
Two-dimensional Subset Selection for
Hypervolume and Epsilon-Indicator

Karl Bringmann
Max Planck Institute for

Informatics
Saarbrücken, Germany

Tobias Friedrich
Friedrich-Schiller-Universität

Jena
Jena, Germany

Patrick Klitzke
Universität des Saarlandes

Saarbrücken, Germany

ABSTRACT
The goal of bi-objective optimization is to find a small set of good
compromise solutions. A common problem for bi-objective evolu-
tionary algorithms is the following subset selection problem (SSP):
Given n solutions P ⊂ R2 in the objective space, select k solutions
P ∗ from P that optimize an indicator function. In the hypervolume
SSP we want to select k points P ∗ that maximize the hypervolume
indicator Ihyp(P

∗, r) for some reference point r ∈ R2. Similarly,
the ε-indicator SSP aims at selecting k points P ∗ that minimize the
ε-indicator Ieps(P

∗, R) for some reference set R ⊂ R2 of size m
(which can be R = P).

We first present a new algorithm for the hypervolume SSP with
runtime O(n (k + log n)). Our second main result is a new algo-
rithm for the ε-indicator SSP with runtimeO(n logn+m logm).
Both results improve the current state of the art runtimes by a factor
of (nearly) n and make the problems tractable for new applications.
Preliminary experiments confirm that the theoretical results trans-
late into substantial empirical runtime improvements.

Categories and Subject Descriptors
F.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity

General Terms
Measurement, Archiving Algorithms, Performance,
Hypervolume-Indicator, Epsilon-Indicator

1. INTRODUCTION
In the general Subset Selection Problem (SSP) we are given a set

P ⊂ Rd of size n and a positive integer k. The task is to select
a subset P ∗ ⊆ P of size k that maximizes (or minimizes) I(P ∗)
for some indicator function I. We study the two-dimensional case
d = 2 and present new results for two common indicator functions.

The hypervolume indicator Ihyp(P
∗, r) of a set P ∗ measures

the volume of the space dominated by P ∗ up to some fixed refer-
ence point r (for formal definitions see Section 2). The aim of the
Hypervolume Subset Selection Problem (HYPSSP) is to maximize
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598276.

Ihyp(P
∗, r). The second indicator we consider is the ε-indicator

Ieps(P
∗, R), which is defined relative to a reference set R ⊂ Rd of

size m (one may choose P = R) and measures how well P ∗ ap-
proximatesR. The aim of the ε-Indicator Subset Selection Problem
(EPSSSP) is to minimize Ieps(P

∗, R).

Motivation. Subset selection problems occur frequently in all
population-based search heuristics. We describe two specific appli-
cations. First, consider a hypervolume-based (µ+ λ)-evolutionary
multiobjective algorithm (EMOA) such as SIBEA [20], SMS-
EMOA [5], or the generational MO-CMA-ES [13, 14]. In every
generation we have µ parents and generate λ offspring. From these
µ + λ solutions we want to select the next population of size µ.
Since our overall goal is to maximize the hypervolume indicator,
we want to choose these µ points such that they maximize the hy-
pervolume among all size-µ sets, which is an instance of HYPSSP
by choosing k = µ and n = µ + λ. Typically, λ ≈ µ so that
k ≈ n/2. For a discussion why in general a greedy approach with
λ = 1 cannot find a set with maximal hypervolume, see [7, 8].

Similarly, there are ε-indicator-based algorithms such as
AGE [9], where we have a reference set R (that changes over time)
and want to select the next generation such that we minimize the
ε-indicator with respect to R.

A second motivation lies in the evaluation of indicator-based
EMOAs by running them on test problems. When running many
different EMOAs on a test problem, it would be nice to be able to
compare them with the optimal set of µ points. Now, test problems
are often designed in such a way that we know the Pareto front ex-
plicitly, but this does not directly yield the optimal hypervolume
achievable with µ points. To compute this number, we may dis-
cretize the Pareto front, to get a good finite approximation P of the
Pareto front. Solving HYPSSP on the point set P with k = µ now
yields (an approximation of) the desired value, the optimal hyper-
volume achievable with µ points on this test problem. Note that in
this situation we want to choose n = |P | as large as possible to get
a good approximation, while k = µ� n.

Results on Hypervolume Subset Selection. For 2 dimensions
there are algorithms which solve HYPSSP in time O(n3) [4],
O(kn2) [3] and O(n2) [16]. The only known lower bound is the
trivial Ω(n). Note that the lower bounds of Ω(n logn) for com-
puting the hypervolume [6] and computing all contributions [12] in
two dimensions do not imply a lower bound for HYPSSP as we are
computing a set of points and not volumes. In higher dimensions,
no algorithm is known that is faster than enumerating all

(
n
k

)
sub-

sets of P of size k (see, e.g., [8]). In Section 3 we present a novel
algorithm that shows the following.

Theorem 1. Two-dimensional HYPSSP can be solved in time

O(n (k + logn)).

589

This improves all previous algorithms by roughly a factor n.
Our preliminary experiments practically confirm this theoretical
improvement (cf. [1]). Our algorithmic improvement is based on
a rarely cited, but very useful idea of Brucker [10]. In program-
ming contests this approach is known as the convex hull trick [2].

Results on ε-Indicator Subset Selection. EPSSSP was first
studied by Ponte, Paquete, and Figueira [18], who gave an
O(nm log(nm)) time algorithm for dimension d = 2. Recently,
Vaz, Paquete, and Ponte [19] slightly improved this algorithm by
lowering the log-factor, however, the runtime remains Ω(nm).
Again, in higher dimensions, no algorithm is known that is faster
than enumerating all subsets of P of size k.

In a different community, Koltun and Papadimitriou [15] stud-
ied a variant of EPSSSP (under the name of “approximately dom-
inating representatives” of “skylines”). In their variant they do not
fix a bound k on the size of the selected set |P ∗|, but they fix a
bound ε on the quality Ieps(P

∗, R) and minimize |P ∗| with respect
to this bound. Moreover, they only consider the case P = R. They
showed that in 2 dimensions their variant can be solved in O(n)
time (after sorting). Intuitively, their problem variant is simpler
than ours, since any algorithm for our variant yields an algorithm
for their variant (with roughly the same runtime) by using a binary
search over k ∈ {1, . . . , n}. In the opposite direction, such a re-
duction does not work, since the quantity ε∗ := Ieps(P

∗, R) is a
real number. Hence binary search for ε∗ may go on forever, com-
puting better and better approximations of ε∗, but never the correct
value. In this sense, we are tackling a harder problem in this paper.

