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ABSTRACT
Recognizing disturbed text in real-life images is a difficult problem,
as information that is missing due to low resolution or out-of-
focus text has to be recreated. Combining text super-resolution and
optical character recognition deep learningmodels can be a valuable
tool to enlarge and enhance text images for better readability, as well
as recognize text automatically afterwards. We achieve improved
peak signal-to-noise ratio and text recognition accuracy scores
over a state-of-the-art text super-resolution model TBSRN on the
real-world low-resolution dataset TextZoom while having a smaller
theoretical model size due to the usage of quantization techniques.
In addition, we show how different training strategies influence the
performance of the resulting model.

KEYWORDS
optical character recognition, image super-resolution, deep learn-
ing, unfocused images
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1 INTRODUCTION
When taking photos of text, information might get lost due to an
insufficient resolution, wrong focus, or shaking of the camera.

Image super-resolution is concerned with increasing the res-
olution of low-resolution images without losing information or
increasing noise. State-of-the-art image super-resolution models
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decode visual information and up-sample the extracted feature
vectors.

In addition to increasing the picture resolution, it is also bene-
ficial to detect text so that it can be read out without the need to
manually look for text in fine details. Optical character recognition
in natural scenes showed vast progress in the last time. Transform-
ers are using a self attentionmechanism [15] on semantic, positional
and visual information [18] to extract text from natural scenes.

Combining both approaches might increase the results of optical
character recognition on low-resolution images and distant text. As
current deep learning models include many layers and computation,
it is essential to reduce the model size and computation cost to a
minimum while keeping the performance.

To reduce the model size and computational cost, quantization
exploits the fact that 32-bit floats catch more information than
needed and thus reduces the bit-width of parameters.

This work combines a state-of-the-art super-resolution network
specifically trained for scene text images and a state-of-the-art scene
text recognition model to maximize accuracy on the TextZoom
dataset. Also, post-training quantization is used and analyzed to
reduce the model size as much as possible without degrading the
performance.

We provide the code for this work in a Google Drive folder. Please
follow the provided link1.

2 RELATEDWORK
Image super-resolution (SR) made major progress in the last few
years. The first method of SR used interpolation to increase the
resolution of images. However, interpolation introduces a lot of
noise into images and does not include semantic information from
the image. With the introduction of deep learning architectures
like convolutional neural networks (CNN) or Laplacian feature
pyramids into super-resolution, the precision with which images
were resized increased [6, 14]. One of the latest improvements
combined an enhanced residual neural network (EDSR) [12] with a
Resampler Network into a Content-Aware Resampler (CAR) [13].
This way, low-resolution representations of high-resolution images
are learned, which in turn help to further train the SR model. Their
SR model achieves top performance in two times upscaling on

1https://drive.google.com/drive/folders/1L0Q1W1Rr4lIcuMpzNXVV5452FMJfj4Om?
usp=sharing
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multiple common image super-resolution datasets like Set5 [3],
Set14 [17] or Urban100 [10]. A subfield of image super-resolution
is text super-resolution (TSR). By focusing on reconstructing high-
resolution text images, themodel training and design can be adapted
to the characteristics of text images. Many approaches for TSR aim
at capturing sequential text information by implementing recurrent
neural networks or transformer layers in their TSR model [4, 16] for
enhanced text clarity. Others specifically design the loss to focus
on text reconstruction. One version of this is the so-called text
focus loss [4]. Besides using the mean squared error of the high-
resolution image and the low-resolution image, a transformer-based
OCR model is trained, based on which two new terms to the loss
function are added:

• The position loss is computed by utilizing the attention
maps from the transformer. The attention maps are used
to compute the L1 loss between the pixels containing the
letters in the high-resolution image and the SR image.

• The recognition loss is based on a modified cross-entropy
loss from the text prediction of the transformer OCR model
and the text annotation of each image.

Using this loss both improved the SR model trained with this loss
aswell as the optical character recognition (OCR) accuracy on the
SR images.

