
Rounding of Sequences and Matrices,

with Applications

Benjamin Doerr, Tobias Friedrich, Christian Klein, and Ralf Osbild

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We show that any real matrix can be rounded to an inte-
ger matrix in such a way that the rounding errors of all row sums are
less than one, and the rounding errors of all column sums as well as all
sums of consecutive row entries are less than two. Such roundings can be
computed in linear time. This extends and improves previous results on
rounding sequences and matrices in several directions. It has particular
applications in just-in-time scheduling, where balanced schedules on ma-
chines with negligible switch over costs are sought after. Here we extend
existing results to multiple machines and non-constant production rates.

1 Introduction

In this paper, we analyze a rounding problem with connections to different areas
in discrete mathematics, computer science, and operations research. Roughly
speaking, we show that any real matrix can be rounded to an integer one in such
a way that the rounding errors of all row and column sums are less than one,
and the rounding errors of all sums of consecutive row entries are less than two.

Let m, n be positive integers. For some set S, we write Sm×n to denote the
set of m × n matrices with entries in S. For real numbers a, b let [a..b] := {z ∈
Z|a ≤ z ≤ b}.
Theorem 1. Let X ∈ R

m×n having integral column sums. Then there is a
Y ∈ Z

m×n such that

∀j ∈ [1..n] :
m∑

i=1

(xij − yij) = 0,

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣

b∑

j=1

(xij − yij)
∣∣∣ < 1.

Such a matrix Y can be computed in time O(mn).

It is easy to see that the second condition implies that for all a, b ∈ [1..n] and
i ∈ [1..m] we have |∑b

j=a(xij − yij)| < 2. Also, the theorem can easily be
extended to matrices having arbitrary column sums. See Section 3 for the details.

Theorem 1 extends and improves a number of results from different
applications.

T. Erlebach and G. Persiano (Eds.): WAOA 2005, LNCS 3879, pp. 96–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Rounding of Sequences and Matrices, with Applications 97

1.1 Rounding of Sequences

One of the most basic rounding results states that any sequence x1, . . . , xn of
numbers can be rounded to an integer one y1, . . . , yn in such a way that the
rounding errors |∑b

j=a(xj−yj)| are less than one for all a, b ∈ [1..n]. Such round-
ings can be computed efficiently in linear time by a one-pass algorithm resembling
Kadane’s scanning algorithm (described in Bentley’s Programming Pearls [4]).
Extensions in different directions have been obtained in [9,10,13,16,18]. This
rounding problem has found a number of applications, among others in image
processing [1,17].

Theorem 1 yields a multi-sequence analogue of this result. Assume that we
have m sequences x

(i)
1 , . . . , x

(i)
n , i ∈ [1..m], such that for all k ∈ [1..n], the k-th

terms sum up to at most one (that is,
∑m

i=1 x
(i)
k ≤ 1). Then we may simul-

taneously round the sequences such that (i) all errors |∑b
j=a(x(i)

j − y
(i)
j)| are

less than two and (ii) no two sequences have a 1 in the same position, that is,
y
(i1)
j = y

(i2)
j = 1 implies i1 = i2.

While we solve this problem in linear time, one has to be more careful than
in the one-dimensional case. A simple greedy algorithm may produce a rounding
error of Ω(log m) as shown in Section 5.1.

1.2 Linear Discrepancy in More Than Two Colors

Let k ∈ N≥2. Denote by Ek the set of the k unit vectors in R
k and by Ek the

convex hull of Ek. In other words, Ek = {v ∈ [0, 1]k | ‖v‖1 = 1}. Let H = (X, E)
be a hypergraph. The linear discrepancy problem of H in k colors is to find for
given mixed coloring p : X → Ek a pure coloring q : X → Ek such that

lindisc(H, p, q) := max
E∈E

∥∥∥∥
∑

x∈E

(p(x)− q(x))
∥∥∥∥
∞

is small. The linear discrepancy of H in k colors is lindisc(H, k) := maxp minq

lindisc(H, p, q). This notion introduced in [11] extends the classical linear dis-
crepancy notion (see e.g. Beck and Sós [3]), which refers to two colors only.

Let Hn be the hypergraph of intervals in [n], that is, Hn = ([n], {[a..b] | a, b ∈
[n]}. Then Theorem 2, a slight variant of Theorem 1, shows lindisc(Hn, k) < 2
for all n and k. Theorem 4 shows that for all k ≥ 3 and all n, lindisc(Hn, k) ≥
1.5 − 6n−1/2. The lower bound shows that the bound lindisc(Hn, k) < 1 only
holds for k = 2. Note that Hn is a unimodular hypergraph, and that we have
lindisc(H, 2) < 1 for all unimodular hypergraphs.