We present in Section 4 a novel algorithm for EPSSSP in 2 di-
mensions. It is randomized in that its runtime is a random variable
that is small in expectation and with high probability (i.e., with
probability 1 − n−c for any fixed c > 0). The result of our ran-
domized algorithm is guaranteed to be correct. We use an extension
of the result of Koltun and Papadimitriou [15] as a subroutine.

Theorem 2. Two-dimensional EPSSSP can be solved with a ran-
domized algorithm in time (in expectation and with high probabil-
ity)

O(n logn+m logm).

This answers an open problem of Vaz et al. [19], of whether there
is a subquadratic time algorithm for EPSSSP (although they might
have intended a deterministic algorithm, while we present a ran-
domized one). Again, this improves the state of the art by roughly
a factor of n (at least if n = m), which is confirmed by preliminary
experiments (cf. [1]).

2. PRELIMINARIES
We consider maximization problems with vector-valued objec-

tive functions f : X → Rd, where X denotes an arbitrary search
space. The feasible points Y := f(X) are called the objective
space. In this paper we only work in the objective space, i.e., we
always consider points in Rd and may ignore that these points stem
from a search space X .

We say that a point p = (p1, . . . , pd) ∈ Rd (weakly) dominates a
point q = (q1, . . . , qd) ∈ Rd (q � p) iff pi > qi for all 1 6 i 6 d.

In the definitions in this Section 2 we consider the general case
of d ∈ N, d > 2. We note, however, that in all subsequent sections
we will work in dimension d = 2.

2.1 Hypervolume indicator
For a set P ⊂ Rd the hypervolume indicator (with respect to the

reference point r ∈ Rd) is defined defined as

Ihyp(P, r) :=

∫
Rd

A(z) dz,

where A : Rd → {0, 1} is the attainment function and A(z) = 1
if and only if r � z and there is a point p ∈ P with z � p. Thus,
Ihyp(P, r) measures the volume of the space “between” r and P .

We study the following problem:

Problem HYPSSP: Given k ∈ N, r ∈ Rd, and a set P ⊂ Rd

of size n, compute a subset P ∗ ⊆ P of size at most k that
maximizes Ihyp(P

∗, r).

We note three standard simplifications. First, we can without
loss of generality assume that r = (0, . . . , 0), since translation of
P by −r reduces to this situation. We write

Ihyp(P) := Ihyp(P, (0, . . . , 0))

for short. Then we can assume that P ⊂ Rd
>0, since points with

non-positive coordinates do not contribute to the hypervolume.
Second, we can assume that there are no two points p, q ∈ P

with p � q (in which case we say that P is non-dominating), since
there is an optimal solution containing no dominated point: In any
solution P ′ ⊆ P that contains p we can replace p by q (or simply
delete p, if P ′ already contains q) without increasing the size of P ′

or decreasing Ihyp(P
′). Thus, we may simply delete any dominated

point in P . We note that in 2 dimensions we can delete all dom-
inated points from P in O(n logn) time [17], so this assumption
can be ensured in our alloted runtime.

Finally, in 2 dimensions we can assume that the points P =
{p1, . . . , pn} are sorted by increasing x-coordinate. It is not hard
to see that, since P is non-dominating, in this case the points are
also sorted by decreasing y-coordinate. Again this can be ensured
in time O(n logn).

In 2 dimensions, we denote the x- and y-coordinates of a point
p ∈ R2 by px and py . Then for reference point (0, 0) and for
a sorted non-dominating set P = {p1, . . . , pn} ⊂ Rd

>0 we have
0 < p1x < . . . < pnx and p1y > . . . > pny > 0.

2.2 ε-Indicator
In this paper we consider additive approximation. By taking the

logarithm, our algorithm also works in the multiplicative setting.
For points p = (p1, . . . , pd), r = (r1, . . . , rd) ∈ Rd, we set

Ieps(p, r) := max
16i6d

ri − pi.

This denotes the minimal number ε by which we have to increase p
in all coordinates so that it dominates q. This number measures
how well p approximates q. For finite sets of points P,R ⊂ Rd the
ε-indicator is defined as

Ieps(P,R) := max
r∈R

min
p∈P
Ieps(p, r).

This denotes the minimal number ε by which we have to increase
all points in P in all coordinates so that every point in R is domi-
nated by some point in P . It measures how well P approximatesR.
We say that P ε-approximates R if Ieps(P,R) 6 ε.

In the following, we considerR as a fixed reference set and want
to select a subset P ∗ of P that best approximates R subject to a
size constraint. Note that it is allowed to set P = R.

590

Problem EPSSSP: Given k ∈ N, R ⊂ Rd of size m, and a
set P ⊂ Rd of size n, compute a subset P ∗ ⊆ P of size at
most k that minimizes Ieps(P

∗, R).

Similar to the simplifications for HYPSSP, we may delete all
dominated points in P (since there is an optimal solution con-
taining no dominated point) and in R (since if we approximate
the dominating point then we also approximate the dominated
one). Additionally, we can assume that P and R are sorted. In
2 dimensions, this can again be ensured in the alloted runtime
O(n logn + m logm). In the remainder of the paper we always
work in d = 2 dimensions.

3. ALGORITHM FOR HYPSSP
After the standard simplifications described above in Section 2,

we are given a set P = {p1, . . . , pn} with 0 < p1x < . . . < pnx
and p1y > . . . > pny > 0, and an integer k. Recall that our goal
is to compute a set P ∗ ⊆ P of size at most k that maximizes
Ihyp(P

∗) = Ihyp(P
∗, (0, 0)). We first present an algorithm that

computes Ihyp(P
∗), i.e., the maximal hypervolume instead of a set

of points achieving the maximal hypervolume. In Section 3.3 we
then explain how we can reconstruct P ∗ from our computation of
Ihyp(P

∗).

3.1 The Algorithm
Note that our reference point for Ihyp is (0, 0) (which we can as-

sume by transforming the problem instance accordingly). During
our computation we will, however, consider hypervolumes with re-
spect to other reference points, as follows.