OCR is one of the many text-related computer vision challenges
which are tackled using deep learning. Segmentation-free scene
text recognition tries to capture text in images as a whole by text
to an image. Nowadays, this area can be divided into connectionist
temporal classification-based methods, and attention-based meth-
ods [5]. Many new proposed scene-text-recognition methods are
attention-based to capture positional information without the limi-
tations of a short-term memory [9, 18].

One way to reduce model size is to quantize parameters. To
quantize parameters after training, different methods have been
proposed. Uniform quantization evenly divides the range of possi-
ble values into a given range, which is often set to the minimum
and maximum values of the weights, in buckets, to which each
value is assigned [7]. Another method, Analytical Clipping for Inte-
ger Quantization, defines an optimal clipping range per bit-width,
arguing that weight values are often not uniformly distributed, but
have a gaussian or laplacian distribution [2].

3 DATASET
We use the TextZoom dataset [16]. This dataset contains 21740 low-
resolution and high-resolution image pairs of text, which all are
annotated with the text depicted in each image. The high-resolution
images have a resolution of 32 x 128, and the low-resolution im-
ages have a resolution of 16 x 64. They were created by capturing
the same subject as in the high-resolution image with a differ-
ent focal length. Depending on how much the focus was changed
compared to the high-resolution image, the authors of TextZoom
divided the images into easy, medium, and hard subsets with 1619,
1411, and 1343 test samples, respectively. The authors of the scene-
text-telescope [4] split the dataset into 17367 train low and high-
resolution image pairs and test low and high resolution 4373 image
pairs. Two examples of low and high-resolution image pairs from
the hard test set can be found in Figure fig. 2.

Figure 1: Modified architecture as proposed by Chen et al. [4]
with substituted models.

4 METHODOLOGY
In this section, we first explain our model architecture, which con-
sists of an image super-resolution model and an optical character
recognition model, and how we train both models. Afterwards, we
illustrate how we quantize both models.

4.1 Architecture
To perform OCR on the out-of-focus low-resolution images, we
combine an OCR model with an Image Super-Resolution (SR), as
proposed by [4]. The architecture is depicted in Figure 1. The goal
of this step is to improve the OCR performance with this additional
model compared to simple interpolation algorithms.

4.1.1 Image Super-Resolution Model. Instead of using an SR model
specifically designed for text images, we follow a different approach
by using an SR model, which was trained the DIV2K image super-
resolution dataset [1] and evaluated on multiple commonly used
SR datasets like Set5 [3], Set14 [17], or Urban100 [10]. We reuse the
knowledge gained from non-text images, which are captured in the
trained model, and fine-tune it on our dataset to re-purpose this
knowledge for improved text super-resolution. Instead of changing
the model architecture to optimize for text images, we rely on the
text-focused loss [4], explained in the previous section, to optimize
the SR images for OCR.

As SR model, we choose an EDSR for image super-resolution
[12], which was trained together with a Resampler Network, that
produces learned intermediate low-resolution images as proposed
by [13], where they were able to train on high-resolution images
and improve the EDSR. Our configuration of this network uses 32
Res-Blocks with 256 channels to double the image resolution.

We will use the previous best model on the TextZoom dataset
TBSRN [4] as a comparison throughout this paper, which first
feeds the low-resolution images into a Spatial Transformer Network
(STN) [11] for text orientation correction. For a fair comparison,
we added the same STN as the first step to our model and used the
output of the STN as input for the EDSR.

4.1.2 Optical Character Recognition Model. For the optical text
recognition, we use the CDistNet model [18]. The model uses a
classic encoder-decoder architecture. The encoder uses three com-
putational branches to process semantic, visual, and positional
information. The visual branch uses a ResNet50 [8] and a three-
layer transformer unit with self-attention to build a visual feature

2
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map. The semantic branch captures information about previously
seen characters of the sequence. The positional branch embeds the
position of a character in the sequence into the model.