1.3 Baranyai’s Rounding Lemma and Applications in Statistics

Baranyai [2] used a similar rounding result to obtain his famous results on color-
ing and partitioning complete uniform hypergraphs. He showed that any matrix
can be rounded in a way that the errors in all rows, all columns and the whole
matrix are less than one. He used a formulation as flow problem to prove this
statement.

98 B. Doerr et al.

Independently, this result was obtained by Causey, Cox and Ernst [6]. In
statistics, there are two applications for such rounding results [8]. Note first
that instead of rounding to integers, our results also applies to rounding to
multiples of any other base (e.g., whole multiples of one percent). This can be
used in statistic to improve the readability of data tables. A second reason to
apply such rounding procedures is confidentiality. Frequency counts that directly
or indirectly disclose small counts may permit the identification of individual
respondents. In this case, rounding to multiples of e.g. 10 can prevent such risks.
However, in both applications one would like to have that rounding errors in
columns and rows are small. This allows to use the rounded matrix to obtain
information on the row and column totals.

Our result allows to retrieve further reliable information from the rounded
matrix, namely also on the sums of consecutive elements in rows. Such queries
make sense if there is a linear ordering on statistical attributes. Here is an ex-
ample. Let xij be the number of people in country i that are j years old. Say
Y is such that 1

1000Y is a rounding of 1
1000X as in Theorem 1. Now

∑40
j=20 yij

is the number of people in country i that are between 20 to 40 years old, apart
from an error of less than 2000. Note that such guarantees are not provided by
the results of Baranyai and Causey, Cox and Ernst.

Also, our result is algorithmically highly efficient. Both Baranyai, who was not
interested in algorithmic issues, and Causey, Cox and Ernst used a reduction of
the rounding problem to a flow or transportation problem. Though such prob-
lems can be solved relatively efficiently, our linear time solution clearly beats
their runtimes.

1.4 Flexible Transfer Line Scheduling

Surprisingly, our matrix rounding problem remains non-trivial if all columns are
equal. This problem occurs as a scheduling problem. In the flexible transfer line
scheduling problem we try to produce m different goods on a single machine in
a balanced manner. We know the demands di ∈ N, i ∈ [1..m], for each good in
advance. We assume that our machine (typically a mixed-model assembly line)
can produce any good in one unit of time. Furthermore, there are no switch-over
costs, that is, we may change from one product to another at no cost.

Our goal is to design a production schedule for n =
∑m

i=1 di time steps such
that exactly di units of product i are produced. Moreover, at any time and
for any product we want our production rate to be close to the average rate
ri = di/n: After j time steps, we hope to have produced jri units of product i.
Such production lines are a central part of many just-in-time systems, see e.g.
Monden’s work [14,15] on Toyota’s production system.

Denote by pij the number of units of product i produced up to time step j.
In the maximum deviation just-in-time scheduling problem (MDJIT), our aim
is to keep the maximum deviation of these production numbers from the aimed
at values jri small. In other words, we are looking for a schedule minimizing
max{|pij − jri| | i ∈ [1..m], j ∈ [1..n]}.

Rounding of Sequences and Matrices, with Applications 99

For this problem, Steiner and Yeomans [19] as well as Brauner and Crama [5]
give a number of interesting results. In particular, they show that the MDJIT
can be solved with maximum error less than one. Via Theorem 1, we extend this
result to significantly more general settings. (i) We allow non-constant produc-
tion rates. Instead of only prescribing that the total production of di units of
product i ideally should be obtained by producing ri units in each time step, we
allow arbitrary aimed at production rates rij for each product i and time step
j. Of course,

∑m
i=1 rij should be one for each time step since we assumed that

we may produce a single item each time. This generalized setting makes sense if
we know or expect changing demands over a period of time.

(ii) We also allow the use of more than one machine. If we have k machines, we
may simply use larger rates satisfying

∑m
i=1 rij = k. In fact, we are quite flexible

in this respect. We may use a different number of machines each time step, that
is, have

∑m
i=1 rij = kj with different kj . We may also have non-integral kj and

in this case use between �kj� − 1 and 	kj
 machines.

1.5 Lower Bounds

We also present a non-trivial lower bound for the error in arbitrary intervals.
Earlier works only regarded errors in initial intervals [1..t]. From the view-point
of balanced schedules approximating average expected demands, it also makes
sense to investigate errors in arbitrary intervals. For upper bounds, the simple
triangle inequality argument of Lemma 5 extends any upper bound for initial
intervals to twice this bound for arbitrary intervals. For lower bounds, things
are more complicated. In particular, the example of Brauner and Crama [5]
showing a lower bound of 1− 1/m for initial intervals yields no better bound for
arbitrary intervals. We present a three product instance (in the simple model
with constant rates and one machine) such that any schedule produces an error
of at least 1.5 − ε. Note that this also yields an error of 0.75 − ε for initial
intervals, that cannot be derived from existing works.