We define H`
i as the maximum hypervolume achievable with at

most ` points and reference point (pix, 0), for any 0 6 ` 6 k and
1 6 i 6 n. Since the points p1, . . . , pi do not contribute anything
when the reference point is (pix, 0), we have

H`
i = max

Q⊆`{pi+1,...,pn}
Ihyp(Q, (p

i
x, 0)),

where we use A ⊆` B as a shorthand for A ⊆ B, |A| 6 `. We
extend the definition of H`

i to i = 0 by setting p0x := 0. Note
that Hk

0 is the maximal hypervolume of any k points in P with
reference point (0, 0). In other words, Hk

0 = Ihyp(P
∗) is what we

want to compute.
Moreover, we define F `

i (x) as the maximum hypervolume
achievable with at most ` points, with pi being the first of these
points, and reference point (x, 0), for any 1 6 ` 6 k, 1 6 i 6 n,
and x 6 pix. Formally, we have

F `
i (x) = max

Q⊆`{pi,...,pn}
pi∈Q

Ihyp(Q, (x, 0))

We will use the functions F `
i (x) in order to compute the

values H`′

i′ , and vice versa, on our way of computing Hk
0 .

The next lemma shows how to compute H`
0, . . . , H

`
n−1 from

F `
1 (x), . . . , F `

n(x).

Lemma 3. For any 0 6 i < n and 1 6 ` 6 k we have

H`
i = max

i<j6n
F `
j (pix).

Proof. If the selected set Q is empty then the hypervolume is
Ihyp(Q, r) = 0 (for any reference point r). Otherwise Q contains

at least one point; let pj be the leftmost of these points. We obtain

H`
i = max

Q⊆`{pi+1,...,pn}
Ihyp(Q, (p

i
x, 0))

= max
{

0, max
i<j6n

max
Q⊆`{pj ,...,pn}

pj∈Q

Ihyp(Q, (p
i
x, 0))

}
= max{0, max

i<j6n
F `
j (pix)}.

We finish the proof by noting that F `
j (pix) > 0.

The second relation shows how to compute F `
i (x) from H`−1

i .

Lemma 4. For any 1 6 i 6 n, 1 6 ` 6 k, and x 6 pix we have

F `
i (x) = −piy · x+

(
piyp

i
x +H`−1

i

)
.

In particular, the above lemma shows that F `
i (x) is a linear func-

tion a · x + b in variable x. Its coefficients a and b can be read of
Lemma 4 once we have computed H`−1

i . Note that the slope of
F `
i (x) is slope(F `

i (x)) = −piy so that the functions F `
1 , . . . , F

`
n

are sorted by increasing slope. Moreover, we can store the function
F `
i (x) succinctly by only storing its coefficients a, b. This allows

to evaluate F `
i at any given point x in constant time.

Proof of Lemma 4. Recall that in the definition of F `
i (x) the

point pi is required to be in the chosen set Q. We can split the
hypervolume F `

i (x) into a part to the left of pix (which is simply
Ihyp({pi}, (x, 0))) and a part to the right of pix (which can be ex-
pressed as a hypervolume of at most ` − 1 points with reference
point (pix, 0), since we cut off at pix). Formally, we have

F `
i (x) = max

Q⊆`{pi,...,pn}
pi∈Q

Ihyp(Q, (x, 0))

= Ihyp({pi}, (x, 0)) + max
Q⊆`−1{pi+1,...,pn}

Ihyp(Q, (p
i
x, 0)).

We finish the proof by noting that the first summand on the right
hand side equals piy(pix−x) and the second summand isH`−1

i .

Plugging these two lemmas together yields an algorithm for
computing the desired maximal hypervolume Ihyp(P

∗) = Hk
0 ,

see Algorithm 1. Observe that for initialization we can use H0
i =

H`
n = 0 for all 0 6 i 6 n and 1 6 ` 6 k.
Concerning runtime, note that the trivial evaluation of Lemma 3

(line 6 of Algorithm 1) takes Θ(n2) time (as we have to iterate
over 1 6 i < j 6 n). In the next section we present a faster
evaluation method, Algorithm 2, that runs in time O(n). This
speedup is the core trick of our new algorithm. It is easy to see
that then Algorithm 1 runs in time O(nk). Since we have to en-
sure that the input P is non-dominating and sorted, which takes
time O(n logn), we obtain a total runtime of O(n (k + log n))
to solve HYPSSP. The space requirement is O(n), since we can
forget H`−1

0 , . . . , H`−1
n and F `−1

1 , . . . , F `−1
n once we have com-

puted H`
0, . . . , H

`
n and F `

1 , . . . , F
`
n.

3.2 Upper Envelope
We want to find a linear time algorithm for the following prob-

lem: Given a sequence of linear functions with increasing slopes
and a set of x-coordinates given in increasing order, compute the
maximal value of all those functions for each coordinate. More
formally we are given F `

1 (x), . . . , F `
n(x) with slope(F `

1) < . . . <
slope(F `

n) and coordinates p0x < . . . < pn−1
x and want to compute

the values

H`
i = max

i<j6n
F `
j (pix) for all 0 6 i < n.

591

Algorithm 1: HYPSSP in 2 dimensions

Input: set P = {p1, .., pn} with
0 < p1x < ... < pnx and p1y > ... > pny > 0

1 p0x := 0

2 for i = 0 to n do H0
i := 0

3 for ` = 1 to k do
4 for i = 1 to n do compute (the coefficients of) the linear

function F `
i (x) := −piy · x+

(
piyp

i
x +H`−1

i

)
5 H`

n := 0

6 H`
i := max

i<j6n
F `
j (pix) for 0 6 i < n (using Algorithm 2)

7 return Hk
0

Note that the function maxi<j6n F
`
j (x) is an upper envelope of

linear functions. Since the space above such an upper envelope is
convex, the technique of reducing a problem to evaluations of upper
envelopes is known as the convex hull trick [2].

For the sake of readability, we mirror x and all indices so that
from now on we consider f1, . . . , fn and x1, . . . , xn with fi(x) :=
Fn+1−i(−x) and xi := −pn−i

x . Then we have x1 < . . . < xn
and slope(f1) < . . . < slope(fn), and the goal is to compute
hi = max16j6i fj(xi), which equals the desired value H`

i . Since
each function fj describes a line, the function

Ui(x) := max
16j6i

fj(x)

describes the upper envelope of those lines. Hence, our goal is
to evaluate (incremental) upper envelopes of lines at given posi-
tions. Since Ui is an upper envelope, it describes an x-monotone
polygonal chain (since the part of Ui, where a particular fj is max-
imal, is a line segment). By following the upper envelope from
left to right, we first follow fj(1), then fj(2), and so on, until we
finally follow fj(h). We represent this upper envelope by the se-
quence (fj(1), . . . , fj(h)). With slight abuse of notation we write
Ui = (fj(1), . . . , fj(h)).