For the decoder, they proposed a block named MDCDP. It uses
multi-head self-attention [15] to enhance the positional features.
These are then used in a cross-branch interaction to query the
semantic and visual branches, which are then combined to get a
position-aware semantic-visual embedding. These MDCDP blocks
are stacked multiple times to enhance the gained information [18].

4.1.3 Training. Our training process consists of two separate steps:
First, we train our SR model on the training subset of TextZoom
with the text-focus-loss [4], which we explained in Section 2.

Second, we fine-tune the OCR model on the SR images. Since
the SR images are not identical to the high-resolution images due
to imperfect super-resolution models, we want to give the OCR
model the possibility to learn from these imperfections to improve
the recognition accuracy.

We find that splitting the training into these two separate steps
improves both the image quality of the SR image and the recognition
accuracy compared to adding the loss of the OCR model as an
additional term to the first training step.

4.2 Quantization
To reduce model size during inference, we use post-training quan-
tization with different bit widths on specific layers. We use the
post-training quantization method Analytical Clipping for Integer
Quantization (ACIQ) proposed by [2]. In particular, they propose
to clip the tensors using the assumption that parameter values
of tensors in neural networks are not uniformly distributed. The
values of a tensor often have a bell-shaped curve. Using this fact,
they dynamically compute the clipping ranges, reducing the mean
square error on a tensor level. They use the assumption that the
tensors have a Gaussian or Laplacian distribution [2].

We quantize different layer types and blocks of used models and
assessed their performance after quantization. As bit widths, we
evaluated 2, 3, 4, 5, 6, 7, and 8 bit.

5 RESULTS
In this section, we present the intermediate scores of the combina-
tion of the EDSR, CDistNet, and our two-stage training and show
the final results of applying post-training quantization.

EDSR & CDistNet Finetuning. As a first step, we show the text
recognition scores on the SR images from EDSR and TBSRN be-
fore and after fine-tuning CDistNet to the SR images in table 1.
This table shows that fine-tuning CDistNet to the SR images im-
proves the recognition accuracy. Since fine-tuning CDistNet on the
high-resolution images yields worse results than fine-tuning on
the SR images, we know that the OCR model is learning more than
just the characteristics of the dataset we use. This proves that the
SR images have certain characteristics that are distinct from the
high-resolution images but contain information that helps the OCR
model recognize the text. We can also observe that our approach
of finetuning outperforms TBSRN and a comination of EDSR and
cDist without our finetuning.

SR
Model

Finetuned
CDistNet

Accuracy
Easy Medium Hard Avg.

TBSRN HR 80.48 64.99 50.63 65.37
TBSRN SR 84.19 69.81 55.55 69.85
EDSR HR 79.74 63.22 49.59 64.18
EDSR SR 85.05 71.37 56.81 71.08

Table 1: Effect of fine-tuning CDistNet on on the upsampled
images of the super resolution networks. The best score in
each column is highlighted bold.

SR
Model Quantization Bit Average

PSRN
Average
Accuracy

Model
Size(MB)

TBSRN

None - 21.15 69.85 2190.08
SR 4 21.15 70.35 2108.64
OCR 5 21.15 69.38 1065.89
SR + OCR 6 21.12 69.85 1031.90

EDSR

None - 21.42 71.08 3457.40
SR 4 21.23 70.23 2331.32
OCR 5 21.42 70.57 2333.21
SR + OCR 7 21.41 71.28 1329.20

Table 2: Comparison of different quantization settings. We
show the best results for quantizing the SR and OCR models
individually and together.

Comparison with Interpolation. From an efficiency perspective,
we also have to justify using deep learning instead of traditional
interpolation techniques. Therefore we compared our approach and
the TBSRN with fine-tuned OCR model to bicubic interpolation.
The text recognition accuracies for both deep learning approaches
are significantly higher than the ones of the OCR model on the
interpolated images, with an average accuracy of 71.08 for our ap-
proach, 69.85 for TBSRN + fine-tuned OCR model and 61.47 for
bicubic interpolation with a fine-tuned OCR model. In addition,
the accuracies from table 1 without fine-tuning CDistNet to the SR
images are higher than the accuracy on the interpolated images,
which shows that the higher accuracy when using deep learning
for upscaling does not only come from fine-tuning CDistNet.

