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Abstract. Generative graph models play an important role in network
science. Unlike real-world networks, they are accessible for mathemati-
cal analysis and the number of available networks is not limited. The
explanatory power of results on generative models, however, heavily
depends on how realistic they are. We present a framework that allows
for a systematic evaluation of generative network models. It is based on
the question whether real-world networks can be distinguished from gen-
erated graphs with respect to certain graph parameters.

As a proof of concept, we apply our framework to four popular random
graph models (Erdős-Rényi, Barabási-Albert, Chung-Lu, and hyperbolic
random graphs). Our experiments for example show that all four models
are bad representations for Facebook’s social networks, while Chung-Lu
and hyperbolic random graphs are good representations for other net-
works, with different strengths and weaknesses.
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1 Introduction

Generative graph models play an important role in network science for a multi-
tude of reasons. They can explain how certain properties observed in real-world
networks naturally emerge when assuming simplified but reasonable creation
mechanisms. The small-world phenomenon for example emerges from a small
amount of randomness in the form of independently chosen edges [10,23], and
analyzing how information spreads in random networks can help to explain infor-
mation cascades, in which individuals act based on the behavior of other indi-
viduals instead of their own information, leading to a herd-like behavior [22].
Moreover, analyzing the expected run time of an algorithm on a realistic gen-
erative model has the potential to explain why certain algorithms perform well
on real-world instances despite their bad worst-case performance [16]. Finally,
randomly generated instances can serve as benchmark sets for algorithms.

The explanatory power of a generative model and its usefulness as benchmark
heavily depends on how well the generated graphs mimic real-world networks.
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A common way to provide evidence for the usefulness of a model, is to analyze
it with respect to certain fundamental properties. The properties commonly
perceived as most important are the degree distribution (which is typically het-
erogeneous with many vertices of low degree and few vertices of high degree), the
diameter (maximum distance between nodes, which is typically small), and the
clustering coefficient (providing a measure of locality, which is typically high).

Typical examples of arguments for or against a certain model are as follows.
The Barabási-Albert model leads to a power-law degree distribution, which is
realistic for certain classes of real-world networks [3,7]. Chung-Lu graphs have
the small-world property often observed in real-world networks as their diameter
is rather small (namely Θ(log n)) [8]. The clustering coefficient of Barabási-
Albert graphs tends to 0 for n → ∞ [11], while it is bounded away from 0 for
hyperbolic random graphs [15,17], making the latter more realistic.

Though knowing the asymptotic behavior of these fundamental properties is
an important contribution to understand a model, there are disadvantages when
it comes to judging how realistic it is: the statements are only of qualitative
nature (a parameter is “small” or “large”) but it is unclear which values are
actually realistic. This is particularly true when trying to compare the asymp-
totic growth in a model with the specific numbers of a few real-world networks.

A more direct comparison is achieved by comparing how different a generated
network and its real-world counterpart are. Such an approach heavily depends
on the used similarity measure [20]. While these measures have important appli-
cations, they typically compare only pairs of networks. Thus, we believe they
are not suited to evaluate the usefulness of a generative model as this pairwise
comparison heavily favors overfitting and discourages the models to generalize.

The goal of being as unbiased as possible while mimicking certain impor-
tant properties of real-world networks is formally captured by the term maxi-
mum entropy model. Erdős-Rényi graphs are for example maximum entropy with
respect to the number of vertices and edges, i.e., each graph with the desired
number of vertices and edges is produced with the same probability. Using this
perspective, the perfect model would be one that is maximum entropy with
respect to as few properties as possible such that the generated networks are
indistinguishable from real-world networks with respect to as many properties
as possible.

Our goal with this paper is to develop a framework that enables a systematic
experimental evaluation of how good generative graph models are. In particular,
it is possible to answer questions of the following type.

– Barabási-Albert, Chung-Lu, and hyperbolic random graphs all have small
diameter (Θ(log n/ log log n) [6], Θ(log n) [8], and polylogarithmic [14]).
Which of the three is more realistic?

– Which aspects of real-world networks are well represented by a given model
and which are not? Note that answering this question is particularly interest-
ing for maximum entropy models, as it provides a direction on how to make
the model more realistic.
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– Which types of real-world networks (e.g., social or infrastructural) are well
represented by a given model?

– Given two seemingly similar models, do they actually generate graphs with
similar properties?