Computing the upper envelope of lines is a standard task in com-
putational geometry and can be done in linear time (since our func-
tions fj are already sorted by slope) [11]. You can find the standard
algorithm for this task by considering lines 1–5 of Algorithm 2.
Here, we use a standard dequeue S containing linear functions, and
we denote the elements of S by S1, . . . , S|S|. Moreover, we de-
note the x-coordinate of the intersection of two linear functions f
and g by ⊗(f, g); this can be computed in constant time. If we
deleted lines 6–8 from Algorithm 2, then after the i-th iteration the
dequeue S would contain exactly the upper envelope Ui, in our
representation as a sequence (fj(1), . . . , fj(h)).

Through lines 6–8 of Algorithm 2 we have adapted the standard
upper envelope algorithm as follows. In every iteration, we search
for the element of the upper envelope Ui = (fj(1), . . . , fj(h)) that
is maximal at position xi. Say, fj(v)(xi) is maximal among all
fj(xi), 1 6 j 6 i. Since x1, . . . , xn are sorted ascendingly, any
function fj(v′), v′ < v, can be deleted, since it will not be of
importance to any xj , j > i. Finally, we evaluate fj(v) at xi,
which yields hi. This explains lines 6–8 of Algorithm 2.

Runtime. The runtime of Algorithm 2 is linear, since we can
amortize the append() operations and deletions. There are exactly
n append() operations, since in each iteration of the loop we add
one element to S. Thus, we can perform at most n deletions in
total, and the overall runtime is O(n).

Algorithm 2: Upper Envelope
Input: coordinates x1 < .. < xn, linear functions f1, ..., fn

with slope(f1) < ... < slope(fn)
1 Dequeue S := ∅
2 for i = 1 to n do
3 while |S| > 1 and ⊗(fi, S|S|−1) 6 ⊗(S|S|, S|S|−1) do
4 S.popBack() // delete S|S|
5 S.append(fi)
6 while |S| > 1 and ⊗(S1, S2) 6 xi do
7 S.popFront() // delete S1

8 hi := S1(xi) // evaluate function S1 at position xi
9 return h1, . . . , hn

Correctness. Intuitively, we prove that in the i-th iteration the
dequeue S contains all functions (in sorted order) that appear in the
upper envelope of f1, . . . , fi restricted to the halfplane {(x, y) ∈
R2 | x > xi}. Thus, indeed the first entry S1 corresponds to the
segment of the upper envelope of f1, . . . , fi that contains xi, so we
correctly compute hi.

In the previous section we definedUi = (fj(1), . . . , fj(h)) as the
upper envelope of f1, . . . , fi. Note that the function fj(v) is max-
imal among all fj for any x between the intersections of fj(v−1)

and fj(v) and the intersection of fj(v) and fj(v+1). More formally,
for all 1 < v < h the value fj(v)(x) is maximal among all fj(x)
for any x ∈ [⊗(fj(v−1), fj(v)),⊗(fj(v), fj(v+1))] =: Iv(Ui), and
fj(1)(x) is maximal for any x ∈ (−∞,⊗(fj(1), fj(2))] =: I1(Ui),
and fj(h)(x) is maximal for any x ∈ [⊗(fj(h−1), fj(h)),∞) =:
Ih(Ui). This way, the real line is partitioned into I1(Ui) ∪ . . . ∪
Ih(Ui), such that function fj(v) is maximal among all fj , 1 6 j 6
i, in interval Iv(Ui).

For proving correctness we show that at the end of the i-th itera-
tion the following invariant holds.

Lemma 5. Let Ui = (fj(1), fj(2), . . . , fj(h)) be the upper enve-
lope of f1, . . . , fi and let a be such that xi ∈ Ia(Ui). Then after
the end of the i-th iteration the dequeue S is

S = (fj(a), fj(a+1), . . . , fj(h)).

Note that this invariant implies correctness of the computed
value hi: Since xi ∈ Ia(Ui), function fj(a) is maximal among
f1, . . . , fi at position xi. Hence, we have

hi = max
16j6i

fj(xi) = fj(a)(xi) = S1(xi).

Proof. We argue that the invariant holds true. By induction,
we can assume that it is true at the end of iteration i −
1, so that S = (fj(a), fj(a+1), . . . , fj(h)), where Ui−1 =
(fj(1), fj(2), . . . , fj(h)) is the upper envelope of f1, . . . , fi−1, and
xi−1 ∈ Ia(Ui−1). We show that it also holds after iteration i.

Observe that S = (fj(a), . . . , fj(h)), being a subse-
quence of an upper envelope, is itself the upper envelope
of {fj(a), fj(a)+1 . . . , fi−2, fi−1}. Hence, lines 3–5 of Al-
gorithm 2 correctly compute the upper envelope U ′ =
(fj′(1), fj′(2), . . . , fj′(g)) of {fj(a), fj(a)+1 . . . , fi−1, fi}, since
this is the well-known algorithm for computing upper envelopes
(for a proof of correctness of this algorithm we essentially show
that we can delete S|S| if and only if it lies underneath fi in
the interval (⊗(S|S|, S|S|−1),∞), and this happens if and only if
⊗(fi, S|S|−1) 6 ⊗(S|S|, S|S|−1)).

Since we know that f1, . . . , fj(a)−1 are less than fj(a) at posi-
tion xi−1 6 xi, they are also less than fj(a) at position xi, since

592

the slopes are increasing. Hence, the maximum of f1, . . . , fi at xi
is attained by U ′ = (fj′(1), fj′(2), . . . , fj′(g)). It remains to find
the interval of U ′ containing xi, which can be done by throwing
away all fj′(v) with ⊗(fj′(v), fj′(v+1)) 6 xi, since fj′(v+1) is
bigger than fj′(v) to the right of ⊗(fj′(v), fj′(v+1)), so that it
is also bigger at xi. This is done by lines 6–7 of Algorithm 2.
More formally, let b such that xi ∈ Ib(U

′). Then in lines 6–7
we delete the functions fj′(1), . . . , fj′(b−1) from S = U ′ =
(fj′(1), fj′(2), . . . , fj′(g)), thereby restoring the invariant.

