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� A unifying framework for evolutionary processes.
� Formalizing the defining properties of the different kinds of processes:

○Variation operators (mutation and recombination).○Selection operators.
� Formalizing several common examples of these operators in terms of our framework.
� Proving that these common operators respect the properties that we define for their class.
� Casting several classical models and algorithms from both fields into our framework.

a r t i c l e i n f o

Article history:
Received 27 November 2014
Received in revised form
8 July 2015
Accepted 15 July 2015
Available online 26 July 2015

Keywords:
Population genetics
Evolution
Evolutionary computation
Mathematical modelling

a b s t r a c t

The theory of population genetics and evolutionary computation have been evolving separately for
nearly 30 years. Many results have been independently obtained in both fields and many others are
unique to its respective field. We aim to bridge this gap by developing a unifying framework for
evolutionary processes that allows both evolutionary algorithms and population genetics models to be
cast in the same formal framework. The framework we present here decomposes the evolutionary
process into its several components in order to facilitate the identification of similarities between
different models. In particular, we propose a classification of evolutionary operators based on the
defining properties of the different components. We cast several commonly used operators from both
fields into this common framework. Using this, we map different evolutionary and genetic algorithms to
different evolutionary regimes and identify candidates with the most potential for the translation of
results between the fields. This provides a unified description of evolutionary processes and represents a
stepping stone towards new tools and results to both fields.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Evolutionary computation and population genetics share a com-
mon object of study, the evolutionary process. Population genetics
tries to understand the evolution of natural populations while evolu-
tionary computation focuses on designing and understanding artificial
evolutionary processes used for solving optimization problems.
Both fields have developed independently, with very little interaction
between them.

Population genetics (PG) studies how evolution is shaped by
basic forces such as mutation, selection, recombination, migration
among sub-populations, and stochasticity; it forms the core of the
modern understanding of evolution (the so-called “modern synth-
esis”). PG has a long tradition of mathematical modelling, starting
in the 1920s with the pioneering work of Fisher, Wright, Haldane
and others, and is now a highly sophisticated field in which
mathematical analysis plays a central role. Early work focussed
on simple deterministic models with small numbers of loci, aiming
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at understanding how the change in genotype frequencies in a
population was affected by basic evolutionary forces. It has since
branched out to investigate topics such as the evolution of sexual
reproduction, the role of environmental fluctuations in driving
genetic change, and how populations evolve to become indepen-
dent species. Almost all current PG models are restricted to the
simplest fitness landscapes. Since natural fitness landscapes are
likely to be far more complicated, indeed too complicated to ever
be measured completely, there is a need for a theory that describes
the speed of adaptation over a broad range of landscapes in terms
of just a few key features.

In evolutionary computation (EC), the evolutionary algorithm is
the basic object of study. An evolutionary algorithm is a computa-
tional process that employs operators inspired by Darwinian
principles to search a large state space. The basic scheme of an
evolutionary algorithm is depicted in Fig. 1. However, specific
concrete evolutionary algorithms differ in the details of each step,
for example how elements are selected for reproduction or
survival, or which variation operators are used. Evolutionary
algorithms typically deal with finite populations and consider
classes of fitness functions, in contrast with PG that mostly deals
with specific instances. Moreover, these classes can be of arbitrary
complexity, such as in the case of combinatorial optimization,
again in contrast with PG, where mostly the simplest landscapes
are considered.

As can be seen, the questions and approaches both fields take
are very different. However, the underlying processes share strik-
ing similarities. The basic processes of variation and selection, as
proposed by Darwin, seem to be required, though these can
appear in many different forms. Is there something general that
could be said about evolutionary processes? Can we compare
different evolutionary processes in a common framework, so that
we can identify similarities that may not be obvious? What are the
general features of an evolutionary process? What are the required
properties of operations such as mutation or recombination? In
fact, what is an evolutionary process?

In order to tackle these questions, we propose a general
framework that is able to describe a wide range of evolutionary
processes. The purpose of such a framework is to enable compar-
isons between different evolutionary models. We require this
framework to be modular, so that different components of the
evolutionary process can be isolated and independently analysed.
In nature, this separation between the different processes does not
necessarily exist. However, even when the different processes
become entangled with each other, if the dynamics are slow
enough, as is typical in natural systems, their relative order in
the life-cycle becomes largely irrelevant. This will allow us to
identify evolutionary regimes and evolutionary algorithms that are
similar, allowing translation of results between the two fields.
Furthermore, comparing related but different models and algo-
rithms will allow us to disentangle the relative role of different
processes or choices of process for the speed of adaptation.

A general framework for evolutionary models that is able to
integrate models from both EC and PG in a way suitable for
comparison should display the following properties:

� The framework should be able to represent the vast majority of
different evolutionary processes in a common mathematical
framework.

� The framework should be modular with respect to the different
mechanistic processes of evolution (mutation, selection, etc.)
and describe evolutionary processes as compositions of these
processes.

� It should be able to describe both finite and infinite populations
and make it easy to relate infinite population models to their
stochastic counterparts.

In this report we propose such a framework and we show that
by instantiating several evolutionary processes within this frame-
work we can find unsuspected similarities between different
evolutionary algorithms and evolutionary regimes.

There have been several attempts at creating a general frame-
work to describe different models in both PG and EC (Altenberg,
1995; Affenzeller, 2005), although none that created a general
framework to describe different models in both. In the following
section we review some of these other attempts at general models
of evolution.

2. Related work

2.1. Population genetics models

In population genetics the dynamics of evolution are typically
described in terms of the dynamics of allele or genotype
frequencies. In a certain sense, this type of framework is a
general model of evolution, albeit not a very useful one, because
of its generality. It is akin to saying that the theory of differential
equations is a general model of dynamics. However, there have
been a few attempts at formalizing this dynamical process into
more structured forms, suitable for comparison between differ-
ent models.

Lewontin (1964) first introduced a general model of evolution
for deterministic systems that is cast in terms of frequencies of
genotypes. In this model, a basic recursion is defined that describes

Fig. 1. A basic description of an evolutionary algorithm.
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a canonical evolutionary system:

pðtþΔtÞ ¼
X
y;zAG

Tðx’y; zÞwðy; zÞ
w2 pðyÞpðzÞ;

where p(x) represents the genotype frequency over the search space
S, w(x) represents the fitness of genotype x and Tðx’z; yÞ is the so-
called “genetic operator” that represents the probability (or rate) of
generating genotype x from parents y and z due to the combined
action of genetic operators (mutation, recombination, etc.). If
reproduction is asexual and only selection is acting on the popula-
tion, this operator will have a simple form, while more complex
transmission will yield less simple forms. This model has been used
to obtain a number of results for particular instances of the T
operator (Slatkin, 1970; Cavalli-Sforza and Feldman, 1976). In order
to unify several models of genes controlling transmission processes,
Altenberg (1984) utilized and gave the first analysis of general
transmission operators, which has since then be extended and
analysed in much broader contexts (Altenberg and Feldman, 1987;
Altenberg, 2010, 2012).

In the same spirit as the previous model, Barton and Turelli
(1991) and Kirkpatrick et al. (2002) proposed a model that
structures the different components of the evolutionary process.
While the general form of Lewontin's model introduced by
Altenberg (1984) leaves the transmission in general form so that
it can represent any model of reproduction, here the focus is on
allele frequencies and their associations between different loci. In
the deterministic case, this model amounts to a change of
coordinates that facilitates algebraic manipulation. When the
population is at “linkage equilibrium”, or close to it, the model
takes an especially simple form. This framework uses the notion of
“context” in order to model many different situations, from
structured populations (where the context is the physical location)
to epistasis (where the context is the genetic background) and
tracks associations between different sets of genes. This model
makes it very easy to deal with multi-locus systems, from an
algebraic point of view, and it has been used to address several
questions, for example regarding the role of epistasis in different
demographic conditions (Turelli and Barton, 2006; Barton and
Turelli, 2004).

Both previous examples of a general framework focus on the
dynamics of genotype or allele frequencies and are appropriate for
analysis of different models. However, both frameworks are very
tailored for biological systems, where selection assumes a parti-
cular form. For this reason, even though some modifications could
be implemented, we believe that they lack some of the flexibility
required to compare the structure of models in EC and PG.

Another type of general framework is exemplified by the
approach that quantitative genetics takes: a purely phenotypic
description of the evolution of some continuous trait (Falconer and
Mackay, 1996). In this approach, a population is characterized by
its genetic variance and its contribution to fitness. Typically, a
decomposition of this genetic variance is used that partitions it
into components that can contribute to the advance of the
population with different relative strengths. This approach is only
useful when (at least some) genetic recombination is assumed.
Different processes (such as mutation) can be included in this type
of framework by calculating their contribution to the genetic
variance of the population. The fundamental relation in this
framework is the so-called breeder's equation: R¼ βVA, where R
is the one generation increase of the mean of a given trait, β is the
selection gradient, and VA is the additive genetic variance of the
population. More generally, one can write recursions for all
moments of the distribution of phenotypes in the population.
Different selection schemes can be cast into this framework, which
has been of considerable value in animal breeding. In particular,

results concerning the ultimate increase in a trait given a certain
initial standing variation in a population, or optimal selection
strategies were obtained under this framework. One drawback of
this approach is that the recursions do not close, since the change
in one of the moments depends on the next highest order
moment. The downside of this framework is that it absolutely
ignores the dynamics of the underlying genes and their relation-
ships, and models all processes as effects on the dynamics of the
genetic variance (or other statistical descriptors) of the population.
This makes this framework unable to tackle questions about the
optimality of different processes or about dynamics of genes or
importance of genetic architecture. However, this approach is
related to the previous one, by Barton and Turelli: if one rewrites
the recursions in terms of allele frequencies one gets a form very
close to the one these authors obtained.

An even more general framework of evolution comes in the
form of the Price equation (Price, 1970, 1972). This equation
assumes a population of replicating entities and considers the
mean increase in some arbitrary property of these entities, which
can be a trait, or fitness itself. If we assume that each individual in
the population has a relative number of offspring wi ¼ ni=

P
jnj,

then the change of the mean of the trait z in one generation will be
wΔz¼ Covðwi; ziÞþE½wiΔzi�. This approach is very general and
related to the approach taken by quantitative genetics. Because
the nature of this trait is not specified and the replicating entities
are also abstract, this type of approach has been used to derive
results in social evolution, and has influenced many other fields.
The generality and simplicity of the Price equation make it very
useful in comparing different mechanistic models and reduce
them to their most fundamental characteristics.

Other general approaches to evolution have also been
attempted. For example, genetic algebras (Schafer, 1949) were a
field of active research some decades ago, but progress has slowed
down considerably in later years. This approach identifies regula-
rities in genetic inheritance rules with operations in mathematical
algebras and describes the evolution of these populations. Genetic
algebras are highly mathematical; their focus is in describing the
consequences of different inheritance rules for the evolution of
populations and seem less appropriate to describe other genetic
operations such as mutation.

2.2. Evolutionary computation

Evolutionary algorithms (EAs) represent a category of algo-
rithms which mimic artificial evolution of candidate solutions in
order to solve or to produce approximate solutions to design and
optimisation problems. There exist countless EA variants, often
characterised by different principles inspired by nature or related
to different problem domains. This made the attempts to unify
models of EAs often scattered, or limited to some specific branch
of computer science.

De Jong (2006) characterises a Darwinian evolutionary system
by a set of core components: one or more populations of
individuals competing for limited resources; the notion of dyna-
mically evolving populations due to birth and death of individuals;
a concept of fitness which reflects the ability of an individual to
survive and reproduce; and a concept of variational inheritance:
offspring resemble their parents but are not identical. Further, De
Jong models the evolutionary algorithms by three general pat-
terns: a population of constant size m is evolved over time, the
current population is used as a source of parents to produce n
offspring, and the expanded population is reduced from mþ n to
m individuals. The specifications of an EA are the parameters m
and n, the method for selecting the parents, the survival selection
to reduce the population after reproduction to the original size,
and how the reproductive process works.
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Primarily inspired by the Simple Genetic Algorithm (SGA), Vose
(1999a) has summarised many heuristic searches into a single
framework, the so-called Random Heuristic Search. In this frame-
work, a heuristic search can be seen as a collection/population of
initial search points P0 from the set of all possible search points G
where jGj ¼ 2n, together with some transition rule τ to produce a
new population from a given one. The search is then described by
the series of transformation P0-

τ
P1-

τ
P2-

τ ⋯ . The analyses of such
a model require the characterisation or localisation of a given
population, e.g. the current population, in the space of all possible
populations. This is done with population vectors: a population
vector of P is a real vector of length n and each component of the
vector corresponds to the frequency of a specific element of G in P.
Thus the set of all possible populations is the simplex
Λ¼ f〈p1;…; pn〉∣p1þ⋯þpn ¼ 1g. This is similar to the typical
descriptions of populations used in PG, and detailed in the
previous section. The advantage of this representation is that it
is not necessary to specify the population size, e.g. it is easy to
make assumptions about large or infinite populations. Several
theoretical results, such as convergence rates, were deduced based
on the properties of the admissible transition rules for large
populations (see Vose, 1999a for a summary).

