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ABSTRACT
It is widely assumed and observed in experiments that the
use of diversity mechanisms in evolutionary algorithms may
have a great impact on its running time. Up to now there is
no rigorous analysis pointing out the use of different mech-
anisms with respect to the runtime behavior. We consider
evolutionary algorithms that differ from each other in the
way they ensure diversity and point out situations where the
right mechanism is crucial for the success of the algorithm.
The algorithms considered either diversify the population
with respect to the search points or with respect to function
values. Investigating simple plateau functions, we show that
using the “right” diversity strategy makes the difference be-
tween an exponential and a polynomial runtime.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

Keywords: Diversity, Runtime Analysis, Selection Proce-
dures

1. INTRODUCTION
Diversity mechanisms should prevent the optimization pro-
cess of an evolutionary algorithm (EA) from getting stuck
by ensuring that the population consists at each time step
of a set of individuals with different properties. It has been
observed in numerous experiments [1, 15] that the right use
of a diversity strategy can play a key role for the success
of an EA. As it is important to understand in practice suc-
cessful algorithms also from a theoretical point of view, it
is desirable to strengthen the theoretical understanding of
diversity mechanisms. The aim of this paper is to show how
the use of different diversity mechanism may influence the
behavior of an EA. To achieve this goal we examine some
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simple EAs using different methods to ensure diversity and
analyze them with respect to their runtime behavior.

The rigorous analysis of evolutionary algorithms with re-
spect to their runtime behavior has been started on arti-
ficial pseudo-boolean functions. The main aim of such in-
vestigation is to increase the understanding how evolution-
ary algorithms work. The first result has been obtained by
Mühlenbein [9] who proved that the well-known (1+1) EA
is able to optimize the function onemax within an expected
number of O(n log n) iterations. Rudolph [12] has shown
that the (1+1) EA can solve some Long Path functions in ex-
pected polynomial time. Later Droste, Jansen, and Wegener
[3] pointed out Long Path functions where the (1+1) EA
has an exponential optimization time. The (1+1) EA has
been subject of different investigations on pseudo-boolean
functions [7] and on some of the best-known combinato-
rial optimization problems [4, 11, 17]. It seems to be the
“standard” algorithm for investigating the behavior of EAs
on new (combinatorial) problems. In the case of crossover
based EAs that work with a population size of at least 2
there are only a few results which show that the use of a
crossover operator can speed up computations drastically
[8, 14]. The influence of the population size itself has also
been investigated by rigorous runtime analyses [13, 16].

Considering selection methods with respect to the run-
time behavior has been started only recently. Jägerküpper
and Storch [5, 6] have compared comma and plus strategies
and pointed out situations where switching from one strat-
egy to the other may change the runtime from polynomial to
exponential and vice versa. Often selection methods consist
of a particular mechanism to ensure a diversity of the indi-
viduals in the population. The aim of this paper is to study
the influence of two diversity strategies with respect to the
runtime of an evolutionary algorithm. A large diversity of
the individuals in the population is needed to explore differ-
ent regions of the considered search space. Usually, there is
a tradeoff between exploring different regions of the search
space and converging quickly to optimal solutions.

We consider simple mutation-based EAs that use different
diversity measures and a constant population size. The first
idea is to consider a diversity strategy that tries to avoid du-
plicates in each generation. Storch [13] has examined the in-
fluence of the choice of the population size together with this
strategy but did not consider the influence of the strategy
itself with respect to the runtime behavior. We focus rather
on the diversity mechanism used in the algorithm than the
effect of increasing the population size. In our second al-
gorithm the individuals should differ with respect to their

1219



function values which is motivated by the assumption that
individuals with the same fitness value have similar proper-
ties. In a first step, we point out a situation where ensuring
diversity of fitness values leads to an exponential optimiza-
tion time while the algorithm just avoiding duplicates has
a polynomial runtime. Afterwards, we examine situations
where the diversity with respect to the fitness values ensures
a polynomial runtime. In contrast to this the algorithm just
avoiding duplicates has an exponential optimization time.
After having obtained these results, we consider the effect
of increasing the population size in our algorithms. We are
in particular interested in the population size needed to turn
the exponential runtimes that are the effect of the “wrong”
diversity mechanism into polynomial ones by using larger
population sizes.