Contribution and Outline. We developed a framework capable of answering these
questions. The general approach is to select generative models, a collection of
real-world networks, and a set of parameters. For each model, a set of graphs
fitted to the real-world networks is generated. We then answer the question
whether the chosen set of parameters is sufficient to distinguish between the
different collections using machine learning. This general question allows us to
formulate all the above mentioned specific questions by appropriately choosing
the graph collections that should be distinguished and the set of parameters.

The different components of the framework can be easily adapted: New real-
world networks, further generative models, and additional parameters can be
included. Moreover, the used machine learning technique is interchangeable.

To showcase our framework, we selected four models (Erdős-Rényi, Barabási-
Albert, Chung-Lu, and hyperbolic random graphs) and evaluated them on 219
real-world networks based on ten different parameters. Our findings, interesting
in their own right, are as follows.

– While all four models are bad representations for Facebook graphs,
Chung-Lu and hyperbolic random graphs are reasonable models for other
real-world networks.

– While the Chung-Lu model is better for features related to node degrees,
hyperbolic random graphs excel when involving clustering or distance-related
features.

– Though hyperbolic random graphs have a realistic average clustering, the
variance in clustering is too low.

– In the Barabási-Albert model, the choice of the initial graph (clique or cycle)
is only irrelevant if the average degree is small.

Our framework and the raw data produced in our experiments are available
at https://github.com/jstriebel/nemo-eva.

Related Work. Attar and Aliakbary recently followed a similar approach of clas-
sifying networks based on certain graph parameters [1]. Their perspective is,
however, significantly different: their goal is to decide for a given real-world
network, which model is most suited to represent it. We note that this app-
roach can also be used to evaluate which model is the most realistic for certain
real-world networks by counting how many real-world networks are classified as
which model. However, this only leads to a evaluation in comparison to the other
models under consideration and it does not identify parameters with respect to
which a model requires improvement.

https://github.com/jstriebel/nemo-eva
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2 Methodology

Our framework consists of three main steps. First, multiple collections of graphs
are determined. Typically, we have one collection containing real-world networks
and one collection for each generative model. In the second step, different graph
parameters are computed for all graphs in a collection. For each graph, this yields
a feature vector, which is used as its representation. Thus, the second step turns
the collections of graphs into collections of feature vectors. The third step then
determines, whether two collections can be distinguished based on the feature
vectors, and if yes, which subsets of features can or cannot be used to distinguish
between them. In the following, we describe the three steps in more detail.

2.1 Collections of Networks

In the first step, a collection of real-world networks and a selection of gen-
erative models is chosen. We denote the collection of real-world networks by
C = {G1, . . . , Gc} with c = |C|. For each model m and each graph Gi ∈ C, we
use m to generate an artificial graph Gm

i trying to mimic the real-world network
Gi. We denote the set of resulting networks by Cm = {Gm

1 , . . . , Gm
c }.

Fitting the Models. We want the graph Gm
i generated by m to mimic the corre-

sponding real-world network Gi. As this highly depends on the chosen model, it
is not part of the framework. Most models, however, generate graphs based on
a small set of input parameters and produce graphs that roughly match these
parameters. In this case, we compute the relevant parameters for Gi and generate
Gm

i using the resulting values. For input parameters of a model that are known
to mainly influence one parameter of the generated graphs, without knowing
an exact formula for this dependency, one can use a binary search to fit this
parameter. In Sect. 3.2 we describe the fitting we used for Erdős-Rényi Graphs,
Barabási-Albert, Chung-Lu, and hyperbolic random graphs.

2.2 Network Parameters

In the second step, each graph G is turned into a feature vector by computing
the values of different parameters. Formally, a feature ϕ is a function that maps
G to a numerical value ϕ(G). For a feature set F = {ϕ1, . . . , ϕf} of f = |F |
features, the feature vector of G is (ϕ1(G), . . . , ϕf (G)) and we denote it by
F (G). For a collection C of graphs, F (C) denotes the corresponding collection of
feature vectors. We note that selecting a sufficiently expressive set of parameters
is crucial: our framework is based on the assumption that structural properties
distinguishing different networks types can be represented by the chosen features.

