they also get an improved upper bound 
on Ψ1 for tori, resulting in a tight bound on the discrepancy achieved by their algorithm.

Discrete load balancing via random walks. Elsässer et al. [10–12] proposed an algorithm based on random walks. They show 
that after O(log(Kn)/(1 −λmax)) steps, the maximum load is at most the average load plus a constant [11]. In comparison to 
our algorithm, their algorithm is more complicated and different from the usual diffusion framework. For example, vertices 
require an estimate of n and have to compute the average load during the balancing procedure. Moreover, the final stage 
uses concurrent random walks (representing tokens) to reduce the maximum load. In this stage, the load transfer along an 
edge may be much smaller (or higher) than load-difference/(d + 1).

Discrete neighborhood load balancing with randomization. In [13] the last two authors analyze a randomized version of the 
dimension-exchange algorithm using randomly generated or deterministic matchings. In their algorithm, the decision to 
round up or down is randomized. For detailed results see Table 1. Note that in their case every node exchanges load with 
at most one neighbor. This is typically much easier to analyze than diffusion algorithms.

Friedrich et al. [15] analyze a deterministic modification of the standard diffusion algorithm for hypercubes and constant-
dimensional tori. The idea is that each edge keeps tracks of its own rounding errors. In each step an edge’s decision to round 
up or down is done such that the sum of its rounding errors is minimized. Again, the detailed results can be found in Ta-
ble 1. Friedrich et al. [15] also consider a randomized version of the diffusion algorithm. Their approach is edge-based. Edges 
decide independently at random whether to round up or down. The probabilities are chosen such that, in expectation, the 
behavior of the continuous diffusion algorithm is mimicked. They present a general upper bound for their approach in terms 
of λmax. Note that both algorithms in [15] may generate negative load due to the edge-based rounding.

Source of inspiration. We wish to point out that our work was inspired by recent combinatorial results regarding so-called 
rotor-router walks [4,8]. Unlike in a random walk, in a rotor-router walk each vertex serves its neighbors in a fixed order. The 
resulting (completely deterministic) walk nevertheless closely resembles a random walk in several respects. Similarly, one 
can say that in each round of our load-balancing algorithm a vertex chooses a random order of its neighbors (and itself) 
and sends around all its tokens in this order in a round-robin fashion.

1.2. Our contribution

Algorithm. We consider a vertex-based randomized diffusion algorithm for the discrete model with indivisible tokens. 
Let d be the degree of the (regular) network and let Xi be the load of vertex i. Our algorithm works as follows. First, 
vertex i sends �Xi/(d + 1)� tokens to each neighbor and keeps the same amount of tokens for itself. Then the remaining 
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Table 1
Discrepancy of neighborhood load balancing after τ (G, K ) = Θ(log(Kn)/1 − λmax) rounds.

Graph class FS [13] RSW [24] FGS [15] det. FGS [14] rand. Our algorithm

d-reg. graph O(Ψ2(G)
√

log n) O(Ψ1(G)) – – O(Υ2(G)
√

d logn)

O(
d log log n
1−λmax

) – – O(
d log log n
1−λmax

) O(
d log log n
1−λmax

)

O(

√
d log n

1−λmax
) O(

d log n
1−λmax

) – – O(d
√

log n +
√

d log n log d
1−λmax

)

d-reg. expander O(d log log n) O(d logn) – O(d log logn) O(d log logn)

Hypercube O(log2 n) Θ(log2 n) O(log3/2 n) O(log2 n log log n) O(logn)

r-dim. torus O(n1/(2r)
√

log n) Θ(n1/r) O(1) O(n1/r log logn) O(
√

log n)

Properties FS [13] RSW [24] FGS [15] det. FGS [14] rand. Our algorithm

Diffusion ✗ ✓ ✓ ✓ ✓

No neg. load ✓ ✓ ✗ ✗ ✓

Xi − (d + 1)�Xi/(d + 1)� tokens (called excess tokens) are randomly distributed (without replacement) among vertex i and 
its d neighbors.

Results. To state our results formally, we let τ (G, K ) = O(log(Kn)/(1 − λmax)) be the number of steps after which the 
continuous process achieves a constant discrepancy for any initial load distribution with discrepancy K (cf. Fact 2.5, [24]). 
All our bounds on the discrepancy are independent of the initial load vector, and hold with high probability (w.h.p.), i.e., 
with probability at least 1 − n−Ω(1) .

Theorem 1.1. Let G be an arbitrary d-regular graph and let K be the initial discrepancy. Then the discrepancy after τ (G, K ) =
O(log(Kn)/(1 − λmax)) rounds is w.h.p. at most

(1) O(Υ2(G)
√

d logn),

(2) O(d +√
d log(n)((Υ2(G))2 − d)),

(3) O(d log log n
1−λmax

).

The role of Υ2(G) is similar to the local divergence Ψ1(G) used in [24] (cf. Definitions 2.7 and 2.8). Υ2(G) accounts for 
the more balanced reallocation of the excess tokens due to our randomized approach and is much smaller than Ψ1(G), i.e., 
Υ2(G) ≤ √

Ψ1(G) for any graph G .
The next theorem provides more specific bounds on the discrepancy. It is derived by first bounding Υ2(G) and then 

applying Theorem 1.1.

Theorem 1.2. The following upper bounds on the discrepancy after τ (G, K ) =O(log(Kn)/(1 − λmax)) rounds hold w.h.p.

(1) O(d
√

log n +
√

d log n log d
1−λmax

),

(2) d-regular expander: O(d log log n),
(3) r-dim. torus, r =O(1): O(

√
log n),

(4) Hypercube: O(logn).

Let us compare our results to the RSW algorithm [24] as it is also very natural, considers diffusion and avoids negative 
loads. More comparisons can be found in Table 1. For d-regular expanders, [24] proves a discrepancy bound of O(d log n)

after τ (G, K ) rounds. This is almost tight, as d · diam(G) is a simple lower bound for the RSW algorithm. Hence for small d, 
we obtain an exponential improvement in terms of the discrepancy.

For the r-dimensional torus graph, [24, Theorem 8] proved a bound of O(n1/r) on the discrepancy after τ (G, K ) rounds. 
This is tight due to the lower bound of diam(G). Again, our new result represents an exponential improvement.

For the hypercube with n vertices, [24, Theorem 4] implies a discrepancy bound of O(log3 n) after τ (G, K ) rounds. The 
techniques used to analyze our new algorithm can be also used to prove a tight bound of Θ(log2 n) on the discrepancy for 
the RSW algorithm. For our new algorithm, we obtain a smaller bound of O(log n) on the discrepancy.

Techniques. The key ingredient of the analyses in [13,15,24] is “an appropriate edge-oriented view of the rounding errors 
in each balancing step, which allows them to be handled independently” (as stated by Rabani et al. [24]). The problem with 
vertex-oriented algorithms are the dependencies between the rounding results for edges incident to the same vertex. To 
deal with these dependencies we use a different analysis compared to [13,15], based on martingale tail estimates. The other 
main technical contribution is the use of the new parameter Υ2(G) (Definition 2.8) as opposed to the local divergence Ψ1(G)

as used in [24].
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2. Algorithms and notation

We use standard graph-theoretical notation. We only consider graphs G = (V , E) that are connected, undirected, 
d-regular and simple. The n vertices of G are given by [n] := {1, 2, . . . ,n}. The neighborhood of a vertex i is denoted 
by N(i). For a pair of vertices i, j ∈ V (G), let dist(i, j) be the length of a shortest path between i and j, and diam(G) be 
the diameter of G . [i : j] refers to an edge {i, j} ∈ E with i < j. This notation will be useful to have a unique representative 
for each edge {i, j} ∈ E . Every vertex in the graph has a certain amount of load items (tokens). We assume that the load is 
indivisible and each token is of unit-size.

We denote by P the transition matrix, i.e., Pi, j = 1
d+1 if {i, j} ∈ E or i = j, and Pi, j = 0 otherwise. We will often use Pt

which means that we raise the matrix P to the power of t . Note that Pt
i, j can be also seen as the probability for a random 

walk being located at vertex j at step t , when having started from vertex i.
For the estimation of the convergence of our processes, the absolute value of the second largest eigenvalues of P plays a 

crucial role. Let us denote the eigenvalues of P by 1 = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn > −1 and define λmax := max{λ2, |λn|}.

Lemma 2.1. For any d-regular graph G, 1/(1 − λmax(G)) ≤ n3 .

Proof. Let d = μ1 ≥ μ2 ≥ · · · ≥ μn be the n eigenvalues of the adjacency matrix of the d-regular graph G . As shown in 
[19, Problem 11.29], d − μ2 ≥ 1

diam(G)n . Hence, λ2 = μ2/(d + 1) ≤ d
d+1 − 1

diam(G)(d+1)n ≤ 1 − 1
n3 . Moreover, it is proved in [1, 

Theorem 1.1] that μn ≥ −d + 1
(diam(G)+1)n and therefore λn ≥ − d

d+1 + 1
(diam(G)+1)(d+1)n ≥ −1 + 1

n3 . �
We also need the following elementary inequalities.

Lemma 2.2. The following two inequalities hold.

(1) For any integer m and any non-negative numbers x1, x2, . . . , xn ∈ R
+ , (x1 + x2 + · · · + xn)m ≤ nm−1 · (xm

1 + xm
2 + · · · + xm

n ).
(2) Moreover, for any three numbers x, y, z ∈R, (x − y)2 ≤ 2((x − z)2 + (y − z)2).

Proof. For the first statement, recall that x �→ xm is a convex function for non-negative x. Hence,(
x1 + x2 + · · · + xn

n

)m

≤ xm
1 + xm

2 + · · · + xm
n

n
.

Rearranging yields the first claim. For the second statement, we apply the first statement to obtain (x − y)2 = (x − z +
z − y)2 ≤ 2((x − z)2 + (y − z)2). �
2.1. Our discrete process

Our balancing procedure proceeds in rounds 1, 2, . . . . Fix a vertex i at some step and let Xi be the current load of this 
vertex. Then, i sends �Xi/(d + 1)� tokens to each of its neighbors and keeps �Xi/(d + 1)� tokens for itself. The remaining 
Xi − (d + 1)�Xi/(d + 1)� ∈ [0, d] excess-tokens are distributed randomly (without replacement) among i and its d neighbors.

To describe our processes more formally, we first present our notation that is based on [24]. For any round t , let X (t)

be the n-dimensional load-vector at (the end of) step t (load vectors are always regarded as column-vectors here). The 
discrepancy of the load vector X (t) at step t is defined as maxi, j∈[n] |X (t)

i − X (t)
j |.

For each edge {i, j} ∈ E we define a random variable Z (t)
i, j which is one if i sends an excess token to j at step t , and Z (t)

i, j

is zero otherwise. Similarly, let Z (t)
i,i be one if i keeps an excess token for itself, and zero otherwise. Note that each Z (t)

i, j with 
j ∈ N(i) ∪ {i} is a Bernoulli random variable with

Pr
[

Zt
i, j = 1

]= X (t−1)
i

d + 1
−
⌊

X (t−1)
i

d + 1

⌋
.

Additionally, the number of excess tokens sent out by i satisfies

Z (t)
i,i +

∑
j:{i, j}∈E

Z (t)
i, j = X (t−1)

i − (d + 1)

⌊
X (t−1)

i

d + 1

⌋
. (2.1)

Note that Zi, j and Z j,i are independent for i �= j. Now we can describe the discrete process as follows,

X (t)
i =

⌊
X (t−1)

i

d + 1

⌋
+ Z (t)

i,i +
∑

j:{i, j}∈E

(⌊ X (t−1)
j

d + 1

⌋
+ Z (t)

j,i

)
. (2.2)
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2.2. The continuous process

We also look at the corresponding continuous process, where the load is arbitrarily divisible. The load vector of this 
process is denoted by ξ (t) in round t . To analyze X (t) , we shall bound its deviation from ξ (t) and use the fact that the 
evolution of ξ (t) in t is well-understood by Markov chain theory. The reason is that ξ (t) is given by the recurrence ξ (t) =
ξ (t−1)P, which results in ξ (t) = ξ (0)Pt . Alternatively, we can write this as

ξ
(t)
i = ξ

(t−1)
i +

∑
j:{i, j}∈E

ξ
(t−1)
j − ξ

(t−1)
i

d + 1
. (2.3)

We define the average load as ξ := ∑n
i=1 ξ

(0)
i /n. We will use the following result that bounds the load difference of the 

vertices to the average load in step t for the continuous process.

