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ABSTRACT
Recently Ant Colony Optimization (ACO) algorithms have
been proven to be efficient in uncertain environments, such
as noisy or dynamically changing fitness functions. Most
of these analyses focus on combinatorial problems, such as
path finding.

We analyze an ACO algorithm in a setting where we try
to optimize the simple OneMax test function, but with ad-
ditive posterior noise sampled from a Gaussian distribu-
tion. Without noise the classical (µ + 1)-EA outperforms
any ACO algorithm, with smaller µ being better; however,
with large noise, the (µ + 1)-EA fails, even for high val-
ues of µ (which are known to help against small noise). In
this paper we show that ACO is able to deal with arbitrar-
ily large noise in a graceful manner, that is, as long as the
evaporation factor ρ is small enough dependent on the pa-
rameter σ2 of the noise and the dimension n of the search
space (ρ = o(1/(n(n+σ logn)2 logn))), optimization will be
successful.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
Ant colony optimization; noisy fitness; theory; run time
analysis

1. INTRODUCTION
Ant colony optimization (ACO) is a class of randomized

general-purpose optimization algorithms inspired by the for-
aging behavior of ant colonies. ACO has been successfully
applied as a heuristic technique for solving combinatorial
optimization problems.

In real-world optimization problems, there is sometimes
a large degree of uncertainty present due to the complexity
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of candidate solution generation, noisy measurement pro-
cesses, and rapidly changing problem environments. Em-
pirically, ACO seems particularly well-suited to uncertain
problems due to its dynamic and distributed nature, and in
some cases it can outperform classical state-of-the-art ap-
proaches on dynamic network routing problems [3]. We will
focus on a version of the Max-Min Ant System (MMAS,
[15]) applied to pseudo-Boolean optimization (i.e. optimiza-
tion where solutions are coded as bit strings).

Jin and Branke [10] survey a number of sources of un-
certainty that randomized search heuristics must often deal
with in practice, (1) noisy objective functions, (2) dynam-
ically changing problems, (3) approximation errors in the
objective function, and (4) a requirement that an optimal
solution must be robust to changes in design variables and
environmental parameters that occur after optimization is
complete. Arguably, the two most important sources of un-
certainty are (1) and (2), namely, stochastic problems and
dynamic problems (see also [1] for a recent survey). In
stochastic problems, the objective function value of a search
point follows a random distribution, and that distribution
does not change over time. In dynamic problems, the eval-
uation of the fitness is deterministic but changes over time.

In order to address these practical issues, the theoretical
analyses of randomized search heuristics under uncertainty
has recently gained momentum. For example, a number of
recent papers rigorously analyzed the performance of evo-
lutionary algorithms in stochastic environments [2, 9]. For
ant colony optimization, a series of papers considered the
performance of ACO on single destination shortest paths
(SDSP) problems with stochastic weights. This work was
initiated by Sudholt and Thyssen [16] and later followed
up by Doerr, Hota, and Kötzing [4], who showed that by
augmenting the ant system with a re-evaluation strategy on
the best-so-far solution, many of the difficulties with noise
discovered in [16] could be overcome. Feldmann and Kötz-
ing [7] recently showed that an ant system that uses a fitness-
proportional update rule (called MMAS-fp) can efficiently
optimize SDSP on graphs with stochastic weights. MMAS-
fp is closer to systems that are used by practitioners [15]
and is the ant system variant that we analyze in the current
paper.

For the optimization of functions over bit strings, analy-
ses of ACO suggest that it often performs worse than evo-
lutionary algorithms and simple hill-climbers in a noise-free
setting [13]. On the other hand, ACO can outperform evo-
lutionary algorithms on dynamic problems [12, 14]. So far,
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Figure 1: Construction graph for pseudo-Boolean optimization with n = 5 bits.

the question of how robust ACO is to noisy evaluation on
pseudo-Boolean optimization remains unanswered.

The goal of this paper is to observe the robustness of ACO
to noise on a simple objective function. In particular, we are
interested in the scalability of the run time of the algorithm
as a function of noise intensity (measured by variance). We
study the algorithm on the well-known OneMax function,
the most common starting point for rigorous analyses of
randomized search heuristics. In Section 3 we show that
robustness can be achieved for additive posterior noise from
a Gaussian distribution: for all variances σ2, there is a pa-
rameter setting such that MMAS-fp on OneMax +N (0, σ2)
is successful in time σ2 · poly(n); thus, we say that MMAS-
fp handles Gaussian noise gracefully. Such a graceful scaling
cannot be achieved by the (µ+ 1) EA, as shown in [8].