From a geometrical perspective, Moraglio (2007) has proposed
a unifying framework to look at evolutionary algorithms. The
framework requires a geometric structure to be identified on the
space of solutions or the genotype space. Such a structure can be
discovered by finding a metric distance measure between solu-
tions, e.g. satisfying the symmetry and the triangle inequality.
Based on the metric distance, several geometric objects, such as
segments, balls or convex objects, can be defined. Then evolutionary
operators can be categorised into geometric and non-geometric
ones with respect to the distance measure. For example, a
geometric recombination operator of two parent solutions should
guarantee that the offspring will lie on the segment defined by the
parents. From that the population can be represented by a certain
“shape”, e.g., the convex hull enveloping the individuals, and the
algorithm evolves by modifying this shape. Several theoretical
results, such as the runtime, can be deduced from the geometric
properties of the operators and the search space (see Moraglio,
2011). Many evolutionary operators are geometric under an
appropriate metric distance measure, while for others it is
unknown if such a distance measure exists. In addition, the global
characteristic, e.g. non-zero probability of moving the population
to any region of the search space in one step, of many variation
operators is sometimes uncovered by geometric arguments
(Moraglio and Sudholt, 2012). In related work, Droste and
Wiesmann (2000) proposed a set of design guidelines for evolu-
tionary algorithms. These included a set of desirable properties to
be met by the recombination and mutation operators, as well as
the genotype–phenotype mapping. Some of these properties are
similar to those described in Section 4 of this paper.

Rabani et al. (1998) and Rabinovich et al. (1992) suggested
modelling genetic algorithms by quadratic dynamical systems, a
stochastic formalism which generalises Markov chains, much in
the same way as Lewontin (1964), Slatkin (1970), and Altenberg
(1984) in PG. Although powerful, this formalism has seen limited
adoption, partly because starting from certain distributions, sam-
pling from a quadratic dynamical system at any fixed time belongs
to the class of PSPACE-complete problems (Arora et al., 1994),
which are considered intractable.

As a branch of computer science, evolutionary computation is
also concerned with computational complexity which attempts to
characterise the inherent difficulty of computational problems
when solved within a given model of computation, such as the
Turing Machine model. Black box models have been developed in
EC to capture the essential limitations of evolutionary algorithms

and other search processes. In black box models, an adversary
picks a function f : f0;1gn-R from a class of functions F , which is
known to the algorithm. The chosen function f is unknown to the
algorithm, but the algorithm can query the function value f(x) for
any bitstring xAf0;1gn. The goal of the algorithm is to identify a
bitstring xnAf0;1gn that maximises f. The unrestricted black-box
model (Droste et al., 2006) imposes no further restrictions on the
algorithm. In the ranking-based black-box model, the algorithm
can only query for the relative order of function values of search
points (Teytaud and Gelly, 2006; Doerr and Winzen, 2011). In the
memory-restricted black-box model (Droste et al., 2006; Doerr
and Winzen, 2012), the algorithm has limited memory. The
unbiased black-box model (Lehre and Witt, 2012) puts restrictions
on how new search points can be generated. This model defined
unbiased variation operators of any arity, but only unary variation
operators (such as mutation operators) were analysed initially.
Later, higher arity operators (such as crossover) were also analysed
(Doerr et al., 2011), as well as more general search spaces (Rowe
and Vose, 2011). This approach is appropriate to estimate the
fundamental limits of an evolutionary process in a given class of
functions. However, it seems unnatural to use it to decompose an
evolutionary process into its fundamental sub-processes.

Reusability and easy implementation are often concerns of the
users of evolutionary algorithms, both practitioners and research-
ers. Many efforts have been made to address this issue from the
perspective of software engineering. In fact, many evolutionary
operators have the same type of input and output. In addition,
they can handle the elements of the input at a very abstract level
and can be unified. From the user perspective the implementation
of an evolutionary algorithm on a specific problem is boiled down
mostly to the selection of solution representation and the defini-
tion of the evaluation procedure. Many software libraries for
evolutionary algorithms are based on this principle, some exam-
ples are ECJ (Luke), GALib (Wall) or ParadisEO (Cahon et al., 2004,
INRIA). Generally speaking, some implicit unified models exist in
those frameworks. Our framework is in parts inspired by FrEAK,
the Free Evolutionary Algorithm Kit (Briest et al., 2004), a free
toolkit for the creation, simulation, and analysis of evolutionary
algorithms within a graphical interface. Evolutionary algorithms in
FrEAK are represented by operator graphs: acyclic flow graphs
leading individuals through various nodes. The nodes represent
evolutionary operators like mutation, recombination, and selec-
tion. They process the incoming individuals and propagate the
result of an operation through their outgoing edges. Every gen-
eration, the current population is led through the algorithm graph
from a start node towards a finish node where the new population
is received. This modular approach allows the representation of a
wide variety of evolutionary processes that differ in the composi-
tion and sequence of operators applied.

3. A unifying framework for evolutionary processes

In a general sense, any evolutionary process (natural or
artificial) can be seen as a population undergoing changes over
time based on some set of transformations. Formally, given a finite
set G, called the genotype space or genospace, an evolving finite
population is a sequence

Pð1Þ; Pð2Þ;…; PðtÞ;…ð Þ;
where each PðtÞAGk, meaning that each P(t) contains k elements
(individuals) of G. Formally, P (t) is a sequence, a mathematical
object that generalizes the notion of set by allowing multiple
copies of the same element,and in which the ordering of the
elements matter. Our framework is designed to describe and
classify the particular operations for transforming P(t) into
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Pðtþ1Þ in any evolutionary process. Specifically, we are interested
in characterizing the random mapping1 ψ : Gk-Gk such that

Pðtþ1Þ ¼ψ ðPðtÞÞ:
Our approach decomposes ψ into a collection of modular

operators that each has a distinct and elementary role in the
evolutionary process. Typically, these operators act on sequences
of G. These sequences are typically constructed from the elements
of P(t), from the output of operators, and from the concatenation
operator. Given two finite sequences xAGℓ and yAGm, we denote
the concatenation of x and y as x [ y, which is an element of Gℓþm.
Given two operators G1 : Gℓ-Gn and G2 : Gm-Gℓ that act on
sequences of G, we denote the composition of G1 and G2 as the
operator ðG1○G2Þ : Gm-Gn≔x↦G1ðG2ðxÞÞ.

Sequences describe finite populations and operators typically
perform stochastic operations on the elements of these sequences
(the individuals in the population). The outcome of the action of
these stochastic operators can also be described by a probability
distribution of potential outcomes, which can be used to induce a
different level of description of the evolutionary process. This
suggests that an evolutionary process can be defined as a trajec-
tory through a space of distributions S (the space of all genotype
frequency distributions, represented by the jGj �1 dimensional
simplex). Formally, we can view these operators acting in this
distribution space

Dð1Þ;Dð2Þ;…;DðtÞ;…ð Þ:
Each D(t) is an element of a set of distributions over populations.
Analogously, we might have some transformation

Dðtþ1Þ ¼ϕðDðtÞÞ;
where ϕ can be decomposed into modular operators that are
homologous to the operators in ψ (Fig. 2). The distribution at time
tþ1 might even depend somehow on the state of the finite
population at time t. In some algorithms and models, the finite
population of size k at time tþ1 can be constructed by sampling k
elements from the distribution at time tþ1. We denote this
sampling operator as βk. Given any distribution DAS over the
set of genotypes, we can obtain a concrete population of size k by
applying the sampling operator βk : S-Gk defined as

βkðDÞ≔ðXiÞiA ½k� where X1;…;Xk �D:

where � denotes that all the Xk are independently and identically
distributed as the distribution D. An operator G : Gk-G acting on
genotypes, can be “lifted” to a mapping bG : S-S between dis-
tributions as follows. Given any distribution DAS, we define bGðDÞ
to be the distribution where

PrðZ ¼ z∣Z � bGðDÞÞ≔PrðGðX1;…;XkÞ ¼ z∣X1;…;Xk �DÞ:
To make this concrete, consider an operator that acts on

bitstrings and flips each bit with probability p. When acting on a
definite bitstring, say g1 ¼ 0;1ð Þ, this operator will create bitstrings
g0 ¼ 0;0ð Þ, g2 ¼ 1;0ð Þ, and g3 ¼ 1;1ð Þ with probabilities
ψ1j0 ¼ ð1�pÞp, ψ1j2 ¼ p2, and ψ1j3 ¼ pð1�pÞ. In this example
DðtÞ ¼ 0;1;0;0ð Þ, where the positions refer to the probabilities of
g0, g1, g2 and g3, and, under the action of this operator,
Dðtþ1Þ ¼ ð1�pÞp; ð1�pÞ2; p2; ð1�pÞp

� �
. The probabilities that the

operator produces any genotype, when applied to any genotype
represents the “lifting” of this operator. Any finite population can

be described as a frequency distribution of genotypes and the
action of this operator on a population can be described by
convolving this frequency distribution with the “lifted” operator
on each of the individual genotypes. This produces a probability
distribution on the genotype produced by the operator, given that
we are choosing the individual it acts on uniformly from the
population. This distribution can then be used to produce a new
population by sampling from it.

“Lifted operators” can also be seen as the “infinite population
size” version of the stochastic operator, since when applied to a
frequency distribution, they produce a frequency distribution of
the expectation (a statistic) of this operator. This is done by the
map α : Gk-S (Fig. 2). Sampling operations are the only ones that
explicitly project from the distribution space into the populations
space. Some types of operators explicitly involve some kind of
sampling operation (e.g. selection operators, discussed below), but
can always be written as a combination of a “lifted”/deterministic
operator and a sampling operation.

Some models operate only at the level of populations, others
only at the level of distributions and others shift between the
levels. For a complete picture, we model the evolutionary process
at both levels by two sequences, one in the space of populations,
and one in the space of distributions. Our framework then
characterizes and classifies the components that comprise the
various transformations between these two sequences, and their
roles in defining the evolutionary process. This is described in
Fig. 2.

3.1. The nature of evolving entities

In each iteration of an evolutionary process, which is called a
generation, the operators that comprise ψ , ϕ, βk, and α work
together to act on the current population to generate a new one.
Each operator acts directly on the genotype space, but some
operators also depend on information that lies in a broader
phenotype space. Each individual of a population is mapped into
this phenotype space, and this transformation is called the
genotype–phenotype mapping in population genetics. In evolution-
ary computation, the transformation corresponds to the decoding
process from genome to solution, e.g. in an indirect encoding
scheme. Another transformation will act on this set of phenotypes
and assign to each individual of the population a “reproductive
value”, which can be seen as a probability of survival or inclusion
into the next generation. For evolutionary algorithms, the
phenotype-fitness mapping is broken down into evaluation of
the objective function and various ways to select individuals for
the next generation and the next reproduction based on the
obtained objective values. Finally, a population that was funnelled
through this process is transformed by variation operators, produ-
cing a new population.

The two mapping processes are depicted in Fig. 3. The genotype
and phenotype spaces are sets G and P respectively. The geno-
type–phenotype mapping is a function φ from G to P. An
individual g is an element of G that has phenotype φðgÞ, which
in turn as objective value f ðφðgÞÞ. A population P is a sequence of
elements of G, e.g. PAGk for a population of size k.

The dual representation of individuals as pairs of genotypes
and phenotypes immediately suggests the existence of two kinds
of operators: operators that act primarily on genotypes and
operators that act primarily on phenotypes. Those are the basic
ingredients in Darwin's theory of natural evolution: variation and
selection. As such, it is natural to make the distinction between
these two kinds of operators and to identify them with operations
that act on these two spaces. We can then see evolution as a series
of applications of these two kinds of operators. Because evolu-
tionary algorithms are very diverse in their mode of operation, the

1 Implicitly, we assume an underlying probability space ðΩ;F ;PrÞ whereΩ is a
sample space, F is a σ-algebra on Ω, and Pr is a probability measure on F .
Furthermore, we assume that ðGk ; EÞ is a measurable space. The mapping ψ is
formally a function ψ : Gk �Ω-Gk such that ψ xðωÞ≔ψ ðx;ωÞ is ðF ; EÞ-measurable
for any fixed xAGk . Conversely, the function ψωðxÞ≔ψ ðx;ωÞ is called the realisation
of the mapping ψ for a given sample point ωAΩ. For notational convenience, we
will omit the reference to the probability space and refer to ψ as a random mapping.
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relative order and frequency with which any of these operators act
on the population are largely arbitrary. Hence, various evolution-
ary processes can be conceived by specifying different orders, e.g.
in which variation operators act first and selection last, or even
schemes in which different kinds of selection or variation opera-
tors act at different stages of the process and populations are built
from the union of the result of the operation of different operators.
This will be detailed when we instantiate a particular evolutionary
process in our framework in Section 5.

At the same time, this dual nature of evolutionary objects
(genotype and phenotype) immediately allows one to deduce
some properties of the G and P spaces. Even though both G and
P may have natural metrics the relevant metric distance for
evolution is dependent on both the way genotypes change
(mutation) and the mapping function between the two spaces φ.
How close two genotypes are depends on the mutation operator
(Altenberg, 1995), on how likely or difficult it is to turn one into
the other, whereas how close two phenotypes are depends on how
close the closest genotypes that produce that pair of phenotypes
are from each other. From this we see that even though we started
by defining both genotype and phenotype spaces as sets, in reality,
in the context of an evolutionary process, they can be imbued with
more structure. Typically, the cardinality of G is larger than of
P ð Gj jZ Pj jÞ. This is because the genotype–phenotype mapping is
typically redundant, meaning that many genotypes map to the
same phenotype. This can lead to some phenotypes having a
bigger pool of genotypes that map to them and, consequently,
even if the change at the genotypic level is isotropic, the change at
the phenotypic level is not necessarily so. This is similar to the
notion of phenotypic accessibility that Stadler et al. have proposed
(Stadler et al., 2001).

