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Abstract
Most networks are not static objects, but in-
stead they change over time. This observation
has sparked rigorous research on temporal graphs
within the last years. In temporal graphs, we have
a fixed set of nodes and the connections between
them are only available at certain time steps. This
gives rise to a plethora of algorithmic problems on
such graphs, most prominently the problem of find-
ing temporal spanners, i.e., the computation of sub-
graphs that guarantee all pairs reachability via tem-
poral paths. To the best of our knowledge, only
centralized approaches for the solution of this prob-
lem are known. However, many real-world net-
works are not shaped by a central designer but in-
stead they emerge and evolve by the interaction of
many strategic agents. This observation is the driv-
ing force of the recent intensive research on game-
theoretic network formation models.
In this work we bring together these two recent
research directions: temporal graphs and game-
theoretic network formation. As a first step into
this new realm, we focus on a simplified setting
where a complete temporal host graph is given and
the agents, corresponding to its nodes, selfishly cre-
ate incident edges to ensure that they can reach all
other nodes via temporal paths in the created net-
work. This yields temporal spanners as equilibria
of our game. We prove results on the convergence
to and the existence of equilibrium networks, on
the complexity of finding best agent strategies, and
on the quality of the equilibria. By taking these
first important steps, we uncover challenging open
problems that call for an in-depth exploration of the
creation of temporal graphs by strategic agents.

1 Introduction
Networks are omnipresent in everyday life. They range from
abstract constructs, such as (online) social networks, to essen-
tial infrastructure, such as transportation networks and power
grids. Given their ubiquity and importance, rigorous research
has been conducted to better understand real-world networks.
Researchers strive to evaluate the behavior of networks, their

structural properties and the processes that drive their forma-
tion. Over the years, the research community has realized
that more varied and complex models are required to capture
the intricacies that govern a network’s attributes. Two such
intricacies are:

(i) many networks are dynamic in nature, i.e. the nodes
and/or the connections of the nodes change over time;

(ii) the formation of many networks is driven by many indi-
vidual and selfish agents without central coordination.

Due to the complexity that each of these settings introduces,
researchers so far considered only one of the above assump-
tions that many real-world networks naturally exhibit.

However, in many real-world settings both (i) and (ii) ap-
ply. For example, consider the problem of scheduling meet-
ings in a large institution where employees are interested in
disseminating information to all their colleagues. For this,
they can schedule meetings with others at different time slots
depending on their availability. Meetings with multiple indi-
viduals at the same time slot enables the spread of informa-
tion to all participants. Naturally, the goal is to minimize the
number of meetings needed to inform everyone.

Our goal is for this paper to be the inaugural effort in com-
bining dynamic networks with a game-theoretic analysis in
order to better capture the formation of real-world networks.

1.1 Our Approach
We initiate the study of dynamic networks from a game-
theoretic perspective by combining one of the earliest and
very influential strategic network formation models for static
networks, the non-cooperative network formation model
by Bala and Goyal [2000], with the seminal temporal graph
model of Kempe et al. [2002].

In the network formation model by Bala and Goyal [2000],
the agents are nodes of a network and they strategically cre-
ate costly incident links to maximize the number of nodes
they can reach either directly or via a sequence of hops in the
network. The temporal graph model of Kempe et al. [2002]
assumes that an edge-labeled graph is given, where the labels
indicate the time step where the respective edge is available.
By combining the features of these two models, we assume
that a temporal graph serves as the host graph for our network
formation game. Agents correspond to its nodes and can cre-
ate costly incident edges having the time labels specified by
the host graph. Most importantly, instead of using standard



reachability defined as the existence of a path between two
nodes, we employ the concept of temporal reachability, where
some node u can reach a node v if a temporal path, i.e., a path
with monotonically increasing edge labels, exists.

As a first step in this line of research, we consider a re-
stricted version, where the underlying temporal host graph is
a clique, all edges have unit cost, and the objective of each
agent is to create as few edges as possible to ensure the exis-
tence of a temporal path from itself to every other node of the
graph. Although being the simplest variant of our framework,
this setting has the striking feature that equilibrium states of
our game correspond to temporal spanners of the underlying
temporal host graph. Thus, our model captures the decen-
tralized creation of a temporal spanner by selfish agents. To
the best of our knowledge, so far only centralized approaches
exist for this prominent algorithmic problem.

We emphasize that our framework can be generalized to
much more complex settings. In particular, and similarly to
(recent variants of) the well-studied Network Creation Game
by Fabrikant et al. [2003], more than temporal reachability
could be studied in future work. For example, the existence
of short temporal paths, additional robustness guarantees, and
more complicated edge cost functions.