Lemma 2.3. (See [23, Lemma 1].) Let G = (V , E) be an arbitrary connected graph. Then for any initial vector ξ (0) and time step t ≥ 0, ∑n
i=1(ξ

(t)
i − ξ)2 ≤ λ2t

max
∑n

i=1(ξ
(0)
i − ξ)2 .

We will use the following immediate consequence of this lemma.

Corollary 2.4. Let G = (V , E) be any graph. Then for any time step t ≥ 0 and any vertex k ∈ V , 
∑n

i=1(Pt
i,k − 1

n )2 ≤ λ2t
max .

Proof. Let ξ (0) be the unit-vector with 1 at entry k and 0 otherwise. Observe that ξ = 1/n and ξ (t)
i = ∑n

j=1 ξ
(0)
j Pt

j,i =
Pt

k,i = Pt
i,k . Hence applying Lemma 2.3 leads to

n∑
i=1

(
Pt

i,k − 1

n

)2

≤ λ2t
max

n∑
i=1

(
ξ

(0)
i − 1

n

)2

= λ2t
max

(
1 − 1

n

)
≤ λ2t

max. �

The following well-known result bounds the discrepancy of ξ .

Fact 2.5. (See [24, Theorem 1].) Let G be any graph with n vertices. For the continuous process, the discrepancy is reduced to ε > 0
after 2

1−λmax
ln( Kn2

ε ) steps, where K is the discrepancy of the initial load vector.

By τ (G, K ) we denote the number of steps required for the continuous process to achieve a discrepancy of 1 for any 
initial load vector with discrepancy K . Fact 2.5 implies that τ (G, K ) = O(

log(Kn)
1−λmax

).

2.3. Difference between continuous process and discrete process

To obtain results for the discrete process, we upper bound the deviation between the discrete and continuous process 
at a step t when initialized with the same load vector. The step t is chosen just large enough to ensure that continuous 
process has achieved a discrepancy of at most 1 for every load vector with initial discrepancy K (cf. Fact 2.5). Hence, the 
discrepancy of the discrete process is upper bounded by the deviation between the discrete and continuous process (plus 1).

Similar to [13,15,24], we first express the difference between the discrete and idealized process by a sum of weighted 
rounding errors (Eq. (3.1)). In this sum, the rounding errors are weighted by powers of the transition probabilities. In 
contrast to [13,15,24], the rounding errors (of the same time step) are not independent for all edges. This is due to our 
vertex-based approach and complicates the analysis.

To find a recursion for the discrete process, similar to Eq. (2.3) for the continuous process, plug Eq. (2.1) into Eq. (2.2) to 
obtain

X (t)
i =

⌊
X (t−1)

i

d + 1

⌋
−
( ∑

j:{i, j}∈E

Z (t)
i, j

)
+ X (t−1)

i − (d + 1)

⌊
X (t−1)

i

d + 1

⌋
+

∑
j:{i, j}∈E

(⌊ X (t−1)
j

d + 1

⌋
+ Z (t)

j,i

)

= X (t−1)
i +

∑
j:{i, j}∈E

(⌊ X (t−1)
j

d + 1

⌋
−
⌊

X (t−1)
i

d + 1

⌋
+ Z (t)

j,i − Z (t)
i, j

)
. (2.4)

Comparing Eq. (2.4) to (2.3) motivates the definition of a random variable 

(t)
i, j for the rounding error made by the vertex i

on the edge from i to j at step t:



(t)
i, j := − X (t−1)

j + X (t−1)
i +

⌊ X (t−1)
j

⌋
−
⌊

X (t−1)
i

⌋
+ Z (t)

j,i − Z (t)
i, j . (2.5)
d + 1 d + 1 d + 1 d + 1
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This allows us to write

X (t)
i = X (t−1)

i +
∑

j:{i, j}∈E

X (t−1)
j − X (t−1)

i

d + 1
+ 


(t)
i, j . (2.6)

Now we state some basic properties of the rounding errors.

Lemma 2.6. Let G = (V , E) be an arbitrary connected graph.

(1) For every {i, j} ∈ E and time step t, 
(t)
i, j = −


(t)
j,i , |
(t)

i, j| ≤ 2 and E[
(t)
i, j] = 0.

(2) Consider two vertex-disjoint edges {i, j} ∈ E and {k, �} ∈ E and assume that X (t−1) is fixed. Then 
(t)
i, j and 
(t)

k,�
are independent.

Proof. (1): The antisymmetry of 
 follows directly by the definition. The absolute value of 
 can be bounded as follows:

∣∣
(t)
i, j

∣∣≤ ∣∣∣∣ X (t−1)
i

d + 1
−
⌊

X (t−1)
i

d + 1

⌋
︸ ︷︷ ︸

∈[0,1)

−
( X (t−1)

j

d + 1
−
⌊ X (t−1)

j

d + 1

⌋
︸ ︷︷ ︸

∈[0,1)

)∣∣∣∣+ ∣∣Z (t)
j,i − Z (t)

i, j︸ ︷︷ ︸
∈[−1,1]

∣∣≤ 1 + 1 = 2.

Finally, linearity of expectations and the definition of Z (t)
i, j and Z (t)

j,i gives

E
[



(t)
i, j

]= − X (t−1)
j

d + 1
+ X (t−1)

i

d + 1
+
⌊ X (t−1)

j

d + 1

⌋
−
⌊

X (t−1)
i

d + 1

⌋
+ X (t−1)

j

d + 1
−
⌊ X (t−1)

j

d + 1

⌋
− X (t−1)

i

d + 1
+
⌊

X (t−1)
i

d + 1

⌋
= 0.

(2): Recall that by assumption, the load vector X (t−1) is fixed. By the definition of 
(t)
i, j in Eq. (2.5), 
(t)

i, j depends only on 
the random variables Z (t)

i, j and Z (t)
j,i . In addition, Eq. (2.1) describes a relation between Z (t)

i, j and all other Z (t)
i,� with {i, �} ∈ E

(and the same holds for Z (t)
j,i as well). Hence 


(t)
i, j depends on

Z (t)
i, j , Z (t)

j,i , all Z (t)
i,s with {i, s} ∈ E, and all Z (t)

j,s with { j, s} ∈ E.

Similarly, 
(t)
k,�

depends on

Z (t)
k,�

, Z (t)
�,k, all Z (t)

k,s with {k, s} ∈ E, and all Z (t)
�,s with {�, s} ∈ E.

Hence if the edges {i, j} ∈ E and {k, �} ∈ E are vertex-disjoint, the set of random variables in the two sets above are disjoint. 
Hence, 
(t)

i, j and 

(t)
k,�

are independent. �
We now continue by returning to Eq. (2.6). For any vertex i ∈ V and step t , let us define an error vector 
(t) with 



(t)
i :=∑

j:{i, j}∈E 

(t)
i, j . With this notation we have, X (t) = X (t−1)P + 
(t) .

Solving this recursion (see [24]) and setting ξ (0) = X (0) results in

X (t) = X (0)Pt +
t−1∑
s=0


(t−s)Ps = ξ (t) +
t−1∑
s=0


(t−s)Ps,

where P0 is the n × n-identity matrix. Hence, for any vertex k ∈ V

X (t)
k − ξ

(t)
k =

t−1∑
s=0

n∑
i=1



(t−s)
i Ps

i,k =
t−1∑
s=0

n∑
i=1

∑
j:{i, j}∈E



(t−s)
i, j Ps

i,k

=
t−1∑
s=0

∑
[i: j]∈E



(t−s)
i, j

(
Ps

i,k − Ps
j,k

)
, (2.7)

where the last equality uses 
(t−s) = −

(t−s) shown in Lemma 2.6(1).
i, j j,i
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2.4. Definition of local divergence and refined local divergence

Eq. (2.7) and |
(t−s)
i, j | ≤ 2 suggests to consider 

∑t−1
s=0

∑
[i: j]∈E |Ps

i,k − Ps
j,k|, which is a parameter that only depends on the 

graph G , but not on the behavior of the load balancing algorithm. We first adjust a definition from [13] that generalizes the 
original definition of local divergence from [24] for p = 1.

Definition 2.7. (See [13,24].) For any p ∈ N>0, the local p-divergence of a graph G = (V , E) is

Ψp(G) := max
k∈V

( ∞∑
t=0

∑
[i: j]∈E

∣∣Pt
i,k − Pt

j,k

∣∣p

)1/p

.

Note that Ψ2(G)2 ≤ Ψ1(G), since |Pt
i,k − Pt

j,k| ≤ 1 for all t, i, k. As pointed out in [24], “Ψ1(G) is a natural quantity that 
measures the sum of load differences across all edges in the network, aggregated over time (and suitably normalized) which may be 
of independent interest”. Here, we will mainly consider a natural extension of Ψ1(G) to the �2-norm, Ψ2(G) and its sibling 
Υ2(G) which is defined below.

Definition 2.8. For any p ∈ N>0, the refined local p-divergence of a graph G = (V , E) is

Υp(G) := max
k∈V

(
1

2

∞∑
t=0

n∑
i=1

max
j∈N(i)

∣∣Pt
i,k − Pt

j,k

∣∣p

)1/p

.

Note that Υp(G) ≤ Ψp(G), since for each {i, j} ∈ E(G) the term |Pt
i,k − Pt

j,k|p appears once in Ψp(G) and at most twice in 
Υp(G) (this also explains why we include the factor of 1/2 in the definition of Υp(G)).

The analysis of our algorithm will be based on Υ2(G). The following lemma shows that only early time steps can have a 
significant contribution to Υ2(G).

Lemma 2.9. Let G = (V , E) be any graph and define κ := (4 ln n)/(1 − λmax). Then for an arbitrary vertex k ∈ V ,

∞∑
t=κ

∑
[i: j]∈E

(
Pt

i,k − Pt
j,k

)2 = O(1).

Proof. Using Lemma 2.2, we get

∞∑
t=κ

∑
[i: j]∈E

(
Pt

i,k − Pt
j,k

)2 ≤ 2 ·
∞∑

t=κ

∑
[i: j]∈E

(
Pt

i,k − 1

n

)2

+
(

Pt
j,k − 1

n

)2

= 2d ·
∞∑

t=κ

∑
i∈V

(
Pt

i,k − 1

n

)2

≤ 2d ·
∞∑

t=κ

λ2t
max,

where the last inequality is due to Corollary 2.4. Using the fact that x1/(1−x) ≤ 1/e for x ∈ [0, 1) and the inequality 
1 − λmax ≤ n−3 (Lemma 2.1), we can bound this term as follows,

2d ·
∞∑

t=κ

λ2t
max = 2d · λ2κ

max

1 − (λmax)2
≤ 2d · λ

(8 ln n)/(1−λmax)
max

1 − λmax
≤ 2d · e−8 ln n

n−3
= O(1). �

3. Proof of Theorem 1.1

We now bound the discrepancy of our discrete process in terms of the local divergence Υ2(G). We do this by upper 
bounding the deviation between the discrete and the continuous process. A similar approach was used in Rabani et al. [24]
who bounded this deviation in terms of Ψ1(G). They showed that reducing the initial discrepancy from K to O(Ψ1(G))

can be achieved within O(log(Kn)/(1 − λmax)) steps for any initial load vector. However, it turns out that our randomized 
process can be bounded in terms of Υ2(G). Note that Υ2(G) is in general much smaller than Υ1(G) (or Ψ1(G)) (cf. the 
remarks after Definition 2.7). We will use the following concentration inequality for martingales, which is commonly known 
as the “method of average bounded differences”.
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Theorem 3.1. (See [9, p. 83].) Let Y1, . . . , Yn be an arbitrary set of random variables and let f be a function of these random variables 
satisfying the property that for each � ∈ [n], there is a non-negative c� such that∣∣E[ f | Y�, Y�−1, . . . , Y1] − E[ f | Y�−1, . . . , Y1]

∣∣≤ c�.