In the following section, we define the evolutionary operators
and formalise their properties. The following symbols will be used
for these purposes.

Symbol Definition Examples

Σ Set of alleles f0;1g, fA; T ;G;Cg
G Space of genotypes Σn (strings of length

n over the alphabet
Σ)

P Space of phenotypes Genetic traits
S Space of all distributions of

genotype frequencies
P(t) A finite collection of

genotypes at time t
{(0,0), (0,1), (0,0)}

D(t) A probability distribution
describing the probability of
sampling any genotype

φ : G-P Genotype–phenotype
mapping

Transformation from
genes to proteins
then traits

V : Gk-Gℓ Variation operator Mutation ðMÞ,
recombination ðRÞ

S : Gk-Gℓ Selection operator Uniform,
proportional
selection

ψ Mapping between
populations at each time
step, composition of
variation and selection
operators

ψ ¼ V○S,
Pðtþ1Þ ¼ψ ðPðtÞÞ

ϕ Mapping between abstract
distributions at each time
step, composition of lifted
variation and selection
operators

ϕ¼ bV○bS,
Dðtþ1Þ ¼ϕðDðtÞÞ

α Mapping from populations
to distributions

βk Distribution sampling
operator

Pðtþ1Þ ¼ βkðDðtþ1ÞÞ

w The probability of a genotype
to be present in the next
generation. Fitness (sensu
PG) or reproductive rate
(sensu EC)

4. Evolutionary operators

In order to be able to compare and contrast different evolu-
tionary algorithms and models (processes) we need to break down
these processes into their different components. We typically
define operators as acting on finite populations. Given a current
population P(t), the population in the next generation becomes
Pðtþ1Þ ¼ψ ðPðtÞÞ. As pointed out above, the distinction between
variation at the genotypic and the phenotypic levels makes it
natural to associate different operators that operate at these
different levels, variation and selection operators, respectively.

4.1. Selection operators

Selection operators can be used to choose individuals for either
reproduction, the so-called parent selection, or for survival, e.g.
deciding which individuals will be kept in the next generation. As

Fig. 2. The evolution process represented as a sequence fDðtÞ : tANg of distribu-
tions and a sequence fPðtÞ : tANg of vectors in Gk (concrete populations) that
depend on each other via various mappings. Each mapping is constructed by a
composition of evolutionary operators that we characterize and classify in
this work.

Fig. 3. A basic sequence of operations leading to a selectable population. A
population distributed over the genotype space ðGÞ is assigned phenotype values
ðPÞ via the genotype–phenotype mapping φ, which are then interpreted by f into
objective function values ðOÞ. Variation operators generate new variation at the
genotypic level and selection operators act at the level of the objective function,
generating a new population in G. The W line represents the probability for this
individual to be present in the next generation, which is a consequence of the
selection operators used. This is typically called “fitness” in PG and is related to the
reproductive rate in EC.
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a consequence, they model competitiveness in different types of
populations. Nevertheless, the selection operators are defined in
the same way: they have access to the phenotypic information (or
the mappings φ) and transform one population to another, i.e.,

Sφ : Gk-Gℓ:

For simplification, we also omit φ from the notation. Selection
operators do not introduce variation (in the sense of new geno-
types), hence their defining property is that every element in the
output population should be the exact copy of an element from
the input population. Formally,

8gAG if gASðPÞ then gAP: ðS1Þ
Selection operators guide the search by taking advantage of

local information in the fitness function w. To describe this
process, the mapping φ first associates to each genotype g a set
of τ measurable phenotypic traits, denoted by
ðφ1ðgÞ;…;φτðgÞÞARτ . To each of these sets of traits the objective
function associates a value, representing the adaptiveness of the
combination of the traits through interactions with the environ-
ment. The selection operators will then sample individuals to be
represented in the next generation based on the value of the
objective function. This process effectively assigns each individual
a probability that it will be represented in the next generation or a
reproduction rate. This is typically what is meant in PG as “fitness”
ðwÞ. It is common in both fields to collapse some of these steps into
one, effectively assuming the identity operator for one or more of
the transformations we just described. In population genetics, w
could be arbitrarily chosen, depending on the objective of the
study. In evolutionary computation, the phenotypic traits
ðφ1ðgÞ;…;φτðgÞÞ are typically collapsed to the objective function,
which is multiple for τ41 or single for τ¼ 1, and w is rather a
property deduced from the selection mechanism. However, it
should be noted that even implicitly most models still define a
phenotype which is distinct from the objective function. For
example, in EC, it is common practice to analyze the performance
of EAs on functions of unitation (functions that take as argument
the number of 1 s in the bitstring). In this case, it is natural to call
the number of 1 s the phenotype and the function of unitation the
objective function. Very similar models of phenotype - objective
function pairs exist in biology.

It should be noted that the distinction we make here between
variation and selection operators, and the different properties we
will require of them, resolve some philosophical questions regard-
ing the concept of “fitness”. In PG, fitness is typically defined as the
“the expected number of offspring of an individual”, while in EC
fitness it is the value of the objective function in question. Even
though related, the subtly different meanings of this concept in
the two communities still lead to much confusion. Because the
expected number of offspring of a given genotype can change due
to factors that have nothing to do with selection, the concept is
hard to operationalize in the real world. In fact, in theoretical
population genetics fitness is often defined as a function of some
underlying genotype and, in this case, it has exactly the same
meaning as in EC, which has lead to confusion even within the PG
community. In our framework, fitness, sensu PG, can be obtained
directly from the selection operators and consists of a derived
property from the selection operator used (and the functions it
takes as parameters). In EC, this sense of fitness has been called
the reproduction rate (Table 1).

The following operators are commonly used in evolutionary
algorithms (assuming maximization problems) and by their defi-
nition satisfying (S1).

Uniform selection: Under this selection operator, denoted by
SUnif , each individual of the output population has an equal
probability of being a copy of each individual from the input

population. Formally,

SUnif ððg1;…; gkÞÞ ¼ ðg01;…; g0ℓÞ s:t: Pr g0i ¼ gj
� �

¼ 1=k

for all iA ½ℓ�; jA ½k�:
There are two ways to implement this selection operator. The

standard way, denoted by SUnif , is independent uniform sampling
g0i �Unifððg1;…; gkÞÞ with replacement. Another way, which is
denoted by Sn

Unif , is to do the sampling without replacement. In
this variant, the outcomes of the sampling are no longer indepen-
dent but exchangeable, hence they preserve the required property
on the equal probability 1=k.

Proportional selection: This selection operator is defined similar
to uniform selection, except that instead of having an equal
probability for each individual, the probability of choosing a
particular individual is proportional to the value of an objective
function f on that individual. Formally,

SPropðf Þððg1;…; gkÞÞ ¼ ðg01;…; g0ℓÞ s:t: Pr g0i ¼ gj
� �

¼ f ðgiÞPk
j ¼ 1 f ðgjÞ

for all iA ½ℓ�; jA ½k�:
Note that in PG, f is replaced by the fitness function w, which gave
the original name for the selection mechanism. In implementa-
tions, g0i is independently sampled from a custom distribution
defined by the probabilities f ðgiÞ=

Pk
j ¼ 1 f ðgjÞ.

Tournament selection: This selection operator, denoted by
STourðf ;mÞ, performs a number of experiments, called tournaments,
with respect to some objective function f. In those tournaments, an
individual with the highest value of f is selected from a randomly
chosen subset of P of size m. Formally, STourðf ;mÞ : Gk-Gℓ is defined
as

STourðf ;mÞððg1;…; gkÞÞ ¼ ðg01;…; g0ℓÞ s:t: g0i ¼ arg max
f ðxÞ

fxAPig

for all iA ½ℓ� where; Pi ¼ SUnifðmÞððg1;…; gkÞÞ:

Here SUnifðmÞððg1;…; gkÞÞ is the uniform selection described above
with the size of the output population explicitly given as m. For
mrk, the use of Sn

UnifðmÞððg1;…; gkÞÞ instead implies the variant
Sn

Tourðf ;mÞ of the selection.
Truncation selection: Under this selection operator, denoted by

STruncðf ;m;nÞ, each output individual is uniformly selected from a
fixed fraction, for example 10%, of the fittest individuals defined by
a measure f of the input population. Formally, an ordering of a
population is defined as

SSortðf Þððg1;…; gkÞÞ ¼ ðgrð1Þ;…; grðkÞÞ s:t: f ðgrð1ÞÞZ⋯Z f ðgrðkÞÞ:
The ordering is entirely defined by the bijection r : ½k�-½k� so

that rðiÞ is the individual at rank i in the population. Truncation
selection of n individuals among the fittest m individuals in the
population P is defined as

STruncðf ;m;nÞðPÞ ¼ ðSUnifðnÞ○STrimðf ;mÞÞðPÞ
where STrimðf ;mÞððg1;…; gkÞÞ ¼ ðgrð1Þ;…; grðℓÞÞ
s:t: f ðgrðℓÞÞZ f ðgrðmÞÞ and f ðgrðℓþ1ÞÞo f ðgrðmÞÞ:

Cut selection: This selection operator, denoted by SCutðf ;mÞ, is
closely related to the truncation selection above. However, it is
more deterministic because it simply keeps the best m individuals
with respect to f of the input population of size kZm, whereas
STruncðf ;m;nÞ samples uniformly with replacement from this set:

SCutðf ;mÞððg1;…; gkÞÞ ¼ ðgrð1Þ;…; grðmÞÞ:
Moreover, the output population size is exactly m, the para-

meter of the selection. In the case that there are many input
individuals with the same value f ðgrðmÞÞ, we additionally require a
tie-breaking rule. Unless specified otherwise, it is understood that
ties are broken uniformly at random.
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Replace selection: It is also useful to define a class of selection
operators that act on populations of size 2, and make use of the
fact that populations are defined as sequences, as opposed to
simply sets. This type of selection uses the difference in objective
function value between the two genotypes, filtered through a
function h : O- 0;1½ �, to select which of the two will be present in
the next generation. We define SRep;h as

SRep;hððg1; g2ÞÞ ¼
g2 with probability hðΔÞ
g1 with probability 1�hðΔÞ

(

where Δ¼ f ðφðg2ÞÞ� f ðφðg1ÞÞ. Note that the previous operators
STrimðf ;mÞ, STruncðf ;m;nÞ, SCutðf ;mÞ, SPropðf Þ and SUnif could be cast in terms
of replacement operators when applied to populations of size two
to produce populations of one individual, given appropriate
choices of h functions.

Note that the operators SSortðf Þ, STrimðf ;mÞ and SUnif satisfy (S1)
and so does STruncðf ;m;nÞ. In evolutionary computation, the particular
case of STruncðf ;μ;λÞ : Gμ-Gλ is referred to as the ðμ; λÞ-selection
mechanism.

4.2. Variation operators

Variation operators create the variability on which selection
operators can act. Two classes of variation operators can be
distinguished: mutation operators and recombination operators.
The major distinction between the two classes of operators is the
level of variation they generate. Mutation is typically applied to a
single genotype and generates new variation by introducing new
variants at the allelic level. On the other hand, recombination is
typically applied to a set of genotypes, often two genotypes in the
biological systems we know of, and generates variation by con-
structing new genotypes from the ones that currently exist in the
population. Hence recombination can be seen as shuffling the
genetic materials within the population without changing the
allele frequencies. In the following, we identify the defining
features of these two types of operators and also some properties
that provide relevant distinctions between operators of the
same type.

We say a variation operator V is uniformity-preserving when the
following holds

if P �UnifðGj P j Þ; P0 ¼ VðPÞ then P0 �UnifðG j P0 j Þ: ðV1Þ
Intuitively, this property simply states that if the population is

distributed uniformly through the space of all genotypes, then the
variation operator will not change its distribution, i.e. the

(mutated or recombined) population will also be uniformly
distributed in genotype space. Uniformity-preserving operators
do not have an inherent bias towards particular regions of the
genospace. This is a desired feature in evolutionary algorithms,
when no specific knowledge on the problem is available (Droste
and Wiesmann, 2000). For an example of a mutation operator that
is not uniformity-preserving, we refer to Jansen and Sudholt
(2010); the asymmetric mutation operator presented therein flips
zeros and ones with different probabilities and drives evolution
towards bitstrings with either very few zeros or very few ones.

Lemma 1 in Appendix A states a sufficient, but not necessary
condition for a variation operator V : Gk-G to satisfy (V1). Note
that for unary variation operators, i.e. for operators that act on
individual genotypes (such as mutation; k¼1 in Lemma 1), the
conditions of Lemma 1 imply that the variation operator must be
symmetric, i.e. the probability of generating genotype x by the
application of the variation operator on genotype y is the same as
the probability of generating y from x (formally, for all x; yAG, it
holds that Pr X ¼ y∣X � VðxÞð Þ ¼ Pr X ¼ x∣X � VðyÞð Þ.

4.2.1. Mutation operators
Mutations are the raw material on which selection can act. In

biological populations, variation is created by mutation and is
typically assumed to be randomwith respect to selection, meaning
that the variation generated is isotropic in genotype space.