2 The Algorithm

In this section, we present an algorithm solving the matrix rounding problem
of Theorem 1. For a region R ⊆ [1..m] × [1..n], the rounding error in R is
|∑(i,j)∈R(xij − yij)|. Our aim is to achieve low rounding errors in all columns
and in all intervals of rows. Note that by subtracting integer part, we may always
assume that X ∈ [0, 1)m×n.

We denote by Xi and Xj the i-th row and j-th column of X , respectively.
We define the partial sums sij :=

∑j
�=1 xi� for all i ∈ [1..m] and j ∈ [1..n].

2.1 Basic Algorithm

Here we consider the restricted problem with uniform column sums ‖Xj‖1 = 1
for all j ∈ [1..n]. Note that in this case each column of the rounded matrix Y

100 B. Doerr et al.

contains just a single 1. The solution to this special problem is later on called
basic algorithm.

First we give a motivation for the solution. By Lemma 5, it suffices to keep
the errors

∣∣∣∣
b∑

j=1

(xij − yij)
∣∣∣∣, ∀i ∈ [1..m], ∀b ∈ [1..n], (1)

small in all initial intervals. For the moment, consider a single row i ∈ [1..m].
The idea is to place 1s into Yi between the row indices where the partial sums
of row Xi exceed the next integral values at that time. Formally, we require to
place the k-th 1 in row i onto position yij , where j is some column index in
the range Ik

i := [ak
i ..bk

i] with limits ak
i := min {j ∈ [1..n] | k − 1 < sij} and

bk
i := max {j ∈ [1..n] | sij < k ∨ (sij = k ∧ xij �= 0)}. We call Ik

i the k-th index
interval of row i. One particularity of this definition is, that no 1 is placed onto a
0 (say xij = 0), if the row sum sij is integral. This way, all errors in Equation (1)
are less than 1.

The algorithm works as follows. The columns of Y are computed successively,
Y j at time j ∈ [1..n], that is, we have to place a single 1 into Y j . To select an
appropriate position in column Y j, we regard the set Cj of all index intervals
that contain j and whose corresponding entries in Y are still zeros, i.e., Ik

i ∈ Cj ,
if and only if j ∈ Ik

i and yih = 0 for all h ∈ Ik
i , h < j. Now, Cj contains implicitly

all the positions where the 1 could be placed. From those we choose the position
� that belongs to the earliest ending interval [a�..b�] of Cj . (In case of a tie we
choose the uppermost row.) Then we set column Y j to the �-th canonical unit
column vector, i.e., y�j = 1. Then we proceed with Y j+1 in the same way.

The index intervals Ik
i can be computed as follows. The initial step of the

algorithm is to determine the limits a1
i and b1

i of the intervals I1
i for all rows Xi,

i ∈ [1..m]. For that purpose, each partial row sum is computed up to the first
entry where the sum is no longer smaller than 1 or until we reach the end of
the row. (The latter case is indicated by any index larger than n.) The values
ai := min (I1

i), bi := max (I1
i) and si := si,bi are stored in three arrays of length

m each. With this information we compute the first column Y 1. Each time after
we have placed a 1 in Y, an update step is necessary, because then the demand
of a current index interval for a 1 is just satisfied. Hence we replace this interval
by its succeeding interval I

�si�+1
i . This can be done similar to the initial step.

We continue computing the partial row sum of Xi up to the first entry where
the sum is no longer smaller than the next integral value (which is 	si
+ 1) or
until we reach the end of the row. As before the current values of the interval
limits and the sum so far are stored in the arrays.

ComputeRounding(X ∈ [0, 1]m×n)
� Initialization
for i← 1 to m

do s [i]← 0
b[i]← 0

Rounding of Sequences and Matrices, with Applications 101

(a[i], b[i], s[i])← GetNextInterval(i)
� Main Loop
for j ← 1 to n

do C ← {i ∈ [1..m] | j ∈ [a[i]..b[i]]}
�← argmin

i∈C
b[i]

Y j ← �-th unit column vector
(a[�], b[�], s[�])← GetNextInterval(�)

return Y ∈ {0, 1}m×n

GetNextInterval(i)
j ← b[i] + 1
while j ≤ n and xij = 0

do j ← j + 1
if j > n

then return (n + 2, n + 2, s[i])
a[i]← j

k ← 	s[i]
+ 1
while s [i] + xij ≤ k

do s [i]← s [i] + xij

if s[i] = k
then return (a[i], j, s[i])

j ← j + 1
if j > n

then return (a[i], j, s[i])
return (a[i], j − 1, s[i])

2.2 Time and Space Complexity

For the time being we ignore the calls of GetNextInterval in the analysis
of the runtime. Then the initialization loop has runtime Θ(m) and the main
loop, which is executed exactly n times, needs Θ(m) time for each of the three
non-trivial assignments. Together that takes Θ(mn) time.