3.3 Reconstruction of P ∗

As is the case for many dynamic-programming-like algorithms,
from the computation of the optimal value Ihyp(P

∗) we can effi-
ciently reconstruct an optimal solution P ∗ achieving the optimal
value Ihyp(P

∗).
To this end, we augment our dequeue S to not only store linear

functions fj , but tuples (fj , j), so that we know the index j of
every linear function in S. With this, in the computation of H`

i

we not only compute its value, but also find some j > i such that
H`

i = F `
j (pix). This tells us that when we selected point pi and

want to select ` more points, then the next point should be j. Let
us store

Next`i := j.

Then an optimal solution P ∗ can be reconstructed as

{pi1 , . . . , pik}

by setting i0 := 0 and i`+1 := Nextk−`
i`

.
We remark that this increases the space requirement from O(n)

to O(k n), as we now have to store the full table Next.

4. ALGORITHM FOR EPSSSP
We start with an outline of the algorithm. Let (k, P,R) be a

EPSSSP instance with (unknown) optimal value ε∗. We assume
that P and R are non-dominating and sorted. We first design a test
to check for any given ε ∈ R whether ε > ε∗. In other words, we
want to check whether there exists a subset P ′ ⊆ P of size k with
Ieps(P

′, R) 6 ε. We call this an ε-test. Extending an algorithm by
Koltun and Papadimitriou [15] (who consider the case P = R) we
show the following lemma.

Lemma 6. An ε-test can be performed in time O(n+m).

We could try to use ε-tests directly for a binary search for the
optimal approximation ratio ε∗ ∈ R. This could yield arbitrarily
good approximations to ε∗, but would not allow to compute ε∗ ex-
actly, as it can be any real number. However, ε∗ is by definition
among the n · m values S = {Ieps(p, r) | p ∈ P, r ∈ R}. We
obtain a simple O(nm log(nm)) time algorithm by sorting S and
then doing a binary search for ε∗ in S, incurring log(nm) ε-tests,
see Algorithm 3.

Algorithm 3: EPSSSP in 2 dimensions,O(nm log(nm)) time
Input: integer k, non-dominating and sorted sets P , R

1 sort S = {Ieps(p, r) | p ∈ P, r ∈ R}
2 binary search for ε∗ ∈ S using ε-tests (see Algorithm 4)

To get quasi-linear runtime, we observe that one can partition
the possible values for ε∗ into 2n sorted sequences S1, . . . , S2n

of length at most m each. Note that running a binary search on
each sorted sequence using ε-tests still yields a runtime of Ω(nm),

which is not quasilinear. Instead, we search over the sorted se-
quences Si with a more intelligent randomized algorithm as fol-
lows. In each iteration we take a random pivot element εp from
S =

⋃
i Si. We do an ε-test with εp. Say, we get the answer

εp > ε∗. This allows to delete all values in the sequences Si that
are at least εp. Deleting these values takes timeO(n logm): in ev-
ery sequence Si we do a binary search for εp to determine the cut-
off point. Similarly, if the answer of the ε-test was εp < ε∗ then
we can delete all values in the sequences Si that are at most εp in
timeO(n logm). The crucial observation now is that the expected
size of

⋃
i Si drops by a constant factor in each iteration. Since in

the beginning we have |
⋃

i Si| = O(nm), after O(log(nm)) iter-
ations (in expectation and with high probability1) we have deleted
all elements of the sequences Si and found ε∗ on the way. This
yields a total runtime of O((n logm+m) log(nm)).

We present an improvement to runtimeO((n+m) log(nm)) =
O(n logn+m logm) in Section 4.3, which is more of theoretical
interest, as indicated by our preliminary experiments.

In the remainder of this section, we work out these ideas in detail.

4.1 ε-Test
In this section we prove Lemma 6. Recall that, given an EPSSSP

instance (k, P,R) with (unknown) optimal value ε∗ and given ε ∈
R, an ε-test determines whether ε > ε∗. We present a greedy
algorithm with runtime O(n+m) (cf. Algorithm 4).

Recall that P = {p1, . . . , pn} and R = {r1, . . . , rm} are al-
ready sorted and non-dominating, so that they are sorted by increas-
ing x-coordinates as well as decreasing y-coordinates.

The rightmost point rm of R (i.e., the one with largest x-
coordinate) has to be approximated by some point in the cho-
sen subset P ′ ⊆ P . Consider the leftmost point pi in P with
pix + ε > rmx . The point pi approximates rm in x-direction. If
it does not approximate rm in y-direction, then no point in P ε-
approximates rm, since, among all points p ∈ P with sufficiently
large x-coordinate to approximate rm, pi is the point with largest
y-coordinate (because it is leftmost). Thus, in this case we can
safely answer ε < ε∗.

If, on the other hand, pi ε-approximates rm then we may greed-
ily pick pi into our selected set P ′ ⊆ P . To argue this, we show
that pi ε-approximates a superset of any other point ph that ε-
approximates rm. Formally, for any h with Ieps(p

h, rm) 6 ε we
have {r ∈ R | Ieps(p

h, r) 6 ε} ⊆ {r ∈ R | Ieps(p
i, r) 6 ε}.

Note that h > i, since pi is the leftmost point ε-approximating rm.
Now, if r ∈ R is ε-approximated by ph then piy +ε > phy +ε > ry
(since h > i and ph ε-approximates r) and pix + ε > rmx > rx
(since pi ε-approximates rm and rm is rightmost in R). Thus, pi

also ε-approximates r. Hence, if there is at all a set P ′ ⊆ P of
size k that ε-approximatesR, then there is such a set containing pi,
and we may greedily pick pi to be included in P ′ without violating
optimality.

Now consider the leftmost point rj with rjy 6 piy + ε. Since
we also have pix + ε > rmx > rjx, the points rj , rj+1, . . . , rm

are ε-approximated by pi, and these are all points that are ε-
approximated by pi. Since these points are already covered by
picking pi, we may delete them fromR, i.e., setm := j−1. More-
over, since pi approximates a superset of all points to its right, we
may delete pi, pi+1, . . . , pn from P , i.e., set n := i − 1; these
points no longer approximate any points in R. We are left with a
new instance of EPSSSP on new sets P,R with k reduced by one,
so we may repeat this procedure.