1.2 Our Contribution
We explore the formation of temporal spanners by strategic
agents via studying the Temporal Reachability Network Cre-
ation Game, whose equilibrium networks must be temporal
spanners. Besides this being the first decentralized approach
for computing temporal spanners, the entailed equilibria must
be stable with respect to local changes of the involved nodes.

Although we show that computing a best response strategy
is NP-hard even if the host graph has a lifetime t = 2, we
nonetheless show for this case that equilibria exist and that
they can be computed efficiently. The existence of equilib-
ria remains a challenging open problem for t ≥ 3. How-
ever, we show that in this case, deciding if a given strategy
profile is an equilibrium is NP-hard. This is remarkable, as
similar questions are still open for most other game-theoretic
network creation models. Also, in contrast to the classical
Network Formation Game on static graphs [Bala and Goyal,
2000], this shows that incorporating temporal graphs yields a
computationally much harder model.

As our main contribution, we provide non-trivial structural
properties of equilibrium networks and we exploit them to
prove bounds on the Price of Anarchy (PoA), i.e., on the qual-
ity of the obtained temporal spanners. Low bounds on the
PoA imply that these equilibrium spanners are close to opti-
mal. Regarding this, we give an upper bound of O(

√
n) on

the PoA and provide a lower bound of Ω(log n).
Moreover, driven by the hardness of computing a best re-

sponse strategy, we also investigate Greedy Equilibria (GE),
that rely on very simple strategy changes. We connect them
to Nash Equilibria by showing that the PoA with regard to
Greedy Equilibria is at most a O(log n) factor larger than
the PoA with regard to Nash Equilibria. This shows that not
much is lost by focusing on GEs.

All omitted details can be found in [Bilò et al., 2023].

1.3 Related Work
The formation of networks by strategic agents has been stud-
ied intensively within the last decades. One of the earliest
models is also closest to our work. In the Network Forma-
tion Game by Bala and Goyal [2000] selfish agents buy inci-
dent edges and their utility is a function that increases with
the number of agents they can reach and it decreases with
the number of edges bought. Most relevant for us is the ver-
sion where undirected edges are formed. For this the authors
prove that equilibria always exist and that they are either stars
or empty graphs. Moreover, improving response dynamics
quickly converge to such states. Also, for this model comput-
ing a best response strategy and deciding if a given state is in
equilibrium can be done efficiently.

The network formation game was extended to a setting
with attacks on the formed network [Goyal et al., 2016].
There, the objective is post-attack reachability. This variant is
more complex, but best response strategies can still be com-
puted efficiently [Friedrich et al., 2017]. Recently, a variant
with probabilistic attack was studied [Chen et al., 2019]. Also
related are Topology Control Game [Eidenbenz et al., 2006],
where the agents are points in the plane and edge costs are
proportional to the Euclidean distance among the endpoints.
Similar in spirit is the model by Gulyás et al. [2015], but
there the agents are points in hyperbolic space using greedy
routing. Also models exist where the agents aim for cre-
ating a robust network, i.e., communication in the network
should rely on more than a single path [Meirom et al., 2015;
Chauhan et al., 2016; Echzell et al., 2020].

Besides network formation games with reachability objec-
tive, even more model variants exist, where shortest path dis-
tances play a prominent role. Starting with the Network Cre-
ation Game [Fabrikant et al., 2003], that is based on the even
older Connections Game [Jackson and Wolinsky, 1996], re-
searchers have focused on utility functions that depend on the
distances of the respective agent to the other agents in the
formed network. For this, variants exist that involve cooper-
ation [Corbo and Parkes, 2005; Andelman et al., 2009], lo-
cality [Bilò et al., 2016; Cord-Landwehr and Lenzner, 2015],
non-uniform edge prices [Chauhan et al., 2017; Bilò et al.,
2019], and most recently, social networks [Bilò et al., 2021;
Friedrich et al., 2022; Bullinger et al., 2022].

For most of these variants, computing a best response strat-
egy is NP-hard, improving response dynamics are not guar-
anteed to converge, and the hardness of deciding equilib-
ria is open. Moreover, for the original Network Creation
Game [Fabrikant et al., 2003] equilibria always exist and the
Price of Anarchy (PoA) is known to be constant for almost
the full parameter range of the model. Similar results hold
for the other models, with some notable exceptions, e.g., the
geometric version has a high PoA [Bilò et al., 2019].