It remains to add the time spend in GetNextInterval. Be aware that the
row index i never changes within this procedure. Hence its total runtime can
be estimated by multiplying the maximal time spend in a single row Xi by m.
Each of the commands in GetNextInterval can be executed in constant time
except the while loop. Since this loop successively increases j – which is swapped
to b[i] when the procedure returns – Θ(n) time is needed for each row Xi. It
follows that the runtime of the entire algorithm is Θ(mn).

The algorithm only needs to keep track of the m current intervals and the m
accumulated row sums. So Θ(m) space suffices in addition to the space needed
for input and output.

2.3 Correctness

To show that our algorithm returns a valid solution, we have to show that (i)
each column vector Y j contains exactly one 1 and (ii) each index interval gets

102 B. Doerr et al.

assigned exactly one column with 1. For this it will be convenient to assume
integrality of the row sums, i.e.,

∑n
j=1 xij ∈ N for all i. This can by achieved by

adding additional columns at the end. If the algorithm returns a valid solution
even for these columns, it is also correct for the original matrix. Note that it is
not necessary to actually compute these additional columns, i.e., they are only
needed for the analysis. The following lemma gives the main property of the
algorithm. It shows that at each step there are enough unsatisfied intervals to
choose from.

Lemma 1. Let kij be the number of intervals which have started until column
j in the i-th row. Then

∑m
i=1 kij ≥ j for all j ∈ [1..n].

Proof (by induction on j). For j = 1 at least one interval has to start due to
the norm condition

∑m
i=1 xi1 = 1 for the first column. Now assume the lemma

has been established until column j. If there are already more than j intervals,
there is nothing to prove for j + 1. So let us assume that there are exactly j
intervals so far, that is to say,

∑m
i=1 kij = j. Since

∑m
i=1 sij =

∑m
i=1

∑j
�=1 xi� =∑j

�=1

∑m
i=1 xi� =

∑j
�=1 1 = j, we get

∑m
i=1 kij =

∑m
i=1 sij . With 0 ≤ sij ≤ kij

and kij ∈ N for all i ∈ [1..m], it follows that Sj = Kj and hence Sj ∈ N
m.

This means that all intervals have ended until column j. So at least one interval
has to start at position j + 1, analogously to the start of the induction base. So∑m

i=1 k(i+1),j ≥
∑m

i=1 kij + 1 ≥ j + 1. ��
That there is (i≤1) no column with more than one 1 is guaranteed by the al-
gorithm as it chooses the uppermost 1 in the case that there are two closest
ending intervals at one time. Due to Lemma 1 the algorithm has passed at least
j intervals till the j-th column and has by construction satisfied only j − 1 of
them. Therefore the algorithm can always satisfy at least one interval and will
(i≥1) not return any empty column.

Also (ii≤1) no interval will get more than one 1, because a 1 is only assigned
to unsatisfied intervals. We furthermore know ‖Xj‖1 = 1 for all columns j and
hence

∑n
j=1

∑m
i=1 xij = n. The integrality assumption of the row sums gives that

we have exactly n intervals overall. Since each column contains exactly one 1, we
have assigned n 1s to intervals. Due to the pigeonhole principle there is (ii≥1) no
interval with no assigned 1 because there is no interval with more than one 1.

2.4 Error Bounds

Lemma 2.
∣∣∣

j∑

�=1

(xi� − yi�)
∣∣∣ < 1 for all i ∈ [1..m] and j ∈ [1..n].

Proof. xij belongs to the kij -th interval in the i-th row, that is, to I
kij

i . The
algorithm assigns to each interval exactly one 1 (cf. Section 2.3). So depending
on whether the 1 that corresponds to I

kij

i is in some column at most j or later,∑j
�=1 yi� is either kij−1 or kij , respectively. Hence we have kij−1 <

∑j
�=1 xi� ≤

kij as well as kij − 1 ≤ ∑j
�=1 yi� ≤ kij , where the second sum equals kij if the

first sum does. This shows
∣∣ ∑j

�=1 xi� −
∑j

�=1 yi�

∣∣ < 1. ��

Rounding of Sequences and Matrices, with Applications 103

Lemma 3.
∣∣∣

b∑

j=a

(xij − yij)
∣∣∣ < 2 for all 1 ≤ a ≤ b ≤ n and i ∈ [1..m].

