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In the article Reoptimization Time Analysis of Evolutionary Algorithms on Linear 
Functions Under Dynamic Uniform Constraints, we claimed a worst-case runtime 
of O(nD logD) and O(nD) for the Multi-Objective Evolutionary Algorithm and the 
Multi-Objective (�+(�, �)) Genetic Algorithm, respectively, on linear profit func-
tions under dynamic uniform constraint, where D = |B − B∗| denotes the difference 
between the original constraint bound B and the new one B∗ . The technique used to 
prove these results contained an error. We correct this mistake and show a weaker 
bound of O(nD2) for both algorithms instead.

The Multi‑Objective Evolutionary Algorithm

In Theorem 9 of the original article [4], we claimed a bound of O(nD logD) for 
the expected reoptimization time of the Multi-Objective Evolutionary Algorithm 
(MOEA), where D = |B − B∗| denotes the difference between the original con-
straint bound B and the new one B∗ . Its proof was based on the notion of candi-
date solutions x for which there is an optimum x∗ (assuming B ≤ B∗ ) such that 
xi = 1 implies x∗

i
= 1 . In other words, an optimum can be created from a can-

didate by only flipping 0-bits. We used drift analysis on the potential function 

The original article can be found online at https ://doi.org/10.1007/s0045 3-018-0451-4.
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G = B∗ − h , where h is the largest Hamming weight among all candidates in S. 
The analysis relied on this potential to be non-increasing during the reoptimiza-
tion. This is not the case as illustrated by the following counterexample.

Suppose n = 5 , B = 2 , and B∗ = 4 ; the weights of the profit function P shall 
observe the inequalities w1 ≥ w2 ≥ w3 ≥ w4 > w5 and w2 + w5 > w3 + w4 , the 
population S may consist of the solutions y = 11000 and z = 10110 . The unique 
optimum of P under constraint B∗ is x∗ = 11110 , making both members of S can-
didates. Their largest Hamming weight h is 3. A mutation of z flipping 4 bits may 
result in the string z� = 11001 , which replaces z due to the higher profit. However, 
z′ is not a candidate anymore. The candidate of highest Hamming weight is now y 
and h decreases to 2. This increases the potential G in turn.

We now prove a weaker runtime bound for the MOEA with an alternative 
technique.

Theorem  9 The reoptimization time of the MOEA on linear functions under 
dynamic uniform constraint is

Proof We first present the analysis for the case of B ≤ B∗ . For any integer u such 
that B ≤ u < B∗ , let x(u) = argmax|x|1=u P(x) be a solution of maximum profit 
among all solutions with Hamming weight u in the search space. Assume, for some 
B ≤ u < B∗ , x(u) is contained in the population S. Then, choosing x(u) for mutation 
and flipping exactly one 0-bit of maximum weight and nothing else creates solution 
x(u+1) within an expected number of at most en(D + 1) generations. Observe that x(u) 
can only be replaced by a solution with the same Hamming weight and at least the 
same profit, based on the partial order ≽MOEA . Thus, the replacement does not influ-
ence the expected number of generations that the MOEA needs to get solution x(u+1) . 
Summing over all D = |B∗ − B| waiting times for the x(u+1) , starting from the initial 
solution xorig = x(B) ∈ S , gives the claimed bound.

The only difference in the case of B > B∗ is that the solution 
x(u) = argmax|x|1=u P(x) is defined for all B∗ < u ≤ B , and we consider the probabil-
ity choosing x(u) for mutation and flipping exactly one 1-bit of minimum weight and 
nothing else. The rest of the argument is identical.   ◻

Besides, in the original proof of Theorem  12 in [4], regarding the MOEA 
with single bit flip operator (MOEA-S) on linear functions under dynamic uni-
form constraints, we used the fact that “[we] pessimistically assume that the opti-
mum x∗ = 1B

∗

0n−B
∗ is unique, i.e., wB∗ > wB∗+1 .” This argument was susceptible 

of being non-rigorous. We provide a minor revision which shows that the proof 
remains valid without this assumption.