To the best of our knowledge, no game-theoretic network
formation model involving temporal graphs has been studied.
However, starting from the work by Kempe et al. [2002], a lot
of research has been devoted to algorithmic problems on tem-
poral graphs, in particular to temporal spanners. Relevant for
us, it has been shown that temporal cliques admit sparse tem-
poral spanners [Casteigts et al., 2021] and also sparse span-
ners with low stretch are possible [Bilò et al., 2022]. In con-
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Figure 1: The left shows a temporal graph with n = 4 nodes and
lifetime t = 3. The sequence v1, v3, v4, v2 (red) is not a temporal
path since its labels are not monotonically increasing. On the other
hand, v3, v2, v1, v4 (blue) is a temporal path from v3 to v4.
The right shows the graph from the left as the host graph H and
the graph G(s) (not dashed) formed by the strategies of the agents.
Here, v1 plays greedy best response, since neither adding the edge
(v1, v2) nor removing one of the edges (v1, v3) or (v1, v4) decreases
its cost. However, v1 does not play best response since removing
(v1, v3), (v1, v4) and buying (v1, v2) is an improving move.

trast, on non-complete temporal graphs spanners can be very
dense [Axiotis and Fotakis, 2016]. The same holds true if
strict temporal paths are considered, i.e., if the labels on the
edges of a path must strictly increase [Kempe et al., 2002].
Closely related to the reachability problem, [Klobas et al.,
2022] study the problem of finding the minimum number of
labels required to achieve temporal connectivity in a graph.

Spanners on static graphs are a classical topic, see [Ahmed
et al., 2020] for a recent survey. For spanners in geometric
settings, see [Narasimhan and Smid, 2007].

1.4 Model and Notation
Before stating our game-theoretic model, we will first intro-
duce temporal graphs and temporal spanners.

Temporal Graphs and Spanners. A temporal graph
G = (VG, EG, λG) is an undirected labeled graph, where
λG : EG → N, assigns a label to each edge. The edge labels
of G model at which point in time an edge is available. For
simplicity, we assume that all labels are consecutive starting
with 1. Formally,

⋃
e∈EG

λG(e) = {1, 2, . . . , t}, for some
t ∈ N, where t is called the lifetime. Note that, for simplicity,
we assume that every edge has a single time label, i.e., every
edge is available only at a particular single time step. All re-
sults in this paper also hold if we extend the model to allow
multiple labels per edge. As long as the graph G is clear from
context, we might omit the subscripts and write V,E, and λ
instead of VG, EG, and λG.

A (simple) temporal path in G is a (simple) path in G
with monotonically increasing edge labels. Formally, it is
a sequence of (distinct) nodes v1, . . . , vi ∈ VG, that forms
a (simple) path in G, i.e., for 1 ≤ j ≤ i − 1 we have
ej = {vj , vj+1} ∈ EG, where for all 1 ≤ j ≤ i − 2 we
have λG(ej) ≤ λG(ej+1). Note, that the labels do not have
to increase strictly since we assume zero edge traversal time.

For two nodes u, v ∈ VG, we say that u can reach v in
the temporal graph G if and only if there is a temporal path
from u to v in G. We define RG(u) as the set of nodes that u
can reach in G. Note that u ∈ RG(u), since every node can
trivially reach itself via a temporal path of length 0. If every
node can reach every other node, we say that G is temporally
connected. With this we define a temporal spanner of G as

any temporally connected subgraph G′ of G with VG′ = VG

and EG′ ⊆ EG. If no edge can be removed from G′ while
keeping the temporal spanner property, we call G′ a minimal
temporal spanner of G. If G′ has at most as many edges
as any other temporal spanner of G, we call G′ a minimum
temporal spanner of G.

The Temporal Reachability Network Creation Game.
Now we define our game-theoretic network creation model,
called the Temporal Reachability Network Creation Game
(TRNCG). Let H = (VH , EH , λH) be a given complete tem-
poral graph that serves as the host graph of our game. We
assume that every node v ∈ VH corresponds to a strategic
agent and let |VH | = n denote the number of agents.

We assume that agents play strategies, where a strategy Sv

of some agent v is defined as Sv ⊆ VH \{v}, i.e., the strategy
specifies to which other agents agent v wants to create an
edge. The strategies of all agents together form the strategy
profile s =

⋃
v∈VH

{(v, Sv)}.
A strategy profile s defines the created directed tempo-

ral graph G(s) = (VG(s), EG(s), λG(s)), with VG(s) = VH ,
EG(s) = {(u, v) | u, v ∈ VH ∧ v ∈ Su}, and where
λG(s) is the labeling λH restricted to the edge set EG(s), with
λG(s)((u, v)) = λG(s)((v, u)) = λH({u, v}). Thus, G(s) is
a directed subgraph of the complete host graph H that con-
tains the union of all edges that are created by the agents, i.e.,
for every edge in G(s) there is exactly one agent that wants
to create it. We use directed edges to encode the owner of the
edge, where edges are always directed away from their owner.
For reachability, these edge directions will be ignored.