Feature Cleaning. To eliminate meaningless features, we apply three data clean-
ing techniques: numerical cleaning, variation cleaning, and correlation grouping.
The numerical cleaning eliminates all features that are undefined or infinite for
at least one of the networks. The variation cleaning eliminates features that have
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little predictive value as they assume similar values on most networks. More pre-
cisely, features are eliminated based on their normalized coefficient of variation,
which is defined as follows. For a given feature, let X be the vector containing the
c values it assumes in different graphs. Then the feature’s normalized coefficient
of variation is defined as

σ(X)
μ(X)

√
c − 1

,

where σ and μ denote the standard deviation and the arithmetic mean, respec-
tively. We remove features with a normalized coefficient of variation below a
threshold of 1%.

The correlation grouping groups highly correlated features, as having multi-
ple very similar features does not add any predictive value. For each group of
correlated features only the feature with the clearest semantics (given by a manu-
ally predefined order) of the group is used. The grouping is done by constructing
a graph, using the features as nodes and connecting two features by an edge if
they have an absolute Spearman’s rank correlation coefficient above 99%. Each
connected component in that graph is one group. Note that grouped features
can have a smaller correlation than the threshold of 99%, as the correlation is
not transitive, but being in the same connected component is.

2.3 Distinguishing the Collections

In the third step, we want to determine which pairs of collections can be dis-
tinguished based on which features. To this end, we want to answer queries of
the following type. The input is a subset F of all features and two collections of
graphs, typically the collection C of real-world networks and the collection Cm

for one model m (it is also possible to compare the collections of two different
models, but for the sake of readability, we assume C and Cm in the following).
We then want to know how well F (C) can be distinguished from F (Cm), i.e.,
whether it can be learned which feature vectors are members of which collections
by observing the membership only for few samples.

Classification Task. The input for the classifier consists of a feature-matrix X ∈
R

2c×f (c = |C| and f = |F |) and a binary vector Y ∈ {0, 1}2c that classifies the
features as belonging to C (denoted as 0) or as to Cm (denoted as 1). They are
defined as

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F (G1)
...

F (Gc)
F (Gm

1 )
...

F (Gm
c )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

⎫⎪⎬
⎪⎭

c

1
...
1

⎫⎪⎬
⎪⎭

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The task of distinguishing features X according to the vector Y corresponds
directly to the classical machine-learning setting of binary classifications: Given
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the feature-space X = R
2c×f for 2c observations of c graphs and c correspond-

ing models with f real-valued features, the target value space is defined as
Y = {0, 1}2c, and the binary classification model MX is a function of the form
MX : X → Y. The output for each prediction is independent from other predic-
tions, therefore

MR2c×f ((x1 · · · x2c)T ) = (MRf (x1) · · · MRf (x2c))T .

Evaluation. To evaluate the resulting predictions, the accuracy is measured.
Given the actual target values Y and the predicted values Ŷ = M(X), the
accuracy is the ratio of correctly classified examples [2]. Therefore,

accuracy(Ŷ , Y ) =
∑

i[Ŷi = Yi]
|Y | ,

where [·] is the Iverson bracket with [p] = 1 if p is true and [p] = 0 otherwise.

Supervision and Cross-Validation. To do supervised learning, we need training
data Xtrain and Ytrain. With this, a supervised learning strategy S results in a
trained model MX , therefore S : Xtrain × Ytrain → (MX : X → Y).

To make use of all the data as a target to predict, but simultaneously prevent
to use the same data as a training and a testing example, we use cross-validation.
Given some predictors X and target values Y , the �-fold cross-validation splits
the data in � random, equally-sized subsets X1, . . . , X�, Y1, . . . , Y�. They are used
to generate � learned models, where for each model a single subset is used as
the test dataset and all other subsets as the training data. To make the training
unbiased we use stratified cross-validation which ensures that the number of
examples is the same for both classes (i.e., each Xi includes the same number
of feature vectors from F (C) as from F (Cm)). The total accuracy of the cross-
validation is then defined as the arithmetic mean of the accuracies of all models.

Classification Model. From the wide range of possible supervised machine learn-
ing classifiers we use support vector machines (SVMs) with the Gaussian radial
basis function (rbf) kernel because they have a good predictive performance
in general [13], are able to capture high order dependencies [4,19], and the
parametrized regularization allows to tune the variance-bias trade-off [2,19].

To select the best parameters for the SVM and the rbf kernel, cross-validation
over a grid of parameters is performed. The model with the best average accuracy
in the testing sets is used as the final model. All features used in the SVM are
normalized to have an arithmetic mean of zero and unit variance in the training
data. The testing dataset is scaled using the same parameters. This ensures that
also the scaling is done in an unbiased, cross-validated fashion.