The outline of the paper is as follows. In Section 2, we
introduce the algorithms and diversity strategies that are
subject of our analysis. In Section 3, we compare the differ-
ent diversity strategies for our algorithms using populations
of constant size. The effect of larger populations is discussed
in Section 4. Finally, we finish with some conclusions.

2. ALGORITHMS
Our aim is to study the impact of two simple diversity mech-
anisms with respect to the runtime behavior. The first algo-
rithm tries to avoid duplicates by diversifying with respect
to the search points. The second one is diversifying with
respect to the function values. In our opinion, these are
the two simplest strategies that can be considered. As this
is the first paper considering in particular the use of diver-
sity by rigorous runtime analyses, we start by considering
simple algorithms. In particular analyzing the effect of a
crossover operator in an evolutionary algorithm seems to be
a hard task. Therefore, we investigate simple EAs that pro-
duce in each iteration an offspring by using only mutation.
We hope that the insight we gain by considering these al-
gorithms leads to a better understanding of diversification
such that more complicated strategies and algorithms might
also be easier to understand.

We examine a simple (μ+1) evolutionary algorithm called
(μ+1) EAd (see Algorithm 1) which just tries to avoid du-
plicates.

Algorithm 1. (μ+1) EAd

1. Choose μ individuals xi ∈ {0, 1}n (1 ≤ i ≤ μ) uni-
formly at random.

2. P ← {x1, . . . , xµ}.
3. Repeat

(a) Choose z from the population P uniformly at ran-
dom.

(b) Create z′ by flipping each bit of z independently
with probability 1/n.

(c) If z′ �∈ P , then create the new population P by
introducing z′ into P and deleting an individual
from P ∪ {z′} with the lowest f-value uniformly
at random.

The algorithm starts by choosing two individuals uniformly
at random from the considered search space {0, 1}n. In

each iteration, one of these individuals is selected for mu-
tation. Afterwards, a new parent population is constituted
by choosing two individuals from the parents and the off-
spring. If an individual z′ created by mutation is equal to
any individual in the population P , P remains unchanged.
Otherwise z′ is included and an individual with the lowest
fitness value is chosen uniformly at random and deleted.

We compare the (μ+1) EAd with the algorithm called
(μ+1) EAf that uses a much stronger diversity strategy.
The (μ+1) EAf (see Algorithm 2) tries to diverse the in-
dividuals with respect to their function values. This diver-
sity measure relies on the assumption that individuals with
the same function value have some properties in common
such that a population consisting of individuals with differ-
ent function values gives a good sample of the search space.

Algorithm 2. (μ+1) EAf

1. Choose μ individuals xi ∈ {0, 1}n (1 ≤ i ≤ μ) uni-
formly at random.

2. P ← {x1, . . . , xµ}.
3. Repeat

(a) Choose z from the population P uniformly at ran-
dom.

(b) Create z′ by flipping each bit of z independently
with probability 1/n.

(c) If f(z′) ∈ {f(x), x ∈ P}, then create the new
population P by deleting the individual with f-
value f(z′) from P and insert z’; otherwise create
the new population P by deleting an individual
from P ∪ {z′} with the lowest f-value uniformly
at random.

We have not defined any stopping criteria for our algo-
rithms. We consider the algorithms as infinite stochastic
processes. Considering randomized search heuristics with
respect to their runtime, a common measure is to count the
number of constructed solutions until an optimal one has
been found. This is called the optimization time of the al-
gorithm. Often the expectation of this value is analyzed and
called the expected optimization time.

3. CONSTANT POPULATION SIZE
We compare the two diversity mechanisms introduced in
Section 2 for a constant population size. All our investi-
gations in this section consider the case μ = 2. We com-
pare the two diversity mechanisms introduced in the previ-
ous section on two plateau functions. Plateaus are regions
in the search space where all points have the same f -value.
Consider a function f : {0, 1}n → R whose image of the do-
main {0, 1}n is of size V = |f({0, 1}n)|. Since often the
number of different fitness values V is polynomial, such a
function has an exponential number of solutions with the
same f -value. However, such functions are optimized eas-
ily with a randomized search heuristic if there is a better
Hamming neighbor for each non-optimal solution since this
implies that an improvement can be reached by flipping a
single bit of a non-optimal solution. Otherwise, if this does
not hold, the search may get much harder for evolutionary
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Figure 1. An illustration of the explored function PL.