A similar statement holds for an ACO algorithm which
does not impose nontrivial Max-Min bounds on the phero-
mone values. This is achieved by not relying on the standard
technique of pheromone freezing employed by many early
works on the mathematical analysis of ACO algorithms, but
instead we show that all pheromones drift in the right direc-
tion (in particular, they will never be close to any pheromone
bound on the wrong side of the spectrum); see Corollary 6.

In Section 4 we extend our findings to other noise models
and show that we achieve the same robustness also in the
presence of other additive noise distributions (which fulfill
a certain restriction) as well as for the model of prior noise
from [6]. We discuss our findings and conclude the paper in
Section 5.

2. PRELIMINARIES
We consider optimizing pseudo-Boolean functions, i.e.,

functions of type f : {0, 1}n → R. In the following, n al-
ways denotes the dimension of the solution space {0, 1}n.
For any bit string x ∈ {0, 1}n, f(x) is called the fitness of
x, and we are interested in finding a solution x∗ such that
f(x∗) is maximal. The fitness function we are going to inves-
tigate is OneMax. This function simply returns the amount
of ones in a bit string, i.e., OneMax(x) = ‖x‖1. So the
unique optimum is the all ones string.

We consider, however, a noisy version of OneMax. The
noise perturbing the actual function value will be a Gaus-
sian distributed random variable D with mean 0 and vari-
ance σ2 that is added to the OneMax value. More formally,
OMσ2(x) := OneMax(x) +D with D ∼ N (0, σ2).

2.1 Algorithms
Our main algorithm of interest is MMAS-fp (Min-Max

Ant System), an ACO algorithm with a so-called fitness-
proportional update rule.

To find an optimal solution, MMAS-fp keeps a vector
τ ∈ [`, u]n, the components of which are called pheromones,

whereas 0 ≤ ` < 1/2 and 1 ≥ u > 1/2 are the lower and

upper bound for each pheromone, respectively. τ (t) with
t ∈ N denotes the pheromone vector in the t-th iteration of
the algorithm.

MMAS-fp starts off with every pheromone τ
(0)
i = 1/2 and

iteratively generates solutions x(t) ∈ {0, 1}n until x(t) is op-

timal. These solutions x(t) are sampled accordingly to τ (t) in

the manner ∀i : Pr(x
(t)
i = 0) = τ

(t)
i ∧Pr(x

(t)
i = 1) = 1−τ (t)i .

This is equivalent to a definition of using a simulated ant
walk on the construction graph as shown in Figure 1. After-
ward, the pheromone vector for the next iteration is updated
accordingly to the fitness of the sampled solution, i.e.,

τ
(t+1)
i :=

min
{
τ
(t)
i

(
1− ρ f(x

(t))
n

)
+ ρ f(x

(t))
n

, u
}

: x
(t)
i = 0,

max
{
τ
(t)
i

(
1− ρ f(x

(t))
n

)
, `
}

: x
(t)
i = 1,

for all i ∈ {1, . . . , n}.
The parameter ρ ∈ [0, 1] is the so-called evaporation factor

and a parameter of the algorithm. Intuitively, it regulates
the impact of the fitness of a sampled solution on the corre-
sponding pheromone update.

Note that MMAS-fp does not keep a best-so-far solution
but, instead, always updates its pheromone vector regard-
less of the quality of the solution sampled. The update is
proportional to the fitness of each sampled solution, hence
the suffix fp. If an updated pheromone is not capped due to
the pheromone bounds, we speak of a normal update.

In the following, we will denote a pheromone vector τ (t)

simply as τ if we are not interested in t. Likewise, x denotes
the solution sampled by τ , and τ ′ denotes the pheromone
vector after the update according to x.

The other algorithm we consider is ACO-fp. It is a special
case of MMAS-fp where ` = 0 and u = 1, i.e., only trivial
pheromone bounds are enforced.

2.2 Tools Used
The proofs in this paper rely heavily on drift theory, a tool

that allows to give upper and lower bounds on the hitting
times of randomly moving processes if there is a bias in the
process’s motion, the so-called drift.

We state two drift theorems that we are going to use in
our proofs.

Theorem 1 (Multiplicative Drift [5]). Let (Xt)t∈N be non-
negative random variables over R, each with finite expecta-
tion, and let T = min{t | Xt < 1}.

Suppose there exists an ε > 0 such that, for all t,

E(Xt −Xt+1 | Xt, t < T ) ≥ εXt .