3 Experiments

For the experiments we used 219 publicly available graphs from Network Repos-
itory [18]. For disconnected graphs, we used the largest connected component.
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Fig. 1. The graphs used in our experiments.

The Network Repository divides graphs into different categories, as shown in
Fig. 1. The graphs vary in their sizes and have up to 1.8 million nodes and 17
million edges. In the following, we define the used graph parameters, describe
the considered generative models, and how we fitted them to the real-world
networks.

3.1 Graph Properties

Table 1 lists all features we use. The properties we consider in our experiments
can be divided into two categories: single-value features and distributions over
nodes. We used NetworKit [21] to compute the features.

Single-Value Features. These are features that assign a single numerical value
to a given graph. The most basic properties of this type are the number of nodes
and the number of edges. Additionally, the diameter describes the maximum
length of a shortest path between any two nodes in the graph and the effective
diameter (a similar but more robust measure) represents an upper bound on the
shortest path between 90% of all node pairs.

The generative models we consider are mostly meant to represent so-called
scale-free networks whose degree distribution follows a power law, i.e., the frac-
tion of vertices with at least k neighbors roughly behaves like k−β , where β is
the so-called power-law exponent.

Distribution over Nodes. These are features that assign a value to each node,
leading to distributions over all nodes in the graph. For each of these distributions
we consider the arithmetic mean, median, first quartile and third quartile, as well
as the standard deviation.
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The simplest measure of this type is the degree distribution, assigning each
vertex its degree. The local clustering coefficient of a vertex v is the probability
that two randomly selected neighbors of v are connected. The arithmetic mean
of the local clustering coefficients is often referred to as “average local clustering
coefficient” or simply “clustering coefficient” of the network and represents an
important single-value feature. The k-core of a graph is obtained by successively
removing all nodes with degree less than k. This leads to the measure of core
centrality, where each node is assigned the largest k such that it is contained
in the k-core. The betweenness centrality measures for each vertex v how many
shortest paths between pairs of other nodes go though v, and the closeness
centrality of a node denotes its average distance to every other node in the
graph. Furthermore, the Katz centrality measures the importance of a node by
its number of neighbors and the distance of all other nodes to these neighbors.
Finally, the PageRank centrality is basically the limiting probability distribution
of a random walk.

Table 1. The parameters we use, their abbreviations, and whether they are single-value
or distribution parameters.

Feature Abbreviation SV/Distr.

Number of nodes n Single value

Number of edges m Single value

Diameter d Single value

Effective diameter d′ Single value

Power-law exponent β Single value

Degree deg Distribution

Local clustering coefficient c Distribution

Core centrality core Distribution

Betweenness centrality betw Distribution

Closeness centrality close Distribution

Katz centrality Katz Distribution

PageRank centrality PR Distribution

3.2 Graph Models

As mentioned above, we are mostly interested in scale-free networks, i.e., highly
heterogeneous networks with many low-degree and few high-degree nodes, whose
degree distribution roughly follows a power law. We thus chose Barabási-Albert,
Chung-Lu, and hyperbolic random graphs as models for our experiments. More-
over, we also consider the Erdős-Rényi Graphs model, as it is arguably the most
basic random graph model possible. In the following we briefly describe how
graphs are generated by the different models, discuss their basic properties, and
report how we did the model fitting mentioned in Sect. 2.1.
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Erdős-Rényi Graphs [12]. The Erdős-Rényi random graph model is the earliest
and most studied one. A graph is generated by connecting each pair of n vertices
with probability p. Thus, one can control the number of vertices and expected
number of edges, which is p · n(n − 1)/2. To fit the model to a given real-world
network, we set n to the number of vertices and the edge probability parameter
to p = 2m/(n(n − 1)) where m denotes the number of edges in the network.

We do not expect the Erdős-Rényi Graphs model to generate very realistic
graphs, i.e., we expect them to be easily distinguishable from the real-world
networks.

Barabási-Albert Graphs [3]. This model (which is also called preferential attach-
ment) generates a random graph by starting with a small graph of size n0 (e.g. a
cycle). Then, nodes are added one by one, each connected to k already existing
nodes with probability proportional to their degree, until there are n nodes in
the graph. The size of the initial graph is typically chosen as n0 = k, which is
the smallest value ensuring that the first node that is added in the generation
process has enough neighbors to connect to. Note that 2k is the expected average
degree of the resulting graph. Thus, to fit the model, we set n to the number of
vertices and derive k from the average degree of the real-world network.