1I.e., with probability > 1−n−c for any c > 0, where the constant
hidden in the O-notation of the number of iterations depends on c.

593

For termination, we know that ε > ε∗ if after choosing any ` 6
k points we have m = 0, meaning that the points picked so far ε-
approximate all points in R already. Moreover, if after choosing k
points we do not yet approximate all of R (i.e., m > 0), then we
have ε < ε∗.

Algorithm 4: ε-Test
Input: real ε, integer k, non-dominating and sorted sets

P = {p1, . . . , pn}, R = {r1, . . . , rm}
1 P ′ := ∅
2 for `← 1 to k do
3 let i be the minimal i ∈ {1, . . . , n} with pix + ε > rmx
4 if Ieps(p

i, rm) > ε then return “ε < ε∗”
5 P ′ := P ′ ∪ {pi}
6 let j be the minimal j ∈ {1, . . . ,m} with rjy 6 piy + ε

7 m := j − 1 // delete rj , . . . , rm from R

8 n := i− 1 // delete pi, . . . , pn from P
9 if m = 0 then return “ε > ε∗”

10 return “ε < ε∗”

We now argue that Algorithm 4 can be implemented in time
O(n + m). To this end, we implement the search for i in line 3
by a linear scan over n, n− 1, . . . , i+ 1, i. Observe that every ele-
ment that is touched by this linear scan is deleted later in the same
iteration. Thus, in total we touch every point in P at most once.
Similarly, we search for j by considering m,m− 1, . . . , j + 1, j,
so that we touch every point in R at most once. This yields a run-
time bound of O(n+m).

4.2 Subset Selection
In this section, we show how to use the ε-test from the last sec-

tion to solve EPSSSP in timeO((n logm+m) log(nm)), proving
a weaker version of Theorem 2.

Sorted Sequences. As has been observed in [18, 19], ε∗ is
among the values Ieps(p, r) with p ∈ P , r ∈ R, since at least
one pair (p, r) prevents us from further decreasing ε∗. We can
split these values into sorted sequences as follows. Write R =
{r1, . . . , rm} and recall that this sequence of points is sorted by
increasing x-coordinate and decreasing y-coordinate. Observe that
this implies that R is also sorted according to increasing rx − ry
values. Now fix a point p ∈ P . Determine the largest index
1 6 ip 6 m such that ripx − r

ip
y 6 px − py . Since R is sorted by

rx − ry , a binary search does this in timeO(logm). Then the fol-
lowing sequences are sorted (this is essentially the same property
as [19, Proposition 3.2]).

Lemma 7. For any p ∈ P , the following sequences are sorted:

Sy
p :=

(
Ieps(p, r

1), . . . , Ieps(p, r
ip)
)
,

Sx
p :=

(
Ieps(p, r

ip+1), . . . , Ieps(p, r
m)
)
.

Proof. Since R is sorted by increasing values of rx − ry and ip is
the largest index with ripx − r

ip
y 6 px − py , we have rix − riy 6

px − py for all 1 6 i 6 ip and rix − riy > px − py for all
ip + 1 6 i 6 m. Let us focus on 1 6 i 6 ip, or equivalently
the sequence Sy

p . Note that rix − riy 6 px − py is equivalent to
rix − px 6 riy − py . Hence, we have Ieps(p, r

i) = max{rix −
px, r

i
y − py} = riy − py . Since p is fixed and {r1, . . . , rip} is

sorted by y-coordinates, also the values riy−py are sorted, proving

that the sequence Sy
p is sorted. An analogous argument shows the

claim for Sx
p .

Note that the sequences Sx
p , S

y
p , p ∈ P , form 2n sequences

with at most m elements each. We will denote these sequences by
S1, . . . , S2n from now on. These sequences are all of the form
{Ieps(p, r

s), Ieps(p, r
s+1), . . . , Ieps(p, r

t)} for some p ∈ P and
1 6 s, t 6 m. Note that we can store such a sequence implicitly
by only storing p, s, t, and do not have to explicitly store all its ele-
ments. This implicit representation allows us to efficiently support
the following operations on Si = (pi, si, ti):

(1) Compute the j-th element: This is Ieps(pi, r
si+j−1).

(2) Compute the size |Si|: This is ti − si + 1.
(3) Delete the first j elements: Change Si to (pi, si + j, ti).
(4) Delete the last j elements: Change Si to (pi, si, ti − j).
As a final remark, note that some of the sequences S1, . . . , S2n

are ordered ascendingly and some descendingly. For the sake of
readability, we want to assume from now on that all sequences
S1, . . . , S2n are sorted in increasing order. To achieve this, we
may augment the implicit representation of a sequence by a bit
specifying whether it is sorted ascendingly or descendingly. In case
it is sorted descendingly, we then mirror indices appropriately, e.g.,
when accessing the j-th element of Si = (pi, si, ti) that is sorted
descendingly we return Ieps(pi, r

ti−j+1).
In summary, we obtain 2n sequences S1, . . . , S2n sorted as-

cendingly and of size at most m each, such that ε∗ is among
these sequences. Computing (an implicit representation of) these
sequences takes time O(n logm), see also Algorithm 5.

Algorithm 5: Computing sorted sequences

Input: non-dominating, sorted sets P and R = {r1, . . . , rm}
1 foreach p ∈ P do
2 binary search for the largest 1 6 ip 6 m with

3 r
ip
x − r

ip
y 6 px − py

4 the sorted sequences are {Ieps(p, r
1), . . . , Ieps(p, r

ip)}
(represented as (p, 1, ip)) and
{Ieps(p, r

ip+1), . . . , Ieps(p, r
m)} (represented as

(p, ip + 1,m)) for each p ∈ P .

Binary Search over Many Sequences. We are left with the
following abstract problem. Given sorted sequences S1, . . . , S2n

of length at most m containing an unknown target value ε∗, and
access to an ε-test that computes for a given ε whether ε > ε∗ and
runs in time O(n+m), compute ε∗.