Then

E(T | X0) ≤ 1 + lnX0

ε
.
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Algorithm 1: MMAS-fp with ρ ∈ (0, 1], for optimizing
f : {0, 1}n → R

1 for i ∈ {1, . . . , n} do
2 τi ← 1

2
;

3 while optimum not found do
4 for i ∈ {1, . . . , n} do
5 xi ← 0 with probability τi, xi ← 1 with

probability 1− τi;
6 for i ∈ {1, . . . , n} do
7 if xi = 0 then

8 τi ← min
{
τi
(

1− ρ f(x)
n

)
+ ρ f(x)

n
, u
}

;

9 else

10 τi ← max
{
τi
(

1− ρ f(x)
n

)
, `
}

;

Theorem 2 (Negative Drift [11]). Let (Xt)t∈N be random
variables over R, each with finite expectation, let d > 0,
and let T = min{t : Xt ≥ d | X0 ≤ 0}. Suppose there are
s, 0 < s < d and ε < 0 such that, for all t,

1. E(Xt+1 −Xt | Xt, t < T ) ≤ ε , and

2. |Xt −Xt+1| < s .

Then, for all t ∈ N,

Pr(T ≤ t) ≤ t exp

(
− d|ε|

16s2

)
.

The following proposition gives tail bounds for our noise
D ∼ N (0, σ2) by using standard estimates of the comple-
mentary error function [17].

Proposition 3. Let D be a zero-mean Gaussian random
variable with variance σ2. For all t > 0, we have

Pr (D < −t) =
1

2
erfc

(
t

σ
√

2

)
≤ 1

2
exp

(
−t2

2σ2

)
.

3. GAUSSIAN NOISE
In this section we are going to bound the run time of

MMAS-fp for optimizing OMσ2 , which will be denoted as f
in the proofs.

First off, we bound the noise and thus the difference of
two consecutive pheromones with high probability.

Lemma 4. Consider MMAS-fp optimizing OMσ2 . Then we
can bound |τi−τ ′i | for any pheromone τi with high probability
as follows:

|τi − τ ′i | ≤
ρ

n
(n+O(σ logn)) .

Proof. We make a case distinction for τ ′i and assume ` = 0
and u = 1 since capping a pheromone would only make the
difference smaller. Because of that, it does not even matter
if a pheromone would exceed the bounds [0, 1].

1. τ ′i = τi
(

1− ρ f(x)
n

)
:

|τi − τ ′i | =
∣∣∣∣τi − τi(1− ρf(x)

n

)∣∣∣∣
=
ρ

n
|
≤1︷︸︸︷
τi f(x)| ≤ ρ

n
|f(x)| .

2. τ ′i = τi
(

1− ρ f(x)
n

)
+ ρ f(x)

n
:

|τi − τ ′i | =
∣∣∣∣τi − (τi(1− ρf(x)

n

)
+ ρ

f(x)

n

)∣∣∣∣
=
ρ

n
|(
≥−1︷ ︸︸ ︷
τi − 1)f(x)| ≤ ρ

n
|f(x)| .

We bound |f(x)| =
∣∣‖x‖1 +D

∣∣. By Proposition 3 we get:

Pr(D > t) = Pr(D < −t) ≤ 1

2
exp

(
− t2

2σ2

)
.

For t = ω(σ logn) this probability is superpolynomially
small. So we can bound |f(x)| ≤ n+O(σ logn) and get

|τi − τ ′i | ≤
ρ

n
(n+O(σ logn)) .

In the following, let s = ρ(n + O(σ logn))/n, i.e., the
greatest difference between two consecutive pheromones, as
stated by Lemma 4. We further assume the restrictions `+
s < 1/2 < u− s for the pheromone bounds.

Also, we always condition on the event that the noise does
not exceed the bounds mentioned in the proof of Lemma 4,
which holds with high probability in any polynomial number
of steps of MMAS-fp. Other runs are discarded as fails.

Lemma 5. Consider MMAS-fp optimizing OMσ2 . Then,
for all pheromone vectors, the drift of each pheromone τi =
b ∈ [`+ s, u− s] toward 1 is −b(1− b)ρ/n.

Proof. We condition on an arbitrary pheromone vector τ
where τi = b ∈ [`+s, u−s], thus, the pheromone is updated
normally.

Let A denote the event that xi was sampled as 1, and con-
sider the expected value of τ ′i . Regardless of A, τi decreases.
Only in the case of A it is additionally increased.

E(τ ′i) = E

(
τi

(
1− ρf(x)

n

))
+ E

(
ρ
f(x)

n

∣∣∣∣ A)
=τi︷ ︸︸ ︷

Pr(A)

= b+ b
ρ

n

(
E
(
f(x) | A

)
− E

(
f(x)

))
.