Agents choose their respective strategy to minimize their
individual cost, where the cost of agent v in the created di-
rected temporal graph G(s) is defined as

cH(v, s) = |Sv|+K · |VH \RG↔ (s)(v)|,

where K > 1 is a large constant and G
↔
(s) is

the undirected version of G(s), i.e., VG↔ (s) = VG(s)

and EG↔ (s) = {{u, v} | u ∈ Sv ∨ v ∈ Su}
with λG↔ (s)({u, v}) = λH({u, v}), for all edges
{u, v} ∈ EG↔ (s). Thus, in the created temporal graph G(s),
agent v incurs a cost of one unit for each edge it creates and
a penalty of K for each agent it cannot reach via a temporal
path that ignores edge directions. Hence, agents aim to create
as few edges as possible while still maintaining undirected
temporal reachability.

Let s−v = s \ (v, Sv) denote the set of strategies of all
agents other than agent v. Now consider that v changes
its strategy Sv to S′

v . The resulting strategy profile is
s−v ∪ {(v, S′

v)} which we will abbreviate as s−v ∪ S′
v . We

say that agent v’s strategy change from Sv to S′
v is an im-

proving move, if it yields strictly less cost for agent v, i.e.,
if cH(v, s−v ∪ S′

v) < cH(v, s). If we additionally restrict
the strategy change to a single addition or deletion1, we call

1Formally, for x ∈ Sv and y ∈ VH \Sv , we have S′
v = Sv \{x}

or S′
v = Sv ∪ {y}. Note, that typically in the literature, greedy

improving moves also allow swaps, i.e. S′
v = (Sv \ {x}) ∪ {y}.

However, due to our model definition we can ignore swaps because
if swapping x for y is improving, simply adding y is also improving.



it a greedy improving move. For an example, see Figure 1.
If there is no improving move or greedy improving move of
v for s, we call Sv a best response or greedy best response,
respectively.

Given this definition, we can now define our solution con-
cepts. For a given host graph H we say that the strategy pro-
file s is in Pure Nash Equilbrium (NE) [Nash, 1950], if no
agent has an improving move. We say s is in Greedy Equilib-
rium (GE) [Lenzner, 2012] if no agent has a greedy improv-
ing move. Note, that every greedy improving move is also an
improving move and therefore every NE is also in GE.

Since we have a bijection between s and G(s), we will
use the strategy profile s and its corresponding created graph
G(s) interchangeably and we will say that G(s) is in NE (or
GE). Note that for any graph G(s) in NE or GE, it follows that
for every edge (u, v) ∈ EG(s) we have (v, u) /∈ EG(s). This
is true, since otherwise one of the agents could omit the other
from its strategy without removing the edge from G

↔
(s) and

thereby decrease its cost.
Given a temporal host graph H and a strategy profile s,

we want to compare different created graphs in terms of their
social cost. Here, the social cost of some created graph G(s)
is defined as

SCH(s) =
∑
v∈VH

cH(v, s) = |EG(s)|+K
∑
v∈VH

|VH\RG↔ (s)(v)|.

Note that the social cost of G(s) equals |EG(s)| if G
↔
(s) is a

temporal spanner. If for some host graph H the strategy pro-
file s∗H minimizes the social cost, we call s∗H a social optimum
for H and, by extension, the corresponding graph G(s∗H) a
social optimum subgraph of H , often denoted as OPT. Since
K is large, the set of social optimum subgraphs and the set of
minimum temporal spanners for H coincide.

To investigate the efficiency loss from letting agents act
selfishly towards minimizing their costs, we define the Price
of Anarchy (PoA) [Koutsoupias and Papadimitriou, 1999].
The PoA is the worst ratio between the social cost of any
stable state and the social cost of the corresponding so-
cial optimum on the same host graph. Towards a for-
mal definition, let NEH denote the set of strategy profiles
that are in NE for a given host graph H . Moreover, let
Hn,tmax denote the set of all possible complete temporal
host graphs with n nodes and a lifetime of at most tmax.
Then, the PoA, with respect to NE, is formally defined as
PoANE(n, tmax) = supH∈Hn,tmax

maxs∈NEH

SCH(s)
SCH(s∗H) . The

PoA w.r.t. GE is defined analogously. We write PoANE(n) in-
stead of PoANE

(
n,

(
n
2

))
when we consider host graphs with

arbitrary lifetime.
Lastly, we define an important property of the game dy-

namics: We say that the TRNCG has the finite improvement
property if any sequence of improving moves must be finite.

2 Computational Complexity
In this section, we prove that computing best responses and
checking strategy profiles whether they are in NE is NP-hard.
This is a significant difference to network formation games
with reachability objective where computing best responses
is computationally easy [Bala and Goyal, 2000]. This means
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Figure 2: This figure shows examples of the constructions for The-
orem 1 (left) and Theorem 2 (right), given the set cover in-
stance consisting of the universe U := {u1, . . . , u5} and the sets
M := {M1, . . . ,M3} with M1 := {u1, u2}, M2 := {u1, u2, u4}
and M3 := {u3, u5}. Additionally, on the right, we are given a set
cover consisting of M2 and M3 but not M1. This is encoded by x
buying edges towards M2 and M3 and the existence of w1.

that adding the temporal component to the model makes it
considerably harder.