Then for any δ > 0,

Pr
[∣∣ f − E[ f ]∣∣> δ

]≤ 2 exp

(
− δ2

2c

)
,

where c :=∑n
�=1 c2

� .

Proof of Theorem 1.1. Proof of the first statement. Let us now fix a vertex k ∈ V and a time step t . Recall from Eq. (2.7) that

X (t)
k − ξ

(t)
k =

t−1∑
s=0

∑
[i: j]∈E



(t−s)
i, j

(
Ps

i,k − Ps
j,k

)=
t∑

s=1

∑
[i: j]∈E



(s)
i, j

(
Pt−s

i,k − Pt−s
j,k

)
. (3.1)

Consider the random variable X (t)
k − ξ

(t)
k . By Lemma 2.6, E[X (t)

k − ξ
(t)
k ] = 0. Our goal is to apply the martingale tail estimate 

from Theorem 3.1 to fk := X (t)
k − ξ

(t)
k . We first rewrite fk ,

fk =
t∑

s=1

∑
[i: j]∈E



(s)
i, j

(
Pt−s

i,k − Pt−s
j,k

)

=
t∑

s=1

∑
[i: j]∈E

(
− X (t−1)

j

d + 1
+ X (t−1)

i

d + 1
+
⌊ X (t−1)

j

d + 1

⌋
−
⌊

X (t−1)
i

d + 1

⌋
+ Z (t)

j,i − Z (t)
i, j

)
· (Pt−s

i,k − Pt−s
j,k

)
,

where the last equality follows by the definition of 
(s)
i, j .

We observe that for a fixed load vector X (0) the function fk depends only on the randomly chosen destinations of 
the excess tokens. There are t time steps, n nodes, and at most d excess tokens per node per time step. We describe 
these random choices by a sequence of t · n · d random variables, Y1, Y2, . . . , Ytnd . For any � with 1 ≤ � ≤ tnd, let (s, i, r) ∈
[t] × [n] × [d] be such that � = (s − 1)nd + (i − 1)d + r (note that (s, i, r) is the �-th largest element in an increasing 
lexicographic ordering of [t] × [n] × [d]). Then Y� refers to the destination of the r-th excess token of vertex i at step s (if 
there is one). More precisely,

Y� :=
{

j if r ≤ X (s−1)
i − (d + 1)� X(s−1)

i
d+1 � and the r-th excess token of vertex i at step s is sent to j,

0 otherwise.

Note that Y� ∈ N(i) ∪ {i}. In order to apply Theorem 3.1, we have to upper bound∣∣E[ fk | Y�, Y�−1, . . . , Y1] − E[ fk | Y�−1, . . . , Y1]
∣∣. (3.2)

Consider a fixed � that corresponds to (s1, i1, r1) in the lexicographic ordering.
To bound Eq. (3.2), we use Eq. (3.1) to get∣∣E[ fk | Y�, Y�−1, . . . , Y1] − E[ fk | Y�−1, . . . , Y1]

∣∣
≤

t∑
s=1

∑
[i: j]∈E

∣∣E[
(s)
i, j

∣∣ Y�, Y�−1, . . . , Y1
]− E

[



(s)
i, j

∣∣ Y�−1, . . . , Y1
]∣∣ · ∣∣Pt−s

i,k − Pt−s
j,k

∣∣.
In the remainder of the proof we now split the sum over s into the three parts 1 ≤ s < s1, s = s1, and s1 < s ≤ t . We prove 
that the parts s < s1 and s > s1 both equal zero while the part s = s1 is upper bounded by 2 · max j∈N(i1) |Pt−s1

i1,k − Pt−s1
j,k |.

s < s1: For every {i, j} ∈ E , 
(s)
i, j is already determined by Y�−1, . . . , Y1. Hence,

s1−1∑ ∑ ∣∣E[
(s)
i, j

∣∣ Y�, Y�−1, . . . , Y1
]− E

[



(s)
i, j

∣∣ Y�−1, . . . , Y1
]∣∣ · ∣∣Pt−s

i,k − Pt−s
j,k

∣∣= 0. (3.3)

s=1 [i: j]∈E
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s = s1: This is the most involved case due to the dependencies among {
(s)
i, j : {i, j} ∈ E}.∑

[i: j]∈E

∣∣E[
(s)
i, j

∣∣ Y�, Y�−1, . . . , Y1
]− E

[



(s)
i, j

∣∣ Y�−1, . . . , Y1
]∣∣ · ∣∣Pt−s

i,k − Pt−s
j,k

∣∣
≤

∑
[i: j]∈E

∣∣∣∣E[− X (s−1)
j

d + 1
+ X (s−1)

i

d + 1
+
⌊ X (s−1)

j

d + 1

⌋
−
⌊

X (s−1)
i

d + 1

⌋
+ Z (s)

j,i − Z (s)
i, j

∣∣∣∣ Y�, Y�−1, . . . , Y1

]

− E
[
− X (s−1)

j

d + 1
+ X (t−1)

i

d + 1
+
⌊ X (s−1)

j

d + 1

⌋
−
⌊

X (s−1)
i

d + 1

⌋
+ Z (s)

j,i − Z (s)
i, j

∣∣∣∣ Y�−1, . . . , Y1

]∣∣∣∣ · ∣∣Pt−s
i,k − Pt−s

j,k

∣∣
=

∑
[i: j]∈E

∣∣E[Z (s)
j,i − Z (s)

i, j

∣∣ Y�, Y�−1, . . . , Y1
]− E

[
Z (s)

j,i − Z (s)
i, j

∣∣ Y�−1, . . . , Y1
]∣∣ · ∣∣Pt−s

i,k − Pt−s
j,k

∣∣ (3.4)

≤
∑

[i: j]∈E

(∣∣E[Z (s)
i, j

∣∣ Y�, Y�−1, . . . , Y1
]− E

[
Z (s)

i, j

∣∣ Y�−1, . . . , Y1
]∣∣ · ∣∣Pt−s

i,k − Pt−s
j,k

∣∣
+ ∣∣E[Z (s)

j,i

∣∣ Y�, Y�−1, . . . , Y1
]− E

[
Z (s)

j,i

∣∣ Y�−1, . . . , Y1
]∣∣ · ∣∣Pt−s

i,k − Pt−s
j,k

∣∣)
=
∑
i∈V

∑
j∈N(i)

∣∣Λ(s)
i, j

∣∣ · ∣∣Pt−s
i,k − Pt−s

j,k

∣∣≤∑
i∈V

(
max
j∈N(i)

∣∣Pt−s
i,k − Pt−s

j,k

∣∣) ∑
j∈N(i)

∣∣Λ(s)
i, j

∣∣, (3.5)

where we used Λ
(s)
i, j := E[Z (s)

i, j | Y�, Y�−1, . . . , Y1] − E[Z (s)
i, j | Y�−1, . . . , Y1] to simplify the notation. Eq. (3.4) follows as 

Y�−1, . . . , Y1 determine the load vector X (s−1) . To bound Eq. (3.5) we consider 
∑

j∈N(i) |Λ(s)
i, j | for i = i1 and i �= i1 sepa-

rately.
Case 1: Let i = i1. Assume first Y� = 0. This means that node i1 has less than r1 extra tokens at step t1. Hence |Λs

i, j | = 0.
Now we assume that Y� �= 0. This means that node i1 has at least r1 extra tokens at step t1. Let b ≥ r1 be the 

number of extra tokens of i1 at step s1. Clearly, b and the destinations of the extra tokens considered in the previous 
rounds, Y�−r1+1, . . . , Y�−1, are already determined by Y�−1, . . . , Y1 (note that if r1 = 1 then this set is empty). The re-
maining Y�+1, . . . , Y�+b−r1 are chosen uniformly at random among (N(i1) ∪ {i1}) \ {Y�−r1+1, . . . , Y�−1} =: Ñ(i1) without 
replacement. Let w ∈ Ñ(i1) be the destination of the r1-th excess token of i1 at step s1, that is, Y� = w and consequently, 
Z (s1)

i1,w = 1. Clearly, 0 < Λ
(s1)
i1,w ≤ 1, and for all j ∈ Ñ(i1) \ {w}, Λ(s1)

i1, j < 0. For the vertices j ∈ {Y�−r1+1, . . . , Y�−1}, Λ(s1)
i1, j = 0, as 

Y�−1, . . . , Y1 already determined that Z (s1)
i1, j = 1. Linearity of expectations yields

∑
j∈N(i1)∪{i1}

Λ
(s1)
i1, j = E

[ ∑
j∈N(i1)∪{i1}

Z (s1)
i1, j

∣∣∣∣ Y�, Y�−1, . . . , Y1

]
− E

[ ∑
j∈N(i1)∪{i1}

Z (s1)
i1, j

∣∣∣∣ Y�−1, . . . , Y1

]
= 0.

The last equality holds since 
∑

j∈N(i1)∪{i1} Z (s1)
i1, j = b and b is determined by Y�−1, . . . , Y1. Hence,∑

j∈N(i1)∪{i1}

∣∣Λ(s1)
i1, j

∣∣= ∑
j∈N(i1)∪{i1}:

Λ
(s1)

i1, j >0

Λ
(s1)
i1, j −

∑
j∈N(i1)∪{i1}:

Λ
(s1)

i1, j ≤0

Λ
(s1)
i1, j

= 2 ·
∑

j∈N(i1)∪{i1}:

Λ
(s1)

i1, j >0

Λ
(s1)
i1, j = 2

∣∣Λ(s1)
i1,w

∣∣≤ 2. (3.6)

Case 2: i �= i1. As � corresponds to (s1, i1, r1), the random variable Z (s1)
i, j is independent of Y� , which is the choice of the 

r1-th excess token of vertex i1 at step s1. Hence∑
j∈N(i)

∣∣Λ(s1)
i, j

∣∣= ∑
j∈N(i)

∣∣E[Z (s)
i, j

∣∣ Y�, Y�−1, . . . , Y1
]− E

[
Z (s)

i, j

∣∣ Y�−1, . . . , Y1
]∣∣= 0.

Combining Case 1 and Case 2 we obtain

(3.5) =
(

max
j∈N(i1)

∣∣Pt−s
i1,k − Pt−s

j,k

∣∣) ∑
j∈N(i1)

∣∣Λ(s)
i1, j

∣∣+ ∑
i∈V ,i �=i1

(
max
j∈N(i)

∣∣Pt−s
i,k − Pt−s

j,k

∣∣) ∑
j∈N(i)

∣∣Λ(s)
i, j

∣∣
≤ max

∣∣Pt−s
i1,k − Pt−s

j,k

∣∣ · 2 + 0. (3.7)

j∈N(i1)
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s > s1: Let �̃ be the largest integer such that Y �̃ corresponds to time step s − 1. Since s > s1, we have s − 1 ≥ s1 and 
therefore �̃ ≥ �. By the choice of �̃, Y �̃, . . . , Y1 determine the load vector at the end of step s1, X (s1) . By Lemma 2.6, we 
obtain E[
(s)

i, j | Y �̃, . . . , Y1] = 0, and by the chain rule of expectations,

E
[



(s)
i, j

∣∣ Y�, Y�−1, . . . , Y1
]= E

[
E
[



(s)
i, j

∣∣ Y �̃, . . . , Y1
] ∣∣ Y�, Y�−1, . . . , Y1

]
= E[0 | Y�, Y�−1, . . . , Y1] = 0.