We get the negative drift:

E(τ ′i − τi) = b+ b
ρ

n

(
E
(
f(x) | A

)
− E

(
f(x)

))
− b

= b
ρ

n

(
E(n− ‖x‖0 +D | A)− E(n− ‖x‖0 +D)

)
= b

ρ

n

(
n−

(
1 +

∑
j
j 6=i

τj

)
−
(
n−

(
b+

∑
j
j 6=i

τj
)))

= b(b− 1)
ρ

n

= −b(1− b) ρ
n
.
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Corollary 6. Consider MMAS-fp optimizing OMσ2 , and
let b ∈ [`, u], with u ≥ d and d > 1/2 + s being a constant.
If ρ = o

(
nb(1− b)/

(
(n+ σ logn)2 logn

))
, then each phero-

mone reaches values of at least d in polynomial time with
only superpolynomially low probability.

Proof. First, note that the drift of Lemma 5 is an upper
bound on the drift for pheromones in (u − s, u], in which
case the additive term turns out to be smaller than it is in
a normal update case.

We can therefore apply Theorem 2 by using the bound
given in Lemma 4 and the negative drift of Lemma 5.

Pr(T ≤ t) ≤ t exp

(
−

( >0︷ ︸︸ ︷
d− 1

2

)
b(1− b) ρ

n

16 ρ
2

n2 (n+O(σ logn))2

)

= t exp

(
−

(d− 1
2
)nb(1− b)

16ρ(n+O(σ logn))2

)
.

This means that the probability for a single phero-
mone starting from 1/2 to reach d in any polynomial
amount of steps is superpolynomially small for ρ =
o
(
nb(1− b)/((n+ σ logn)2 logn)

)
, as given, if that phero-

mone is in [`+ s, u].
Now consider a pheromone to be in [`, ` + s). Even the

best update could not get that pheromone above 1/2 because
s = ρ(n +O(σ logn))/n = o(1) with ρ as given. So we can
apply the above argumentation.

Note that s = o(1) < d− 1/2, as this is what we need to
apply Theorem 2.

Using a union bound argument, we can now say that none
of the polynomially many pheromones reaches d as in Corol-
lary 6 in polynomially many steps with high probability.

Lemma 7. Consider MMAS-fp optimizing OMσ2 with ρ =
o
(
nb(1− b)/

(
(n+ σ logn)2 logn

))
, ` = o(1/n2), and u >

1/2 + s. Consider further that k ∈ [0, n] ∩ N pheromones
dropped below 1/n (≥ `+ s). If at least one pheromone is at
least 1/n, then the drift of the sum of all pheromones τtotal
is Ω(τtotalρ/n

2).

Proof. In this proof we pessimistically assume pheromones
below 1/n driftwise (and only driftwise!) as having reached
`. Note that, thus, there cannot be any positive drift if k = n
since none of the pheromones could drop any lower.

We split up the overall drift of the sum of all pheromones
into the (positive) drift (toward 0) of the n− k pheromones
that are at least 1/n and into the (negative) drift of the k
pheromones that are below 1/n.

Let Y denote the index set of those former n − k
pheromones, Z the index set of the latter k, and let K be the
event that exactly k pheromones are below 1/n. The string
xy denotes the bit string consisting only of those elements
of x whose index is in Y , and xz is defined analogously with
respect to Z. The sum of pheromones with index in Y is
denoted by τytot and the sum of those with index in Z by
τztot.

First, we have a look at the n − k pheromones. Each
of these pheromones drops and all of them which got a zero
sampled for their respective bit position get at most a normal

update (in the case of capped pheromones the drift would
be even greater).

E(τytot − τ
y
tot
′ |

:=B︷ ︸︸ ︷
K, τytot = b)

≥ E

(
τytot −

(
τytot

(
1− ρf(x)

n

)
+ ‖xy‖0ρ

f(x)

n

) ∣∣∣∣ B)

=
ρ

n
E (τytotf(x)− ‖xy‖0f(x) | B)

=
ρ

n

(
bE(f(x) | B)− E (‖xy‖0f(x) | B)

)
.

We give bounds for the expected values needed.

E(f(x) | B) = E(n− ‖x‖0 +D | B) = n− (b+ k`) ,

and

E(‖xy‖0f(x) | B) = E(‖xy‖0(n− ‖x‖0 +D) | B)

= nE(‖xy‖0 | B)− E(‖xy‖0‖x‖0 | B)

= nb− E(‖xy‖0‖x‖0 | B) .

Let a be a variable ranging over Y ; j ranges over all phe-
romone indices. Let [·] denote the Iverson bracket (indicator
function). We make use of Corollary 6.

E(‖xy‖0‖x‖0 | B) = E

(∑
a

∑
j

[xa = 0][xj = 0]

∣∣∣∣∣ B
)

=
∑
a

∑
j

E ([xa = 0][xj = 0] | B)

=
∑
a

∑
j
j 6=a

E ([xa = 0] | B) E ([xj = 0] | B) +

∑
a

E ([xa = 0][xa = 0] | B)

=
∑
a

∑
j
j 6=a

τaτj +
∑
a

τa

=
∑
a

τa
∑
j

τj −
∑
a

τ2a +
∑
a

τa

=
∑
a

τa
∑
j

τj +
∑
a

τa(1−
≤d︷︸︸︷
τa )

≥ b(b+ k`) + (1− d)b .