Theorem 1. Given a tuple (H, s, x) consisting of a complete
temporal host graph H with lifetime t ≥ 2, a strategy profile
s, and a node x ∈ VH , computing a best response for x is
NP-hard.

Theorem 2. Deciding whether a pair (H, s) consisting of a
complete temporal host graph H with lifetime t ≥ 3 and a
strategy profile s is a NE is NP-hard.

Proof. Given a universe U := {u1, . . . , uk} of k elements
and a set of m sets M := {M1, . . . ,Mm} ⊆ P(U), deciding
whether a given set cover C ⊆ M for U is a minimum set
cover is NP-hard. We give a polynomial time reduction that,
given an instance (U,M, C), constructs a tuple (H, s) con-
sisting of a temporal host graph H and a strategy profile s.
We show that C is a minimum set cover if and only if s is a NE
for H . Instead of defining s directly, we define G := G(s).
More precisely, the host graph H is defined as follows

VH := {x, a} ∪M∪ U ∪
m⋃
i=1

⋃
uj∈Mi

{vij} ∪
⋃

Mi∈M\C

{wi}

λ(e) :=



1 if ∃Mi ∈ M \ C, j ∈ N :

Mi ∈ e ∧ {x,wi, vij} ∩ e ̸= ∅
2 if ∃Mi ∈ C, j ∈ N :

(Mi ∈ e ∧ {x, vij} ∩ e ̸= ∅)
∨e ∈ {{wj , x}, {un, a}, {uj , uj+1}}

3 otherwise.



The set of edges of G(s) is defined as follows

EG :=

n−1⋃
i=1

{(ui, ui+1)} ∪
m⋃
i=1

⋃
uj∈Mi

{
(vij ,Mi), (uj , vij)

}
∪
{
(un, a), (a, x)

}
∪

m⋃
i=1

{(a,Mi)} ∪
⋃

Mi /∈C

{(a,wi)}

∪
⋃

Mi∈C

{(x,Mi)} ∪
⋃

Mi /∈C

{
(Mi, wi), (wi, x)

}
.

Intuitively, we construct a node for each set in M and each
element in U and connect each set with all its elements via a
monotonically increasing path of length 2. See Figure 2 for
an example of the construction. The other edges are chosen so
that G is a temporal spanner and all nodes except for x play
best response. This can easily be checked for every node.
Hence, to check whether s is a NE, we only need to check
whether x plays best response.

Let C′ ⊆ M be a minimum set cover for U and Sb
x a best

response of x for s.
Consider S′

x := C′, meaning that x builds all the edges
{x,Mi} for Mi ∈ C′. We see that x can now reach every
node in G(s−x ∪ S′

x). Therefore, when C is not a minimum
set cover and therefore |C′| < |C| it follows that |S′

x| < |Sx|
which implies that s is not a NE.

Since Sb
x is a best response, x can reach every node in

G(s−x ∪ Sb
x). Suppose, x buys an edge to one of the nodes

uj or vij . Instead, x can buy an edge to a node Mi, such that
uj ∈ Mi, without breaking reachability. Therefore, there is
a best response Sb

x
′ ⊆ M. Note that x still reaches all nodes

u ∈ U in G(s−x ∪ Sb
x
′
) and u can only be reached by x if

there is M ∈ M such that x builds an edge to M . This means
that C′′ := Sb

x
′ is a set cover. Therefore, if s is not a NE, it

follows |Sb
x| < |Sx| which implies that |C′′| < |C|, so C is not

a minimum set cover.
It is obvious that this construction is computable in poly-

nomial time which concludes the proof.

While NE is a very natural solution concept, the fact that it
is computationally hard to compute best responses raises the
question of whether it can realistically model the selfishness
of the agents. Therefore, we will also consider GE because
greedy best responses are computable in polynomial time.
Proposition 3. Given a tuple (H, s, x) consisting of a tempo-
ral host graph H , a strategy profile s, and a node x ∈ VH , a
greedy best response for x is computable in polynomial time.

3 Existence and Properties of Equilibria
We discuss under what circumstances equilibria exist and
what properties they have. We start by showing that equi-
librium existence cannot be proven via potential functions.
Theorem 4. The TRNCG is not a potential game.

Note that all the strategy changes in the improving re-
sponse cycle are greedy best responses, too. This means that
it is not a potential game even with regard to GE.