With the same arguments, E[
(s)
i, j | Y�−1, . . . , Y1] = 0, and therefore

t∑
s=s1+1

∑
[i: j]∈E

∣∣E[
(s)
i, j

∣∣ Y�, Y�−1, . . . , Y1
]− E

[



(s)
i, j

∣∣ Y�−1, . . . , Y1
]∣∣ · ∣∣Pt−s

i,k − Pt−s
j,k

∣∣= 0. (3.8)

This finishes the case distinction. Combining Eqs. (3.3), (3.7) and (3.8) for the three cases s < s1, s = s1, and s > s1, we 
obtain that for every fixed 1 ≤ � ≤ tnd,∣∣E[ fk | Y�, Y�−1, . . . , Y1] − E[ fk | Y�−1, . . . , Y1]

∣∣
≤

t∑
s=1

∑
[i: j]∈E

∣∣E[
(s)
i, j

∣∣ Y�, Y�−1, . . . , Y1
]− E

[



(s)
i, j

∣∣ Y�−1, . . . , Y1
]∣∣ · ∣∣Pt−s1

i,k − Pt−s1
j,k

∣∣
= 0 + max

j∈N(i1)

∣∣Pt−s1
i1,k − Pt−s1

j,k

∣∣ · 2 + 0 = 2 · max
j∈N(i1)

∣∣Pt−s1
i1,k − Pt−s1

j,k

∣∣=: c�.

To apply Theorem 3.1, we consider 
∑tnd

�=1(c�)
2.

tnd∑
�=1

(c�)
2 =

t∑
s=1

n∑
i=1

d∑
r=1

(
2 max

j∈N(i)

∣∣Pt−s
i,k − Pt−s

j,k

∣∣)2 = 4d
t−1∑
s=0

n∑
i=1

max
j∈N(i)

(
Ps

i,k − Ps
j,k

)2

≤ 4d max
k∈V

( ∞∑
s=0

n∑
i=1

max
j∈N(i)

(
Ps

i,k − Ps
j,k

)2

)
= 8d

(
Υ2(G)

)2
. (3.9)

By Theorem 3.1, we have for any δ ≥ 0, Pr[| fk| > δ] ≤ 2 exp(−δ2/(2
∑tnd

�=1(c�)
2)). Hence by choosing δ := Υ2(G)

√
32d ln n, 

the probability above gets smaller than 2n−2. Applying the union bound we obtain Pr[∀k ∈ V : | fk| > δ] ≤ n2n−2 = 2n−1. By 
Eq. (3.1), maxk∈[n] X (t)

k ≤ |ξ (t)
k | + | fk|. For t := τ (G, K ), we obtain |ξ (t)

k − ξ | ≤ 1 for every vertex k. Hence maxi, j∈[n] |X (t)
i −

X (t)
j | ≤ 2| fk| + 2. This implies Pr[maxi, j∈[n] |X (t)

i − X (t)
j | ≤ 2δ + 2] ≥ 1 − 2n−1, as needed.

Proof of the second statement. Fix a vertex k ∈ V . Recall from Eq. (3.1) that

X (t)
k − ξ

(t)
k =

t∑
s=1

∑
[i: j]∈E



(s)
i, j

(
Pt−s

i,k − Pt−s
j,k

)
. (3.10)

We split the right hand side of Eq. (3.10) at step t − 1 to obtain

t−1∑
s=1

∑
[i: j]∈E



(s)
i, j

(
Pt−s

i,k − Pt−s
j,k

)
︸ ︷︷ ︸

=: fk

+
∑

[i: j]∈E



(s)
i, j

(
P0

i,k − P0
j,k

)
︸ ︷︷ ︸

=:hk

.

We can bound hk using the triangle inequality as follows,

|hk| ≤
∑

[i: j]∈E

∣∣
(t)
i, j

∣∣ · ∣∣P0
i,k − P0

j,k

∣∣≤ 2 ·
∑

[i: j]∈E

∣∣P0
i,k − P0

j,k

∣∣= 2d,

since |
(t)
i, j | ≤ 2 and 

∑n
i=1 P0

i,k = 1. To bound fk , we use the same approach as in the proof of the first statement. Also here, 
we use the same definition of variables Y� with 1 ≤ � ≤ (t − 1)nd. In order to apply Theorem 3.1, we have to estimate the 
differences c� , 1 ≤ � ≤ (t − 1)nd. As in Eq. (3.9) we obtain

(t−1)nd∑
(c�)

2 ≤ 4d
t−1∑ n∑

max
j∈N(i)

(
Pt−s

i,k − Pt−s
j,k

)2
.

�=1 s=1 i=1
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Since 
∑n

i=1 max j∈N(i)(P0
i,k − P0

j,k)
2 = 2d, we obtain that

4d
t−1∑
s=1

n∑
i=1

max
j∈N(i)

(
Pt−s

i,k − Pt−s
j,k

)2 ≤ 8d · ((Υ2(G)
)2 − d

)
.

By Theorem 3.1, we obtain that

Pr
[| fk| > δ

]≤ 2 exp
(−δ2/(16d · ((Υ2(G)

)2 − d
)))

.

Hence by choosing δ :=√
32 log(n)d((Υ2(G))2 − d) we get Pr[| fk| > δ] ≤ 2n−2. Hence,

Pr
[∣∣X (t)

k − ξ
(t)
k

∣∣> 2d + δ
]≤ Pr

[|hk| > 2d
]+ Pr

[| fk| >
√

32 log(n)d
((

Υ2(G)
)2 − d

)]≤ 2n−2.

Taking the union bound over all vertices k yields

Pr
[∀k ∈ V :

∣∣X (t)
k − ξ

(t)
k

∣∣≤ 2d +
√

32 log(n)d
((

Υ2(G)
)2 − d

)]≤ n2n−2 = 2n−1. (3.11)

Now choosing t := τ (G, K ), we obtain the second statement by using exactly the same arguments as in the proof of the 
first statement.

Proof of the third statement. The third statement is shown by a similar approach. Again, fix a vertex k ∈ V and a time 
step t . Now we split the right hand side of Eq. (3.10) at step t − ϑ , where ϑ := (4 ln ln n)/(1 − λmax).

t∑
s=1

∑
[i: j]∈E



(s)
i, j

(
Pt−s

i,k − Pt−s
j,k

)=
t−ϑ∑
s=1

∑
[i: j]∈E



(s)
i, j

(
Pt−s

i,k − Pt−s
j,k

)
︸ ︷︷ ︸

=: fk

+
t∑

s=t−ϑ+1

∑
[i: j]∈E



(s)
i, j

(
Pt−s

i,k − Pt−s
j,k

)
︸ ︷︷ ︸

=:hk

.

We first bound the last part directly by applying the triangle inequality as follows.

|hk| ≤
t∑

s=t−ϑ+1

∑
[i: j]∈E

∣∣
(s)
i, j

∣∣∣∣Pt−s
i,k − Pt−s

j,k

∣∣
≤ 2ϑ

∑
[i: j]∈E

(
Pt−s

i,k + Pt−s
j,k

)≤ 2ϑd,

where the first inequality holds since |
(s)
i, j | ≤ 2 and where the last inequality holds since 

∑n
i=1 Pt−s

i,k = 1 for every k.
To bound fk , we use the same approach as in the proof of the first (and second) statement. Also here, we use the 

same definition of random variables Y� with 1 ≤ � ≤ (t − ϑ)nd. In order to apply Theorem 3.1, we have to estimate the 
differences c� , 1 ≤ � ≤ (t − ϑ)nd. As in Eq. (3.9) we obtain

(t−ϑ)nd∑
�=1

(c�)
2 ≤ 8d

t−ϑ∑
s=1

n∑
i=1

max
j∈N(i)

(
Pt−s

i,k − Pt−s
j,k

)2
.

By Theorem 3.1, we obtain that

Pr
[| fk| > δ

]≤ 2 exp

(
−δ2

/(
16d

t−ϑ∑
s=1

n∑
i=1

max
j∈N(i)

(
Pt−s

i,k − Pt−s
j,k

)2

))
.

Hence by choosing δ :=
√

32 log(n)d
∑t−ϑ

s=1
∑n

i=1 max j∈N(i)(Pt−s
i,k − Pt−s

j,k )2 we get Pr[| fk| > δ] ≤ 2n−2. Hence,

Pr
[∣∣X (t)

k − ξ
(t)
k

∣∣> 2ϑd + δ
]≤ Pr

[|hk| > 2ϑd
]+ Pr

[| fk| > δ
]≤ 0 + 2n−2 = 2n−2.

Taking the union bound over all vertices k yields

Pr
[∀k ∈ V :

∣∣X (t)
k − ξ

(t)
k

∣∣≤ 2ϑd + δ
]≤ n2n−2 = 2n−1. (3.12)

In order to complete the proof, it remains to prove that 2ϑd + δ =O((d log log n)/(1 −λmax)). To upper bound δ, we first 
consider
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t−ϑ∑
s=1

n∑
i=1

max
j∈N(i)

(
Pt−s

i,k − Pt−s
j,k

)2 =
t−1∑
s=ϑ

n∑
i=1

max
j∈N(i)

(
Ps

i,k − Ps
j,k

)2

≤ 2
t∑

s=ϑ

n∑
i=1

max
j∈N(i)

((
Ps

i,k − 1

n

)2

+
(

Ps
j,k − 1

n

)2)

= 2
t−1∑
s=ϑ

n∑
i=1

(
Ps

i,k − 1

n

)2

+ 2
t−1∑
s=ϑ

n∑
i=1

max
j∈N(i)

(
Ps

j,k − 1

n

)2

≤ 2
t−1∑
s=ϑ

n∑
i=1

(
Ps

i,k − 1

n

)2

+ 2
t−1∑
s=ϑ

n∑
j=1

d

(
Ps

j,k − 1

n

)2

≤ (2d + 2)

t−1∑
s=ϑ

λ2s
max,

where the first inequality uses Lemma 2.2 and the last inequality follows from Corollary 2.4. The last term can be now 
bounded as follows,

(2d + 2)

∞∑
s=ϑ

λ2s
max ≤ (2d + 2)

λ
2( 4 ln ln n

1−λmax
)

max

1 − (λmax)2
≤ (2d + 2)

e−8 ln ln n

1 − λmax
= (2d + 2)

(log n)−8

1 − λmax
,

where the second last inequality uses the fact that x1/(1−x) ≤ 1/e for x ∈ [0, 1). We can now use this bound to get a more 
explicit expression for the bound in Eq. (3.12),

Pr
[
∀k ∈ V :

∣∣X (t)
k − ξ

(t)
k

∣∣≤ 4d ln ln n

1 − λmax
+
√

32 log(n)d · (d + 2)
(log n)−8

1 − λmax

]
≤ 2n−1.

We choose t = τ (G, K ) to get |ξ (t)
k − ξ | ≤ 1 for every vertex k. As in the proof of the first statement, this yields

Pr
[

max
i, j∈[n]

∣∣X (t)
i − X (t)

j

∣∣≤ 2(ϑd + δ) + 2
]

≥ 1 − 4n−1.

This completes the proof. �
4. Proof of Theorem 1.2

This section contains 3 subsections in which we derive three upper bounds on the local divergence. The first bound 
holds for general graphs, the second for tori and the third for hypercubes. In detail, we show the following.

(1) For any graph G , Υ2(G) = O(

√
d + log d

1−λmax
) (Theorem 4.1).

(2) For the r-dimensional torus graph G with r =O(1), Υ2(G) ≤ Ψ2(G) =O(1) (Theorem 4.2).
(3) For the hypercube G with n vertices (Theorem 4.14)

Ψ1(G) = log2(n) + 1

n

log2(n)−1∑
p=0

log2 n∑
�=p+1

(
log2 n

�

)
= Θ

(
log2 n

)
.

Theorem 1.2 follows from these results. Theorem 1.2(1) follows from Theorem 1.1(1) and Theorem 4.1. Theorem 1.2(2) 
follows from Theorem 1.1(3). Theorem 1.2(3) follows from Theorem 1.1(1) and Theorem 4.2. Theorem 1.2(4) follows from 
Theorem 1.1(2) and Theorem 4.11.

4.1. General graphs

Theorem 4.1. For any graph G, Υ2(G) =O(

√
d + log d

1−λmax
).