M : Gk-Gk:

Mutation can be regarded as an operator for both populations
and individuals, such that mutation is applied to each individual in
the population: Mððg1;…; gsÞÞ ¼ ðMðg1Þ;…;MðgsÞÞ. Mutation typi-
cally acts independently on each individual in the population.
Formally:

8P ¼ ðg1;…; gkÞAGk; 8P0 ¼ ðg01;…; g0kÞAGk;

Pr MðPÞ ¼ P0� �¼ ∏
k

i ¼ 1
Pr MðgiÞ ¼ g0i
� �

: ðM1Þ

Mutation can be seen as the basic search operator. From this
perspective it is natural to require that mutation operators, acting
on the level of individuals, are able to generate the whole search
space G. In other words, mutation is an ergodic operator of G
(meaning that its orbits are aperiodic and irreducible). We for-
malize this by

8x; yAG; (tZ0; Pr Y ¼ y∣Y �MtðxÞ� �
40; ðM2Þ

where Mt denotes the operator formed by composing M with itself

Table 1
A list of concepts in both fields and their translation between the fields.

PG EC Meaning

Neutrality Uniform
selection

All individuals in the target population are equally likely to be selected into the next generation. This is equivalent
to no selection or what is called random drift in PG

– Drift The change in expectation of some quantity over the stochastic process. It is typically the expected advance of the
algorithm, conditional on the current state

Genetic drift Genetic drift It is typically meant to refer to the stochasticity associated with sampling from finite populations
Unlinked genes Uniform

crossover
A recombination pattern in which the probability of inheriting the gene copy from any of the parents is 1/2 and
does not depend on its position in the genome

Selection coefficient Reproduction
rate

The relative growth advantage of an allele or genotype over the mean of the population. It is formally defined as

s¼Wi �W
W

. It is related to the “reproduction rate” concept in EC. In our framework, this is a quantity derived from the

particular selection scheme imposed to the population. As can be seen from the formal definition, it depends on the
current composition of the population

Overlapping generation models Elitist
algorithms

Models in which the population at the next time step (iteration) is selected from the combined pool of parents and
offspring. In PG this is termed iteroparity. These are termed elitist because when used in conjunctions with cut
selection (þ-selection) this guarantees that the best individual is always kept

Non-overlapping (or discrete)
generation models

Generational
algorithms

Models in which the population at the next time step (iteration) is selected solely from the offspring (which may be
exact copies of the parents) of the parents. In PG this is termed semelparity.
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t times. We hold (M2) to be the defining characteristic of mutation
operators.

To illustrate variation operators and their properties, we now
discuss common mutation operators.

Uniform mutation: Let G¼Σ1 � Σ2 �⋯� Σn where each Σ i is a
finite set of at least two elements. For pA ½0;1�, uniform mutation
is a random operator Mp : G-G defined as follows. For any string
xAG, the result of applying the operator to x is another string
MpðxÞ ¼ ðY1;…;YnÞ where each Yi is an independent random
variable defined for all yiAΣ i by

Pr Yi ¼ yi
� �¼ 1�p if yi ¼ xi and

p
jΣ i j �1

otherwise:

8<:
In many applications in evolutionary computation, uniform muta-
tion is performed on bitstrings, that is Σ i ¼ f0;1g for all iAf1;…;ng.
In this case, when p¼ 1=n, we refer to the operator as standard
mutation, and denote it M1=n. It should be noted that this operator
satisfies properties (V1) and (M1). Moreover, as long as 0opo1, it
also satisfies (M2) (see Lemma 2 in Appendix A).

Single-point mutation: Let G¼Σ1 � Σ2 �⋯� Σn where each Σ i

is a finite set of at least two elements. Single-point mutation is a
random operator Msp : G-G that acts as follows. For any string
xAG, the result of applying the operator to x is another string
MspðxÞ ¼ ðY1;k;Y2;k;…;Yn;kÞ where k�Unifð1;nÞ and each Yi;k is a
dependent random variable defined for all yiAΣ i with

Pr Yi;k ¼ yi
� �¼

1 if iak; yi ¼ xi and
1

jΣ i j �1
if i¼ k; yiAΣ i⧹fxig and

0 otherwise:

8>>><>>>:
Single-point mutation satisfies properties (V1), (M1), and (M2)

(Appendix A, Lemma 3).

4.2.2. Recombination operators
The role of recombination is to generate variation at the

genotypic level, by shuffling information contained in the existing
genotypes. In order to define recombination we require that the
elements of G are ordered Cartesian products of sets:
gAΣ1 � Σ2 �⋯� Σn, where Σ i is the set of available symbols at
position i, e.g. we do not require Σ i ¼Σ j for ia j.

Let ½�� denote the Iverson bracket, which denotes a 1 if the
condition inside the bracket is true and 0 otherwise. We define the
allele frequency of allele aAΣ i in population P at position i as

pPða; iÞ ¼
1
Pj j
X
gAP

½a4gi ¼ a�:

Given these definitions, we define recombination operators as

R : Gk-Gℓ;

where k;ℓAN. Here, R is a random operator that acts on a parent
population of size k to produce an offspring population of size ℓ.

We require that a proper recombination operator RðPÞ should,
in expectation, preserve allele frequencies from the population of
parents. Formally, we require that

8 iA ½n�; 8aAΣ i : E pRðPÞða; iÞ
h i

¼ pPða; iÞ: ðR1Þ

Similar to mutation operators, we can describe recombination
acting on both the population level and the individual level. At the
individual level, we define a recombination operator as a random
m-ary operator R : Gm-Gk, where kAf1;2g, that produces one or
two offspring given m41 parents. The recombination operator on
individuals can then be lifted to the population level by concatena-
tion and composition with selection, that is, given a population P

of size k,

RðPÞ ¼ ððR○SÞðPÞÞi ¼ 1…ℓ

where S : Gk-Gm is a selection operator. Because the role of S in
this case is to select parents for R, we refer to the operation as
parent selection.

If parent selection preserves uniform frequencies in expecta-
tion, for example selecting m parents uniformly at random from
P(t), then if property (R1) holds for an operator R, the allele
frequencies in the offspring are preserved in expectation after
parent selection and recombination (Appendix A, Lemma 4). If a
recombination operator produces the two recombinant offspring,
then it preserves allele frequencies exactly, not just in expectation.
Moreover, if recombination is performed a finite number of times
at the individual level to build up an intermediate population by
concatenation, as long as the above properties hold, then the
expected allele frequencies in the intermediate population are
equal to the allele frequencies in the original population
(Appendix A, Lemma 5).

For commonly defined recombination operators, the result of
RðPÞ will be in the convex hull of P. However, our restriction on
recombination operators excludes some recombination operators,
such as geometric crossover on Manhattan spaces. In this example,
genotypes are points in continuous space and recombination
generates new individuals in the square convex hull (due to the
Manhattan metric) between those two points. This does not fulfil
our restriction for recombination, since it would not preserve the
allele frequencies for the parent genotypes, and instead it con-
stitutes a hybrid operator between recombination and mutation. A
proper recombination operator would generate only the geno-
types at the corners of the hypercube defined by the parent
genotypes (Fig. 4).

Abstract frameworks for generalizing crossover have been
proposed before Moraglio (2011). Our approach differs by not
focussing on “natural” metrics of the genotype space, but instead
focussing on the result of the application of recombination on
elements of this space. We require the genotype space to be an
ordered Cartesian product of sets (of alleles), and define recombi-
nation as an operation that does not change the frequencies of
these symbols on a population. It is in a sense more general than
previous approaches, since it does not rely on external information
about this space, such as the metric of the space, which may not be
relevant for evolutionary processes (this fact has been previously
articulated by Jones (1995) and Altenberg (1995)). In fact, our
definition does not rely on the genotype being a metric space at
all, even though one can always define a metric for Cartesian
products of sets (the Hamming distance). However, this definition
still respects the notion that the products of recombination are
within the convex hull of the parental genotypes, for appropriately
defined metrics. Indeed, if property (R1) holds for a recombination
operator, then the resulting offspring lie in the convex hull of the
parent population almost surely (Appendix A, Lemma 6).

Common recombination operators: We now instantiate common
recombination operators and show that they satisfy properties of
both variation and recombination operators.

One-point crossover: R1�point : G � G-G. This operator acts on
pairs x; y of genotypes selected from the current population. A
crossover point mA ½n�1� is selected uniformly at random, and
two new individuals z0 and z″ are produced, then one individual, z
is uniformly selected at random, called offspring (children) where

z0i ¼
xi if irm;

yi otherwise;

(
z″i ¼

yi if irm;

xi otherwise;

(

k-point crossover: Rk�point : G � G-G. This operator is a general-
ization of one-point crossover: for a parameter 1rkrn�1, k
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crossover points are selected uniformly at random without repla-
cement from ½n�1�. Let m1;…;mk be a sorted list of these points
and m0 ¼ 0;mkþ1 ¼ n. Two new individuals z0 and z″ are produced
as follows, then one individual z is uniformly selected at random,
called offspring (children). For all i such that mjr irmjþ1

z0i ¼
xi if j mod 2¼ 0;
yi otherwise;

(
z″i ¼

yi if j mod 2¼ 0;
xi otherwise;

(
Note that k-point crossover with k¼1 yields one-point crossover.
Moreover, k-point crossover is a proper recombination operator in
the sense that it preserves allele frequencies (Appendix A,
Lemma 7).

Uniform crossover: RUnif : G � G-G≔ðg; g0Þ↦h is defined as fol-
lows. The allele at hi is inherited from gi with probability 1/2,
otherwise it is inherited from g0i for all iA ½n�. This operator also
preserves allele frequencies and hence satisfies (R1) (Appendix A,
Lemma 7).

All crossover operators introduced here are uniformity-
preserving and satisfy (V1) (Appendix A, Lemma 8).

4.2.3. Unbiased variation operators
The unbiased black-box model introduced by Lehre and Witt

(2012), defines a general class of variation operators over the
genospace G¼ f0;1gn (see also the extension in Rowe and Vose
(2011) for other search spaces). Many variation operators on
bitstrings, such as bitwise mutation and uniform crossover, are
unbiased variation operators. For any integer k, a k-ary unbiased
variation operator is any random operator V : Gk-G that for all
y; z; x1;…; xkAG and any permutation σ : ½n�-½n� satisfies
PrðX ¼ y∣X � Vðx1;…; xkÞÞ ¼ PrðY ¼ y � z∣Y � Vðx1 � z;…; xk � zÞÞ;
PrðX ¼ y∣X � Vðx1;…; xkÞÞ ¼ PrðY ¼ σðyÞ∣Y � Vðσbðx1Þ;…;σbðxkÞÞÞ;
where σb is the permutation over G defined for all yAG by
σbðy1y2⋯ynÞ≔yσð1Þyσð2Þ…yσðnÞ and � means bitwise XOR between
sequences. In the special case of unary variation (k¼1), the
unbiased conditions imply that a genotype is mutated with
equal probability into any other genotype at a given distance.
This has been described as a desirable property of mutation
operators (Droste and Wiesmann, 2000). Note that by Lemma 1
with σðuÞ ¼ x1 � y � u, any k-ary unbiased variation operator
satisfies (V1).

5. Instantiation of evolutionary models

We now show how common evolutionary models and algo-
rithms can be instantiated in our framework, and which of these

fulfil common properties of our framework. We organize the
following section based on the size of population they maintain
(or more specifically on the amount of variability they maintain
during the evolutionary process), since this seems to be the main
factor that differentiates between results in both fields.

In PG it has been found that the interplay between the influx of
new mutation and the time they take to go to fixation (which is
related to the strength of selection acting on the population) plays
an important part in determining the variability present in the
evolving population and hence, its evolutionary dynamics.

In EC these restrictions typically do not apply, since many
schemes can be implemented that enforce either reduced or
increased diversity in the population, which effectively decouple
diversity in the population from mutation rate or population size.

The field of evolutionary computation contains a large variety
of evolutionary algorithms for optimizing a single objective func-
tion, as well as variants for multiple objectives. In this paper, we
focus on single-objective evolutionary algorithms, and defer the
discussion of multi-objective variants to future work. We also
include the so-called estimation-of-distribution algorithms
(Larrañaga and Lozano, 2002), a relatively new approach in EC
that adopts rather the distribution/sampling point of view than
population/applying-operators one.

A common notation for evolutionary algorithms is the
ðμ ;þλÞ-notation (see Beyer and Schwefel, 2002), originally devel-
oped to classify evolutionary strategies, a type of evolutionary
algorithm for continuous search spaces. In any generation t, a
ðμ ;þλÞ EA selects the best μ individuals from the population P(t).
These individuals are called the parents. The algorithm then
generates λ offspring individuals from the parents. The notation
distinguishes between comma-selection and plus-selection, which
represent alternative ways to construct the population fromwhich
the new generation is sampled from. In a ðμ; λÞ EA, the selection
operator is applied only to the λ offspring individuals. Such models
are also called generational models or non-elitist models (see
Table 1). In a ðμþλÞ EA, the next generation is selected from the
combined pool of both the μ parents and the λ offspring indivi-
duals. This strategy – often referred to as elitism – ensures that the
best individuals never die (see Table 1).

In each generation of a (μþλ) EA, λ parents are being selected
uniformly at random (Beyer and Schwefel, 2002). New offspring
are being created by applying a mutation operator to these
parents. Finally, cut selection chooses the best μ individuals
among the μþλ individuals, with ties being broken in favour of
keeping offspring. This sequence of individuals replaces the
current population.