Next, we show that equilibria always exist when the life-
time is t = 2 and that we can find one in polynomial time.

This contrasts the result from Theorem 1 which showed that,
even for t = 2, computing best responses is NP-hard.

Theorem 5. Let H be a complete temporal host graph with
t = 2. Then there is a strategy profile s in NE for H .

Proof. We show this by proving that H contains a spanning
tree T whose edges all have the same label. Note that any
strategy profile s such that G

↔
(s) = T is a NE.

Let Hi denote the subgraph of H on VH that contains all
edges of H of label i. We show that at least one between H1

and H2 is connected, thus proving the existence of T .
The claim trivially follows if H1 is connected. So, assume

that H1 is not connected, i.e., there is a cut (X,Y ) that is tra-
versed by none of the edges in H1. All the edges that traverse
the cut (X,Y ) are in H2. Hence, H2 is connected.

In the following, we prove that stable graphs cannot con-
tain too many edges. We first bound the number of edges for
graphs with a small lifetime t.

Theorem 6. Let H be a complete temporal host graph con-
taining n > 2 nodes and lifetime t > 1. Then any GE con-
tains at most t(n− 2) edges.

Proof. Let s be a strategy profile and G := G(s) a GE. If
there are at least n edges with some label l, some of them
form a cycle. Removing one edge from the cycle does not
change reachability among pairs of nodes. Therefore, each
label can appear at most n − 1 times. Furthermore, if there
are n− 1 edges and no cycles with the same label in G, those
edges would form a spanning tree of G that guarantees reach-
ability among pairs of nodes. Then, no other edge would be
needed. Therefore, if G contains at least two labels, each la-
bel appears at most (n − 2) times. Combined with only t
labels existing, G contains at most t(n− 2) edges.

Next, we prove an upper bound on the number of edges
in an equilibrium state independent of t. We start by intro-
ducing the concept of necessary edges which we then use to
characterize a structure that cannot appear in an equilibrium.

Definition 7 (necessary edge). Let H be a complete temporal
host graph with n agents, s a strategy profile and G := G(s).
For each edge e = (u, v) ∈ G that u buys, we define

AG(e) :=
{
x ∈ V | x ∈ RG(u) ∧ x /∈ RG−e(u)

}
.

We say that e is necessary for u to reach the agents in AG(e).

Note, that if G is a GE, AG(e) ̸= ∅ for all e ∈ EG.
Using this definition, we characterize a structure that can-

not appear in any strategy profile.

Lemma 8. Let H be a complete temporal host graph, s be
a strategy profile, and G := G(s). There cannot be nodes
z, u1, u2, x, y ∈ V and distinct edges e1x, e1y, e2x, e2y ∈ EG

such that for i ∈ {1, 2} and j ∈ {x, y}
1. {z, ui} ∈ EG↔ \ {eij};
2. eij is bought by ui;
3. j ∈ AG(eij);
4. λ({z, ui}) ≤ λ(eij). (See Figure 3.)



z

u1 u2
e1x e1y e2x e2y

{x, ...} {y, ...} {x, ...} {y, ...}

Figure 3: A forbidden structure in a strategy profile. The node z has
two neighbors u1 and u2 that both have two distinct edges that they
need to reach the nodes x and y respectively. For both of them, the
two needed edges have at least the same label as their edge to z.

Proof. Towards a contradiction, suppose there are nodes
z, u1, u2, x, y ∈ V and edges e1x, e1y, e2x, e2y ∈ EG as
defined above. W.l.o.g. λ({z, u1}) ≤ λ({z, u2}) and
λ(e1x) ≤ λ(e1y). Any temporal path from u2 to x starts
with e2x (since x ∈ AG(e2x)) and has to use e1x. Other-
wise, u1 could reach x by using {z, u1}, {z, u2} and then
the path from u2 to x without needing e1x which contradicts
x ∈ AG(e1x). The same holds for y instead of x.

Therefore, there is a temporal path P from u2 to u1,
which starts with e2x and arrives at u1 no later than
λ(e1x) ≤ λ(e1y). This means that u2 does not need e2y to
reach y since it can use P to get to u1 and travel to y from
there. This contradicts y ∈ AG(e2y).

The forbidden structure from Figure 3 implies that graphs
with at least

√
6n

3
2+n edges must contain unnecessary edges,

giving us a bound on the number of edges in an equilibrium.
Theorem 9. Let H be a complete temporal host graph with
|VH | = n agents and s be a strategy profile. If G := G(s)

contains at least
√
6n

3
2 + n edges, then G is not a GE.