We now measure the progress of the algorithm in a more general way which 
includes the special case where the optimum is unique. The weights of the profit 
function P can be assumed to be ordered non-increasingly. Let B′ and B′′ be 
the numbers of bits whose weights are strictly larger than wB∗ and at least wB∗ , 

E[T] = O(nD2).
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respectively. This way, we have B� < B∗ ≤ B�� , the special case of a unique opti-
mum corresponds to B∗ = B�� . Let x be an arbitrary solution. Define

to be the numbers of 1-bits in x with weights strictly larger than wB∗ and exactly wB∗ , 
respectively. Let

We make this distinction since only B∗ − B� many of the B�� − B� bits in x with 
weight wB∗ need to be set to 1 to form an optimal solution with Hamming weight B∗ . 
In total, the number of “correctly placed” 1-bits in x compared to an optimal solu-
tion with Hamming weight B∗ is

Let y and z denote the two solutions of Hamming weight B∗ − 1 and B∗ , respec-
tively, after the MOEA-S reached the new boundary. Instead of the potential 
G = 2B∗ − 1 − |y[1,B∗]|1 − |z[1,B∗]|1 , we now consider

which intuitively measures the number of incorrect 1-bits in z compared to an opti-
mal solution with Hamming weight B∗ , but also considers the state of y. As in the 
original proof, an optimal solution is obtained if G = 0.

Consider a 1-bit at position k in z. If either 1 ≤ k ≤ B′ holds, or B� + 1 ≤ k ≤ B�� 
and hB∗ (z) ≤ B∗ − B� , then zk is called correct; otherwise, incorrect. Let i be the 
position of the defect between y and z, i.e., yi = 0 and zi = 1 . If zi is correct, then 
we consider an incorrect 1-bit zj , there are at least B∗ − uB∗ (z) many of them. 
Choosing the solution z for mutation and flipping zj results in a new solution 
z′ with Hamming weight B∗ − 1 and profit P(z�) > P(y) . It thus replaces y and 
decreases the potential by 1.

Now consider the case that zi is incorrect. If hB∗ (z) < B∗ − B� then we consider 
a 0-bit yj in y with 1 ≤ j ≤ B′′ , of which there are B�� − uB∗ (y) ≥ B∗ − uB∗ (y) many. 
If hB∗ (z) ≥ B∗ − B� , then we let yj be one of the B� − sB∗ (y) = B∗ − uB∗ (y) 0-bits in 
y with index 1 ≤ j ≤ B′ . So, if zi is incorrect, there are B∗ − uB∗ (y) many 0-bits in 
y such that flipping any of them results in a solution y′ with P(y�) > P(z) , replac-
ing z, and also a decrease of the potential.

Putting it all together, we have an expected drift with respect to the potential 
G of

where p denotes the probability that in the current round the 1-bit zi is correct. The 
remaining reasoning for the reoptimization time based on the drift is the same as in 
the original proof.

tB∗ (x) = |x[1,B�]|1 and hB∗ (x) = |x[B�+1,B��]|1

sB∗ (x) = min{B∗ − B�, hB∗ (x)}.

uB∗ (x) = sB∗ (x) + tB∗ (x).

G = 2B∗ − 1 − uB∗ (y) − uB∗ (z),

E[G − G�] ≥ p
B∗ − uB∗ (z)

2n
+ (1 − p)

B∗ − uB∗ (y)

2n
≥

G

4n
,
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The Multi‑Objective (�+(�,�)) Genetic Algorithm

The analysis of the Multi-Objective (�+(�, �)) Genetic Algorithm 
(MO (�+(�, �)) GA) on general linear profit functions in the original article [4] had 
the same error as Theorem  9. In the following, we restate the corrected Subsec-
tion 5.2 as a whole for completeness. Additionally, the summary of the results in 
Table 1 were also updated, both for the MOEA and the MO (�+(�, �)) GA on linear 
functions the bound is now O(nD2).

5.2 Linear Function with Dynamic Uniform Constraint

We turn to linear functions under dynamic uniform constraints and start by lower 
bounding the probability of an improvement if the parameters are set in a right 
way. Similar to the analysis for OneMax, we study the probability of an iteration 
of the while-loop in the MO (�+(�, �)) GA to find an optimal solution with Ham-
ming weight A + 1 (if B ≤ B∗ ; A − 1 if B > B∗ ) starting with an optimal solution x of 
Hamming weight A, where optimality is defined with respect to a linear profit func-
tion. As the bits may have different weights, we need to consider a 0-bit in x yielding 
the maximum profit increase if B ≤ B∗ (resp., a 1-bit yielding the minimum profit 
decrease if B > B∗ ) to get an optimal solution with Hamming weight A + 1 (resp., 
A − 1 ). Thus, the variable � is fixed at value ⌈

√
n ⌉ throughout this subsection, and 

not chosen depending on the fitness of the current solution.
The following two lemmata are adaptations of the related results given in [2] to 

the MO (�+(�, �)) GA working on linear profit functions.