Pðtþ1Þ ¼ SCutðf ;μÞ PðtÞ [ M1=n○SUnifðλÞðPðtÞÞ
� �

:

A further distinction is made by whether recombination
operators are being used or not. If the algorithm does not use
any kind of recombination operator, it is called a mutation-only
EA, which many times is shortened to simply EA (even though the
consensus is that all search heuristics inspired by natural evolution
are EAs). If recombination is in use, it is considered a Genetic
Algorithm (GA).

The (μþλ) EA extends to recombination as follows. We call the
result a (μþλ) GA, Genetic Algorithm, as this term emphasizes the
use of recombination in contrast to the term Evolutionary Algo-
rithm. Recombination is typically applied to the set of selected
parents. There is an additional parameter called crossover prob-
ability pc, which determines the likelihood of two parents actually
being recombined. Formally, recombination creates λ pairs of
parents, and for each pair it is decided independently whether
crossover is being performed or not. With probability pc both
parents are crossed and one offspring is being returned for this
pair. Otherwise, one of the two parents is returned uniformly at

Fig. 4. Improper and proper geometric crossovers. In this example, G is defined as
G¼R� R. For two parental genotypes g1 ¼ ðx1 ; y1Þ and g2 ¼ ðx2 ; y2Þ crossover could
defined either as the convex hull (under some metric d) of the two genotypes:
Rðg1 ; g2Þ ¼ Convdðg1 ; g2Þ or as the union of the parental points and their position
wise permutations: Rðg1 ; r2Þ ¼ fg1 ; g2 ; ðx2; y1Þ; ðx1; y2Þg. Black circles represent par-
ental genotypes and grey areas offspring distribution. Left: geometric crossover in
Manhattan space as usually defined. Right: a geometric crossover that respects the
allele frequency restriction.
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random. It is easy to see that (R1) still holds for crossover
probabilities pco1 if it holds for pc¼1. The outcome of the
recombination operator is then mutated and fed into a cut
selection operator as for the (μþλ) EA.

The crossover operator may be k-point crossover or uniform
crossover; we denote it by Rpc here to include the crossover
probability.

Pðtþ1Þ ¼ SCutðf ;μÞ PðtÞ [ ðM1=n○Rpc○SUnifðλÞÞðPðtÞÞ
� �

:

Note that the (μþλ) EA emerges as a special case when pc¼0 as
then no recombination is performed.

Several choices of μ and λ are of particular interest: the (1þ1)
EA is arguably the simplest EA and among the best studied ones.
The (μþ1) EA was introduced for its mathematical simplicity and
is a modification of the Steady State EA (Syswerda and Rawlins,
1991). In the same way, a (μþ1) GA is also often called a Steady-
State algorithm. In the following we will mention some of these
special cases as we compare them to specific evolutionary regimes
from PG.

5.1. Models of monomorphic populations

The simplest type of evolutionary model is when only one
genotype is present in the population at any given time. This is
true in PG only under certain assumptions on the influx of new
mutations. However, this can be enforced by an evolutionary
algorithm for parameter ranges (for example on the mutation
rate) that can be outside this range.

SSWM regime: The Strong Selection Weak Mutation model
applies when the population size, mutation rate and selection
strength are such that the time between occurrence of new
mutations ðtmut 	 1=NμÞ is long compared to the time of fixation
of a new mutation ðtfix 	 log ðNsÞ=sÞ (Gillespie, 1983) (notice
another difficulty in translation between the two fields: here N
is the population size, and μ is the mutation rate, while in the EC
community, μ is the parent population size. For easier accessibility
for both communities, we use the typical notation for each
community). In this situation, the population is monomorphic (i.
e. only one genotype present in the population) most of the time,
and evolution occurs in “jumps” between different genotypes
(when a new mutation fixes in the population). The relevant
dynamics can then be characterized by this “jumping” process.
This model is obtained as an approximation to a limit of many
other models, such as the Wright–Fisher model. Moreover, this
jumping process is also the approach to dynamics employed by
adaptive dynamics (Dieckmann, 1997) and its connection to
population genetics has been explained by Matessi and
Schneider (2009) and Schneider (2007).

This model can be instantiated in many different genotype
spaces. Here, for illustrative purposes, we use Gk as genotype
space. In this case, the relevant mutation operator is, for example,
Mμ. Recombination does not apply to this model since the
population is always monomorphic (only one genotype in the
population at all times). The typical selection operator is propor-
tional selection, with some function w, typically some form of
probability of fixation. Because in this model the population size is
one, this function will tend to choose preferentially individuals of
higher values of the objective function (selection coefficient –

Table 1).
Evolution then proceeds by the successive application of these

operators:

Pðtþ1Þ ¼ SPropðw;1Þ PðtÞ [ MðPðtÞÞð Þ:
(1þ1) EA: The (1þ1) Evolutionary Algorithm is arguably the

simplest possible evolutionary algorithm and has been a very
popular choice for theoretical research on the performance of

evolutionary algorithms. It represents a “bare-bones” evolutionary
algorithm with a population of size 1. Because of this, no
recombination is used. The (1þ1) EA mutates its current indivi-
dual, and then survival selection picks the best of the offspring and
the parent genotypes. Ties in this cut selection are broken towards
favouring the offspring. The default mutation operator is bitwise
mutation with mutation rate 1=n. It is formalized by

Pðtþ1Þ ¼ SCutðf ;1Þ PðtÞ [ M1=nðPðtÞÞ
� �

:

Simulated annealing: Although not usually considered an evolu-
tionary algorithm, simulated annealing also maintains a popula-
tion of one individual, which is mutated. Then, one individual is
chosen to constitute the next generation with a probability that
depends on their relative value of the objective function. Simu-
lated annealing makes use of replacement selection explicitly. The
model is described by

Pðtþ1Þ ¼ SRep;h PðtÞ [ MðPðtÞÞð Þ
with h defined as

hðΔÞ ¼ 1 if Δ40
eγtΔ otherwise

(
where γtAR is a parameter controlling the degree to which
deleterious mutations are accepted. Typically, γt is a function of
time and represents the cooling schedule of the algorithm, making
it harder to accept worse solutions as time goes on.

At first glance, the (1þ1) EA and the SSWM regime seem to
share some similarities, as they both evolve just one genotype. It is
reassuring that these similarities are captured in our framework.
There is an obvious structural similarity between the two models,
with the only difference being that the (1þ1) EA uses cut selection
SCutð ; Þ while the SSWM model uses SPropð Þ as selection operator.
The consequence of this difference is that in the SSWM regime
some mutations may not fix even if they are beneficial. This, of
course depends on the choice of the probability of fixation used in
the SPropð Þ, which, in some circumstances could be justified to be
close to cut selection (choosing the best among the current
genotype and its mutated version).

SSWM can be regarded in some sense as a slower version of the
(1þ1) EA, as in the former some beneficial mutations may be
rejected. On the other hand, in the SSWM regime the average
“jump” will be larger than in the (1þ1) EA. A more important
difference is that SSWM may accept detrimental steps, depending
on the form of probability of fixation used, whereas the (1þ1) EA
will not. The behaviour of SSWM in that respect resembles that of
simulated annealing (Kirkpatrick et al., 1983). However, depending
on the choice of the probability of fixation in SSWM, SSWM and
(1þ1) EA may follow similar trajectories and show similar
dynamics.

It is interesting that both SSWM and (1þ1) EA can also be cast
in terms of replacement selection operators. For SSWM, one would
choose h as the probability of fixation of a new genotype, given its
objective function value, and for (1þ1) EA one would choose hðΔÞ
to be 1 for ΔZ0 and 0 otherwise.

Because there is a substantial body of work in all three models,
we expect a translation of results to prove very fruitful for both
fields. Furthermore, the consequences of the (small) difference in
selection operators will also be analyzed.

5.2. Models of polymorphic populations with “slow” dynamics

Moran model: In contrast with the SSWM model, the Moran
model maintains a polymorphic population but updates only one
individual at each step (Moran, 1958). Each step updates exactly
one individual, which is chosen with a certain probability to
displace another (uniformly chosen) individual in a constant size
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(N) population. Typically this process includes only selection but it
can include other forces as well, such as mutation. In this model, a
full generation of the whole population corresponds roughly to N
updates. This process can be described by

Pðtþ1Þ ¼ PðtÞ⧹SUnifð1ÞðPðtÞÞ
� � [ ðMμ○SPropðw;1ÞÞðPðtÞÞ:

Alternatively, one could alleviate the restriction that the new
individual necessarily displaces another individual and allow for it
to be selected to die. This leads to the following representation:

Pðtþ1Þ ¼ SUnifðNÞ PðtÞ [ ðMμ○SPropðw;1ÞÞðPðtÞ
� �

:

Steady state EA: As mentioned above, the Steady State EA is a
special case of the (μþλ) EA, for a choice of λ¼1, and specifying
cut selection as the selection operator. In each generation a single
offspring is produced and included in the population. As in the
case of the Moran model, this slow change means that Steady-
State EAs such as (μþ1) EAs are generally more amenable for a
theoretical analysis than (μþλ) EAs.
Pðtþ1Þ ¼ SCutðf ;μÞ PðtÞ [ ðM1=n○SUnifð1ÞÞðPðtÞÞ

� �
:

Both the Moran model and Steady-State EAs/GAs keep a
population of individuals but update only one individual per
iteration. This strategy has proven to be popular in both fields
for its mathematical convenience: updating just one individual
makes models change slowly and hence facilitates a theoretical
analysis, while still retaining most characteristics of evolutionary
processes. By casting these two models in our framework, we
realize that the main difference between them is the time of the
life cycle at which selection acts. In the Moran model, selection
acts when selecting one individual to update, while in the steady
state EA, selection acts on the combined set of the mutated
individual and the rest of the population. The implications of this
discrepancy will be interesting to pursue. Major results obtained
using the Moran model include the probability of fixation of a
genotype, especially when the population is distributed over a
graph (Nowak, 2006).

5.3. Models of finite polymorphic populations

Wright–Fisher model: The Wright–Fisher model (WF) for two
alleles is a stochastic model that tracks the number of copies of
particular alleles in a population of N individuals. It may or may
not include mutation and/or selection (if none of these are
included, it just reflects the neutral Wright–Fisher model, its
original formulation). Genotypes in this model are just G¼ f0;1g
and phenotypes can be defined to be 0-1 and 1-1þs. Selection
is fitness proportional ðSPropðw;NÞÞ and mutation is bitwise ðMμÞ. One
important characteristic of this model is that both mutation and
selection are taken as deterministic, and that the only source of
stochasticity comes from the sampling of the genotypes into the
next generation. For the case illustrated here, this would mean
that the number of copies of genotype 1 would be distributed as
nðtþ1Þ � Binðpðtþ1Þ;NÞ, where pðtþ1Þ ¼ ð1�μÞðð1þsÞ=ð1þspÞÞpðtÞ
þμ1=ð1þspÞð1�pðtÞÞ. In our framework, the Wright–Fisher model
is seen as manipulating a distribution according to some (deter-
ministic) operators and then employing our sampling operator
ðβNÞ to sample a population of N individuals from this distribution.
The resulting population is mapped back to a distribution via our α
operator and the process repeats. We formalize this as

Dðtþ1Þ ¼ ð bMμ○bSPropðwÞ○αÞðPðtÞÞ;
Pðtþ1Þ ¼ βNðDðtþ1ÞÞ:

Population selection variation algorithm: The Population Selec-
tion Variation Algorithm (PSVA) introduced in Lehre (2011) covers
all generational evolutionary algorithms that are limited to unary
variation operators and independent selection of individuals (see

Corus et al., 2014 for a recent generalisation to higher arity
operators). In the framework described in this paper, it evolves a
population PAGk of k individuals. The next population Pðtþ1Þ is
generated by applying a mutation operator M : G-G to k indivi-
duals, which are sampled independently from the current popula-
tion P(t) by any selection mechanism Sk : Gk-Gk. Formally, the
next population is generated by

Pðtþ1Þ ¼ ðM○SkÞðPðtÞÞ:
The ðμ; λÞ EA is the special case of this algorithm where
Sk ¼ STruncðf ;μ;λÞ.

Simple Genetic Algorithm (SGA): The Simple Genetic Algorithm
(SGA) (Goldberg, 1989) is a well-known algorithm that has been
studied extensively by Vose (1999b).

The Simple Genetic Algorithm evolves a population of size k
and is defined as follows. The initial population Pð1Þ is generated
by selecting k elements of G uniformly at random. Recall that M1=n

denotes standard mutation, RUnif denotes uniform crossover and
SPropðf Þ denotes proportional selection.

Pðtþ1Þ ¼ ðM1=n○RUnif○SPropðf ÞÞðPðtÞÞ:

As can be seen from the above, these models share the same
structure, with the difference being that the Wright–Fisher model
uses a deterministic operator followed by a sampling procedure,
while the Population Selection Variation Algorithm uses exclu-
sively population level operators, as opposed to operators that act
on distributions. This shows that the PSVA may be seem as a fully
stochastic version of the Wright–Fisher model. These (small)
differences will be interesting to explore in future work, especially
regarding the effect of the potentially added stochasticity in the
PSVA compared to the WF model. The SGA is also very similar in
structure to the Wright–Fisher model when the latter is cast for
multiple loci and recombination. In this case, the Wright–Fisher
model is written as

Dðtþ1Þ ¼ ð bMμ○bRUnif○bSPropðwÞ○αÞðPðtÞÞ;
Pðtþ1Þ ¼ βNðDðtþ1ÞÞ:
Again, we see that the Wright–Fisher model is a more determi-
nistic version of its EC counterpart, as it condenses all the
stochasticity in the sampling procedure to recreate the next
generation, while the SGA operates solely using finite operators.