Denote by S :=
⋃

i Si the concatenation of the sequences Si.
In every iteration we pick a uniformly random pivot element εp
in S (which can be done in O(n) time) and do an ε-test with εp.
If εp > ε∗ we memorize εp as a candidate for ε∗; we only have
to store the smallest among all candidates. Then we delete all val-
ues ε > εp in all the sequences Si (as we already found a better
candidate for ε∗ than all these values). Note that these deletions
can be done inO(logm) time per sequence Si by running a binary
search for εp in Si and then deleting all greater elements – all nec-
essary operations are supported by our implicit representation of
the sequences Si. Otherwise, if εp < ε∗ then we instead delete all
values ε 6 εp (as all these values are smaller than ε∗). The crucial
property now is the following:

In each iteration, with constant probability we reduce
the size of S by a constant factor. (*)

594

Since |S| = O(nm) in the beginning, this property implies that
after O(log(nm)) iterations (in expectation and with high proba-
bility) the set S is empty. Since we must have deleted ε∗ at some
point, our current candidate is equal to ε∗, and the algorithm has a
correct output, see Algorithm 6.

Since in each iteration we do one ε-test and O(n) binary
searches in the Si’s, we obtain a total runtime of O((n logm +
m) log(nm)) (in expectation and with high probability).

Algorithm 6: EPSSSP in 2 dimensions, slower version
Input: integer k, non-dominating and sorted sets P , R

1 compute sorted sequences S1, . . . , S2n containing ε∗ using
Algorithm 5

2 εcand :=∞
3 while not all sets Si empty do
4 choose εp uniformly at random over all sequences Si

5 ε-test with εp using Algorithm 4
6 if εp > ε∗ then
7 εcand := min{εcand, εp}
8 for 1 6 i 6 n do
9 delete all ε > εp from Si using a binary search

10 else
11 for 1 6 i 6 n do
12 delete all ε 6 εp from Si using a binary search

13 return εcand

14 the corresponding set of points P ∗ is the set computed by an
ε-test with ε = εcand

Proof of Property (*) for Algorithm 6. Denote by Ui the number
of elements of Si that are at least εp, and by Li the number of
elements of Si that are smaller than εp. Let

U :=
∑
i

Ui and L :=
∑
i

Li.

Observe that, independent of the value of ε∗, we delete at least
min{U,L + 1} elements from S =

⋃
i Si: If εp > ε∗ we delete

the U elements that are at least εp, and if εp < ε∗ we delete the L
smaller elements and εp itself.

Since we pick εp uniformly at random in S, we pick εp in the
middle third of S with probability 1/3. More precisely, we have
d 13 |S|e 6 U 6 d 23 |S|e with probability 1

|S| (d
2
3 |S|e − d

1
3 |S|e +

1) > 1
3 . If this event occurs, then min{U,L + 1} > 1

3 |S|. Thus,
with constant probability we delete at least a constant fraction of S.

4.3 Theoretical Improvement
In this section, we reduce the runtime toO(n logn+m logm).

To this end, we show that for having Property (*) it is not necessary
to do a full binary search for the pivot εp in each sequence Si.

Again, in each iteration of the algorithm we choose a uniformly
random pivot εp in S =

⋃
i Si and do an ε-test with εp. Assume

first that εp > ε∗. Again we store εp as a candidate in this case.
Now we consider the d 23 |Si|e-th element εi of Si; as Si is sorted
we can access this element in constant time. If εi > εp then we
delete all elements in Si to the right of εi (including εi, these values
are at least as large as our current candidate). Otherwise Si stays as
is. If, on the other hand, εp < ε∗ then we consider the d 13 |Si|e-th
element εi of Si. If εi 6 εp then we delete all elements to the left
of εi (including εi). Otherwise Si stays as is. Note that now an iter-
ation only takes timeO(n+m). Again, we repeat these iterations

until all sequences are empty, in this case the candidate we stored
for ε∗ is finally correct. These changes result in Algorithm 7.

Algorithm 7: EPSSSP in 2 dimensions, faster version
Input: integer k, non-dominating and sorted sets P , R

The algorithm is the same as Algorithm 6, except that we
replace line 9 by:

9a let εi be the d 23 |Si|e-th element of Si

9b if εi > εp then
9c delete εi and all elements to its right from Si

replace line 12 by:
12a let εi be the d 13 |Si|e-th element of Si

12b if εi 6 εp then
12c delete εi and all elements to its left from Si

To bound the runtime of Algorithm 7, it remains to show that
Property (*) is still satisfied. If this is the case, then we again
need O(log(nm)) iterations and obtain a total runtime of O((n+
m) log(nm)) = O(n logn + m logm) (in expectation and with
high probability).

Proof of Property (*) for Algorithm 7. Again, let Ui := {s ∈ Si |
s > εp}, Li := {s ∈ Si | s < εp} and U :=

∑
i Ui, L :=∑

i Li.

Claim 8. In the current iteration, Algorithm 7 deletes at least
min{ 13U −

1
6L,

1
3 (L+ 1)− 1

6 (U − 1)} elements.

Proof. First assume that εp > ε∗. We prove that in any set Si we
delete at least 1

3Ui− 1
6Li elements. Summing over all 1 6 i 6 2n

then yields the result. Consider Algorithm 7 and note that if εi >
εp then we delete all elements to the right of εi (including εi).
Thus, we delete at least 1

3 |Si| elements. As Ui 6 |Si| and Li > 0,
we delete at least

1
3 |Si| > 1

3Ui − 1
6Li

elements. If, on the other hand, εi < εp, then we do not delete
any elements from Si. In this case we have Li > 2

3 |Si| and Ui 6
1
3 |Si|, so that

0 > 1
3Ui − 1

6Li.

Hence, also in this case we delete at least 1
3Ui − 1

6Li elements,
because this number is non-positive.

In summary, we obtain that if εp > ε∗ we delete at least 1
3U −

1
6L elements. In the case εp < ε∗, a symmetric argument using
L′ := {s ∈ S | s 6 εp} and U ′ := {s ∈ S | s > εp} shows
that we delete at least 1

3L
′ − 1

6U
′ elements of S. Recalling the

definition of L = {s ∈ S | s < εp} and U = {s ∈ S | s > εp},
we see that L′ > L + 1 and U ′ 6 U − 1. Hence, in this case we
delete at least 1

3 (L+ 1)− 1
6 (U − 1) elements of S.

To finish the proof of Property (*), note that since εp is uniformly
random in S we have d 25 |S|e 6 U 6 d 35 |S|e with probability at
least 1

5 . If this event occurs, then min{ 13U −
1
6L,

1
3 (L + 1) −

1
6 (U − 1)} > 1

3 ·
2
5 |S| −

1
6 ·

3
5 |S| =

1
30 |S|. Thus, with constant

probability we delete at least a constant fraction of S.