Lemma 16 Consider the MO (�+(�, �)) GA working on a linear profit func-
tion under dynamic uniform constraint B ≤ B∗ . Assume its parameters are set as 
� = ⌈

√
n ⌉ , p = �∕n , and c = 1∕� . When choosing an optimal solution x with 

B ≤ |x|1 < B∗ for reproduction, the probability of an iteration of the while-loop to 
produce an optimal solution y∗ with |y∗|1 = |x|1 + 1 is at least C∕� , with C > 0 a 
constant. 

Table 1  Overview of results

Upper bounds on the expected reoptimization times of the (1+1) EA, the Multi-Objective Evolutionary 
Algorithm (MOEA), its variant with single bit flip (MOEA-S) and the Multi-Objective (�+(�, �)) Genetic 
Algorithm (MO (�+(�, �)) GA) on linear functions of length-n bit strings under dynamic uniform con-
straint. B denotes the old and B∗ the new cardinality bound, D = |B∗ − B| their difference. Runtimes of 
the form O(n log(B∕B∗)) are to be read as O(n logB) if B∗ = 0 . For comparison, the (1+1) EA needs Ω(n) 
iterations to optimize OneMax under uniform constraint from scratch in the static setting (if B is not too 
close to 0, n or n/2) and Ω(n2) for general linear profit functions [3]

Profit function (1+1) EA MOEA MOEA-S MO (�+(�, �)) GA

OneMax O
(
n log

(
n−B

n−B∗

))
O
(
nD log

(
n−B

n−B∗

))
O
(
n log

(
n−B

n−B∗

))
O

�
min{

√
nD3,D2

�
n

n−B∗
}
�

if B ≤ B
∗

O
(
n log

(
B

B∗

))
O
(
nD log

(
B

B∗

))
O
(
n log

(
B

B∗

))
O

�
min{

√
nD3,D2

�
n

B∗
}
�

if B > B
∗

Linear function O
(
n
2 log

(
B
∗
wmax

))
O
(
nD

2
)

O(n logD) O
(
nD

2
)
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Proof The reasoning is similar to that of the proof of [4, Lemma 13]. To get an opti-
mal solution y∗ with Hamming weight |x|1 + 1 , it is necessary that the solution x′ 
obtained in the mutation phase has x�

j
= 1 , where j is the index of a 0-bit with maxi-

mum weight in x. Recall that � is the number of bits to flip, which is drawn accord-
ing to a binomial distribution with parameters n and p at the beginning of the muta-
tion phase. For � mutants, the probability that at least one of them has its j-th bit set 
to 1 is at least 1 −

(
1 −

�

n

)�

 . Note that the mutant whose j-th bit is flipped to 1 may 
not be the unique valid offspring of x among the � mutants, thus the solution is cho-
sen as x′ with probability Ω(1∕�) , and the event x�

j
= 1 happens at the end of the 

mutation phase with probability 1
�

(
1 −

(
1 −

�

n

)�
)
. Combining the above probabil-

ity and the analysis given for the crossover phase in Lemma 13, we get that an itera-
tion of the while-loop gets an optimal solution y∗ having Hamming weight |x|1 + 1 
with probability at least

Now we give a lower bound for this probability. Recall that � = ⌈
√
n⌉ , so for suf-

ficiently large n, we have n ≥ 7�∕4 . Let L ∼ Bin(n,p) be a binomially distributed 
random variable, and K be the indicator variable of sampling an optimal solution y∗ 
having Hamming weight |x|1 + 1 within one iteration of the while-loop. From the 
law of total probability, we get

where Pr[K|L = �] ≥
1

�
(1 −

(
1 −

�

n

)�

)(1 − (1 − c(1 − c)�−1)�) as described above.