algorithms. One example (from [3]) for this is the degener-
ated case of the characteristic function needle, which has
fitness value 0 for all solutions apart from a single point x
at which it has fitness value 1. The behavior of (1+1) EAs
on plateaus of different structures has been studied in [7]
by a rigorous runtime analysis. In the case of combinatorial
optimization problems, it has been shown that evolutionary
algorithms have to cope with plateaus of constant fitness for
the Eulerian cycle problem [2, 10] and the computation of
maximum matchings [4].

3.1 (2+1) EAd beats (2+1) EAf

We show that there are functions on which the optimiza-
tion time of the (2+1) EAd is a small polynomial while the
(2+1) EAf is exponential with high probability. For this,
we consider the following function PL, which is similar to
the function SPCn introduced by Jansen and Wegener [7].
Let |x|1 and |x|0 denote the number of ones and the number
of zeros in a bitstring x, respectively. The function PL is
defined as

PL(x) :=

⎧⎨
⎩
|x|0 : x �∈ {1i0n−i, 0 < i ≤ n}
n + 1 : x ∈ {1i0n−i, 0 < i < n}
n + 2 : x = 1n.

We denote by SP := {1i0n−i, 0 < i < n} the set of search
points that constitute the plateau of fitness n+1. Figure 3.1
shows an illustration of this function. We first prove that
the (2+1) EAd is efficient on PL. Our analysis relies on
analyzing the random walks that two individuals perform
on the plateau instead of one as examined in [7].

Theorem 1. The expected optimization time of the
(2+1) EAd on PL is O(n3).

Proof. The algorithm always keeps two different solutions
that have been produced up to now in the population. We
first consider the number of steps until both solutions of the
population are contained in SP. Certainly, in every muta-
tion step there is a positive probability to produce a solution
that is contained in SP . We neglect this probability that only
decreases the expected time until an element of SP is de-
tected. Assume |x|1 ≤ |y|1 and that both solutions are not
contained in SP. x is chosen with probability 1/2 for muta-
tion and therefore the probability of producing a solution z
with |z|0 > |x|0 in the next step is at least |x|1/(2en). This

solution will be introduced into the population P and a so-
lution with a largest number of ones in P will be removed.
Summing up over the different number of ones, the expected
time to introduce the search point 0n in P is O(n log n) as
long as no solution of SP has been produced before. A solu-
tion of SP can be produced from 0n by flipping the first bit.
This happens after an expected number of O(n) steps. Let
x be this solution. The expected waiting time to produce
a solution z ∈ SP with z �= x is O(n) as again one specific
bit in x has to flip. Hence, after an expected number of
O(n log n) steps both solutions of P have fitness value at
least n + 1. As long as the optimal search point 1n has not
been obtained x and y are different and contained in SP.

We now show by backward analysis that within O(n3)
steps one of the two individuals of the (2+1) EAd reach
the optimal search point. For every newly generated search
point we consider the sequence of all its ancestors. At this
point, we interpret step 3.(c) of Algorithm 1 slightly differ-
ent. Namely, instead of completely ignoring mutations of all
z′ which are already in the current population P , we now say
that we also include such mutations in the population, but
remove the old (identical) individual z′ to avoid duplicates.
This modification behaves exactly as the original algorithm,
but now each parent of a search point has chosen an off-
spring of a certain Hamming distance with exactly the same
probability as the offspring in a (1+1) EA is chosen. There-
fore, the sequence of all ancestors of a point can also be
seen as the sequence of solutions generated (and accepted)
by an (1+1) EA. The expected length of this sequence is
half of the expected length of such a sequence generated by
a (1+1) EA since for every ancestor the probability to be
chosen for mutation is 1/2 in every mutation step. By [7] this
shows that after an expected number O(n3) mutation steps
of the (2+1) EAd, the optimal search point is found.