Proof. Towards a contradiction, suppose that G is a GE and
|EG| ≥

√
6n

3
2 + n. As shown in the full version [Bilò et al.,

2023], there is a node z ∈ VG and a set M ⊂ VG such that
1. |M | = ⌈ 1

3

√
6n⌉;

2. (u, z) ∈ EG, for every u ∈ M ;
3. Each u ∈ M has a set Eu ⊆ EG of at least 2

3

√
6n outgo-

ing edges (u, v) with z ̸= v and λG((u, z)) ≤ λ((u, v)).
See Figure 4 for an illustration.

For each edge e ∈ Eu, let ae ∈ AG(e) be a representative
of AG(e). Note that AG(e) ̸= ∅ because G is a GE, so those
representatives always exist. For each u ∈ M , we define

Du :=
⋃

e∈Eu

{ae}.

z

u1 u2 u3 . . .

... ... ...

⌈√
6

3

√
n

⌉
nodes

≥ 2
√

6
3

√
n edges each

Figure 4: A structure that always appears in a directed temporal
graph with at least

√
6n

3
2 +n edges. A node z exists with ⌈

√
6
3

√
n⌉

neighbors via in-edges that each have at least 2
√

6
3

√
n out-edges with

a label that is at least as high as the label of their edge to z.

Intuitively, Du contains nodes that z can reach by going over
u and that u needs to buy an edge for.

We see that the forbidden structure from Lemma 8 appears
if there are two nodes u, v ∈ M such that |Du ∩ Dv| ≥ 2.
We can therefore assume |Du ∩ Dv| ≤ 1 for all u, v ∈ M .
Also, for e, e′ ∈ Eu we have AG(e) ∩ AG(e

′) = ∅ since
there cannot be two edges that are necessary for u to reach
the same node. From this, we get |Du| ≥ |Eu| ≥ 2

3

√
6n.

Using the inclusion-exclusion principle, we get∣∣∣∣∣ ⋃
u∈M

Du

∣∣∣∣∣ ≥ ∑
u∈M

|Du| −
∑

{u,v}⊆M,u̸=v

|Du ∩Dv|

≥
⌈
1

3

√
6n

⌉
2

3

√
6n− 1

2

⌈
1

3

√
6n

⌉(⌈
1

3

√
6n

⌉
− 1

)
>

⌈
1

3

√
6n

⌉
2

3

√
6n− 1

2

⌈
1

3

√
6n

⌉
1

3

√
6n

=

⌈
1

3

√
6n

⌉
1

2

√
6n ≥ n.

This is a contradiction since G has only n nodes.

4 Quality of Equilibria
Finally, we characterize the quality of equilibra by analyzing
the Price of Anarchy (PoA). We show that the PoA with re-
gard to NE and GE are within a log(n)-factor of each other,
meaning that any bound on the easier to analyze Greedy Equi-
libria also yields a bound for Nash Equilibria. We the proceed
to give several upper and lower bounds.

For analyzing the PoA, we start by upper bounding the
cost of the social optimum. The following result follows
from [Casteigts et al., 2021].
Theorem 10. Let H be a complete temporal host graph with
|VH | = n agents and OPT be a social optimum for H . Then
SCH(OPT) = |EOPT| ∈ O(n log(n)).

Whether we consider NE or GE has an impact on the PoA.
However, we show that these two PoA’s differ only by at most
a factor of O(log(n)).
Theorem 11. PoAGE(n) ≤ O(log(n))PoANE(n).

Proof. Let H be a complete temporal host graph with n
vertices and lifetime t. Moreover, let s be a strategy pro-
file in GE and let s∗H the social optimum for H such that
PoAGE(n) = SCH(s)

SCH(s∗H) . We construct a new temporal host
graph H ′ by relabeling all edges not in G(s) to t+ 1.

First, we argue that s is in NE with respect to H ′. Consider
a strategy change for a node u that removes k edges and adds
l edges. Since s is stable against edge removal, removing
those k edges will lead to at least k nodes no longer being
reachable from u. Additionally, agent u can use the l added
edges only to reach the other endpoints of the edges since all
edges not in G(s) have a higher label in H ′ than all the edges
in G(s). Therefore, for agent u to reach everyone after the
strategy change, we need k ≤ l which means that the strategy
change is not an improving move.

We also have SCH(s) = SCH′(s) and SCH(s∗H) ≥ n− 1.
Let s∗H′ be a social optimum for H ′. By Theorem 10



we have SCH′(s∗H′) ∈ O(n log(n)), from which we get

SCH(s∗H) ∈ Ω
(

SCH′ (s∗H′ )

log(n)

)
and therefore

SCH(s)

SCH(s∗H)
≤ O(log(n)) SCH′(s)

SCH′(s∗H′)
≤ O(log(n))PoANE(n)

which proves the claim.