Proof. This follows immediately from Lemma 2 using Lemma 5. ��

The results of the basic algorithm can be subsumed as follows.

Theorem 2. Let X ∈ [0, 1]m×n with ‖Xj‖1 = 1 for all j ∈ [1..n]. Then there is
a Y ∈ {0, 1}m×n such that ‖Y j‖1 = 1 and

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣

b∑

j=1

(xij − yij)
∣∣∣ < 1.

Such a matrix Y can be computed in time O(mn).

The following example shows that the above error bound is tight for our algo-
rithm, i.e. that it may indeed generate errors arbitrarily close to two. To see this
let ε ∈ (0, 1/2) and

Xε :=

⎛

⎝
ε 1− ε/2 1− 2ε ε/2 ε

(1− ε)/2 ε/4 ε 1/2− ε/4 (1− ε)/2
(1− ε)/2 ε/4 ε 1/2− ε/4 (1− ε)/2

⎞

⎠ .

This yields the index intervals [1..1] and [2..5] for the first row, and [1..3] and [4..5]
for the second and third row. Hence the algorithm puts the first 1 into row one,
followed by 1s into row two and three. This yields an error of (1−ε/2)+(1−2ε) =
2− 5ε/2 in the interval [2..3] in the first row.

2.5 Näıve Generalization

We now show that the basic algorithm of Section 2.1 can be utilized for input
matrices with arbitrary column sums ‖Xj‖1 = cj ∈ N for j ∈ [1..n]. In this case,
the output matrix Y ∈ N

m×n has to satisfy ‖Y j‖1 = cj . The error on arbitrary
intervals is still at most two. First we show how to reduce this generalization to
the unitary problem and solve it with the basic algorithm in Θ(m2n) time. We
then modify the algorithm in such a way that it can handle the general problem
directly in time Θ(mn). Note that we can still assume xij ∈ [0, 1) (and hence
cj < m) for all j ∈ [1..n], i ∈ [1..m] as discussed in Section 2.

A simple way to solve the general problem is to preprocess the input by
expanding each vector Xj into cj identical vectors X̃�j , . . . , X̃�j+cj−1 each of
the form (x1j/cj, . . . , xmj/cj)T . With this preprocessing we obtain a new matrix
X̃ having

∑n
j=1 cj columns, each having sum one. The basic algorithm applied

to X̃ yields a matrix Ỹ with errors at most two on arbitrary intervals.
In a postprocessing step we then condense for each j ∈ [1..n] the cj output

vectors Ỹ �j , . . . , Ỹ �j+cj−1 to one vector Y j (having column sum cj) by summing
them up. This yields a solution Y to the original problem. Since all intervals

104 B. Doerr et al.

[a..b] ⊆ [1..n] of the general problem correspond to an interval [�a..(�b + cb − 1)]
of the expanded problem, Y satisfies the properties of Theorem 1.

Observe that this approach may produce entries of value two in the solution.
This can happen if an unsatisfied interval ends in the expansion of an input
vector and the following index interval ends “close enough” after this expansion.
The behavior of the expanding algorithm and the solution it computes can be
characterized as follows.

Lemma 4. Let ĉj , j ∈ [1..n], be the number of index intervals that end in (or
directly after) the expansion of Xj and are not satisfied before the expansion.

(a) No index interval is fully contained in the expansion.
(b) ĉj ≤ cj.
(c) The basic algorithm applied to the expanded matrix will first satisfy the ĉj

unsatisfied intervals ending in the expansion. If ĉj < cj it will then satisfy
the cj − ĉj first ending unsatisfied intervals (all of them ending after the
expansion).

Proof. The first claim follows since all entries are smaller than one, the second
claim follows directly from the correctness of the basic algorithm.

For the third claim observe that there are two types of unsatisfied intervals
in the expansion: those ending in (or directly after) it and those continuing
afterward. As argued for the second claim, the unsatisfied intervals ending in
the expansion are satisfied by the algorithm. Furthermore, all other crossing
intervals end after the expansion and hence later than these ĉj intervals. Thus
the algorithm will distribute the remaining 1s to these intervals. ��

2.6 Linear Time Generalization

Since expanding X and running the basic algorithm worsens the runtime, we
now give an algorithm that simulates this approach and needs nothing more
than the basic algorithm of Section 2.1. To achieve this the algorithm has to
satisfy cj intervals instead of just a single one in each step j ∈ [1..n]. According
to Lemma 4(c), this can be done in two distribution steps: First identify the ĉj

unsatisfied index intervals ending in the expansion of Xj and assign them a 1.
Then satisfy the remaining cj − ĉj earliest ending index intervals in the data
structure. According to Lemma 4(a) it is not necessary to update and search
the data structure after each assigned 1. Instead this can be postponed until the
end of each distribution step.