In contrast to the (2+1) EAd, the (2+1) EAf diversifies
with respect to the function values. In this case only one sin-
gle search point may perform a random walk on the plateau.
In the case of the function PL the second individual in the
population has a great effect on the success of this random
walk. In particular, we show that the (2+1) EAf is not
efficient on PL. The main reason for this is that the other
individual in the population produces faster new solutions of
SP that have a small Hamming distance to the search point
0n than the random walk has reached the optimal solution.

Theorem 2. The optimization time of the (2+1) EAf on

PL is 2Ω(n1/24) with probability 1− e−Ω(n1/24).

Proof. The population consists at each time step t of 2 indi-
viduals with the best (respectively second best) fitness val-
ues that have been produced during the first t steps. Our
aim is to show that a population including solutions with fit-
ness values n + 1 and n are constructed before the optimal
search point 1n is reached.

The initial solutions x and y consist with probability
1− e−Ω(n) of at most 2n/3 ones using Chernoff bounds. Let
|x|1 = k. The probability that |y|1 = k is

(
n
k

)
(1/2)n ≤ (

n
n/2

)
2−n ≤ 2n/22−n = 2−n/2.

Hence, with probability 1− e−Ω(n) x and y are different
and both contain at most 2n/3 ones. The probability that
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an initial solution is contained in SP is upper bounded by
2(n−1)

2n = n−1
2n−1 as both solutions are drawn uniformly at

random from the considered search space. Therefore, with
probability 1 − e−Ω(n) both solutions x and y are different
and not contained in SP. As long as no solution of SP has
been obtained, only solutions with at most max{|x|1, |y|1}
ones are accepted. This implies that with probability at
least 1−n−n/3, there is no step producing the optimal search
point when there is no solution of SP in P . The first solution
contained in P of SP has at most 3n/4 ones as the proba-
bility of flipping at least n/12 bits in a single mutation step

is e−Ω(n).
We now consider a phase of n3/2 steps of the algorithm

after for the first time a solution in SP has been produced.
Roughly speaking, we will show that within such a phase
the random walk of the solution y ∈ SP reaches the opti-
mal search point 1n only with a small probability while at
the same time the other solution x quickly becomes x = 0n.
Such a solution x produces with high probability a descen-
dant on SP by a single bit flip within this phase which im-
plies that the random walk has to start again from a solution
that has a large (Hamming) distance to the optimal search
point.

Let y = 1i0n−i be the solution on SP. We call a step
relevant if and only if it produces a solution z ∈ SP with z �=
y. To achieve this the bit yi or yi+1 has to flip. Therefore the
probability of not having a relevant step is at least 1 − 2/n
and the expected number of non-relevant steps during this
phase is at least (1− 2/n) n3/2 = n3/2− 2n1/2. There are at
least

(1− n−2/3) · (n3/2 − 2n1/2) ≥ n3/2 − 2n5/6

non-relevant steps with probability

1− e

(
−n3/2· n−4/3

2

)
= 1− e−Ω(n1/6)

using Chernoff bounds.
The probability that at least n1/12 bits flip in a single

accepted mutation step is at most n−n1/12
. Such an event

happens in the phase of n3/2 steps only with probability at

most n3/2−n1/12
= n−Ω(n1/12). Therefore, within this phase

the Hamming distance to the optimal search point decreases
by at most 2n5/6n1/12 = 2n11/12 and an optimal search point

has not been obtained with probability 1− e−Ω(n1/12).
In the following we show that after n3/2 steps, the solution

0n is inserted into the population. We consider in each step
the solution x with the largest number of zeros in the pop-
ulation P . As an optimal search point will not be produced

within n3/2 steps with probability 1− e−Ω(n1/12) such a so-
lution will never be removed from P in this phase. Assume
|x|1 = k. Then the probability of producing in the next step
a solution z with |z|0 > |x|0 is at least k/(2en). Summing
up over the different values of k, the search point 0n is in-
cluded into P after an expected number of at most en log n
steps. After an expected number of O(n) steps a solution
with fitness value n + 1 is included afterwards. Hence, after
an expected number of 2e n log n steps P = {x, y} where
f(x) = n and f(y) = n + 1, i. e., after 4e n log n steps
this happens with probability at least 1/2. The probabil-

ity of not having obtained these solutions within n3/2 steps

is upper bounded by e−Ω(n1/2/ log n) ≤ e−Ω(n1/4) considering
n1/2/(4e log n) phases of length 4e n log n.