We bound the term 1 −
(
1 −

�

n

)�

 from below using that � ≥ ⌈�∕4⌉ and 
� = ⌈

√
n⌉,

We have already shown in Lemma 13 (in [4]) that the term 1 − (1 − c(1 − c)�−1)� 

is at least 1 − e
−

1

8
√
2 . Thus, Pr[K|L = �] ≥ �∕� , where � = (1 − e

−
1

4 )(1 − e
−

1

8
√
2 ) is a 

positive constant, holds for the desired range of �.
Inserting this back into above inequality gives

1

�

(
1 −

(
1 −

�

n

)�
)(

1 −
(
1 − c(1 − c)�−1

)�)
.

Pr[K] ≥

7�∕4�

𝓁=⌈�∕4⌉
Pr[K�L = 𝓁] ⋅ Pr[L = 𝓁],

1 −

�
1 −

�

n

��

≥ 1 −

�
1 −

�∕4

n

��

= 1 −

�
1 −

1

4
√
n

�√
n

≥ 1 − e
−

1

4 .
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Note that the mutation probability p is set to �∕n , hence E[L] = np = � . Then, 
�∕4 ≤ L ≤ 7�∕4 describes the event that L has at most a 1 ± 3∕4 relative deviation 
from its mean. By Chernoff bounds [1], this has probability exponentially close to 1, 
in particular it is bounded below by a constant for all n large enough. Combining the 
arguments from above discussion now shows that there exists a constant C > 0 such 
that Pr[K] ≥ C∕� .   ◻

The proof needs only minor changes to accommodate for B > B∗ . The index j 
now marks a 1-bit of minimum weight in x and the binary variable K indicates the 
event of sampling an optimal solution y∗ with |y∗|1 = |x|1 − 1 within one iteration of 
the while-loop. The reasoning over these variables stays exactly the same. From this, 
we get the following lemma.

Lemma 17 Consider the  MO (�+(�, �)) GA working on a linear profit func-
tion under dynamic uniform constraint B > B∗ . Assume its parameters are set as 
� = ⌈

√
n ⌉ , p = �∕n , and c = 1∕� . When choosing an optimal solution x with 

B ≥ |x|1 > B∗ for reproduction, the probability of an iteration of the while-loop to 
produce an optimal solution y∗ with |y∗|1 = |x|1 − 1 is at least C∕� , with C > 0 a 
constant.

Finally, we show the upper bound of the expected reoptimization time for the 
MO (�+(�, �)) GA on linear functions with dynamic uniform constraints.

Theorem  18 Consider the MO (�+(�, �)) GA with a static parameter setting of 
� = ⌈

√
n ⌉ , mutation probability p = �∕n , and crossover probability c = 1∕� . Its 

expected reoptimization time on linear profit functions under dynamic uniform con-
straint is O(nD2).

Proof We show the expected reoptimization time in a similar way to the proof of 
[4, Theorem 15], first for B ≤ B∗ . For any B ≤ A < B∗ , let x(A) denote a solution of 
maximum profit among all solutions in the search space with Hamming weight A. 
Assume there is an A such that x(A) is in the population S. Note that A may not be the 
maximum Hamming weight of solutions in S and the size of S cannot be bounded 
by A − B + 1 , as was the case in Theorem  15. We only have a weaker bound of 
|S| ≤ B∗ − B + 1 = D + 1.

Now, combining Lemma 16 and the fact that the probability of choosing x(A) for 
reproduction is Ω(1∕D) implies that the MO (�+(�, �)) GA takes an expected num-
ber of O(D�2) = O(nD) fitness evaluations to find an optimal solution with Ham-
ming weight A + 1 . By summing over the waiting times for all Hamming weights 

Pr[K] ≥

7�∕4�

𝓁=⌈�∕4⌉
Pr[K�L = 𝓁] ⋅ Pr[L = 𝓁] ≥

�

�
⋅

7�∕4�

𝓁=⌈�∕4⌉
Pr[L = 𝓁] =

�

�
⋅ Pr[�∕4 ≤ L ≤ 7�∕4].
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between B and B∗ starting with the initial solution xorig = x(B) , we get an expected 
reoptimization time O(nD2) . Via Lemma 17, the adaption to B > B∗ is immediate.  
 ◻

Acknowledgements We thank Benjamin Doerr and Carola Doerr for spotting the mistake and providing 
the counter example.
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