The first distribution step can be done in time Θ(m) by scanning the data
structure once and extracting the ĉj just ending intervals. Then 1 is added to
the entries in Y j corresponding to those index intervals and their consecutive
index intervals are added to the data structure.

For the second distribution step we first extract the (cj− ĉj)-th earliest ending
interval. This too is possible using Θ(m) time (see e.g. Chapter 10, Medians and
Order Statistics, in Cormen et al. [7]). Knowing this interval, the algorithm can
locate the other (cj − ĉj)− 1 earliest ending intervals by just doing a pass over

Rounding of Sequences and Matrices, with Applications 105

the data structure, again taking Θ(m) time. Finally, as after the first step, we
add 1 to each entry in Y j corresponding to those index intervals and update the
data structure by adding their consecutive index intervals.

Since each update of the data structure takes constant time, the generalized
algorithm still needs time Θ(mn).

The only detail still missing is how to detect if an interval would end inside the
expansion of a column Xj and how to compare the endpoints of index intervals
ending in the same expansion. For this, first consider the unexpanded input. Let
xi,j−1 be the last entry belonging to the k-th interval. Then si,j−1 ≤ k < si,j

holds. But in the expanded input, the interval would still have a value of 0 ≤
k − si,j−1 < xi,j < 1 left to cover vectors in X̃�j , . . . , X̃�j+cj−1 of Xj . Since the
expansion of Xj has entries xij/cj in the i-th row, the interval would continue for

� :=
⌊

k − si,j−1

xij/cj

⌋

entries into the expansion of Xj .
Hence the end of each index interval is represented by a tuple (j, �) instead

of just by the number j as in the basic algorithm. Interval endpoints can then
be compared lexicographically.

All in all we can conclude that Theorem 1 holds.

3 Extensions

In this section, we provide two easy extensions of Theorem 1 that are useful in
some of the applications described in the introduction. First, it is easy to see that
we immediately obtain rounding errors of less than two in arbitrary intervals in
rows. This is supplied by the following lemma.

Lemma 5. Let Y be a rounding of X such that the errors |∑b
j=1(xij − yij)| in

all initial intervals of rows are at most d. Then the errors in arbitrary intervals
of rows are at most 2d, that is, for all i ∈ [1..m] and all 1 ≤ a ≤ b ≤ n,

∣∣∣∣
b∑

j=a

(xij − yij)
∣∣∣∣ ≤ 2d.

Proof. Let i ∈ [1..m] and 1 ≤ a ≤ b ≤ n. Then

∣∣∣∣
b∑

j=a

(xij − yij)
∣∣∣∣ =

∣∣∣∣
b∑

j=1

(xij − yij)−
a−1∑

j=1

(xij − yij)
∣∣∣∣

≤
∣∣∣∣

b∑

j=1

(xij − yij)
∣∣∣∣ +

∣∣∣∣
a−1∑

j=1

(xij − yij)
∣∣∣∣ ≤ 2d.

��

106 B. Doerr et al.

Second, we may extend Theorem 1 to include matrices having non-integral
column sums.

Theorem 3. Let X ∈ R
m×n. Then there is a Y ∈ Z

m×n such that

∀j ∈ [1..n] :
∣∣∣

m∑

i=1

(xij − yij)
∣∣∣ < 2,

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣

b∑

j=1

(xij − yij)
∣∣∣ < 1.

Such a matrix Y can be computed in time O(mn).

Proof. For an arbitrary matrix X , we add an extra row taking what is missing
towards integral column sums: Let X̃ ∈ [0, 1)(m+1)×n be such that x̃ij = xij for
all i ∈ [1..m], j ∈ [1..n], and x̃m+1,j = 	∑m

i=1 xij
 −
∑m

i=1 xij for all j.
Clearly X̃ has integral column sums. Using Theorem 1, we can compute a

rounding Ỹ ∈ {0, 1}(m+1)×n of X̃ as described in Theorem 1. Note that there
are no rounding errors in the columns, i.e., we have

∑m+1
i=1 ỹij =

∑m+1
i=1 x̃ij for

all j ∈ [1..n].
Define Y ∈ {0, 1}m×n by yij = ỹij for all i ∈ [1..m], j ∈ [1..n]. Now the

errors in the columns are |∑m
i=1(xij − yij)| = |x̃m+1,j − ỹm+1,j|. By Lemma 5,

all single entry rounding errors |xij − yij | are less than two, proving the first set
of inequalities.