Figure 2. An illustration of the explored function PLS.

The probability to produce from x a search point z with
fitness n + 1 is at least 1/(en) as this can be achieved by
flipping the first bit of x. The probability to select z in the
next mutation step is 1/2. Using Markov’s inequality the
probability that such a z has not been produced during 4en
steps is bounded above by 1/2 and the probability that this
has not happened during r (4en) steps is (1/2)r. Choosing

r = n1/2 such an z is produced within n3/2 steps with proba-

bility 1−2−Ω(n1/2). We already know that, with probability

1− e−Ω(n1/12) a phase of n3/2 steps does not lead to an op-

timal solution. Considering 2Ω(n1/24) steps the probability
of obtaining an optimal solution is still upper bounded by

e−Ω(n1/24) which proves the theorem.

Our analyses for the function PL have pointed out how
to analyze the random walk of more than one individual on
a plateau by a backward analysis. The success of a random
walk of a single search point on such a plateau may be pre-
vented by producing individuals at the “wrong” part of a
plateau. This is in particular the case for the (2+1) EAf

which diversifies the population with respect to their func-
tion values.

3.2 ( 2+1) EAf b eats ( 2+1) EAd

We now consider an example where diversifying with respect
to the function values reduces the runtime significantly com-
pared with a mechanism that just avoids duplicates. The
idea is to construct a function with two plateaus of different
fitnesses.

We investigate the function PLS defined as

PLS (x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n + 1 : x ∈ {0i1n−i, 1 < i < n− 1}
\{03n/41n/4}

n + 2 : x ∈ {1i0n−i, 1 < i < n− 1}
n + 3 : x = 03n/41n/4

|x|0 : otherwise.

We define SP1 = {1i0n−i, 1 < i < n − 1} and SP2 =

{0i1n−i, 1 < i < n− 1} \ {03n/41n/4}. SP1 where all search
points have fitness n +2 may mislead the search. All search
points in SP1 have a large Hamming distance of at least n1/4

to the optimal one 03n/41n/4. Therefore, it is unlikely that
steps mutating individuals of SP1 produce optimal solutions.
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In addition, SP2 serves as a royal road for the fitness diver-
sifying algorithm (2+1) EAf as it always keeps two individ-
uals of different fitnesses during the optimization process.

Theorem 3. The optimization time of the (2+1) EAd on

PLS is at least nn/4 with probability 1/2− o(1).

Proof. In the initialization step of the (2+1) EAd,
two solutions x, y ∈ {0, 1}n are produced that fulfill

max{|x|1, |y|1} ≤ 2
3
n with probability 1− e−Ω(n) as already

observed in Theorem 2. Again only solutions with at most
max{|x|1, |y|1} ones are accepted.

To reach the optimal search point 03n/41n/4, at least n/12
bits have to swap at once. The probability for this to hap-
pen is e−Ω(n) as steps flipping Θ(n) bits are exponentially
unlikely. The expected number of steps till the first indi-
vidual reaches the search point 0n (neglecting the possibil-
ity of reaching one of the plateaus with f -value greater n
before this) is O(n log n) as shown in the proof of Theo-
rem 2. After the search point 0n is found by the (2+1) EAd,
the expected time until a search point from one of the
plateaus with f -value greater n is inserted into the pop-
ulation is O(n2) because for this event the hamming dis-
tance of 2 to the plateaus has to be covered (with probabil-
ity at least 1/(en2)). The probability that the first search
point z ∈ SP1 ∪ SP2 that has been produced is in SP1 is
Prob(z ∈ SP1) = Prob(z ∈ SP2) = 1/2.

We consider the phase of the next n3/2 steps. Let us
assume (as a worst case) that the second best individual
(the one that not entered SP1 as first individual) reaches
the plateau SP2 immediately after the first search point of
SP1 has been found by the (2+1) EAd. Following the line
of argument in the proof of Theorem 2 (for an individual
on the plateau SP), the second best individual does not

reach the optimal search point 03n/41n/4 with probability

1 − e−Ω(n1/12). The probability that in n3/2 steps the in-
dividual in SP1 has produced another individual is at least

(1 − 1
n
)n3/2

= 1 − e−Ω(n1/2). This individual solution will
be accepted since the fitness value n + 2 is greater than the
so far second best fitness value. We have shown that with
probability 1/2−o(1) the (2+1) EAd produces a population
where both individuals are contained in SP1 before obtain-
ing the optimum.