5.4. Models operating at the level of allele frequencies

Linkage equilibrium models: One common way to describe the
evolution of natural populations is to assume that they are always
in linkage equilibrium and describe the population solely based on
their allele frequency dynamics. These are typically fully determi-
nistic models, typically described by differential or difference
equations for these allele frequencies, assuming 2 alleles per locus
and that mean fitness w can be written as a function of allele
frequencies pi:

Δpi ¼
pið1�piÞ

2
∂ log w

∂pi
:

Because these models are deterministic, they act solely at the
level of distributions, without ever instantiating a particular
population. In our framework, these models can be described
using either genotypes G¼ 0;1f gn or at the level of allele frequen-
cies, using G¼Rn. In the first case,

Dðtþ1Þ ¼ ðbSPropðwÞ○bRUnif ÞðDðtÞÞ:
When we take the allele perspective (the more common case),

each allele is assigned a fitness (marginal fitness of an allele),
defined as its mean fitness across all other loci. In this case, the
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model reduces to

Dðtþ1Þ ¼ bSPropðwmargÞðDðtÞÞ;
with the function w defined as the marginal fitness of each allele:
wi ¼

P
gAGWðgÞ∏PðgiÞ, where gi denotes the allele at position i in

genotype g, PðgiÞ the frequency of the allele gi and W(g) the fitness
of genotype g.

Stochastic versions of these models are also trivially expressed
simply by sampling from D(t), as in the Wright–Fisher model:

Dðtþ1Þ ¼ ðbSPropðwmargÞ○αÞðPðtÞÞ;
Pðtþ1Þ ¼ βkðDðtþ1ÞÞ:

Univariate marginal distribution algorithm: In an Estimation
Distribution Algorithm (EDA), the algorithm tries to determine
the distribution of the solution features, e.g. probability of having a
1-bit at a particular position, at the optimum. Some EDAs can be
regarded abstractions of evolutionary processes: instead of gen-
erating new solutions through variation and then selecting from
these, EDAs use a more direct approach to refine the underlying
probability distribution. The perspective of updating a probability
distribution is similar to the Wright–Fisher model.

The Univariate Marginal Distribution Algorithm (UMDA)
(Mühlenbein and Paaß, 1996) is the simplest EDA, as it assumes
that all features are independent. The algorithm is described at the
distribution level,

Dðtþ1Þ ¼ ðα○Sℓ○βkÞðDðtÞÞ:
In this process, D(t) are the univariate distributions from a

vector of frequencies, e.g. if ðX1;…;XnÞ �DðtÞ and the component
of the vector of frequencies at position iA ½n� for allele aAΣ i is πa;i,
then Pr Xi ¼ að Þ ¼ πa;i. The other operators are βk is the sampling
operator resulting in a population of size k; Sℓ can be any non-
uniform selection operator that outputs a population of size ℓ; α
computes a new vector of frequencies from the selected popula-
tion for each allele at each string position, specifically, it sets
πa;i≔pPðtÞða; iÞ, then builds up a new univariate distribution from
that vector.

In addition, UMDA can also be described at the population level
by looking at the intermediate populations generated by
βkðDðtþ1ÞÞ. In fact, the use of univariate distributions and the
frequency counting implies a population-wise uniform crossover
over the selected population, e.g. the population could be seen as a
matrix where rows are the individuals, and to generate a new
solution x, the value of xi is picked from column i and from a
randomly selected row.

Pðtþ1Þ ¼ βkðDðtþ1ÞÞ equivalently;Pðtþ1Þ ¼ RkðSℓðPðtÞÞÞ:
As can be seen, the previous two models share a striking

similarity. The same connection was recently pointed out by
Chastain et al. (2014) and previously by Mühlenbein and Paaß
(1996). Taking the genotype frequency perspective, the linkage
equilibrium models can be written as

Dðtþ1Þ ¼ ðbSPropðwÞ○bRUnif ÞðDðtÞÞ;
while EDAs such as the UMDA can be written in genotype space at
the population level as

Pðtþ1Þ ¼ ðRk○SℓÞðPðtÞÞ:
Here, Rk can be seen as uniform recombination on the entire

population, as is typical for the UMDA, what is called a panmictic
population in PG. As can be seen here, deterministic linkage
equilibrium models from PG can be seen as the deterministic limit
of the UMDA. This hints at opportunities to translate results
between the two models.

Compact Genetic Algorithm (cGA): The compact Genetic Algo-
rithm (Harik et al., 1999) (cGA) is also an EDA, which makes the

same assumptions as UMDA and uses the same type of distribu-
tions. The main difference to UMDA is that the UMDA updates
allele frequencies proportionally to their relative success in the
population, while the cGA makes use of a finite population just as
an intermediate step to determine which alleles should increase or
decrease in frequency, and updates these by a fixed amount,
typically chosen to be 1/n.

For G¼ f0;1gn, the vector of frequencies at time t can be
represented by ðp1ðtÞ;…; pnðtÞÞ where pi is the probability of having
a 1 at position i. At initialization, Dð1Þ is the univariate distribution
from vector ð1=2;…;1=2Þ, and two individuals are constructed
from this distribution. Using the tournament selection operator,
we select the individual out of this pair with the highest fitness
and update the allele frequencies in the population according to
the winner. Formally, let PðtÞ ¼ β2ðDðtÞÞ. We call the individual
u¼ STourðf ;2ÞðPðtÞÞ the winner, and the remaining individual
fvg ¼ PðtÞ⧹fug the loser. Allele frequencies are then updated accord-
ing to the following equation.

piðtþ1Þ ¼ piðtÞþðui�viÞ
1
n
:

This means that the alleles in the winning genotype are
increased in frequency by an arbitrary amount (1=n, where n is
the genotype length), while the losing ones are decreased in
frequency by the same amount. The one-step description of the
algorithm is simply:

PðtÞ ¼ β2ðDðtÞÞ;
Pðtþ1Þ ¼ STourðf ;2ÞðPðtÞÞ [ PðtÞ⧹STourðf ;2ÞðPðtÞÞ

� �
Dðtþ1Þ ¼ SPt þ 1 ðDðtÞÞ;
where SPðtþ1ÞðDðtÞÞ is this special selection operator.

The cGA has no counterpart in PG, due to this special selection
operator. However, it seems that in expectation this model should
not be much different from linkage equilibrium models. The
consequences of the added stochasticity from such an extreme
sampling will be interesting to explore, and we expect that many
results could be useful for finite versions of linkage equilibrium
models.

5.5. Other models

The previous sections detail classical models in theoretical
population genetics and in the theory of evolutionary computa-
tion. However, both fields are vast and comprised of many
different formalisms and models. As such, it is not clear how of
this diversity can be represented by our framework. To this effect,
we conducted a survey of the recent literature in both fields and
analysed the models presented there, where applicable, for the
ability of the present framework to represent them (Supplemen-
tary Information).

The results are encouraging: most of the models in PG can be
easily represented in the current framework. This is expected since
most models in PG are a version of the classical models presented
above. One special comment goes for models involving migration.
The current framework possesses the ability to represent these
models, even though we did not detail here the structure of the
migration operators: these operators are a subset of selection
operators, and indeed it is easy to see that they respect property
S1 (the population generated by the operator is a subset of the
original population). Sub-populations are easily represented by
sequences, and indeed this is one of the reasons why populations
are represented by this mathematical object. However, for the sake
of brevity we decided against presenting this extension here.

In Evolutionary Computation virtually all of the models used in
the theory of EC are representable. However, in EC at large, we
found that a substantial fraction is not. This is mainly due to the
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existence of many highly problem-specific algorithms. These are
also unlikely to be of interest for biologists, since they typically
involve heuristics that incorporate a lot of problem-specific knowl-
edge. As such, these are also of little interest for a possible
translation of tools and results between the fields.

6. Conclusions

The two complementary research fields – Population Genetics
and Evolutionary Computation – study natural and artificial
evolutionary processes, but have developed independently. The
two fields therefore use substantially different terminology and
mathematical models, preventing a comparison and translation of
results.

Here, we introduce a unifying, mathematical framework for
evolutionary processes and accompanying terminology, covering
both classical evolutionary regimes in PG and typical evolutionary
algorithms in EC. The generality of the framework is demonstrated
by instantiating classical evolutionary models from population
genetics, including the SSWM model, the Wright–Fisher Model,
and the Moran Model, as well as classical evolutionary algorithms,
such as (1þ1) EA, (μþλ) EA, (μ,λ) EA, the Simple Genetic
Algorithm, (μ,λ) GAs, and simple estimation-of-distribution algo-
rithms (EDAs) such as the UMDA.

The framework sets the stage for transfer of results between
the two disciplines. In particular, the framework provides a
common mathematical language within which to contrast and
compare models, methods, and results. Surprisingly, by describing
the most common models and algorithms in population genetics
and evolutionary computation, it has become clear that they share
striking similarities. Most of the algorithms and models satisfy five
mathematical properties (V1), (M2), (M1), (R1), and (S1). This
suggests that the framework may not only be useful as a mathe-
matical language, but could be useful for deriving general theore-
tical results, valid both for artificial and natural evolution.

Furthermore, by formalizing the properties expected from the
different kinds of operators, we were able to show that certain
operators used in the literature do not respect the defining
properties for their type. In particular, we identified that geometric
crossovers defined in certain spaces do not respect the restrictions
we impose on recombination operators. This has implications for
claims about the effect of crossover on the runtime of algorithms
using these operators, one of the central topics in the EC literature.

It should be noted that some models in both fields may require
extensions to this framework in order to be able to be cast into it. A
case in point is spatially structured populations, both in PG as in EC
(for example, as in the case of distributed algorithms). We have not
shown how these models can be cast into this framework since
this would be out of the scope of this manuscript. It suffices to say
that these are a subtype of selection operators.

It should also be noted that some fields of Evolutionary
Computation were left out from our treatment of evolutionary
processes, the main one being Genetic Programming but also other
algorithms working on continuous or permutation spaces (Sup-
plementary Information). This was intentionally done in order to
strike a balance between mathematical simplicity and inclusive-
ness of our framework. This does not mean that, in principle,
genetic programming could not be cast into a generalized version
of our model. Instead, it means that we would have to make
concessions about the finiteness of the set of alleles at each locus,
which would increase the mathematical complexity of the
description we present here.

It is interesting that some models seem to have no equivalent
in the opposite field. This should not be surprising: EC is typically
concerned with efficiency of the algorithms and is free to do things

that are impossible in natural populations. For example, keeping
always the best individual found so far, seems unrealistic in
nature, given the stochastic nature of populations. However it is
striking that, given this freedom, most models do not stray much
from the typical scheme in PG. One could expect that certain
selection schemes could be devised that make use of the whole
lineage of an individual to construct the next generation (which in
fact is used in artificial selection for animal breeding), but these
types of selection seem to be relatively rare in the EC literature.
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Appendix A. Lemmas and proofs

Lemma 1. Let G be a finite set, and V : Gk-G is a random operator
such that for all y; x1;…; xkAG, there exists a permutation σ over G
such that

(1) σðx1Þ ¼ y and σðyÞ ¼ x1
(2) PrðX ¼ y∣X � Vðx1;…; xkÞÞ ¼ PrðY ¼ σðyÞ∣Y � Vðσðx1Þ;…;σðxkÞÞÞ

then V satisfies (V1).

Proof. To simplify the notation, define

pðyÞ≔PrðY ¼ y∣Y � Vðx1;…; xkÞ; x1;…; xk �UnifðGÞÞ
pðy∣x1;…; xkÞ≔PrðY ¼ y∣Y � Vðx1;…; xkÞÞ
qðyÞ≔PrðY ¼ y∣Y �UnifðGÞÞ ¼ jGj �1:

Given any yAG, we have

pðyÞ ¼
X

x1 ;…;xk AG
qðx1Þqðx2Þ…qðxkÞpðy∣x1; x2;…; xkÞ

¼ jGj �k
X
x1 AG

X
x2 ;…;xk AG

pðx1∣y;σðx2Þ;…;σðxkÞÞ

¼ jGj �k
X
x1 AG

X
z2 ;…;zk AG

pðx1∣y; z2;…; zkÞ

¼ jGj �k
X

z2 ;…;zk AG

X
x1 AG

pðx1∣y; z2;…; zkÞ

¼ jGj �k
X

x2 ;…;xk AG
1

¼ jGj �1:□

Lemma 2. Uniform mutation satisfies properties (V1) and (M1).
Moreover, if 0opo1, it also satisfies (M2).