Now we can calculate the desired drift.

E(τytot − τ
y
tot
′ | B)

≥ ρ

n

(
b (n− (b+ k`))− (nb− b(b+ k`)− (1− d)b)

)
=
ρ

n
(1− d)b .

For the negative drift, we have to look at τztot and τztot
′.

All of the k pheromones where the corresponding bit po-
sition was sampled as 1 cannot drop any lower due to our
assumption. The remaining of the k pheromones get a nor-
mal update in the best case:
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τztot
′ ≤ ‖xz‖1`+ ‖xz‖0

(
`

(
1− ρf(x)

n

)
+ ρ

f(x)

n

)

=

=k`︷ ︸︸ ︷
‖xz‖1`+ ‖xz‖0`−‖xz‖0`ρ

f(x)

n
+ ‖xz‖0ρ

f(x)

n

= k`+
ρ

n
(1− `)‖xz‖0f(x) .

Thus we get:

E(τztot − τztot′ | B) ≥ E
(
k`− k`− ρ

n
(1− `)‖xz‖0f(x)

∣∣∣ B)
= − ρ

n
(1− `)E (‖xz‖0f(x) | B) .

The remaining estimations follow analogously to the ones
beforehand:

E(‖xz‖0f(x) | B) = E (‖xz‖0(n− ‖x‖0 +D) | B)

= nE(‖xz‖0 | B)− E(‖xz‖0‖x‖0 | B)

= nk`− E(‖xz‖0‖x‖0 | B) .

Note that a now refers to indices in Z.

E(‖xz‖0‖x‖0 | B) =
∑
a

τa
∑
j

τj +
∑
a

τa(1− τa)

≥ k`(b+ k`) + k` (1− d)

= k` (b+ k`+ (1− d)) .

So we get the negative drift:

E(τztot − τztot′ | B) ≥ − ρ
n

(1− `)k` (n− b− k`− (1− d)) .

Now we can look at the general drift:

E(τtotal − τ ′total | B)

≥ ρ

n
(1− d)b− ρ

n
(1− `)k` (n− b− k`− (1− d))

=
ρ

n

(
(1− d)b− (1− `)

(
nk`− bk`− k2`2 − (1− d)k`

))
,

which we want to be positive.
Recall that we only consider k ∈ [0, n− 1]∩N. We bound

b by (n− k)/n since all these pheromones are at least 1/n.
Thus, we end up having:

(1− d)(n− k)/n− (1− `)
(
nk`− (n− k)k`/n− k2`2 −

(1− d)k`

)
.

On inspection one sees that the highest order terms in the
minuend are n/n = 1 and −k/n. Since we want to have a
positive drift, 1 > k/n must hold. Because we are interested
in k ∈ [0, n− 1] ∩N, this does hold.

The highest order term in the subtrahend is −nk`. It
is absolutely largest for k ∈ Θ(n), i.e, n2`. To avoid any
conflict with 1, we need 1 ∈ ω(n2`), i.e.,

lim
n→∞

1

n2`
=∞ ,

which holds for ` = o(1/n2), as given. This results in the
drift being in Ω(bρ/n).

Since we want the drift to be expressed in terms of τtotal,
we need bρ/n ≥ ετtotal to hold for an ε > 0.

We can bound τtotal < b + k/n by pessimistically as-
suming all k pheromones below 1/n as being 1/n. So we
want bρ/n ≥ ε(b + k/n) to hold for all valid values of b.
This is equivalent to 1/ε ≥ (n + k/b)/ρ. To make k/b
as large as possible we bound b ≤ (n − k)/n, and we get
1/ε ≥ (n + nk/(n − k))/ρ, where k/(n − k) is maximal for
k = n − 1 (we do not consider k = n). This results in
ε = O(ρ/n2).

Overall, we finally get a drift of Ω(τtotalρ/n
2).

Theorem 8. Consider MMAS-fp optimizing OMσ2 with
ρ = o(1/(n(n + σ logn)2 logn)), ` = o(1/n2), and u >
1/2 + s. The algorithm then finds the optimum after
O(n2 log(n)/ρ) steps with high probability.

Proof. Let T denote the run time of the algorithm when the

drift is positive, i.e., T = min{t ∈ N | ∀i : τ (t)i < 1/n}.
According to Lemma 7, there is a positive drift of the

pheromone sum toward 0 of at least τtotalρ/n
2.

With this multiplicative drift we get an upper bound on
the expectation of T using Theorem 1:

E

(
T

∣∣∣∣ ∀i : τ (0)i =
1

2

)
= O

(
1 + log n

2
ρ
n2

)
= O

(
n2 logn

ρ

)
.