Afterwards, only search points of SP1 ∪ {03n/41n/4} are
accepted. Each search point of SP1 has Hamming distance
at least n/4 to the optimal search point. Hence, the expected
time to produce from a solution in SP1 the optimal one is
lower bounded by nn/4. Therefore, the optimization time of
the (2+1) EAd is at least nn/4 with probability 1/2− o(1).

The (2+1) EAf cannot end up in the “dead-end” of having
both individuals on the same plateau n + 2. For PLS it
indeed outperforms significantly the (2+1) EAd as shown in
the following theorem.

Theorem 4. The expected optimization time of the
(2+1) EAf on PLS is O(n3).

Proof. Analogue to the proof of Theorem 3, for the initial
population {x, y} of the (2+1) EAf holds |x|1, |y|1 ≤ 2

3
n

with probability 1− e−Ω(n). Afterwards, no solution z with

|z|1 ≥ max{|x|1, |y|1} is accepted until a solution of SP1 ∪
SP2 has been produced. Assuming that the population does
not consist of individuals with fitness values greater than
n, the search point 0n is included in the population after an
expected number of O(n log n) steps as shown in the proof of
Theorem 2. The expected time to produce from this search
point a solution of SP1 (respectively SP2) is O(n2) as this
can be achieved in both cases by flipping two specific bits.
Therefore, the population consists after an expected number
of O(n2) steps of two individuals x and y where x ∈ SP1 and
y ∈ SP2.

The probability to produce from a solution x ∈ SP1 a
solution y ∈ SP2 in the next mutation step is O(1/n4) as
the Hamming distance between such solutions is at least 4.
Using Markov’s inequality this does not happen within a
phase of O(n3) steps with probability 1 − O(1/n). Hence,
the random walks on the two plateaus are completely inde-
pendent of each other with probability 1 − O(1/n). Using
the arguments of Jansen and Wegener [7] for the function
PL after a phase of cn3 steps, c an appropriate constant,
the (2+1) EAf has produced a solution z = 0j1n−j where
3n/4 ≤ j < n with probability bounded below by a constant
α1. Consider the first time such a z has been obtained. The
probability that it has been obtained by a mutation step
flipping a single bit is at least (1 − 1/n)n−1 ≥ 1/e. Hence,
the probability that the optimal solution has been produced
during the considered cn3 steps is at least α1/e. The argu-
ments can be repeated by considering c′n3 steps, c′ an ap-
propriate constant, to produce from a solution y = 0j1n−j ,
3n/4 < j < n, a solution z = 0k1n−k, 1 < k ≤ 3n/4 with
probability α2. Similarly the probability of having obtained
the optimum is at least α2/e within this phase . This im-
plies that the expected time to produce the optimal solution
is upper bounded by

max{c, c′}
min{α1, α2} · en

3 = O(n3).

Our analyses for the function PLS show that diversifying
the population with respect to the function values may pre-
vent an evolutionary algorithm from getting stuck in a local
optimum. We assume that the (μ+1) EAd is also not able
to optimize PLS efficiently for larger values of μ not greater
than n − 3 as the defined local optimal plateau consists of
n− 3 different search points that all have a large Hamming
distance to the optimal one.

4. LARGER POPULATIONS
Theorems 2 and 3 showed exponential runtimes of the
(2+1) EAf and the (2+1) EAd on PL and PLS, respec-
tively. In this section, we examine larger population sizes
and prove that the algorithms achieve polynomial runtimes
for sufficiently large populations μ. This complements sim-
ilar results by Storch [13] who has investigated the choice
of μ for an algorithm just avoiding duplicates.

Theorem 5. The expected optimization time of the
(μ+1) EAf with μ = n−k (0 ≤ k < n) on PL is O(μnk+2).