Proof. For simplicity, we consider (Ψ2(G))2. Let k ∈ V be an arbitrary but fixed vertex. For some integer value τ to be 
specified later, we split the time into three parts, t = 0, 1 ≤ t ≤ τ − 1 and t ≥ τ :
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∞∑
t=0

n∑
i=1

∑
[i: j]∈E

(
Pt

i,k − Pt
j,k

)2 =
n∑

i=1

∑
[i: j]∈E

(
P0

i,k − P0
j,k

)2 +
τ−1∑
t=1

n∑
i=1

∑
[i: j]∈E

(
Pt

i,k − Pt
j,k

)2 +
∞∑

t=τ

n∑
i=1

∑
[i: j]∈E

(
Pt

i,k − Pt
j,k

)2
.

We start with the first term. Since (P0
i,k − P0

j,k)
2 ≤ 1, we conclude that

n∑
i=1

∑
[i: j]∈E

(
P0

i,k − P0
j,k

)2 ≤
n∑

i=1

∑
[i: j]∈E

∣∣P0
i,k − P0

j,k

∣∣≤ d,

since each row sum of P is 1. Let us now consider the second term. We observe that for any two vertices r, s and any time 
step t ≥ 1, Pt

r,s ≤ 1/(d + 1). This allows us to bound the second term as follows,

τ−1∑
t=1

n∑
i=1

∑
[i: j]∈E

(
Pt

i,k − Pt
j,k

)2 ≤
τ−1∑
t=1

n∑
i=1

∑
[i: j]∈E

((
Pt

i,k

)2 + (
Pt

j,k

)2)

= d
τ−1∑
t=1

n∑
i=1

(
Pt

i,k

)2

≤ d
τ−1∑
t=1

(
(d + 1)

(
1

d + 1

)2

+ (n − d − 1) · 0

)
≤ τ − 1.

Let us now consider the third term. Using Lemma 2.2 we obtain

∞∑
t=τ

∑
[i: j]∈E

(
Pt

i,k − Pt
j,k

)2 ≤
∞∑

t=τ

∑
[i: j]∈E

2

((
Pt

i,k − 1

n

)2

+
(

Pt
j,k − 1

n

)2)

= d
∞∑

t=τ

n∑
i=1

(
Pt

i,k − 1

n

)2

≤ d
∞∑

t=τ

λ2t
max ≤ d

(λmax)
2τ

1 − (λmax)2
≤ (λmax)

τ

1 − λmax
,

where we have used Corollary 2.4 in the second last inequality. Choosing τ := ln d
1−λmax

and recalling that x1/(1−x) ≤ 1/e for 
any x ∈ [0, 1) yields the following bound:

(
Υ2(G)

)2 ≤ d + ln d

1 − λmax
+ d

(λmax)
ln d

1−λmax

1 − λmax

≤ d + ln d

1 − λmax
+ 1

1 − λmax
= O

(
d + log d

1 − λmax

)
.

Taking the square root yields Υ2(G) =O(

√
d + log d

1−λmax
). �

4.2. Torus

Since for r-dimensional tori 1/(1 − λmax) = Θ(n2/r) and for hypercubes 1/(1 − λmax) = Θ(log n), the following theorems 
represent improvements over the bound in Theorem 4.1 for these specific networks.

Theorem 4.2. For the r-dimensional torus graph with r =O(1), Υ2(G) ≤ Ψ2(G) =O(1).

The proof of this result is rather long and technical. Hence, we further divide this subsection. In Section 4.2.1 we record 
some elementary inequalities. In Section 4.2.2 we relate the random walk on the (finite) r-dimensional torus graph to a 
random walk on the set Zr . For the latter, we can apply a local central limit theorem [18] which approximates transition 
probabilities by a multivariate normal distribution. In Section 4.2.3 we present the proof of Theorem 4.2.
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4.2.1. Technical inequalities
The r-dimensional torus graph is defined as follows, where we assume for simplicity that r

√
n − 1 is an even integer. The 

set of vertices is V = {−( r
√

n − 1)/2, . . . , 0, . . . , ( r
√

n − 1)/2}r and the set of edges are between vertices that differ exactly in 
one coordinate by one (hereby, we identify −( r

√
n − 1)/2 − 1 with ( r

√
n − 1)/2 and ( r

√
n − 1)/2 + 1 with −( r

√
n − 1)/2). As r

is a fixed constant, we will assume that n is large enough such that n1/r/2 ≥ 2.
Before we prove Theorem 4.2, we present some technical tools.
First we recall a higher dimensional version of the well-known bound 

∑∞
k=1 k−(1+ε) = O(1) for ε > 0 that is also men-

tioned in [15].

Lemma 4.3. For any constant r ∈ N and any constant ε > 0,∑
k∈Zr�=0

‖k‖−(r+ε)
2 = O(1),

where Zr�=0 = Z
r \ {0r}.

Proof. By Lemma 2.2, k2
1 + · · · + k2

r ≥ 1
r (|k1| + · · · + |kr |)2 which implies∑

k∈Zr�=0

‖k‖−(r+ε)
2 =

∑
k∈Zr�=0

(
k2

1 + · · · + k2
r

)−(r+ε)/2 ≤ r
∞∑

x=1

∑
k∈Zr

‖k‖1=x

x−(r+ε)

= r
∞∑

x=1

(2x + 1)r−1x−(r+ε) ≤ r4r−1
∞∑

x=1

x−(1+ε) = O(1). �

The following inequalities are simple consequences of the triangle inequality for norms.

Lemma 4.4. Let i ∈ Z
r and v be a vector with ±1 at one position and zeros elsewhere. Then

(1) ‖i‖2
2 − ‖i + v‖2

2 ≤ 2‖i‖2 + 1.
(2) ‖i + v‖2

2 − ‖i‖2
2 ≤ 2‖i‖2 + 1.

(3) For any p ∈ Z
r�=0 and i ∈ Z

r with ‖i‖1 ≤ r · n1/r/2, ‖i + p · n1/r‖2 ≤ (r/2 + 1) · ‖p · n1/r‖2 .

(4) For any p ∈ Z
r�=0 and i ∈ Z

r with ‖i‖∞ ≤ n1/r/2, ‖i + pn1/r‖2 ≥ 1
2r ‖pn1/r‖2 .

Proof. The first statement is obvious if ‖i‖2 ≤ ‖i + v‖2. Hence we assume that ‖i‖2 ≥ ‖i + v‖2. Using this and the triangle 
inequality of the �2-norm, we get

‖i‖2
2 − ‖i + v‖2

2 ≤ (‖i + v‖2 + ‖v‖2
)2 − ‖i + v‖2

2 = 2‖i + v‖2 + 1 ≤ 2‖i‖2 + 1.

The second statement can be shown similarly. Using the triangle inequality, we obtain that

‖i + v‖2
2 − ‖i‖2

2 ≤ (‖i‖2 + ‖v‖2
)2 − ‖i‖2

2 = 2‖i‖2 + 1.

To see the third statement, note that∥∥i + p · n1/r
∥∥

2 ≤ ‖i‖2 + ∥∥p · n1/r
∥∥

2 ≤ ‖i‖1 + ∥∥p · n1/r
∥∥

2

≤ r · n1/r/2 + ∥∥p · n1/r
∥∥

2 ≤ r · n1/r/2 · ‖p‖2 + ∥∥p · n1/r
∥∥

2 = (r/2 + 1) · ∥∥p · n1/r
∥∥

2.

Finally, for the fourth statement, we have∥∥i + pn1/r
∥∥

2 ≥ ∥∥i + pn1/r
∥∥∞ ≥

∥∥∥∥ pn1/r

2

∥∥∥∥∞
≥ 1

2r

∥∥pn1/r
∥∥

2,

where the inequality in the middle holds as all coordinates of i are bounded in absolute value by n1/r/2, while ‖p ·n1/r‖∞ ≥
n1/r , as p �= 0. �
Lemma 4.5. For any constant r ∈ N and any � > 0,

∞∑
x=1

exp

(
− x2

�2

)
· xr ≤ C · �r+1,

where C > 0 is a constant that can depend on r but not on �.
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Proof. Consider first the case � ≥ 1. Define α := min{x ∈ N0: ∀y ≥ x: exp(−y2/2) ≤ (y + 1)−r}. As α is a constant only 
depending on r, we have

∞∑
x=1

exp

(
− x2

�2

)
· xr =

∞∑
x=0

�∑
p=1

exp

(
− (x� + p)2

�2

)
(x� + p)r

≤
∞∑

x=0

exp

(
− (x�)2

�2

) �∑
p=1

(
(x + 1)�

)r

=
∞∑

x=0

exp
(−x2)�(x + 1)r�r

=
α−1∑
x=0

exp
(−x2) · (x + 1)r · �r+1 +

∞∑
x=α

exp
(−x2)(x + 1)r · �r+1

≤ α · 1 · (α)r�r+1 +
∞∑

x=α

exp
(−x2/2

)
�r+1

= O
(
�r+1).

The second case is 0 < � < 1. Here, we define β := min{x ∈ N: ∀y ≥ x: exp(−y2/2) ≤ y−r}, which is again a constant only 
depending on r. Note that β ≥ 1. Then,

∞∑
x=1

exp

(
− x2

�2

)
xr =

β−1∑
x=1

exp

(
− x2

�2

)
· xr +

∞∑
x=β

exp

(
− x2

�2

)
· xr

≤ (β − 1)r+1 exp

(
− 1

�2

)
+

∞∑
x=β

exp

(
− x2

2�2

)
exp

(
− x2

2

)
xr

= O(1)exp

(
− 1

�2

)
+

∞∑
x=β

exp

(
− x2

2�2

)

≤ O(1)exp

(
− 1

�2

)
+

∞∑
x=β

exp

(
− x2

4�2

)
· exp

(
− x2

4�2

)

≤ O(1)exp

(
− 1

�2

)
+ exp

(
− 1

4�2

) ∞∑
x=β

exp

(
− x2

4

)

= O(1)exp

(
− 1

4�2

)
.

It remains to upper bound exp(−1/(4�2)) by O(�r+1). For this, let γ := max{0 < x < 1: ∀0 < y ≤ x: −1/(4y2) ≤ (r + 1) ·
ln(y)}. Observe that γ is a constant only depending on r. This implies for � ≥ γ that exp(−1/(4�2)) = O(1). On the other 
hand, for � ≤ γ we get exp(−1/(4�2)) ≤ exp(−(r + 1) ln(�)) = �r+1 by the definition of γ , which completes the proof. �

We continue with another simple analytic lemma.

Lemma 4.6. Let k ∈ Z
r and v be a vector with ±1 at one position and zeros elsewhere. Then if ‖k‖2 ≤ ‖k + v‖2 or ‖k‖∞ ≥ n1/r/2,∣∣∣∣exp

(
− r‖k‖2

2

t

)
− exp

(
− r‖k + v‖2

2

t

)∣∣∣∣≤ exp

(
−‖k‖2

2

4t

)
· r(2‖k‖2 + 1)

t
.

Proof. We first consider the case ‖k‖2 ≤ ‖k + v‖2. There,∣∣∣∣exp

(
− r‖k‖2

2

t

)
− exp

(
− r‖k + v‖2

2

t

)∣∣∣∣= ∣∣∣∣exp

(
− r‖k‖2

2

t

)
·
(

1 − exp

(
− r‖k + v‖2

2

t
+ r‖k‖2

2

t

))∣∣∣∣.
Let us consider the second factor (which is positive by assumption). Using the second statement of Lemma 4.4, we obtain 
that
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1 − exp

(
− r‖k + v‖2

2

t
+ r‖k‖2

2

t

)
≤ 1 − exp

(
− r(2‖k‖2 + 1)

t

)
≤ r(2‖k‖2 + 1)

t
,

where the last inequality follows from exp(−x) ≥ 1 − x.
The second case to consider is ‖k‖2 > ‖k + v‖2 and ‖k‖∞ ≥ n1/r/2. Then∣∣∣∣exp

(
− r‖k‖2

2

t

)
− exp

(
− r‖k + v‖2

2

t

)∣∣∣∣= ∣∣∣∣exp

(
− r‖k + v‖2

2

t

)
− exp

(
− r‖k‖2

2

t

)∣∣∣∣
=
∣∣∣∣exp

(
− r‖k + v‖2

2

t

)
·
(

1 − exp

(
− r‖k‖2

2

t
+ r‖k + v‖2

2

t

))∣∣∣∣.
Using the first statement of Lemma 4.4, we obtain for the second factor that

1 − exp

(
− r‖k‖2

2

t
+ r‖k + v‖2

2

t

)
≤ 1 − exp

(
− r(2‖k‖2 + 1)

t

)
≤ r(2‖k‖2 + 1)

t
.