The errors in initial intervals in row 1 to m naturally remain unchanged,
proving the second set of inequalities. ��

4 Lower Bounds

We present a new lower bound for the matrix rounding problem. Theorem 4
shows that there are 3×n matrices such that any rounding has an error of 1.5−ε
in arbitrary intervals. Via a triangle inequality argument similar to Lemma 5,
this matrix also yields an error of 0.75 − ε in initial intervals. The latter is
particularly interesting for the MDJIT problem (see Section 1.4), where Steiner
and Yeomans [19] showed a lower bound of 1−1/m by means of an m×m matrix.
So for the three-part type MDJIT problem we could raise the lower bound from
2/3 to 3/4.

Theorem 4 (Lower Bound). For all ε ∈ (0, 1) there are problem instances
X ∈ [0, 1]3×n such that for all solutions Y ∈ {0, 1}3×n there are i ∈ [1..3] and
1 ≤ a ≤ b ≤ n with

∣∣∑b
j=a (xij − yij)

∣∣ ≥ 1.5− ε.

Proof. Let n > 1.5/ε2 and X ∈ [0, 1]3×n with

X :=

⎛

⎝
1− ε 1− ε 1− ε
ε− ε2 ε− ε2 · · · ε− ε2

ε2 ε2 ε2

⎞

⎠ .

Rounding of Sequences and Matrices, with Applications 107

Assume that there is a valid solution Y with
∣∣ ∑b

j=a (xij − yij)
∣∣ < 1.5 − 4ε for

all i ∈ [1..3] and 1 ≤ a ≤ b ≤ n. By choice of n, there is at least one column j
having a 1 in the third row. Let p ≥ 0 and q ≥ 0 be the number of consecutive
columns equal to (1, 0, 0)T to the left and right of column j, respectively. Thus

Y =

⎛

⎝
0 1 . . . 1 0 1 . . . 1 0

· · · ? 0 . . . 0 0 0 . . . 0 ? · · ·
? 0 . . . 0︸ ︷︷ ︸

p times

1 0 . . . 0︸ ︷︷ ︸
q times

?

⎞

⎠ .

column j

The rounding error of the interval [(j − p − 1) .. (j + q + 1)] in the first row is∣∣∑j+q+1
�=j−p−1 (x1,� − y1,�)

∣∣ = (p+q+3)·(1−ε)−(p+q) = 3·(1−ε)−ε·(p+q). Since
this is less than 1.5−4ε, we have p+q > (3 ·(1−ε)−1.5+4ε)/ε = 1.5/ε+1. The
error of the interval [j−p..j+q] in the second row now is

∣∣∑j+q
�=j−p (x2,� − y2,�)

∣∣ =
(p + q + 1) · (ε− ε2) > (1.5/ε + 2) · (ε− ε2) = 1.5 + 0.5ε− 2ε2 > 1.5− 4ε. This
contradicts our assumption. ��

5 Alternative Approaches

5.1 Greedy Algorithm

A greedy algorithm traverses the matrix X column by column and sets the 1s
in Y only based on the columns previously read. The 1 is assigned to a row i
with the highest difference between the accumulated sum sij and the number of
1s in this row so far. That this may produce a rounding error of Ω(log n) can be
shown by the following example:

X :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
n 0 0 · · · 0 0
1
n

1
n−1 0 · · · 0 0

...
...

...
. . .

...
...

1
n

1
n−1

1
n−2 · · · 0 0

1
n

1
n−1

1
n−2 · · · 1

2 0
1
n

1
n−1

1
n−2 · · · 1

2 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∈ [0, 1]n×n

The greedy algorithm returns the identity matrix whereby the discrepancy of
the interval [1,n-1] in the last row becomes

∣∣ ∑n−1
j=1 (xn,j − yn,j)

∣∣ =
∑n

j=2 1/j =
Hn − 1 > log n− 1 with Hn being the harmonic number of n.

5.2 Row Intervals

If one accepts a quadratic runtime we can extend Theorem 2 in such a way that
not only the initial row intervals, but also the initial column intervals are small:

108 B. Doerr et al.

Theorem 5. Let X ∈ [0, 1)m×n. Then there is a Y ∈ {0, 1}m×n such that

∀b ∈ [1..n], i ∈ [1..m] :
∣∣∣

b∑

j=1

(xij − yij)
∣∣∣ < 1,

∀b ∈ [1..m], j ∈ [1..n] :
∣∣∣

b∑

i=1

(xij − yij)
∣∣∣ < 1.

Such a matrix Y can be computed in time O(m2n2).