Proof. Property (M1) follows by the definition. For any pair of
strings x; yAG, define H¼ fi∣xiayig (jHj is the Hamming distance
between x and y). Let Y ¼MpðxÞ and X ¼MpðyÞ, for property (V1) to
hold, from Lemma 1, it suffices to prove that the mutation
operator is symmetric, e.g. Pr Y ¼ yð Þ ¼ Pr X ¼ xð Þ. By the definition
of Mp,

Pr Y ¼ yð Þ ¼ ∏
n

i ¼ 1
Pr Yi ¼ yi
� �¼ ð1�pÞn� jH j pjH j

∏iAHðjΣ i j �1Þ

� �
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¼ ∏
n

i ¼ 1
Pr Xi ¼ xið Þ ¼ Pr X ¼ xð Þ

Finally, as long as 0opo1, Eq. (Appendix A) is strictly positive
and we also have property (M2) in that case. □

Lemma 3. Single-point mutation satisfies properties (V1), (M1), and
(M2).

Proof. Property (M1) holds by the definition of single point
mutation. For property (V1), from Lemma 1, it suffices to prove
that the mutation operator is symmetric. For any x; yAG, define
H¼ fi∣xiayig. Let Y ¼MspðxÞ and X ¼MspðyÞ, then it is clear that
Pr Y ¼ y∣jHj41ð Þ ¼ Pr X ¼ x∣jHj41ð Þ ¼ 0. Otherwise, let h be the
single element of H when jHj ¼ 1, then

Pr Y ¼ y∣jHj ¼ 1ð Þ ¼ ð1=nÞ 1
jΣh j �1

� �
¼ Pr X ¼ x∣jHj ¼ 1ð Þ

So overall, Pr Y ¼ yð Þ ¼ Pr X ¼ xð Þ.
Let us consider the process fZigiAN where Z1 ¼MspðxÞ, and

Ziþ1 ¼MspðZiÞ, then to prove property (M2), it suffices to show
that Pr Z jH j ¼ y

� �
40, e.g. the property holds with t ¼ jH j . The set

H implies that there exists a path which is a set of strings
ðx1;…; xjH j ¼ yÞ, for which the Hamming distances satisfy
Hðxi; xiþ1Þ ¼ 1 for all i and Hðx; x1Þ ¼ 1. In fact, each element of xi
of the path corresponds to the correction of a position hðxiÞAH, so

Pr Z jH j ¼ y
� �

ZPr Z1 ¼ x1ð ÞPr Z jH j ¼ y∣Z1 ¼ x1
� �

¼ ð1=nÞ 1
jΣhðx1Þ j �1

� �
Pr Z jH j ¼ y∣Z1 ¼ x1
� �

Z ð1=nÞ2 1
ðjΣhðx1Þ j �1ÞðjΣhðx2Þ j �1Þ

� �
Pr Z jH j ¼ y∣Z1 ¼ x1; Z2 ¼ x2
� �

Z⋯Zð1=nÞjH j 1
∏
iAH

ðjΣ i j �1Þ

0B@
1CA40 □

Lemma 4. Suppose PðtÞAGk and R : Gm-Gℓ is a recombination
operator for which property (R1) holds. Let S : Gk-Gm be any parent
selection operator such that for all iA ½n� and all aAΣ i,
E pP0 ða; iÞ∣P0 � SðPðtÞÞ� 	¼ pPða; iÞ. Then
E E pP″ ða; iÞ∣P″ � RðP0Þ� 	

∣P0 � SðPðtÞÞ� 	¼ pPðtÞða; iÞ:

Proof. By property (R1),

E E pP″ ða; iÞ∣P″ � RðP0Þ� 	
∣P0 � SðPðtÞÞ� 	¼ E pP0 ða; iÞ∣P0 � SðPðtÞÞ� 	¼ pPðtÞða; iÞ:

The final equality holds by our requirement for S.□

Lemma 5. Let R and S be a recombination and a parent selection
operator, respectively, for which

E pP0 ða; iÞ∣P0 � ðR○SÞðPðtÞÞ� 	¼ pPðtÞða; iÞ:
Then for any finite concatenation of ℓ applications of R○S to P(t),

E pP″ ða; iÞjP″ � ⋃
ℓ

i ¼ 1
ðR○SÞðPðtÞÞ

" #
¼ pPðtÞða:iÞ:

Proof. It suffices to show that

E pA[Bða; iÞ∣A� ðR○SÞðPðtÞÞ and B� ðR○SÞðPðtÞÞ� 	¼ pPðtÞða:iÞ:
Let A� ðR○SÞðPðtÞÞ and B� ðR○ÞSðPðtÞÞ. Then

pA[Bða; iÞ ¼
1

jAj þ jBj jAjpAða; iÞþ jBjpBða; iÞ
� �

;

and by linearity of expectation,

E pA[Bða; iÞ∣A� ðR○SÞðPðtÞÞ and B� ðR○SÞðPðtÞÞ� 	

¼ 1
jAj þ jBj jAjE pAða; iÞ∣Að � R○SÞðPðtÞÞ� 	�
þjBjE pBða; iÞ∣B� ðR○SÞðPðtÞÞ� 	�

¼ 1
jAj þ jBj jAjpPðtÞða; iÞþ jBjpPðtÞða; iÞ

� �
¼ pPðtÞða; iÞ: □

Lemma 6. Let ConvðPÞ denote the convex hull of a set P of genotypes
with respect to the Hamming metric.

ðR1Þ ) Pr ConvðYÞDConvðPÞ∣Y � RðPÞð Þ ¼ 1:

Proof. By the definition of the convex hull, zAConvðPÞ if and only
if for all iA ½n�, there exists an xAP with xi¼zi. Suppose that
Pr ConvðYÞ*ConvðPÞ∣Y � RðPÞð Þa0. Then there exists some
z=2ConvðPÞ such that Pr zAY ∣Y � RðPÞð Þ40. Moreover, since
z=2ConvðPÞ there exists an iA ½n� such that for all xAP, xiazi.

In this case the frequency of allele zi at locus i in all elements of
P is pPðzi; iÞ ¼ 0, but since z is contained in the result of RðPÞ with
nonzero probability, E pRðPÞðzi; iÞ

h i
a0. The claim follows by

contraposition. □

Lemma 7. Both k-point and uniform crossover satisfy property (R1).

Proof. Let x; yAΣ1 �⋯� Σn and z0 and z″ be the two intermedi-
ate offspring produced by k-point crossover. Recall that the off-
spring is selected uniformly at random from fz0; z″g. Hence, for all
iA ½n� and all aAΣ i,

E pRk�pointðx;yÞða; iÞ
h i

¼ 1
2 ½z0i ¼ a�þ1

2 ½z″i ¼ a� ¼ pfx;ygða; iÞ;

since ð½z0i ¼ a�þ½z″i ¼ a�Þ ¼ ð½xi ¼ a�þ½yi ¼ a�Þ. Similarly, for uniform
crossover,

E pRUnif ðx;yÞða; iÞ
h i

¼ 1
2 ½aAΣ i4xi ¼ a�þ1

2 ½aAΣ i4yi ¼ a� ¼ pfx;ygða; iÞ:

It follows that in both cases the allele frequencies are preserved,
and thus property (R1) is satisfied.□

Lemma 8. Both k-point crossover and uniform crossover satisfy
property (V1).

Proof. Let x; y�UnifðGÞ be the two parents and z be the generated
offspring from a crossover of x and y. Fix an allele i and note that zi
is taken from xi or yi with equal probability. This is obvious for
uniform crossover; for k-point crossover it follows from the fact
that one of two potential offspring is returned uniformly at
random. Hence, for any aAΣ i we have

Prðzi ¼ aÞ ¼ 1
2
� Prðxi ¼ aÞþ1

2
� Prðyi ¼ aÞ ¼ 1

jΣ i j
:

Furthermore, as both x1;…; xn and y1;…; yn are sequences of
mutually independent random variables, any sequence z1;…; zn
with ziAfxi; yig also represents mutually independent random
variables. Hence zAUnifðGÞ. □

Appendix B. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2015.07.011.

References

Affenzeller, M., 2005. Population Genetics and Evolutionary Computation: Theore-
tical and Practical Aspects, 6th Edition Trauner, Linz.

Altenberg, L., Feldman, M.W., 1987. Selection, generalized transmission and the
evolution of modifier genes. I. The reduction principle. Genetics 117 (3),
559–572, URL 〈http://www.genetics.org/content/117/3/559〉.

T. Paixão et al. / Journal of Theoretical Biology 383 (2015) 28–4342

http://dx.doi.org/10.1016/j.jtbi.2015.07.011
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref1
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref1
http://www.genetics.org/content/117/3/559


Altenberg, L., 2012. Resolvent positive linear operators exhibit the reduction
phenomenon. Proc. Natl. Acad. Sci. 109 (10), 3705–3710. http://dx.doi.org/
10.1073/pnas.1113833109, URL 〈http://www.pnas.org/content/109/10/3705〉.

Altenberg, L., 1984. A Generalization of Theory on the Evolution of Modifier Genes
(Ph.D. thesis). Stanford University.

Altenberg, L. 1995. The schema theorem and Price's theorem. In: Foundations of
Genetic Algorithms. Morgan Kaufmann, San Francisco, CA, USA, pp. 23–49.

Altenberg, L., 2010. Proof of the Feldman–Karlin conjecture on the maximum
number of equilibria in an evolutionary system. Theor. Popul. Biol. 77 (4),
263–269. http://dx.doi.org/10.1016/j.tpb.2010.02.007, URL 〈http://www.science
direct.com/science/article/pii/S0040580910000183〉.

Arora, S., Rabani, Y., Vazirani, U.V., 1994. Simulating quadratic dynamical systems is
PSPACE-complete. In: Proceedings of the 26th ACM Symposium on the Theory
of Computing (STOC), pp. 459–467.

Barton, N.H., Turelli, M., 1991. Natural and sexual selection on many loci. Genetics
127 (1), 229–255, URL 〈http://www.genetics.org/content/127/1/229〉.

Barton, N.H., Turelli, M., 2004. Effects of genetic drift on variance components
under a general model of epistasis. Evolution 58 (10), 2111–2132. http://dx.doi.
org/10.1111/j.0014-3820.2004.tb01591.x, URL http://onlinelibrary.wiley.com/
doi/10.1111/j.0014-3820.2004.tb01591.x/abstract.

Beyer, H.G., Schwefel, H.P., 2002. Evolution strategies—a comprehensive introduc-
tion. Nat. Comput., 3–52. http://dx.doi.org/10.1023/A:1015059928466.

Briest, P., Brockhoff, D., Degener, S., Englert, M., Gunia, C., Heering, O., Jansen, T.,
Leifhelm, M., Plociennik, J., Röglin, H., Schweer, A., Sudholt, D., Tannenbaum, S.,
Wegener, I., 2004. FrEAK – Free Evolutionary Algorithm Kit, 〈http://sourceforge.
net/projects/freak427/〉.

Cahon, S., Melab, N., Talbi, E.-G., 2004. ParadisEO: a framework for the reusable
design of parallel and distributed metaheuristics. J. Heurist. 10 (3), 357–380.

Cavalli-Sforza, L.L., Feldman, M.W., 1976. Evolution of continuous variation: direct
approach through joint distribution of genotypes and phenotypes. Proc. Natl.
Acad. Sci. U. S. A. 73 (5), 1689–1692, URL 〈http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC430365/〉.

Chastain, E., Livnat, A., Papadimitriou, C., Vazinari, U., 2014. Algorithms, games and
evolution. Proc. Natl. Acad. Sci. 111 (29), 10620–10623. http://dx.doi.org/
10.1073/pnas.1406556111.

Corus, D., Dang, D.-C., Eremeev, A.V., Lehre, P.K., 2014. Level-based analysis of
genetic algorithms and other search processes. In: Bartz-Beielstein, T., Branke,
J., Filipico, B., Smith, J. (Eds.), Parallel Problem Solving from Nature - PPSN XIII,
Lecture Notes in Computer Science, vol. 8672. Springer International Publish-
ing, Ljubljana, Slovenia, pp. 912–921. http://dx.doi.org/10.1007/978-3-319-
10762_290.

De Jong, K.A., 2006. Evolutionary Computation: A Unified Approach. MIT Press,
Cambridge, MA.

Dieckmann, U., 1997. Can adaptive dynamics invade? Trends Ecol. Evol. 12 (4),
128–131. http://dx.doi.org/10.1016/S0169-5347(97)01004-5.

Doerr, B., Winzen, C., 2011. Towards a complexity theory of randomized search
heuristics: ranking-based black-box complexity. Comput. Sci.—Theory Appl.,
15–28, URL 〈http://link.springer.com/chapter/10.1007/978-3-642-20712-9_2〉.

Doerr, B., Winzen, C., 2012. Playing mastermind with constant-size memory. In:
STACS, pp. 441–452.

Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C., 2011. Faster
black-box algorithms through higher arity operators. In: Proceedings of the
11th Workshop Proceedings on Foundations of Genetic Algorithms, FOGA '11.
ACM, USA, pp. 163–172. http://dx.doi.org/10.1145/1967654.1967669. URL http://
doi.acm.org/10.1145/1967654.1967669.

Droste, S., Wiesmann, D., 2000. Metric based evolutionary algorithms. In: Genetic
Programming, Proceedings of EuroGP 2000, vol. 1802, pp. 29–43. URL 〈http://
www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=
1802&spage=29〉.

Droste, S., Jansen, T., Wegener, I., 2006. Upper and lower bounds for randomized
search heuristics in black-box optimization. Theory Comput. Syst. 39 (4),
525–544.

Falconer, D.S., Mackay, T.F.C., 1996. Introduction to Quantitative Genetics, 4th
Edition Benjamin Cummings, Essex, UK.