As this model generates scale-free graphs, we expect it to produce more realis-
tic results than the Erdős-Rényi Graphs model. The main point commonly made
against the Barabási-Albert model is its vanishing clustering coefficient [11],
which indicates a lack of locality typically present in real-world networks.

Chung-Lu Graphs [8,9]. In the Chung-Lu model each node is assigned a weight
and each pair of nodes is connected with a probability proportional to the prod-
uct of their weights. In the resulting graph, each node has an expected degree
equal to its weight. In our experiments, we fit the model by using the observed
degree distribution in a real-world network as weights.

By construction, the Chung-Lu model mimics the degree distribution of a
real-world network very well. As for the Barabási-Albert model, the most com-
mon point of criticism is its low clustering coefficient. Moreover, the Chung-Lu
model seems more artificial than the Barabási-Albert model, as the latter mimics
the evolution of a real-world network (in a simplified manner). The Chung-Lu
model on the other hand matches the desired degree distribution much more
accurately. It is thus interesting to know which of the two models leads to more
realistic results with respect to features other than the degree distribution.

Hyperbolic Random Graphs [17]. In this model n nodes are placed randomly in
a disk within the hyperbolic plane. Then, each pair of vertices is connected if
their hyperbolic distance is below a threshold, whose size depends on n and the
desired average degree. The resulting networks have a power-law degree distri-
bution with the power-law exponent β being an input parameter. Additionally, a
parameter T can be used to soften the threshold behaviour, allowing long-range
edges with a certain probability. The geometry implies locality, which leads to
a non-vanishing clustering coefficient [15]. Roughly speaking, the parameter T
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controls how important this locality is (the more probable long-range edges are,
the less important is the locality) and thus impacts the clustering coefficient.

When fitting the model parameters to a given real-world network, the largest
connected component of the generated graph is typically smaller than the num-
ber of initially generated nodes n. To estimate n we use a technique based on
estimating the missing nodes of degree 0 [5]. As desired average degree, we simply
use the average degree of the real-world network, and the power-law exponent β
is estimated based on the cumulative degree distribution. To fit the final param-
eter T ∈ [0, 1), we perform a binary search on T , in each step comparing the
clustering coefficients of the resulting graph and the real-world network.

Table 2. Failure rates on Facebook graphs. The table includes the same feature sets
as Table 3, not showing all-0% rows. (∅: only average values for distributions)

Feature Sets ER BA CL HRG

n, m 49% 50% 47% 44%
n, m, d 0% 0% 1% 0%
n, m, d′ 1% 1% 14% 16%
n, m, c ∅ 0% 0% 0% 40%
n, m, betw ∅ 4% 5% 12% 41%
n, m, betw 1% 0% 7% 2%
n, m, close ∅ 13% 11% 12% 30%
n, m, close 1% 3% 7% 14%
n, m, PR 0% 1% 21% 1%
n, m, Katz ∅ 0% 1% 20% 2%
n, m, Katz 0% 0% 13% 0%
n, m, deg 0% 0% 42% 0%
n, m, core ∅ 0% 8% 11% 2%
n, m, core 0% 0% 16% 0%
n, m, deg, betw 0% 0% 7% 0%
n, m, close, deg 0% 0% 20% 0%
n, m, PR, deg 0% 0% 4% 0%
n, m, Katz, deg 0% 0% 2% 0%
n, m, core, deg 0% 0% 2% 0%
c, β, d ∅ 0% 0% 0% 1%
c, β, d′

∅ 0% 0% 1% 19%
c, β, d′ 0% 0% 1% 0%
betw, close, d 0% 0% 2% 1%
betw, close, d′ 0% 1% 4% 1%

We expect hyperbolic random graphs to be more realistic than the other
models, due to their non-vanishing clustering coefficient. It is, however, unclear
whether hyperbolic random graphs are also more realistic with respect to other
features that are not explicitly enforced by the model.
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3.3 Results

The results of our experiments can be summarized as follows. We note that
the insights obtained by our method are meant to guide the direction of future
research rather than being reliable scientific facts by themselves.

– None of the tested models is a good representation for Facebook’s social
networks. Further analysis has to show if this is due to Facebook’s special
structure or whether it is a general issue with graphs of high average degree.