Now assume that all pheromones dropped below 1/n. The
probability to sample the optimum now is (1−1/n)n ≥ (1−
1/n)/e. Thus, the optimum will be sampled in expectation
in en/(n− 1) = O(1) many tries.

The overall expected run time is bounded above by
the following worst case scenario: the algorithm needs
O(n2 log(n)/ρ) steps until all pheromones drop below 1/n.
Then the algorithm does not sample the optimum and all
pheromones are set back to 1/2 (that does not actually hap-
pen but we are looking at a worst case). As mentioned be-
fore, in this scenario, the algorithm would need O(1) tries to
sample the optimum, once the pheromones are low enough.
Hence, the algorithm hast to be restarted O(1) times.

Overall, this results in an expected run time in
O(n2 log(n)/ρ) with high probability due to us conditioning
on the noise being bounded, as stated in Lemma 4.

Corollary 9. Consider ACO-fp optimizing OMσ2 . If ρ =
o(1/(n(n+σ logn)2 logn)), the algorithm finds the optimum
after O(n2 log(n)/ρ) steps with high probability.

Proof. Recall that the proof Lemma 4 is actually a proof
for ACO-fp as well. We can thus argue analogously as in
the proof of Theorem 8. The upper bound d is at most 1
because d ≤ u ≤ 1. The lower bound of ` = 0 for ACO-fp
satisfies ` = o(1/n2) as well.

4. OTHER NOISE MODELS
In this section we consider the optimization of OneMax

perturbed by other noise than additive posterior Gaussian
noise.

4.1 Posterior Noise
We start with a generalization of Corollary 9 by taking

non-Gaussian noise into account, i.e., we optimize OMD

with OMD(x) := ‖x‖1 +D and D being a random variable
(possibly not Gaussian).
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Corollary 10. Consider MMAS-fp optimizing OMD with
` = o(1/n2) and u > 1/2 + s, where D is a random vari-
able such that, for some t∗ > 0 and all polynomials p, the
following holds:

Pr(|D| > t∗) ≤ 1− o

(
1

p(n)

)
. (1)

If ρ = o(1/(n(n + t∗)2 logn)), then the algorithm finds the
optimum after O(n2 log(n)/ρ) steps with high probability.

Proof. The drifts of Lemmas 5 and 7 hold here as well since
the noise is additive and posterior and, thus, it cancels out
in expectation.

To be able to use Corollary 6, we need to bound |f(x)|
with high probability. Because of Equation (1) we can do
so, and it follows that any pheromone τi reaches values of
at least a constant d > 1/2 + s with superpolynomially low
probability for ρ = o(1/(n(n+ t∗)2 logn)).

We can now use an analogous argumentation as in Theo-
rem 8, proving the proposition.

Corollary 11. Consider ACO-fp optimizing OMD, where
D is a random variable such that, for some t∗ > 0 and all
polynomials p, the following holds:

Pr(|D| > t∗) ≤ 1− o

(
1

p(n)

)
.

If ρ = o(1/(n(n + t∗)2 logn)), then the algorithm finds the
optimum after O(n2 log(n)/ρ) steps with high probability.

Proof. We can use the same same proof as for Corollary 10
and argue as in the proof of Corollary 9 that we do not need
the special pheromone bounds.

4.2 Prior Noise
In this section we have a look at the noise model from [6],

where OMp(x) := OneMax(x̃), whereas x̃ = x with proba-
bility (1 − p), and x̃ = x′ with dH(x, x′) = 1 for each such
x′ with probability p/n. That means that with probability
p a single bit in x gets flipped uniformly at random.

Note that we can bound |τi − τ ′i | ≤ ρ in the same way as
we did in the proof of Lemma 4 since |f(x)| ≤ n. We again
assume that `+ ρ < 1/2 < u− ρ.

Lemma 12. Consider MMAS-fp optimizing OMp. Then,
for all pheromone vectors, the drift of each pheromone τi =
b ∈ [`+ ρ, u− ρ] toward 1 is −b(1− b)(1− 2p/n)ρ/n.

Proof. As the noise does not have any influence on the up-
date of the pheromones and we have a normal update, we get
the same basic equation for the desired drift as in Lemma 5.
Let A denote the event that xi was sampled as 1, and condi-
tion on any pheromone vector τ where τi = b ∈ [`+ρ, u−ρ].

E(τ ′i − τi) = b
ρ

n

(
E
(
f(x) | A

)
− E

(
f(x)

))
.

Let P denote the event that x̃ = x′ during the evaluation
of f , i.e., a bit flipped, and let j and k range from 1 to n.