Quantization. Finally, we apply the ACIQ quantization to the
models. First, we had to select which of the layers we want to
quantize. As shown in table 2, different layers react differently to
quantization, which results in more or less performance degrada-
tion. We found that the following layers in the super-resolution
models could be quantized without major performance degradation
to 8-bit: convolutional layer, linear layer, multi-head attention layer
(TBSRN only), position-wise feed-forward layer, fully connected
layers in the STN, and every layer from the head and body (EDSR
only). In the OCR model, the following layers could be quantized:
linear layer, multi-head attention layer, self-attention layer, and
fully connected layer in the localization network.

For both super-resolution models, we compare four different
cases in table 2: No quantization as a reference, quantizing only
the super-resolution model (QSR), quantizing only the OCR model

3
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(QOCR), and quantizing both models together. We tested quantiza-
tion from 8 down to 2 bits for every configuration and show the
results with the smallest possible model relative to the original
model size that did not result in major performance degradation
in table 2. We sum the corresponding bit size for every quantized
parameter and 32 bits for every unquantized parameter to calculate
the theoretical model sizes.

We can observe that the text recognition accuracy is more sen-
sitive to quantization with variations of over 1% when using the
EDSR and almost 0.97% when using TBSRN, while the maximal
PSNR variation lies at only 0.19 for the EDSR and only 0.03 for
TBSRN.

Both the mean PSNR and the mean accuracy, as well as every
PSNR and accuracy on the individual test subsets of our 7-bit quan-
tized fine-tuned model combination of the EDSR and CDistNet
perform better as the unquantized combination of TBSRN with
CDistNet while being over 800 MB smaller in theoretical model size.
The mean accuracy of our 7-bit quantized model is even higher
than of our unquantized model. This can be explained with possible
regularization through quantization and can also be seen in the
comparison of the mean accuracy of the 4-bit quantized TBSRN
and unquantized CDistNet of 70.35 with the mean accuracy of the
unquantized TBSRN and unquantized CDistNet of 69.85.
Two examples from the hard test dataset where our approach per-
forms better than TSBRN even with fine-tuned CDistNet can be
seen in Figure 2. We show the low-resolution and high-resolution
images annotated with the correct text label together with the
TBSRN SR image and our fine-tuned EDSR SR image, which are
annotated with the CDistNet text predictions on them. Correctly
predicted letters are coloured green, and incorrectly predicted let-
ters are coloured red.

(a) LR "animales" (b) TBSRN "annmales"

(c) Ours "animales" (d) HR "animales"

Figure 2: Comparison of TBSRN + CDistNet quantized to 6
bits and EDSR + CDistNet quantized to 7 bits on two example
test images.

It has to be mentioned that the overall smallest model is achieved
when quantizing TBSRN together with CDistNet.
Since we achieve higher scores with a comparably small model,
which is underlined by the noticeably improved readability shown
in Figure 2, we argue that using our model offers a better trade-
off between model size and prediction results than the quantized
TBSRN with CDistNet and definitely is a better trade-off than the
original TBSRN with CDistNet.

6 CONCLUSION AND FUTUREWORK
We demonstrated how text super-resolution improves OCR even
with a very powerful state-of-the-art model like CDistNet. We fur-
ther showed that for our use case, text recognition aware training is
sufficient to optimize an image super-resolution model to work on
text images, and using a general-purpose super-resolution yields
better results compared to a specially designed text super-resolution
model due to the possibility of knowledge transfer from non-text
related super-resolution datasets.
Furthermore, we achieved state-of-the-art performance at a smaller
theoretical model size than the previously best model on this dataset.
This would lead to less memory and energy consumption, in addi-
tion to faster execution times on low-power devices that can take
advantage of this low precision representation.
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