– For other real-world networks, Chung-Lu and hyperbolic random graphs
outperform Erdős-Rényi and Barabási-Albert graphs, which are easy to
distinguish from real-world networks even for small parameter sets. Non-
surprisingly, Chung-Lu graphs perform well with respect to the degree dis-
tribution but typically have a too low clustering. Hyperbolic random graphs
not only improve with respect to clustering but also outperform Chung-Lu
graphs for features related to graph distances.

– Though hyperbolic random graphs have a realistic average clustering coeffi-
cient (even for the Facebook graphs), the distribution of clustering coefficients
is surprisingly unrealistic.

– In the Barabási-Albert model, the choice of the initial graph is only irrelevant
when the average degree is small. For networks with average degree above 30,
it is easy to distinguish between graphs initialized with cliques or cycles.

Our findings are mainly based on Tables 2 and 3. They show the failure rates
of the classifier trying to separate different real-world networks from generated
graphs, given a subset of features. Note that a failure rate of 0% means the model
can be easily distinguished while 50% means that the classifier cannot do better
than guessing. To explain the resulting data, we selectively show scatter plots to
visualize the relation between two parameters. The findings in this section nicely
illustrate the strength of our approach: though the absolute numbers in Tables 2
and 3 have no significant meaning, their comparison can lead to interesting
insights, which can be used as starting points for further investigations.

Facebook Graphs. Table 2 shows the failure rates when considering only Facebook
graphs (label “socfb” in Fig. 1). Table 3 shows the same data, when excluding
them. One can see that Facebook graphs are much easier to distinguish from
the different models than other real-world networks: ignoring the high values
for the parameters directly fitted (n and m for all models, the degree distribu-
tion for Chung-Lu and the average clustering coefficient for hyperbolic random
graphs), only few parameters are well represented. Though some parameters lead
to non-zero values (PageRank, average Katz centrality, and core centrality for
Chung-Lu and average betweenness and closeness for hyperbolic random graphs),
the failure rates are much lower than for their non-Facebook counterparts. The
only exception is the average betweenness for hyperbolic random graphs.

It is interesting to note that, e.g., for the Katz centrality in Chung-Lu graphs,
the failure rate drops from 20% to 2%, when additionally taking the degree
distribution into account. Non-Facebook graphs behave different in this regard.
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Table 3. Failure rates when excluding the Facebook graphs. (∅: only average values
for distributions)

Feature Sets ER BA CL HRG

all (uncorrelated) 3% 4% 15% 14%
n, m 50% 50% 45% 46%
n, m, d 28% 22% 28% 35%
n, m, d′ 37% 38% 33% 43%
n, m, c ∅ 9% 9% 23% 39%
n, m, c 3% 6% 17% 29%
n, m, betw ∅ 47% 49% 38% 42%
n, m, betw 2% 11% 37% 41%
n, m, close ∅ 44% 47% 44% 46%
n, m, close 25% 26% 43% 45%
n, m, PR 11% 16% 43% 35%
n, m, Katz ∅ 27% 27% 46% 39%
n, m, Katz 9% 15% 42% 31%
n, m, deg 5% 6% 36% 20%
n, m, core ∅ 30% 46% 43% 39%
n, m, core 3% 6% 35% 19%
n, m, c, d 4% 6% 17% 28%
n, m, c, d′ 4% 5% 14% 28%
n, m, c, betw 2% 2% 17% 28%
n, m, close, c 4% 5% 17% 28%
n, m, PR, c 2% 5% 18% 27%
n, m, Katz, c 1% 4% 16% 22%
n, m, core, c 1% 2% 17% 18%
n, m, deg, c 0% 2% 17% 19%
n, m, deg, betw 4% 6% 32% 21%
n, m, deg, close 6% 6% 37% 22%
n, m, deg, PR 5% 6% 32% 22%
n, m, deg, Katz 5% 7% 37% 21%
n, m, deg, core 5% 6% 30% 17%
c, β, d ∅ 3% 5% 22% 43%
c, β, d 4% 5% 20% 33%
c, β, d′

∅ 4% 6% 22% 36%
c, β, d′ 4% 6% 20% 30%
betw, close, d 5% 6% 31% 38%
betw, close, d′ 4% 6% 28% 33%

We note that most Facebook graphs have an average degree above 40, while
it is below 30 for most other networks in our data set (see Fig. 3 (left)). Thus,
the observed discrepancy can have its origin in the special structure of Facebook
networks or in the high average degree.