Moreover,

‖k + v‖2
2 ≥ ‖k + v‖2∞ ≥ ‖k/2‖2∞ ≥ 1

4r
· ‖k‖2

2,

where the second inequality holds because of ‖k + v‖2∞ ≥ (‖k‖∞ − 1)2 ≥ (‖k‖∞/2)2, since ‖k‖∞ ≥ n1/r/2 ≥ 2 (recall that 
we assumed that n is large enough such that n1/r/2 ≥ 2). Hence∣∣∣∣exp

(
− r‖k‖2

2

t

)
− exp

(
− r‖k + v‖2

2

t

)∣∣∣∣≤ exp

(
−‖k‖2

2

4t

)
· r(2‖k‖2 + 1)

t
. �

4.2.2. From the torus graph to Zd

We now follow an idea from [15] that relates a random walk on the r-dimensional torus graph G = (V , E) with n vertices 
to a random walk on the infinite grid Zr . The (infinite) transition matrix of a random walk on the infinite grid Zr is given 
by

Pi, j :=

⎧⎪⎨⎪⎩
1

2r+1 if ‖i − j‖1 = 1,

1
2r+1 if i = j,

0 otherwise.

Note that there is a natural relation between a random walk on the infinite grid Zr and a random walk on V by projecting 
the random walk on Zr to the finite set V . To make this more precise, we define for any vertex (i1, i2, . . . , ir) ∈ V ,

H(i) := (
i1 +Z · r

√
n, i2 +Z · r

√
n, . . . , ir +Z · r

√
n
)⊆ Z

r .

With Pt
i := Pt

0,i and Pt
i := Pt

0,i , we obtain that

Pt
i =

∑
k∈H(i)

Pt
k. (4.1)

We also record a simple observation that follows from the definition and the fact that all coordinates of vertices in V are 
between −( r

√
n − 1)/2 and +( r

√
n − 1)/2.

Observation 4.7. For any i ∈ V and any k ∈ H(i), ‖i‖2 ≤ ‖k‖2.

The reason why the relation given in Eq. (4.1) is useful is that Pt
k can be approximated in terms of a multivariate 

normal distribution by a local central limit theorem [18]. That is, we will use an appropriate local central limit theorem 
to approximate the transition probabilities Pt

k of Z
r with a multivariate normal distribution. To derive the limiting dis-

tribution P̃t
k of our random walk Pi, j , we follow Lawler and Limic [18] and let X = (X1, . . . , Xr) be a Zr -valued random 

variable with Pr[X = z] = 1/(2r + 1) for every vector z with one ±1 and zeros elsewhere, and Pr[X = 0r] = 1/(2r + 1). 
Observe that E[X j Xk] = 0 for j �= k since not both of them can be non-zero simultaneously. Moreover, E[X j X j] =

1
(2r+1)

(−1)2 + 1
(2r+1)

(+1)2 = 2
2r+1 for all 1 ≤ j ≤ r. Hence the covariance matrix is

Γ := [
E[X j Xk]

]
1≤ j,k≤r = (r + 1/2)−1 · I,

where I is the r × r-identity matrix.
Applying a local central limit from [18] to our setting yields the following:
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Lemma 4.8. (Cf. [18, Theorem 2.3.6] and [18, Eq. (2.2)].) For all k, j ∈ Z
r and all t ∈ N,∣∣(Pt

k+ j − Pt
k

)− (̃
Pt

k+ j − P̃t
k

)∣∣= O
( ‖ j‖1

t(r+3)/2

)
,

where

P̃t
k := 1

(2π)rtr/2

∫
Rr

exp

(
i
x · k√

t

)
exp

(
− x · Γ x

2

)
dr x, (4.2)

where i = √−1 denotes the imaginary unit.

The next lemma computes similarly to [15] the integral in Eq. (4.2).

Lemma 4.9. With the notation of Lemma 4.8,

P̃t
k =

(
2r + 1

4πt

)r/2

exp

(−r‖k‖2
2

t

)
.

Proof. We calculate

P̃t
k = 1

(2π)rtr/2

∫
Rr

exp

(
i
x · k√

t
− x · Γ x

2

)
dr x

= 1

(2π)rtr/2

∫
Rr

exp

(
i
x · k√

t
− ‖x‖2

2

2r + 1

)
dr x

= 1

(2π)rtr/2

∫
Rr

exp

(
− 1

2r + 1

(
‖x‖2

2 − 2i
r + 1/2√

t
x · k

))
dr x. (4.3)

To evaluate the integral we complete the square, which yields∫
Rr

exp

(
− 1

2r + 1

(
‖x‖2

2 − 2i
r + 1/2√

t
x · k

))
dr x

=
∫
Rr

exp

(
− 1

2r + 1

(
‖x‖2

2 − 2i
r + 1/2√

t
x · k − (2r + 1)2

t
‖k‖2

2 + (2r + 1)2

t
‖k‖2

2

))
dr x

= exp

(
− r

t
‖k‖2

2

)∫
Rr

exp

(
− 1

2r + 1

∥∥∥∥x − i
r + 1/2√

t
k

∥∥∥∥2

2

)
dr x. (4.4)

By substituting z = x − i r+1/2√
s

k we get∫
Rr

exp

(
− 1

2r + 1

∥∥∥∥x − i
r + 1/2√

t
k

∥∥∥∥2

2

)
dr x

=
∫
Rr

exp

(
− 1

2r + 1

(‖z‖2
2

))
dr z

=
∫

· · ·
∫

Rr

exp

(
− 1

2r + 1

(
r∑

i=1

z2
i

))
dzr · · · dz1

=
∫

· · ·
∫

Rr−1

exp

(
− 1

2r + 1

(
r−1∑
i=1

z2
i

))(∫
R

exp

(
− 1

2r + 1
z2

r

)
dzr

)
dzr−1 · · · dz1

= (√
π(2r + 1)

) ·
∫

· · ·
∫

Rr−1

exp

(
− 1

2r + 1

(
r∑

i=1

z2
i

))
dzr−1 · · · dz1

= (√
π(2r + 1)

)r
. (4.5)
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Combining Eqs. (4.3), (4.4) and (4.5), we get

P̃t
k = 1

(2π)rtr/2
exp

(
− r

t
‖k‖2

2

)(√
π(2r + 1)

)r =
(

2r + 1

4πt

)r/2

exp

(−r‖k‖2
2

t

)
,

as stated in the lemma. �
4.2.3. Proof of Theorem 4.2

We are now in a position to prove Theorem 4.2.

Proof of Theorem 4.2. Since Υ2(G) ≤ Ψ2(G) by definition, it is sufficient to prove that (Ψ2(G))2 is upper bounded by a 
constant. Since the torus graph is vertex-transitive, it suffices to consider the case k = 0. Hence it suffices to upper bound

∞∑
t=0

∑
[i: j]∈E

(
Pt

i − Pt
j

)2
.

We first split this sum into three parts.

(
Ψ2(G)

)2 =
∑

[i: j]∈E

(
P0

i − P0
j

)2

︸ ︷︷ ︸
=:A

+
κ∑

t=1

∑
[i: j]∈E

(
Pt

i − Pt
j

)2

︸ ︷︷ ︸
=:B

+
∞∑

t=κ+1

∑
[i: j]∈E

(
Pt

i − Pt
j

)2

︸ ︷︷ ︸
=:C

,

where κ := (4 ln n)/(1 − λmax) =O(n2/r log n).
Note that A = d = 2r = O(1). To bound C , we use Lemma 2.9 to get C = O(1). Hence it only remains to consider B . We 

first rewrite B as follows,

B =
∑

[i: j]∈E

κ∑
t=1

(
Pt

i − Pt
j

)2 =
∑

(i, j)∈−→
E

κ∑
t=1

(
Pt

i − Pt
j

)2
,

where −→E ⊆ V × V is an orientation of the edges E such that for all edges {u, v} ∈ E , either (u, v) ∈ −→
E or (v, u) ∈ −→

E . In the 
following, we choose an orientation −→E such that for all (u, v) ∈ −→

E , ‖u‖2 ≤ ‖v‖2. Additionally, it will also be handy to use the 
following notation,

−→
E �=0 := {

(i, j) ∈ −→
E:‖i‖2 > 0

}
,

−→
E0 := {

(i, j) ∈ −→
E:‖i‖2 = 0

}
.

For each (i, j) ∈ −→
E , we split the inner sum of B at time

σ(i) :=
⎧⎨⎩

0 if i = 0,

c2·‖i‖2
2

log2(2‖i‖2
2)

otherwise,

where c is a sufficiently small constant that satisfies 0 < c ≤ 1/r. This gives

B =
∑

(i, j)∈−→
E

σ (i)∑
t=1

(
Pt

i − Pt
j

)2

︸ ︷︷ ︸
=:B1

+
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

(
Pt

i − Pt
j

)2

︸ ︷︷ ︸
=:B2

. (4.6)

Let us first consider B1. For t ≤ σ(i) we use Lawler [17, Lemma 1.5.1(a)] saying that for random walks on infinite grids,∑
‖k‖2≥λ

√
t

Pt
k = O

(
e−λ

)
, (4.7)

for all t > 0 and λ > 0. In particular, this gives

Pt
i =

∑
k∈H(i)

Pt
k ≤

∑
k∈Zr :‖k‖2≥‖i‖2

Pt
k = O

(
e−‖i‖2/

√
t),

where we have used Observation 4.7 saying that for any k ∈ H(i), ‖i‖2 ≤ ‖k‖2. For any (i, j) ∈ −→
E we have ‖i‖2 ≤ ‖ j‖2 and 

therefore
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Pt
j =

∑
k∈H( j)

Pt
k ≤

∑
k∈Zr :‖k‖2≥‖ j‖2

Pt
k ≤

∑
k∈Zr :‖k‖2≥‖i‖2

Pt
k = O

(
e−‖i‖2/

√
t).

Hence,

B1 =
∑

(i, j)∈−→
E

σ (i)∑
t=1

(
Pt

i − Pt
j

)2

≤
∑

(i, j)∈−→
E �=0

σ (i)∑
t=1

(
max

{
Pt

i ,Pt
j

})2 +
∑

(i, j)∈−→
E0

σ (0)∑
t=1

(
max

{
Pt

i ,Pt
j

})2

≤
∑

(i, j)∈−→
E �=0

σ (i)∑
t=1

O
(
exp

(−2‖i‖2/
√

t
)) (

since σ(0) = 0
)

≤
∑

i∈V �=0

σ (i)∑
t=1

O
(
exp

(−2‖i‖2/
√

t
))

≤
∑

i∈V �=0

σ(i) ·O(
exp

(−2 log
(
2‖i‖2

2

)
/c
))

≤
∑

i∈V �=0

‖i‖2
2

log2(2‖i‖2
2)

·O(‖i‖−4r
2

)
(since c ≤ 1/r)

= O
( ∑

i∈V �=0

‖i‖−4r+5/2
2

)
.

Applying Lemma 4.3 on the last term finally gives B1 =O(1).
Rewriting the second part B2 of Eq. (4.6) yields

B2 =
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

(
Pt

i − Pt
j

)2 =
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i)

Pt
k −

∑
�∈H( j)

Pt
�

)2

=
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i)

(
Pt

k − Pt
k+( j−i)

))2

.