For E
(
f(x) | A

)
we have

E
(
f(x) | A

)
= E

(
f(x) | A,P

)
(1− p) + E

(
f(x) | A,P

)
p

=

(
n−

(
1 +

∑
j
j 6=i

))
(1− p) +

(
n−

∑
k
k 6=i

1

n

(
1 + (1− τk) +

∑
j
j 6=k
j 6=i

τj

)
− 1

n

∑
j
j 6=i

τj

)
p .

And for E(f(x) | τi = b) we get

E(f(x)) = E
(
f(x) | P

)
(1− p) + E (f(x) | P ) p

=

(
n−

(
b+

∑
j
j 6=i

τj

))
(1− p) +

(
n−

∑
k
k 6=i

1

n

(
b+ (1− τk) +

∑
j
j 6=k
j 6=i

τj)

)
−

1

n

(
(1− b) +

∑
j
j 6=i

τj

))
p .

Thus we get

E
(
f(x) | A

)
− E(f(x))

= −(1− b)(1− p) +

(
n− 1

n
(b− 1)− 1

n
(b− 1)

)
p

= −(1− b)(1− p)− (1− b)n− 2

n
p

= −(1− b)
(

1− 2

n
p

)
.

Finally, we have a negative drift as desired:

E(τ ′i − τi) = −b(1− b)
(

1− 2

n
p

)
ρ

n
.

Corollary 13. Consider MMAS-fp optimizing OMp, and
let b ∈ [`, u], with u ≥ d and d > 1/2 + ρ being a constant.
If ρ = o

(
b(1− b)

(
1− 2

n
p
)
/(n logn)

)
, then each pheromone

reaches values of at least d in polynomial time with only
superpolynomially low probability.

Proof. The proof is basically the same as the one of Corol-
lary 6. Using again Theorem 2, for all t ≥ 0, the following
proposition holds for T as the hitting time of one pheromone
reaching a value of at least d:

Pr(T ≤ t) ≤ t exp

(
−
(
d− 1

2

)
b(1− b)

(
1− 2

n
p
)
ρ
n

16ρ2

)

= t exp

(
−
(
d− 1

2

)
b(1− b)

(
1− 2

n
p
)

16ρn

)
.

The probability for a single pheromone starting from 1/2
to reach d in any polynomial amount of steps is superpoly-
nomially small for ρ = o

(
b(1− b)

(
1− 2

n
p
)
/(n logn)

)
.

Again, a union bound argument gives us the guarantees
of Corollary 13 for all pheromones.
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Lemma 14. Consider MMAS-fp optimizing OMp with ρ =
o
(
b(1− b)

(
1− 2

n
p
)
/(n logn)

)
, ` = o(1/n2), and u > 1/2 +

ρ. Consider further that k ∈ [0, n] ∩N pheromones dropped
below 1/n (≥ l + ρ). If at least one pheromone is at least
1/n, then the drift of the sum of all pheromones τtotal is
Ω(τtotalρ/n

2).

Proof. We are going to use the same notation as in the proof
of Lemma 7. P shall, again, denote the event that the bit
flip occurred.

As mentioned before, the kind of noise has no impact on
the general form of the drifts. So for the n− k pheromones
we have

E(τytot − τ
y
tot
′ | B) ≥ ρ

n

(
bE(f(x) | B)− E (‖xy‖0f(x) | B)

)
.

The required expected values can now be calculated:

E(f(x) | B) = E(f(x) | B,P )(1− p) + E(f(x) | B,P )p

= (n− (b+ k`))(1− p) + (n− E(‖x‖0 | B,P )) p .

Furthermore, we get

E(‖x‖0 | B,P ) =
∑
i

1

n

(
(1− τi) +

∑
j
j 6=i

τj

)

=
1

n

∑
i

(1− τi + b+ k`− τi)

=
1

n

∑
i

(b+ k`+ 1)− 2

n

∑
i

τi

= b+ k`+ 1− 2

n
(b+ k`) .

This results in

E(f(x) | B) = (n− b− k`) +

p

(
−n+ b+ k`+ n− b− k`− 1 +

2

n
(b+ k`)

)
= n− b− k`+ p

(
2

n
(b+ k`)− 1

)
.