5. EXPERIMENTS
All the presented algorithms for the hypervolume indicator as

well as the epsilon indicator have been implemented and are avail-
able at the homepage of the second author [1].

595

We experimentally compared our algorithm for HYPSSP with
runtime O(n · k) (Algorithm 1) with the dynamic programming
approach of Auger et al. [3] with runtime O(n2 k). For the ε-
indicator we set P = R so that n = m. We implemented the
O(n2 logn) algorithm (Algorithm 3), which has the same asymp-
totic runtime as [18, 19], and compared it with both algorithms we
described (Algorithm 6 and Algorithm 7).

We tested instances for increasing 102 6 n 6 107 and k ∈
{10, 20, 50, n/2}. These values for k have been chosen with the
motivations in mind that we sketched in the introduction. The al-
gorithm runtimes was averaged over 30 runs for n randomly sam-
pled points or points with equal distance taken from the fronts
f1(x) = 1− x, f2(x) =

√
1− x2 , and f3(x) = 1

x .
All experiments showed a similar behavior. We observed no dif-

ferences in the algorithms’ runtime behavior for the three fronts
and the two ways of sampling. The measured runtimes fit very
well to the asymptotic guarantees, meaning that all hidden con-
stants are reasonably small. However, Algorithm 6 was as fast as
Algorithm 7 in our experiments, i.e., this minor runtime improve-
ment is only of theoretical nature. The experiments showed that
our new algorithms are empirically faster by several orders of mag-
nitude than the previous state of the art. Details will be provided in
an extended version of this paper.

Acknowledgments
The research leading to these results has received funding from
the Australian Research Council (ARC) under grant agreement
DP140103400 and from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement no 618091
(SAGE). Karl Bringmann is a recipient of the Google Europe Fel-
lowship in Randomized Algorithms, and this research is supported
in part by this Google Fellowship.

References
[1] http://docs.theinf.uni-jena.de/code/ssp.zip.

[2] http://wcipeg.com/wiki/Convex_hull_trick.

[3] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler.
Investigating and exploiting the bias of the weighted
hypervolume to articulate user preferences. In 11th Annual
Conference on Genetic and Evolutionary Computation
(GECCO ’09), pp. 563–570. ACM Press, 2009.

[4] J. M. Bader. Hypervolume-Based Search for Multiobjective
Optimization: Theory and Methods. PhD thesis,
Eidgen?ssische Technische Hochschule ETH Z?rich, 2009.

[5] N. Beume, B. Naujoks, and M. T. M. Emmerich.
SMS-EMOA: Multiobjective selection based on dominated
hypervolume. European Journal of Operational Research,
181:1653–1669, 2007.

[6] N. Beume, C. M. Fonseca, M. López-Ibáñez, L. Paquete, and
J. Vahrenhold. On the complexity of computing the
hypervolume indicator. IEEE Trans. Evolutionary
Computation, 13:1075–1082, 2009.

[7] N. Beume, B. Naujoks, M. Preuss, G. Rudolph, and
T. Wagner. Effects of 1-greedy S-metric-selection on
innumerably large Pareto fronts. In 5th International
Conference on Evolutionary Multi-Criterion Optimization
(EMO ’09), Vol. 5467 of LNCS, pp. 21–35, 2009.

[8] K. Bringmann and T. Friedrich. An efficient algorithm for
computing hypervolume contributions. Evolutionary
Computation, 18:383–402, 2010.

[9] K. Bringmann, T. Friedrich, F. Neumann, and M. Wagner.
Approximation-guided evolutionary multi-objective
optimization. In 22nd International Joint Conference on
Artificial Intelligence (IJCAI ’11), pp. 1198–1203.
IJCAI/AAAI, 2011.

[10] P. Brucker. Efficient algorithms for some path partitioning
problems. Discrete Applied Mathematics, 62:77–85, 1995.

[11] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry. Springer, 2008.

[12] M. T. M. Emmerich and C. M. Fonseca. Computing
hypervolume contributions in low dimensions:
Asymptotically optimal algorithm and complexity results. In
6th International Conference on Evolutionary
Multi-Criterion Optimization (EMO ’11), Vol. 6576 of
LNCS, pp. 121–135. Springer, 2011.

[13] C. Igel, N. Hansen, and S. Roth. Covariance matrix
adaptation for multi-objective optimization. Evolutionary
Computation, 15:1–28, 2007.

[14] C. Igel, T. Suttorp, and N. Hansen. Steady-state selection
and efficient covariance matrix update in the multi-objective
CMA-ES. In 4th International Conference on Evolutionary
Multi-Criterion Optimization (EMO ’07), Vol. 4403 of
LNCS, pp. 171–185. Springer, 2007.

[15] V. Koltun and C. H. Papadimitriou. Approximately
dominating representatives. Theoretical Computer Science,
371:148–154, 2007.

[16] T. Kuhn, C. M. Fonseca, L. Paquete, S. Ruzika, and J. R.
Figueira. Hypervolume subset selection in two dimensions:
Formulations and algorithms. Technical report, Fachbereich
Mathematik, TU Kaiserslautern, 2014.

[17] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. Journal of the ACM, 22:
469–476, 1975.

[18] A. Ponte, L. Paquete, and J. R. Figueira. On beam search for
multicriteria combinatorial optimization problems. In 9th
International Conference in Integration of AI and OR
Techniques in Contraint Programming for Combinatorial
Optimzation Problems (CPAIOR ’12), Vol. 7298 of LNCS,
pp. 307–321. Springer, 2012.

[19] D. Vaz, L. Paquete, and A. Ponte. A note on the ε-indicator
subset selection. Theoretical Computer Science, 499:
113–116, 2013.

[20] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume
indicator revisited: On the design of Pareto-compliant
indicators via weighted integration. In 4th International
Conference on Evolutionary Multi-Criterion Optimization
(EMO ’07), Vol. 4403 of LNCS, pp. 862–876. Springer, 2007.

596

http://docs.theinf.uni-jena.de/code/ssp.zip
http://wcipeg.com/wiki/Convex_hull_trick

	Introduction
	Preliminaries
	Hypervolume indicator
	-Indicator

	Algorithm for hypSSP
	The Algorithm
	Upper Envelope
	Reconstruction of P*

	Algorithm for epsSSP
	-Test
	Subset Selection
	Theoretical Improvement

	Experiments