Proof. In the initialization step it cannot be guaranteed that
all individuals have pairwise different fitness values. There-
fore, we show that after a phase of O(μn log n) mutation
steps there are μ different fitness values represented by the
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current population. We assume the worst case that all μ in-
dividuals produced in the initialization step share the same
fitness value. After d different fitness values are included in
the current population, there is at least one individual x in
the population such that m(x) := min{|x|0, |x|1} ≥ (n−d)/2
and there is no individual in the population with m(x)− 1
0–bits respectively 1–bits. Thus, the probability that an
individual with this fitness value is produced in the next
mutation step is at least (n− d)/(2μn). The factor μ in the
denominator is due to the selection of the individual in the
population that is chosen for the mutation step. Hence, the
expected time until all μ individuals in the current popula-
tion have pairwise different fitness values is at most

µ−1∑
d=1

μ 2n
n−k
≤ 2μn

n−1∑
d=1

1
k

= 2μn log n.

Since there are n + 2 different fitness values and the fitness
value n + 2 is the value, that has to be achieved in the op-
timization process, the least fitness value in the population
is at most n + 2− μ = k + 2. Thus, there is an individual x
in the current population with |x|0 ≤ k + 2. The probabil-
ity that this individual is mutated in the next step into the

optimal search point 1n is at least 1
µ

1
n

k+2
(1 − 1

n
)n−k−2 ≥

1/(eμnk+2). Therefore, the expected time (from the mo-
ment where all fitness values in the current population are
pairwise different) until the optimal search point is deter-
mined is O(μnk+2). This proves the theorem.

Theorem 6. The expected optimization time of the
(μ+1) EAd with μ = 2n − k (6 ≤ k < n) on PLS is

O(μnmax(2,�k/2�−3)).

Proof. As a first step, we examine the phase until the first
search point of one of the plateaus is found. The argumen-
tation for this phase is similar to the one in the proof of
Theorem 3. But here we have to deal with a larger pop-
ulation size. The expected number of steps till the first
individual reaches the search point 0n (neglecting the possi-
bility of reaching one of the plateaus with f -value greater n
before this) is O(μn2) since the probability to choose from
the population the individual with the largest |x|0-value is
1/μ, the probability that its mutation increases the f -value
is at least 1/(en), and there are O(n) such steps needed.
After the search point 0n is detected by the (μ+1) EAd the
expected time until a search point from one of the plateaus
with f -value greater n is determined is O(μn2) because for
this event the search point 0n has to be chosen for muta-
tion (probability 1/μ) and the hamming distance of 2 to the
plateaus has to be covered (probability at least 1/(en2)).

We now assume that f(x) > n holds for at least one
individual x and that there is another individual x′ with
f(x′) ≤ n. With probability 1/μ we choose a solution x
on the plateaus whose adjacent neighbor z (i. e., Hamming
distance 1) on the plateau is not yet in the population. The
mutation of x yields z with probability at least 1/(en), which
will be accepted since f(z) > n. After O(μn2) steps, there
are no individuals left with f -value smaller or equal n since
there are only |{x : f(x) > n}| = 2n ≤ μ elements on the
two plateaus.

If the optimal search point has not been found yet, we now
know that there is at least one individual on the plateau n+1

with Hamming distance 	k/2
 − 3 to the optima. This in-
dividual is chosen with probability 1/μ and jumps directly

to the optima with probability 1
e
n−(�k/2�−3). Therefore, af-

ter an expected number of O(μn�k/2�−3) steps, the optimal
search point is found.

5. CONCLUSIONS
Ensuring diversity in the population of an evolutionary al-
gorithm is important to prevent the algorithm from getting
stuck in the optimization process. For the first time the
use of simple diversity mechanisms used in selection proce-
dures have been analyzed with respect to their influence on
the runtime behavior. The strategies considered to ensure
diversity are really simple ones and differ from each other
by either diversifying with respect to the decision space or
objective space. By investigating two plateau functions, we
have shown that this may make the difference between a
polynomial and exponential optimization time.

There are a lot of open problems related to the topic inves-
tigated in this paper. In particular, other more complicated
diversity mechanisms should be analyzed where the decision
whether an individual is included into the population is not
strict but has a probability that depends on the individual
itself and its relation to other individuals in the population.
Another interesting task is to investigate the use of diversi-
fying methods for combinatorial optimization problems. Up
to now most of the analyses on such problems consider the
(1+1) EA, but there are no analyses related to the use of
diversity for such problems.
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