We now define H(i, t) as a subset of H(i) by

H(i, t) := {
k ∈ H(i):‖k‖∞ ≤ 3 log n · √t

}⊆ H(i)

and split B2 as follows,

B2 =
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i)\H(i,t)

(
Pt

k − Pt
k+( j−i)

)+
∑

k∈H(i,t)

(
Pt

k − Pt
k+( j−i)

))2

≤ 2
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i)\H(i,t)

(
Pt

k − Pt
k+( j−i)

))2

︸ ︷︷ ︸
=:B2,1

+ 2
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i,t)

(
Pt

k − Pt
k+( j−i)

))2

︸ ︷︷ ︸
=:B2,2

,

where the last line follows from Lemma 2.2. Recall Eq. (4.7) which states that 
∑

‖k‖2≥λ
√

t Pt
k = O(e−λ) for all t > 0 and 

λ > 0. This gives∑
k∈H(i)\H(i,t)

Pt
k ≤

∑
r

√
Pt

k ≤
∑

r
√

Pt
k = O

(
e−3 log n)≤ n−2.
k∈Z :‖k‖∞≥3 log n· t k∈Z :‖k‖2≥3 log n· t
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If ‖k‖∞ ≥ 3 log n · √t , then for any {i, j} ∈ E , ‖k + ( j − i)‖∞ ≥ 3 log n · √t − 1. Hence,∑
k∈H(i)\H(i,t)

Pt
k+( j−i) = O

(
e−3 log n+1/

√
t)≤ n−2.

This allows us to upper bound B2,1 as follows,

B2,1 =
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i)\H(i,t)

(
Pt

k − Pt
k+( j−i)

))2

≤
∑

(i, j)∈−→
E

κ∑
t=1

( ∑
k∈H(i)\H(i,t)

max
{

Pt
k, Pt

k+( j−i)

})2

≤
∑

(i, j)∈−→
E

κ∑
t=1

(
n−2)2 ≤ n−4

∑
(i, j)∈−→

E

κ = n−4O
(
n · n2/r log n

)= o(1).

To bound B2,2, we relate P to the multivariate normal distribution given by P̃ which was defined in Lemma 4.8. Using 
the triangle inequality, we obtain that

B2,2 =
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i,t)

(
Pt

k − Pt
k+( j−i)

))2

≤
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i,t)

∣∣(Pt
k − Pt

k+( j−i)

)− (̃
Pt

k − P̃t
k+( j−i)

)∣∣+ ∣∣̃Pt
k − P̃t

k+( j−i)

∣∣)2

≤ 2
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i,t)

∣∣(Pt
k − Pt

k+( j−i)

)− (̃
Pt

k − P̃t
k+( j−i)

)∣∣)2

︸ ︷︷ ︸
=:B2,2,1

+ 2
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i,t)

∣∣̃Pt
k − P̃t

k+( j−i)

∣∣)2

︸ ︷︷ ︸
=:B2,2,2

.

Again we bound each part of the sum above separately and start with B2,2,1. By Lemma 4.8,

B2,2,1 =
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i,t)

∣∣(Pt
k − Pt

k+( j−i)

)− (̃
Pt

k − P̃t
k+( j−i)

)∣∣)2

≤
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i,t)

O
(
t−(r+3)/2))2

.

Note that the number of vertices in H(i, t) can be bounded by∣∣H(i, t)
∣∣≤ (⌈

3 log n · √t

n1/r

⌉)r

≤
(

3 log n · √t

n1/r
+ 1

)r

,

since all coordinates of a vertex k ∈ H(i, t) are bounded by 3 log n · √t and additionally, the difference between a coordinate 
of k and the respective coordinate of i must be a multiple of n1/r . Using Lemma 2.2, we can further estimate this by∣∣H(i, t)

∣∣≤ 2r−1
(

(log n · √t)r

n
+ 1r

)
= O

(
(log n)rtr/2

n
+ 1

)
.

Therefore,

B2,2,1 ≤
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

(∣∣H(i, t)
∣∣ ·O(

t−(r+3)/2))2

=
∑

−→

κ∑
O
(

(log n)2rt−3

n2

)
+

∑
−→

κ∑
O
(
t−(r+3)

)

(i, j)∈E t=σ (i)+1 (i, j)∈E t=σ (i)+1
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= (log n)2r

n2

∑
(i, j)∈−→

E

κ∑
t=σ (i)+1

O
(
t−3)+

∑
(i, j)∈−→

E

κ∑
t=σ (i)+1

O
(
t−(r+3)

)
= (log n)2r

n2

( ∑
(i, j)∈−→

E �=0

∞∑
t=σ (i)+1

O
(
t−3)+

∑
(i, j)∈−→

E0

κ∑
t=σ (i)+1

O
(
t−3))+

∑
(i, j)∈−→

E �=0

κ∑
t=σ (i)+1

O
(
t−(r+3)

)
= (log n)2r

n2

( ∑
(i, j)∈−→

E �=0

O
(

log4(2‖i‖2
2)

‖i‖4
2

)
+O(1)

)
+

∑
(i, j)∈−→

E �=0

O
(

(log(2‖i‖2
2))

(2r+4)

‖i‖(2r+4)
2

)

= (log n)2r

n2

∑
(i, j)∈−→

E �=0

O(1) +
∑
i∈V

O
(‖i‖−2r−3

2

)
= O(1),

where the last line follows from Lemma 4.3.
We continue to bound the remaining part B2,2,2. We first use H(i, t) ⊆ H(i), then apply Lemma 4.9 twice, and obtain

B2,2,2 ≤
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

( ∑
k∈H(i)

∣∣̃Pt
k − P̃t

k+( j−i)

∣∣)2

=
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

(
2r + 1

4πt

)r( ∑
k∈H(i)

∣∣∣∣exp

(
− r‖k‖2

2

t

)
− exp

(
− r‖k + ( j − i)‖2

2

t

)∣∣∣∣)2

≤
∑

(i, j)∈−→
E

κ∑
t=σ (i)+1

(
2r + 1

4πt

)r( ∑
k∈H(i)

exp

(
−‖k‖2

2

4t

)
r(2‖k‖2 + 1)

t

)2

,

where we used Lemma 4.6 in the last line (note that in the case k = i we have ‖i‖2
2 ≤ ‖ j‖2

2 by the definition of
−→
E and when 

k ∈ H(i) \ {i}, we have ‖k‖∞ ≥ n1/r/2).
Recalling that H(i) = {i + n1/r p: p ∈ Z

d} and r−1‖p‖1 ≤ ‖p‖2 ≤ ‖p‖1, we obtain∑
k∈H(i)

exp

(
−‖k‖2

2

4t

)
r(2‖k‖2 + 1)

t

=
∑
p∈Zr

exp

(
−‖i + pn1/r‖2

2

4t

)
r(2‖i + pn1/r‖2 + 1)

t

≤ 2r‖i‖2 + 1

t
+

∑
p∈Zr�=0

exp

(
−‖pn1/r‖2

2

16tr2

)
r((r + 2)‖pn1/r‖2 + 1)

t

where the last inequality follows by using the fourth and third inequality of Lemma 4.4. We continue to upper bound the 
last term:

= 2r‖i‖2 + 1

t
+

∑
p∈Zr�=0

exp

(
−‖pn1/r‖2

2

16tr2

)
(r2 + 2r)‖pn1/r‖2 + r

t

≤ 2r‖i‖2 + 1

t
+

∑
p∈Zr�=0

exp

(
−‖pn1/r‖2

2

16tr2

)
(r2 + 2r)‖pn1/r‖2 + r‖pn1/r‖2

t

≤ 2r‖i‖2 + 1

t
+

∑
p∈Zr�=0

exp

(
−‖pn1/r‖2

1

16tr3

)
(r2 + 3r)‖pn1/r‖1

t

≤ 2r‖i‖2 + 1

t
+

∞∑
β=1

∑
p∈Zr :‖p‖1=β

exp

(
−‖p‖2

1n2/r

16tr3

)
4r2‖p‖1n1/r

t

= 2r‖i‖2 + 1

t
+O

(
n1/r

t

∞∑
(2β + 1)r−1 exp

(
−β2

/
16tr3

n2/r

)
β

)

β=1
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= 2r‖i‖2 + 1

t
+O

(
n1/r

t

∞∑
β=1

exp

(
−β2

/
16tr3

n2/r

)
βr

)
.

By applying Lemma 4.5, the second summand can be upper bounded by

O
(

n1/r

t

(√
16tr3

n2/r

)r+1)
= O

(
t(r−1)/2n1/r−1/r(r+1)

)= O
(
t(r−1)/2n−1).

Plugging this into our upper bound on B2,2,2, we obtain

B2,2,2 ≤
(

2r + 1

4π

)r ∑
(i, j)∈−→

E

κ∑
t=σ (i)+1

(
2r + 1

4πt

)r(
O
(
t(r−1)/2n−1)+ 2r‖i‖2 + 1

t

)2

= O
( ∑

(i, j)∈−→
E

κ∑
t=1

t−1n−2

)
+O

( ∑
(i, j)∈−→

E

κ∑
t=σ (i)+1

‖i‖2
2 + 1

tr+2

)

= O
(

n−2
∑

(i, j)∈−→
E

log(κ)

)
+O

( ∑
(i, j)∈−→

E �=0

∞∑
t=σ (i)+1

‖i‖2
2 + 1

tr+2

)
+O

( ∑
(i, j)∈−→

E=0

κ∑
t=1

‖i‖2
2 + 1

tr+2

)

= O(1) +O
( ∑

(i, j)∈−→
E �=0

‖i‖2
2

(
σ(i)

)−r−1
)

+O
(

κ∑
t=1

t−r−2

)

= O(1) +O
( ∑

(i, j)∈−→
E �=0

‖i‖2
2

( ‖i‖2
2

log2(2‖i‖2
2)

)−r−1)
+O(1)

= O(1) +O
( ∑

i∈Zr�=0

‖i‖−2r+1/2
2

)
+O(1) = O(1),

where the last inequality is due to Lemma 4.3. This completes the proof. �
4.3. Hypercube

Before we can calculate Υ2(G) and Ψ1(G) on the hypercube we state the following result which can be easily derived 
from [22].

Lemma 4.10. For the d-dimensional hypercube with n = 2d vertices the following statements hold.

(1) For any edge {i, j} ∈ E, any vertex k ∈ V and any time step ϑ ∈N,

∞∑
t=ϑ

∣∣Pt
i,k − Pt

j,k

∣∣= ∣∣∣∣∣
∞∑

t=ϑ

(
Pt

i,k − Pt
j,k

)∣∣∣∣∣.
(2) Let 0 also denote the vertex 0log2 n ∈ V . For any two vertices i, j with {i, j} ∈ E, ‖i‖1 = p and ‖ j‖1 = p + 1 we have

∞∑
t=0

(
Pt

i,0 − Pt
j,0

)= 1

n
· log2(n) + 1(log2 n

p

)
(log2(n) − p)

·
log2 n∑

�=p+1

(
log2 n

�

)
.

Proof. First we show (1). As shown in [6, Lemma 6], it holds for all triples of vertices i, j, k with dist(i, k) ≤ dist( j, k) that 
for all time steps t ∈N, Pt

i,k ≥ Pt
j,k . This immediately implies that

∞∑
t=ϑ

∣∣Pt
i,k − Pt

j,k

∣∣= ∣∣∣∣∣
∞∑

t=ϑ

(
Pt

i,� − Pt
j,k

)∣∣∣∣∣.
The second claim is a slight reformulation of [22, Theorem 5] (see also [21, Corollary 3.35]). Note that in the notation 
of [21,22], we have δ = 1 and wu − w v = αnδ(

∑∞
t=0 Mt

0,i − Mt
0, j) with α = 1

log2(n)+1 (M is the same matrix as P). �
Theorem 4.11. For the d-dimensional hypercube G with n = 2d vertices, Υ2(G) = √

d +O(1).
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Note that since Υ2(G) ≥ √
d for any d-regular network, this bound is almost tight.