Proof. Knuth [13] showed how to round a sequence of n real numbers xi to
yi ∈ {�xi�, 	xi
} such that for two given permutations σ1 and σ2, we have∑k

i=1(xσ1(i) − yσ1(i)) < 1 as well as
∑k

i=1(xσ2(i) − yσ2(i)) < 1 for all k. To
apply this to our problem of rounding a matrix X ∈ R

m×n, we first assume
integrality of the row and column sums without loss of generality as detailed
in Section 3. Consider all elements xij of the matrix X as the sequence to be
rounded. With a permutation σ1, which enumerates the xij row by row, Knuth’s
two-way rounding gives

∑k
i=1

∑n
j=1(xij − yij) < 1 for all k ∈ [1..m]. Note that

the integrality of the row sums yields by induction
∑k

i=1

∑n
j=1(xij − yij) = 0

for all k, which in turn shows for the initial row intervals
∑b

j=1(xij − yij) < 1
for all b ∈ [1..n] and i ∈ [1..m]. For initial column intervals one can achieve∑b

i=1(xij − yij) < 1 for all b ∈ [1..m] and j ∈ [1..n] in an analogous manner by
choosing a permutation σ2, which enumerates the xij column by column. His
proof employs integer flows in a certain network [12]. On account of this he only
achieves a runtime of O(m2n2). ��
Note that both inequalities in Theorem 5 are actually

∣∣∑(xij − yij)
∣∣ ≤

mn/(mn + 1).

Acknowledgments

The authors wish to thank Pavol Hell for pointing out the relation to controlled
rounding.

References

1. T. Asano. Digital halftoning: Algorithm engineering challenges. IEICE Trans. on
Inf. and Syst., E86-D:159–178, 2003.

2. Zs. Baranyai. On the factorization of the complete uniform hypergraph. In In-
finite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th
birthday), Vol. I, pages 91–108. Colloq. Math. Soc. Jánōs Bolyai, Vol. 10. North-
Holland, Amsterdam, 1975.

3. J. Beck and V. T. Sós. Discrepancy theory. In R. Graham, M. Grötschel, and
L. Lovász, editors, Handbook of Combinatorics, pages 1405–1446. Elsevier, 1995.

4. J. L. Bentley. Algorithm design techniques. Commun. ACM, 27:865–871, 1984.

Rounding of Sequences and Matrices, with Applications 109

5. N. Brauner and Y. Crama. The maximum deviation just-in-time scheduling prob-
lem. Discrete Appl. Math., 134:25–50, 2004.

6. B. D. Causey, L. H. Cox, and L. R. Ernst. Applications of transportation theory
to statistical problems. Journal of the American Statistical Association.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT
Press, Cambridge, MA, 1990.

8. L. H. Cox and L. R. Ernst. Controlled rounding. Informes, 20(4):423–432, 1982.
9. B. Doerr. Lattice approximation and linear discrepancy of totally unimodular

matrices. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 119–125, 2001.

10. B. Doerr. Global roundings of sequences. Information Processing Letters, 92:113–
116, 2004.

11. B. Doerr and A. Srivastav. Multicolour discrepancies. Combinatorics, Probability
and Computing, 12:365–399, 2003.

12. L. R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

13. D. E. Knuth. Two-way rounding. SIAM J. Discrete Math., 8:281–290, 1995.
14. Y. Monden. What makes the Toyota production system really tick? Industrial

Eng., 13:36–46, 1981.
15. Y. Monden. Toyota Production System. Industrial Engineering and Management

Press, Norcross, GA, 1983.
16. K. Sadakane, N. Takki-Chebihi, and T. Tokuyama. Combinatorics and algorithms

on low-discrepancy roundings of a real sequence. In ICALP 2001, volume 2076
of Lecture Notes in Computer Science, pages 166–177, Berlin Heidelberg, 2001.
Springer-Verlag.

17. K. Sadakane, N. Takki-Chebihi, and T. Tokuyama. Discrepancy-based digital
halftoning: Automatic evaluation and optimization. In Geometry, Morphology,
and Computational Imaging, volume 2616 of Lecture Notes in Computer Science,
pages 301–319, Berlin Heidelberg, 2003. Springer-Verlag.

18. J. Spencer. Ten lectures on the probabilistic method, volume 64 of CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1994.

19. G. Steiner and S. Yeomans. Level schedules for mixed-model, just-in-time pro-
cesses. Management Science, 39:728–735, 1993.

	Introduction
	Rounding of Sequences
	Linear Discrepancy in More Than Two Colors
	Baranyai's Rounding Lemma and Applications in Statistics
	Flexible Transfer Line Scheduling
	Lower Bounds

	The Algorithm
	Basic Algorithm
	Time and Space Complexity
	Correctness
	Error Bounds
	Naïve Generalization
	Linear Time Generalization

	Extensions
	Lower Bounds
	Alternative Approaches
	Greedy Algorithm
	Row Intervals

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