When considering the PoA with respect to a fixed max-
imum lifetime tmax instead of a fixed n, we get an upper
bound for the PoA of tmax.
Theorem 12. For fixed maximum lifetime tmax, we have
PoAGE(n, tmax) ≤ tmax − tmax

n−1 . For tmax = 2, we have
PoAGE(n, 2) = PoANE(n, 2) = 2− 2

n−1 .

Proof sketch. The upper bound on PoAGE(n, tmax) follows
directly from Theorem 6 by lower bounding the social cost of
the optimum with n− 1.

For the tight lower bound when tmax = 2 which also holds
for PoANE(n, 2), we construct the graph from Figure 5.
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Figure 5: Left: A NE containing 2(n − 2) edges and only 2 labels.
All edges not taken have label 2. Right: A 3-dimensional hypercube.
Each node corresponds to a bitstring of length 3. An edge exists
between two bitstrings if they differ in exactly one position. The
label of an edge is the position that the incident bistrings differ in.

We show that the PoA scales at least logarithmically with
n by giving a class of host graphs that have equilibria which
are by a logarithmic factor worse than the social optimum.
Theorem 13. It holds that PoANE(n) ∈ Ω(log n).

Proof. Let n ≥ 8 be a power of 2. Kempe et al. [2002]
proved how to label a log(n)-dimensional hypercube with la-
bels in {1, . . . , log(n)} so as the resulting temporal graph is a
minimal temporal spanner. The idea of our proof is to define
the host graph H on n nodes so that it contains the log(n)-
dimensional hypercube which is a NE regardless of the strat-
egy profile that generates it, and a spanning tree formed by
edges having the same label 1 + log(n).

Formally, the nodes are bitstrings of length log(n).
The complete host graph H is defined as follows

VH :=
{
b1b2...blog(n) | ∀1 ≤ i ≤ log(n) : bi ∈ {0, 1}

}
λ({u, v}) :=

{
i if u and v differ only in position i;

log(n) + 1 otherwise.
The strategy profile s induces a graph G := G

↔
(s) with

EG↔ :=
{
{u, v} | v and u differ in exactly one bit

}
.

Figure 5 shows an illustration of G for n = 8.
Since n ≥ 8, H contains a spanning tree OPT whose edges

are all labelled with log(n) + 1. Since OPT is a temporal
spanner, it is a social optimum with SCH(OPT) = n− 1.

G is a hypercube graph containing n
2 log(n) edges and

therefore SCH(G) = n
2 log(n). If G is a NE, we get the

desired bound

PoANE(n) ≥
SCH(G)

SCH(OPT)
=

n
2 log(n)

n− 1
∈ Ω(log n).

Finally, we argue that G is a NE. First, we observe that
there is exactly one temporal path from every node u to every
other node v. When considering the bit strings of these two
nodes, the path flips all of the bits that are different in u and
v in ascending order. By definition of H , all of those edges
exist and are labeled in ascending order.

Secondly, note that all edges {u, v} ∈ EG↔ are needed
by both of their end points to reach each other. By definition
of EG, the bitstrings of u and v differ only in one position
p. When removing the edge {u, v}, a temporal path starting
from u has to flip another bit than p. In a temporal path on G,
this bit can never be flipped back, so v cannot be reached. We
also observe that buying other edges outside of EG cannot
replace any edge in EG.

Hence, G is a temporal spanner and no agent can improve
their strategy, which makes s a NE.

An upper bound for the PoA follows from Theorem 9.
Corollary 14. PoAGE(n) ∈ O(

√
n).

Proof. This follows from Theorem 9 and by lower bounding
the social cost of the optimum with n− 1.

5 Conclusion and Outlook
In this paper, we combine game-theoretic network creation
with temporal graphs. To this end, we defined and analyzed
the Temporal Reachability Network Creation Game.

Even though we consider a restricted setting with unit
cost on each edge and a complete host graph, we show NP-
hardness for computing best responses and for deciding NE,
showing that adding temporal aspects to the model makes it
much harder. As our main contribution, we show non-trivial
structural properties of equilibria and use them to derive sev-
eral upper and lower bounds on the Price of Anarchy.

Since the upper bound of O(
√
n) on the PoA only uses

one local property, we believe that the PoA is closer to our
lower bound of Ω(log(n)). Another important open question
is settling the existence of equilibria for all complete temporal
host graphs. We conjecture that equilibria exist, but, based on
our efforts, even proving this for lifetime t = 3 is challenging.

We laid the groundwork for future research in this field.
There are many natural extensions of our model. As far as
agent strategy is concerned, the agents might want to min-
imize the distance to all others or, due to the time attribute
introduced by our model, the agents may want to minimize
their arrival time at the other agents. Also structural proper-
ties of the host graph could be altered. For enhanced realism,
the edges could be directed, have non-uniform buying costs,
and/or non-instant traversal times. The rules of the game can
also be adjusted, for example by allowing cooperation.
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