Proof of Theorem 4.11. First note that since the d-dimensional hypercube is vertex-transitive, it suffices to consider the case 
k = 0 = 0log2 n in the definition of Υ2(G). Therefore,

(
Υ2(G)

)2 = 1

2

∑
i∈{0,1}d

∞∑
t=0

max
j∈N(i)

(
Pt

i,0 − Pt
j,0

)2
.

Our aim is to prove that (Υ2(G))2 = d +O(1). Using Lemma 2.9, we obtain for κ := (4 ln n)/(1 − λmax) =O(log2 n) that∑
i∈{0,1}d

∞∑
t=κ+1

max
j∈N(i)

(
Pt

i,0 − Pt
j,0

)2 = O(1).

Furthermore for t = 0, we have∑
i∈{0,1}d

max
j∈N(i)

(
P0

i,0 − P0
j,0

)2 = 2d.

Hence,(
Υ2(G)

)2 = 1

2

∑
i∈{0,1}d

κ∑
t=1

max
j∈N(i)

(
Pt

i,0 − Pt
j,0

)2 + d +O(1)

and it remains to consider only the time steps between 1 and κ in the following.
We now move on to exploit further symmetries of the hypercube. As the hypercube is distance-transitive [2], we have 

for any two vertices i, j with ‖i‖1 = ‖ j‖1 and for any t ∈N0,

Pt
i,0 = Pt

j,0. (4.8)

A simple consequence of this fact is that for any vertex i,

Pt
i,0 ≤ 1

/(
log2 n

i

)
. (4.9)

To simplify the notation, we also define for p ∈ N with 0 ≤ p ≤ log2 n,

Pt
p,0 := Pt

0p1log2 n−p ,0
.

We will use the following result from [6].

Lemma 4.12. (See [6, Lemma 6].) For any fixed t, Pt
p,0 is decreasing in p (0 ≤ p ≤ log2 n).

Combining Eq. (4.9) and Lemma 4.12, we obtain the following lemma.

Lemma 4.13. For any t ∈N>0 , Pt
0,0 ≤ 1

log2 n+1 . Moreover, for any 1 ≤ p ≤ log2(n)/2 and t ∈ N,

Pt
p,0 ≤ 1(log2 n

p

) ,
and for any log2(n)/2 ≤ p ≤ log2 n,

Pt
p,0 ≤ 1( log2 n

log2(n)/2

) .
With the notation identifying all vectors i ∈ {0, 1}d with ‖i‖1 = p

∑
i∈{0,1}d

κ∑
t=1

max
j∈N(i)

(
Pt

i,0 − Pt
j,0

)2 =
log2 n∑
p=0

(
log2 n

p

) κ∑
t=1

max
j∈{p−1,p+1}

(
Pt

p,0 − Pt
j,0

)2

≤
log2(n)−1∑ (

log2 n

p

)( κ∑(
Pt

p,0 − Pt
p−1,0

)2 +
κ∑(

Pt
p,0 − Pt

p+1,0

)2

)

p=1 t=1 t=1
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+
κ∑

t=1

(
Pt

1,0 − Pt
0,0

)2 +
κ∑

t=1

(
Pt

log2 n,0 − Pt
log2(n)−1,0

)2

≤
log2(n)−1∑

p=0

((
log2 n

p

)
+
(

log2 n

p + 1

)) κ∑
t=1

(
Pt

p,0 − Pt
p+1,0

)2

=
log2(n)−1∑

p=0

(
log2 n + 1

p + 1

)( κ∑
t=1

(
Pt

p,0 − Pt
p+1,0

))2

.

We split the outer sum in three parts:

log2(n)∑
p=0

(
log2 n + 1

p + 1

)( κ∑
t=1

(
Pt

p,0 − Pt
p+1,0

))2

=
5∑

p=0

(
log2 n + 1

p + 1

)( κ∑
t=1

(
Pt

p,0 − Pt
p+1,0

))2

︸ ︷︷ ︸
=:B1

+
log2(n)−6∑

p=6

(
log2 n + 1

p + 1

)( κ∑
t=1

(
Pt

p,0 − Pt
p+1,0

))2

︸ ︷︷ ︸
=:B2

+
log2(n)∑

p=log2(n)−5

(
log2 n + 1

p + 1

)( κ∑
t=1

(
Pt

p,0 − Pt
p+1,0

))2

︸ ︷︷ ︸
=:B3

.

We first consider B2. By using the second statement of Lemma 4.10 and recalling that Pt
p,0 − Pt,0

p+1 ≥ 0, we can upper 
bound B2 by

B2 ≤
log2 n−6∑

p=6

(log2 n+1
p+1

)
(log2 n

p

)2

(
1

n
· log2(n) + 1

log2(n) − p

log2 n∑
�=p+1

(
log2 n

�

))2

=
log2 n−6∑

p=6

log2 n + 1

p + 1

1(log2 n
p

)(1

n
· log2(n) + 1

log2(n) − p

log2 n∑
�=p+1

(
log2 n

�

))2

.

Using that 
∑log2 n

�=p+1

(log2 n
�

)≤ n and plugging in the bound 6 ≤ p ≤ log2 n − 6 we can continue with

≤
log2 n−6∑

p=6

(log2 n + 1)3

7

1(log2 n
p

)
= (log2 n + 1)3

7

( log2 n/2∑
p=6

1(log2 n
p

) +
log2 n−6∑

p=log2 n/2+1

1(log2 n
p

))

= O
(
log3 n

) log2(n)/2∑
p=6

1(log2 n
p

)
≤ O

(
log3 n

)(√
log n∑

p=6

(
p

log2 n

)p

+
log2(n)/2∑
p=√

log n

(
p

log2 n

)p
)

≤ O
(
log3 n

)(√
log n∑

p=6

(log2 n)−p/2 +
log2(n)/2∑
p=√

log n

2−p

)

= O
(
log3 n

) ·O
(

1

log3(n)
+ 2−√

log n
)

= O(1).
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To upper bound B3, we use again the second statement of Lemma 4.10 to obtain

B3 ≤
log2 n∑

p=log2 n−5

log2 n + 1

p + 1

1(log2 n
p

)(1

n
· log2(n) + 1

log2(n) − p

log2 n∑
�=p+1

(
log2 n

�

))2

= o(1),

as 1
n dominates all other factors which are at most polylogarithmic in n.
It remains to upper bound B1. Using Lemma 4.12, we obtain

B1 =
5∑

p=0

(
log2 n + 1

p + 1

) κ∑
t=1

(
Pt

p,0 − Pt
p+1,0

)2 ≤
5∑

p=0

2

(
log2 n + 1

p + 1

)
·

κ∑
t=1

(
Pt

p,0

)2
.

We now split the inner sum into two parts: 1 ≤ t ≤ 14, and 15 ≤ t ≤ κ . We first consider the sum with 1 ≤ t ≤ 14. For 
bounding the term Pt

p,0, we now use Lemma 4.13 to obtain that

5∑
p=0

2

(
log2 n + 1

p + 1

)
·

14∑
t=1

(
Pt

p,0

)2 ≤ 2

(
log2 n + 1

1

)
· 14

(log2 n + 1)2
+

5∑
p=1

2

(
log2 n + 1

p + 1

)
· 14((log2 n

p

))2

= O(1). (4.10)

For larger time steps t ≥ 15, we examine Pt
p,0 for 0 ≤ p ≤ 5 more closely. Observe that a random walk that starts from p

increases the distance to 0log2 n in step t with probability at least 1 − t+p
log2 n+1 . Moreover, in order to arrive at a vertex q with 

0 ≤ q ≤ 5 at step 15, the random walk can at most 10 times increase the distance to 0log2 n during 15 steps. This implies 
that for all 0 ≤ p ≤ 5,

5∑
q=0

P15
p,q ≤

(
15

5

)
·
(

20

log2 n + 1

)5

= O
(
(logn)−5). (4.11)

Combining Eq. (4.11) and Lemma 4.13, we obtain that

κ∑
t=15

(
Pt

p,0

)2 ≤
(

κ∑
t=15

Pt
p,0

)2

≤
(

κ∑
t=15

(
5∑

q=0

P15
p,q · Pt−15

q,0 +
log n∑
q=6

P15
p,q · Pt−15

q,0

))2

≤
(

κ∑
t=15

(
5∑

q=0

P15
p,q · 1 +

log(n)/2∑
q=6

1 · 1(log2 n
q

) +
log n∑

q=log(n)/2+1

1 · 1( log2 n
log2(n)/2

)))2

≤ (
κ · (O(

(log n)−5)+O
(
(log n)−5)))2

= O
(
(log n)−6).

Hence we obtain

5∑
p=0

2

(
log2 n + 1

p

)
·

κ∑
t=15

(
Pt

p,0

)2 ≤
5∑

p=0

2

(
log2 n + 1

p

)
·O(

(log n)−6)= O(1). (4.12)

Combining Eq. (4.10) and Eq. (4.12), we find that also B3 =O(1), which finishes the proof. �
4.4. Hypercube

In the following we give an exact bound on Ψ1(G).

Theorem 4.14. Let G be a hypercube with n vertices. Then,

Ψ1(G) = log2(n) + 1

n

log2(n)−1∑
p=0

log2 n∑
�=p+1

(
log2 n

�

)
= Θ

(
log2 n

)
.
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Proof. By symmetry, it suffices to consider k = 0 = 0log2 n for Ψ1(G). By using Lemma 4.10 twice, we get

Ψ1(G) =
∞∑

t=0

∑
[i: j]∈E

∣∣Pt
i,0 − Pt

j,0

∣∣
=

log2(n)−1∑
p=0

∑
{i, j}∈E:

‖i‖1=p,‖ j‖1=p+1

∣∣∣∣∣
∞∑

t=0

(
Pt

i,0 − Pt
j,0

)∣∣∣∣∣
=

log2(n)−1∑
p=0

·
∑

{i, j}∈E:
‖i‖1=p,‖ j‖1=p+1

1

n
· log2(n) + 1(log2 n

p

)
(log2(n) − p)

·
log2 n∑

�=p+1

(
log2 n

�

)

= log2(n) + 1

n

log2(n)−1∑
p=0

log2 n∑
�=p+1

(
log2 n

�

)
, (4.13)

where in the last equality we have used the fact that for any 0 ≤ p ≤ log2(n) −1, there are 
(log2 n

p

)
(log2 n − p) edges {i, j} ∈ E

with ‖i‖1 = p and ‖ j‖1 = p + 1. We can upper bound this term by

Ψ1(G) ≤ log2(n) + 1

n
log2(n)2log2 n = O

(
log2 n

)
.

For the lower bound on Eq. (4.13),

Ψ1(G) ≥ log2(n) + 1

n

log2(n)/2∑
p=0

log2 n∑
�=log2(n)/2

(
log2 n

�

)
= Ω

(
log2 n

)
. �

As the discrepancy of the RSW algorithm is at most Ψ1(G) after τ (G, K ) rounds [24, Corollary 3], we obtain:

Corollary 4.15. The discrepancy of the RSW algorithm [24] is at most O(log2 n) after τ (G, K ) =O(log(Kn) · log2 n) time steps.

Note that the best possible result from [24, Theorem 4] yields only a weaker bound of O(log3 n). Our result is tight since 
d · diam(G) = (log2 n)2 is a simple lower bound.

5. Discussion

We presented a new diffusion-based load-balancing scheme which is very simple and avoids negative load. We show 
bounds on the discrepancy for general graphs depending on the local (or refined local) divergence and the eigenvalue gap 
of the graph. For (constant-degree) expander graphs we prove a discrepancy of O(log log n), for hypercubes of O(logn), and 
for r-dimensional torus graphs of O(

√
log n).

We also note that our proof techniques are not restricted to the algorithm presented in this paper. For example an 
adversarial algorithm where the adversary is allowed to specify the destinations of the excess tokens could also be analyzed. 
Adapting the proof of Theorem 1.1 to this algorithm, one can show that the deviation is at most O(dΥ1(G)).
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