Gillespie, J.H., 1983. Some properties of finite populations experiencing strong
selection and weak mutation. Am. Nat. 121 (5), 691–708. http://dx.doi.org/
10.2307/2460872, URL 〈http://www.jstor.org/stable/2460872〉.

Goldberg, D.E., 1989. Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley, Boston, MA, USA.

Harik, G.R., Lobo, F.G., Goldberg, D.E., 1999. The compact genetic algorithm. IEEE
Trans. Evol. Comput. 3 (4), 287–297.

INRIA, ParadisEO: A Software Framework for Metaheuristics, 〈http://paradiseo.
gforge.inria.fr/〉.

Jansen, T., Sudholt, D., 2010. Analysis of an asymmetric mutation operator. Evol.
Comput. 18 (1), 1–26.

Jones, T., 1995. Evolutionary Algorithms, Fitness Landscapes and Search (Ph.D.
thesis). The University of New Mexico.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing.
Science 220, 671–680. http://dx.doi.org/10.1126/science.220.4598.671.

Kirkpatrick, M., Johnson, T., Barton, N., 2002. General models of multilocus
evolution. Genetics 161 (4), 1727–1750, URL 〈http://www.genetics.org/con
tent/161/4/1727〉.

Larrañaga, P., Lozano, J.A., 2002. Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation. Kluwer Academic Publishers, New York, NY,
USA.

Lehre, P.K., Witt, C., 2012. Black-box search by unbiased variation. Algorithmica,
1–20.

Lehre, P.K., 2011. Negative drift in populations. In: Proceedings of Parallel Problem
Solving from Nature (PPSN XI), Lecture Notes in Computer Science, vol. 6238,
Springer, Birmingham, UK, pp. 244–253.

Lewontin, R.C., 1964. The interaction of selection and linkage. I. General considera-
tions; heterotic models. Genetics 49 (1), 49–67, URL 〈http://www.genetics.org/
content/49/1/49〉.

Luke, S. ECJ: A Java-Based Evolutionary Computation Research System. 〈http://cs.
gmu.edu/�eclab/projects/ecj/〉.

Mühlenbein, H., Paaß, G., 1996. From recombination of genes to the estimation of
distributions I. Binary parameters. In: Parallel Problem Solving from Nature -
(PPSN IV), vol. 1141 of LNCS, Springer, Berlin, Germany, pp. 178–187. http://dx.
doi.org/10.1007/3-540-61723-X_982.

Matessi, C., Schneider, K.A., 2009. Optimization under frequency-dependent
selection. Theor. Popul. Biol. 76 (1), 1–12. http://dx.doi.org/10.1016/j.tpb.2009.
02.007.

Moraglio, A., Sudholt, D., 2012. Runtime analysis of convex evolutionary search. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2012), pp. 649–656.

Moraglio, A., 2007. Towards a Geometric Unification of Evolutionary Algorithms
(Ph.D. thesis). University of Essex.

Moraglio, A., 2011. Abstract convex evolutionary search. In: Proceedings of the 11th
Workshop Proceedings on Foundations of Genetic Algorithms, FOGA '11. ACM,
USA, pp. 151–162. http://dx.doi.org/10.1145/1967654.1967668. URL http://doi.
acm.org/10.1145/1967654.1967668.

Moran, P.A.P., 1958. Random processes in genetics. Math. Proc. Camb. Philos. Soc. 54
(01), 60–71. http://dx.doi.org/10.1017/S0305004100033193.

Nowak, M., 2006. Evolutionary Dynamics: Exploring the Equations of Life, 1st
Edition Belknap Press, Cambridge, Mass.

Price, G.R., 1970. Selection and covariance. Nature 227, 520–521. http://dx.doi.org/
10.1038/227520a0.

Price, G.R., 1972. Extension of covariance selection mathematics. Ann. Human
Genet. 35 (4), 485–490. http://dx.doi.org/10.1111/j.1469-1809.1957.tb01874.x,
URL 〈http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1957.tb01874.x/
abstract〉.

Rabani, Y., Rabinovich, Y., Sinclair, A., 1998. A computational view of population
genetics. Random Struct. Algorithm 12 (4), 313–334.

Rabinovich, Y., Sinclair, A., Wigderson, A., 1992. Quadratic dynamical systems. In:
Proceedings of the 33rd IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pp. 304–313.

Rowe, J.E., Vose, M.D., 2011. Unbiased black box search algorithms. In: Proceedings
of the 13th Annual Conference on Genetic and Evolutionary Computation,
GECCO '11. ACM, USA, pp. 2035–2042. http://dx.doi.org/10.1145/2001576.
2001850. URL 〈http://doi.acm.org/10.1145/2001576.2001850〉.

Schafer, R., 1949. Structure of genetic algebras. Am. J. Math. 71 (1), 121–135. http:
//dx.doi.org/10.2307/2372100.

Schneider, K.A., 2007. Long-term evolution of polygenic traits under frequency-
dependent intraspecific competition. Theor. Popul. Biol. 71 (3), 342–366. http:
//dx.doi.org/10.1016/j.tpb.2006.11.003.

Slatkin, M., 1970. Selection and polygenic characters. Proc. Natl. Acad. Sci. U. S. A. 66
(1), 87–93, URL 〈http://www.ncbi.nlm.nih.gov/pmc/articles/PMC286091/〉.

Stadler, B.M.R., Stadler, P.F., Wagner, G.P., Fontana, W., 2001. The topology of the
possible: formal spaces underlying patterns of evolutionary change. J. Theor.
Biol. 213 (2), 241–274. http://dx.doi.org/10.1006/jtbi.2001.2423.

Syswerda, G., 1991. A study of reproduction in generational and steady state genetic
algorithms. In: Rawlins, G.J. (Ed.), Foundations of Genetic Algorithms 1991
(FOGA 1). Morgan Kaufmann, San Francisco, CA, USA.

Teytaud, O., Gelly, S., 2006. General lower bounds for evolutionary algorithms. In:
Parallel Problem Solving from Nature-PPSN IX, pp. 21–31. URL 〈http://link.
springer.com/chapter/10.1007/11844297_3〉.

Turelli, M., Barton, N.H., 2006. Will population bottlenecks and multilocus epistasis
increase additive genetic variance? Evolution 60 (9), 1763–1776. http://dx.doi.
org/10.1111/j.0014-3820.2006.tb00521.x, URL 〈http://onlinelibrary.wiley.com/
doi/10.1111/j.0014-3820.2006.tb00521.x/abstract〉.

Vose, M.D., 1999a. Random heuristic search. Theor. Comput. Sci. 229 (1), 103–142.
Vose, M.D., 1999b. The Simple Genetic Algorithm: Foundations and Theory. The MIT

Press, Cambridge, Mass.
Wall, M. GAlib: a Cþþ library of genetic algorithm components. 〈http://lancet.mit.

edu/ga/GAlib.html〉.

T. Paixão et al. / Journal of Theoretical Biology 383 (2015) 28–43 43

http://dx.doi.org/10.1073/pnas.1113833109
http://dx.doi.org/10.1073/pnas.1113833109
http://dx.doi.org/10.1073/pnas.1113833109
http://dx.doi.org/10.1073/pnas.1113833109
http://www.pnas.org/content/109/10/3705
http://dx.doi.org/10.1016/j.tpb.2010.02.007
http://dx.doi.org/10.1016/j.tpb.2010.02.007
http://dx.doi.org/10.1016/j.tpb.2010.02.007
http://www.sciencedirect.com/science/article/pii/S0040580910000183
http://www.sciencedirect.com/science/article/pii/S0040580910000183
http://www.genetics.org/content/127/1/229
http://dx.doi.org/10.1111/j.0014-3820.2004.tb01591.x
http://dx.doi.org/10.1111/j.0014-3820.2004.tb01591.x
http://dx.doi.org/10.1111/j.0014-3820.2004.tb01591.x
http://dx.doi.org/10.1111/j.0014-3820.2004.tb01591.x
http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2004.tb01591.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2004.tb01591.x/abstract
http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1023/A:1015059928466
http://sourceforge.net/projects/freak427/
http://sourceforge.net/projects/freak427/
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref12
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC430365/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC430365/
http://dx.doi.org/10.1016/j.jtbi.2015.07.011
http://dx.doi.org/10.1016/j.jtbi.2015.07.011
http://dx.doi.org/10.1016/j.jtbi.2015.07.011
http://dx.doi.org/10.1016/j.jtbi.2015.07.011
http://dx.doi.org/10.1007/978-3-319-10762_290
http://dx.doi.org/10.1007/978-3-319-10762_290
http://dx.doi.org/10.1007/978-3-319-10762_290
http://dx.doi.org/10.1007/978-3-319-10762_290
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref16
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref16
http://dx.doi.org/10.1016/S0169-5347(97)01004-5
http://dx.doi.org/10.1016/S0169-5347(97)01004-5
http://dx.doi.org/10.1016/S0169-5347(97)01004-5
http://link.springer.com/chapter/10.1007/978-3-642-20712-9_2
dx.doi.org/10.1145/1967654.1967669
http://doi.acm.org/10.1145/1967654.1967669
http://doi.acm.org/10.1145/1967654.1967669
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=1802&spage=29
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=1802&spage=29
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=1802&spage=29
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=1802&spage=29
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=1802&spage=29
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=1802&spage=29
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref22
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref22
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref22
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref23
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref23
http://dx.doi.org/10.2307/2460872
http://dx.doi.org/10.2307/2460872
http://dx.doi.org/10.2307/2460872
http://dx.doi.org/10.2307/2460872
http://www.jstor.org/stable/2460872
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref25
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref25
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref26
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref26
http://paradiseo.gforge.inria.fr/
http://paradiseo.gforge.inria.fr/
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref28
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref28
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://www.genetics.org/content/161/4/1727
http://www.genetics.org/content/161/4/1727
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref32
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref32
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref32
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref33
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref33
http://www.genetics.org/content/49/1/49
http://www.genetics.org/content/49/1/49
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/
dx.doi.org/10.1007/3-540-61723-X_982
dx.doi.org/10.1007/3-540-61723-X_982
http://dx.doi.org/10.1016/j.tpb.2009.02.007
http://dx.doi.org/10.1016/j.tpb.2009.02.007
http://dx.doi.org/10.1016/j.tpb.2009.02.007
http://dx.doi.org/10.1016/j.tpb.2009.02.007
dx.doi.org/10.1145/1967654.1967668
http://doi.acm.org/10.1145/1967654.1967668
http://doi.acm.org/10.1145/1967654.1967668
http://dx.doi.org/10.1017/S0305004100033193
http://dx.doi.org/10.1017/S0305004100033193
http://dx.doi.org/10.1017/S0305004100033193
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref43
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref43
http://dx.doi.org/10.1038/227520a0
http://dx.doi.org/10.1038/227520a0
http://dx.doi.org/10.1038/227520a0
http://dx.doi.org/10.1038/227520a0
http://dx.doi.org/10.1111/j.1469-1809.1957.tb01874.x
http://dx.doi.org/10.1111/j.1469-1809.1957.tb01874.x
http://dx.doi.org/10.1111/j.1469-1809.1957.tb01874.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1957.tb01874.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1957.tb01874.x/abstract
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref46
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref46
dx.doi.org/10.1145/2001576.2001850
dx.doi.org/10.1145/2001576.2001850
http://doi.acm.org/10.1145/2001576.2001850
http://dx.doi.org/10.2307/2372100
http://dx.doi.org/10.2307/2372100
http://dx.doi.org/10.2307/2372100
http://dx.doi.org/10.2307/2372100
http://dx.doi.org/10.1016/j.tpb.2006.11.003
http://dx.doi.org/10.1016/j.tpb.2006.11.003
http://dx.doi.org/10.1016/j.tpb.2006.11.003
http://dx.doi.org/10.1016/j.tpb.2006.11.003
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC286091/
http://dx.doi.org/10.1006/jtbi.2001.2423
http://dx.doi.org/10.1006/jtbi.2001.2423
http://dx.doi.org/10.1006/jtbi.2001.2423
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref53
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref53
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref53
http://link.springer.com/chapter/10.1007/11844297_3
http://link.springer.com/chapter/10.1007/11844297_3
http://dx.doi.org/10.1111/j.0014-3820.2006.tb00521.x
http://dx.doi.org/10.1111/j.0014-3820.2006.tb00521.x
http://dx.doi.org/10.1111/j.0014-3820.2006.tb00521.x
http://dx.doi.org/10.1111/j.0014-3820.2006.tb00521.x
http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2006.tb00521.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2006.tb00521.x/abstract
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref56
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref57
http://refhub.elsevier.com/S0022-5193(15)00340-9/sbref57
http://lancet.mit.edu/ga/GAlib.html
http://lancet.mit.edu/ga/GAlib.html

	Toward a unifying framework for evolutionary processes
	Introduction
	Related work
	Population genetics models
	Evolutionary computation

	A unifying framework for evolutionary processes
	The nature of evolving entities

	Evolutionary operators
	Selection operators
	Variation operators
	Mutation operators
	Recombination operators
	Unbiased variation operators


	Instantiation of evolutionary models
	Models of monomorphic populations
	Models of polymorphic populations with “slow” dynamics
	Models of finite polymorphic populations
	Models operating at the level of allele frequencies
	Other models

	Conclusions
	Acknowledgements
	Lemmas and proofs
	Supplementary data
	References