Now we get for E(‖xy‖0f(x) | B)

E(‖xy‖0f(x) | B) = nb− E(‖xy‖0‖x̃‖0 | B) ,

and by using Corollary 13

E(‖xy‖0‖x̃‖0 | B)

=
∑
a

∑
j
j 6=a

E ([xa = 0] | B) E ([x̃j = 0] | B) +

∑
a

E ([xa = 0] | B)

=
∑
a

∑
j
j 6=a

τa

(
τj(1− p) + τjp

n− 1

n
+ (1− τj)

p

n

)
+
∑
a

τa

=
∑
a

∑
j
j 6=a

τa

(
τj
n− 2p

n
+
p

n

)
+
∑
a

τa

=
n− 2p

n

∑
a

∑
j
j 6=a

τaτj +
p

n

∑
a

∑
j
j 6=a

τa +
∑
a

τa

=
n− 2p

n

∑
a

∑
j

τaτj −
n− 2p

n

∑
a

τ2a +

∑
a

τa +
p

n

∑
a

∑
j
j 6=a

τa

b≤d
≥ n− 2p

n
b(b+ k`) +

∑
a

τa

(
1− n− 2p

n
d

)
+ b

n− 1

n
p

=
n− 2p

n
b(b+ k`) + b

(
1− n− 2p

n
d

)
+ b

n− 1

n
p .

Thus we get

E(‖xy‖0f(x) | B)

≤ nb− n− 2p

n
b(b+ k`)− b

(
1− n− 2p

n
d

)
− bn− 1

n
p .

Now we can calculate the desired drift as follows.

E(τytot − τ
y
tot
′ | B)

≥ ρ

n

(
b

(
n− b− k`+ p

(
2

n
(b+ k`)− 1

))
− nb +

n− 2p

n
b(b+ k`) + b

(
1− n− 2p

n
d

)
+ b

n− 1

n
p

)
=
ρ

n

(
nb− b(b+ k`)− nb+ b(b+ k`) + b −

b
dn− 2dp+ p

n

)
≥ ρ

n
b (1− d) .

Regarding the negative drift we have

E(τztot − τztot′ | B) = − ρ
n

(1− `)E (‖xz‖0f(x) | B) .

We also get

E(‖xz‖0f(x) | B) = nk`− E(‖xz‖0‖x̃‖0 | B)

≤ nk`− n− 2p

n
k`(b+ k`) + k`

(
1− n− 2p

n
d

)
+

k`
n− 1

n
p

= k`

(
n− n− 2p

n
(b+ k`+ d) + 1 +

n− 1

n
p

)
.

Now we have the negative drift as follows

E(τztot − τztot′ | B)

≥ − ρ
n

(1− `)k`
(
n− n− 2p

n
(b+ k`+ d) + 1 +

n− 1

n
p

)
.

Taking all the parts together, we get the total drift

E(τtotal − τ ′total | B)

≥ ρ

n
b(1− d)− ρ

n
(1− `)k`

(
n− n− 2p

n
(b+ k`+ d) +

1 +
n− 1

n
p

)
=
ρ

n

(
b(1− d)− (1− `)k`

(
n− n− 2p

n
(b+ k`+ d) +

1 +
n− 1

n
p

))
,

which we want to be positive.

23



Again, we only consider k ∈ [0, n − 1] ∩ N, and we use
b ≥ (n− k)/n. We thus end up having

(n− k)(1− d)/n− (1− `)k`
(
n− n− 2p

n
(b+ k`+ d)

+ 1 +
n− 1

n
p

)
.

The highest order terms are the same as in the proof of
Lemma 7, and the drift is again Ω(bρ/n). So we can conclude
analogously.

Theorem 15. Consider MMAS-fp with ρ = o(1/(n3 logn)),
` = o(1/n2), and u > 1/2 + ρ or ACO-fp optimizing OMp.
Both algorithms then find the optimum after O(n2 log(n)/ρ)
steps with high probability.

Proof. The argumentation is exactly as in the proof of The-
orem 8 or Corollary 9, respectively, but now we use Lem-
mas 12, 14, and Corollary 13. The value of ρ has to be
changed accordingly using Corollary 13.

5. DISCUSSION AND SUMMARY
In this work we saw that two simple ACO algorithms on

OneMax scale gracefully with noise for Gaussian distribu-
tions, i.e., the run time depends only linearly on the vari-
ance of the noise. We get similar results for many other
noise models and for different ACO algorithms, suggesting
that ACO algorithms are generally good for dealing with
noise (at least in settings where the underlying fitness func-
tion is simple enough, as in the case of OneMax). Many of
these settings are not solvable by simple hill climbers [6].

The analysis of meta-heuristics such as ACO on noisy fit-
ness functions is of particular interest because this is one
particular area where very few tailored approaches exist for
designing efficient algorithms.

One drawback of the ACO algorithms analyzed in this
paper is that the variance of the noise must be known in
order to correctly set the evaporation factor ρ. This problem
can be bypassed as follows: guess a variance of 1 and run
the algorithm until it has a constant success probability if
the guess was correct. If the optimum was not found so far,
double the guess and repeat. This standard doubling scheme
leads to a noise-oblivious ACO algorithm with an expected
run time of at most a constant factor away from the ACO
which knows the noise in advance.
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