Non-Facebook Graphs. The first row of Table 3 shows failure rates when using
all features, partitioned into correlated groups (see Sect. 2.2). The smallest
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Fig. 2. Left: Average local clustering coefficients of real-world networks (not Facebook)
and their Chung-Lu counterparts. Right: Degree distribution (1st/3rd quartile) of real-
world networks (not Facebook) and their hyperbolic counterparts.

correlation within a group is 0.95. Erdős-Rényi and Barabási-Albert graphs are
easy to distinguish from real-world networks. For Chung-Lu and hyperbolic ran-
dom graphs, the classifier is wrong in about 15% of the cases.

Though the Erdős-Rényi and Barabási-Albert models perform reasonable
with respect to the diameter, average betweenness, closeness, and average core
centrality, they appear to be rather unrealistic in general. It is also interesting
to note that the failure rate for Barabási-Albert graphs drops from 46% to 6%
when considering the distribution of the core centrality instead of the average.

The main issue for Chung-Lu graphs is the clustering coefficient. For hyper-
bolic random graphs failure rates get worse when considering the degree distri-
bution. Figure 2 (left) shows that for most considered networks the clustering
coefficient of Chung-Lu graphs is too small. Figure 2 (right) shows that hyper-
bolic random graphs are not sufficiently heterogeneous: the degree of low-degree
vertices is too high, while the degree of high-degree vertices is too low.

Concerning the other parameters, Chung-Lu graphs perform better than
hyperbolic random graphs with respect to centrality measures that are closely
related to the degree distribution (PageRank, Katz centrality, and core central-
ity). On the other hand, hyperbolic random graphs perform better with respect
to measures related to distances (diameter, betweenness centrality, and closeness
centrality). This is interesting as it supports the common claim that the metric
of real-world networks is similar to the hyperbolic metric.

Distribution of the Local Clustering Coefficient. In this section, we focus on the
local clustering coefficient of hyperbolic random graphs. Table 2 shows that the
failure rate drops from 40% to 0% when considering the distribution instead of
only the average. In Fig. 3 (left) it is easy to see that the standard deviation of
the clustering coefficient is too small in hyperbolic random graphs, compared to
Facebook networks. One can, however, also see, that hyperbolic random graphs
can, in principal, achieve high variance. A possible explanation for the too small
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standard deviation compared to Facebook graphs is that a high average degree
decreases the variance in clustering for hyperbolic random graphs.

Even though the difference becomes more apparent for graphs with high-
average degree, Fig. 3 (right) shows that hyperbolic random graphs tend to have
too little variance in the clustering coefficient. We believe that this finding pro-
vides an interesting starting point for improving the model.

Fig. 3. Left: Standard deviation of clustering coefficients depending on the average
degree. Facebook graphs are marked with filled shapes. Right: Standard deviation of
clustering coefficients, depending on the average clustering coefficient. Facebook graphs
are excluded.

The Initial Graph in the Barabási-Albert Model. Recall that the Barabási-Albert
model generates graphs by starting with an initial graph and then successively
adding vertices, each connected to the same number of already existing vertices.
The size of the initial graph is typically chosen as small as possible, such that
the first added vertex has enough neighbors to connect to. The original paper by
Barabási and Albert [3] introducing the model does not specify how the initial
graph has to be chosen and it is generally assumed to be a negligible choice.

We compared two variants of the Barabási-Albert model using cliques and
cycles as initial graphs. For graphs with average degree at most 30, our classifier
was not able to distinguish the two different variants (50% failure rate when
using all features). If, however, the average degree is above 30, the two variants
indeed lead to graphs with different properties. Using (in addition to n and m)
the degree distribution led to an 18% failure rate, which dropped to only 5%
when using the distribution of clustering coefficients instead. Thus, for graphs
with average degree above 30, the initial graph makes a difference. This general
behaviour is not surprising as the initial graph becomes larger when increasing
the average degree. It is, however, surprising that this happens for such compar-
atively small average degrees.

4 Conclusions

We have seen that the question whether or not a machine learning technique can
successfully learn to distinguish between real-world and generated networks can



Towards a Systematic Evaluation of Generative Network Models 113

lead to interesting insights. We believe that this is particularly useful for guiding
network science towards more realistic generative graph models by evaluating
how good a model mimics the real world and by revealing its strengths and
weaknesses.
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