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Abstract

We show several ways to round a real matrix to an integer one such that the rounding
errors in all rows and columns as well as the whole matrix are less than one. This
is a classical problem with applications in many fields, in particular, statistics.

We improve earlier solutions of different authors in two ways. For rounding
matrices of size m × n, we reduce the runtime from O((mn)2) to O(mn log(mn)).
Second, our roundings also have a rounding error of less than one in all initial
intervals of rows and columns. Consequently, arbitrary intervals have an error of
at most two. This is particularly useful in the statistics application of controlled
rounding.

The same result can be obtained via (dependent) randomized rounding. This has
the additional advantage that the rounding is unbiased, that is, for all entries yij

of our rounding, we have E(yij) = xij , where xij is the corresponding entry of the
input matrix.
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1 Introduction

In this paper, we analyze a rounding problem with strong connections to
statistics, but also to different areas in discrete mathematics, computer science,
and operations research. We show how to round a matrix to an integer one
such that rounding errors in intervals of rows and columns are small.

Let m,n be positive integers. For some set S, we write Sm×n to denote
the set of m× n matrices with entries in S. For real numbers a, b let [a..b] :=
{z ∈ Z | a ≤ z ≤ b}. We show the following.

Theorem 1.1 For all X ∈ [0, 1)m×n a rounding Y ∈ {0, 1}m×n such that

∀b ∈ [1..n], i ∈ [1..m] :

∣∣∣∣
b∑

j=1

(xij − yij)

∣∣∣∣ < 1,

∀b ∈ [1..m], j ∈ [1..n] :

∣∣∣∣
b∑

i=1

(xij − yij)

∣∣∣∣ < 1,

∣∣∣∣
m∑

i=1

n∑
j=1

(xij − yij)

∣∣∣∣ < 1

can be computed in time O(mn log(mn)).

This result extends the famous rounding lemma of Baranyai [3] and several
results on controlled rounding in statistics by Bacharach [2] and Causey, Cox
and Ernst [6].

2 Baranyai’s Rounding Lemma and Applications in Statis-
tics

Baranyai [3] used a weaker version of Theorem 1.1 to obtain his well-known
results on coloring and partitioning complete uniform hypergraphs. He showed
that any matrix can be rounded such that the errors in all rows, all columns
and the whole matrix are less than one. He used a formulation as flow problem
to prove this statement. This yields an inferior runtime than the bound in
Theorem 1.1. However, algorithmic issues were not his focus.

In statistics, Baranyai’s result was independently obtained by Bacharach [2]
(in a slightly weaker form) and again independently by Causey, Cox and
Ernst [6]. There are two statistical applications for such rounding results.
Note first that instead of rounding to integers, our result also applies to round-
ing to multiples of any other base (e.g., multiples of 10). Such a rounding can
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be used to improve the readability of data tables.

The main reason, however, to apply such a rounding procedure is confiden-
tiality protection. Frequency counts that directly or indirectly disclose small
counts may permit the identification of individual respondents. There are
various methods to prevent this [21], one of which is controlled rounding [8].
Here, one tries to round an (m + 1) × (n + 1)-table X̃ given by

(xij) i=1...m
j=1...n

(∑n
j=1 xij

)
i=1...m

(
∑m

i=1 xij)j=1...n

∑m
i=1

∑n
j=1 xij

to an (m + 1)× (n + 1)-table Ỹ such that additivity is preserved, i.e., the last
row and column of Ỹ contain the associated totals of Ỹ . In our setting we
round the m × n-matrix X defined by the mn inner cells of the table X̃ to
obtain a controlled rounding.

The additivity in the rounded table allows to derive information on the
row and column totals of the original table. In contrast to other rounding
algorithms, our result also permits to retrieve further reliable information
from the rounded matrix, namely on the sums of consecutive elements in rows
or columns. Such queries may occur if there is a linear ordering on statistical
attributes. Here an example. Let xij be the number of people in country i
that are j years old. Say Y is such that 1

1000
Y is a rounding of 1

1000
X as in

Theorem 1.1. Now
∑40

j=20 yij is the number of people in country i that are
between 20 and 40 years old, apart from an error of less than 2000. Note that
such guarantees are not provided by the results of Baranyai [3], Bacharach [2],
and Causey, Cox and Ernst [6].

3 Unbiased Rounding

We present a randomized algorithm computing roundings as in Theorem 1.1.
It has the additional property that each matrix entry is rounded up with prob-
ability equal to its fractional value. This is known as randomized rounding
[16] in computer science and as unbiased controlled rounding [7,12] in statis-
tics. Here, a controlled rounding is computed such that the expected values of
each table entry (including the totals) equals its fractional value in the original
table.
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To state our result more precisely, we introduce the following notation.
For x ∈ R write �x� := max{z ∈ Z | z ≤ r}, �x� := min{z ∈ Z | z ≥ r} and
{x} := x − �x�.
Definition 3.1 Let x ∈ R. A random variable y is called randomized round-
ing of x, denoted y ≈ x, if Pr(y = �x�+ 1) = {x} and Pr(y = �x�) = 1−{x}.
For a matrix X ∈ R

m×n, we call an m × n matrix-valued random variable Y
randomized rounding of X if yij ≈ xij for all i ∈ [1..m], j ∈ [1..n].

We then get the following randomized version of Theorem 1.1.

Theorem 3.2 Let X ∈ [0, 1)m×n be a matrix having entries of binary length
at most �. Then a randomized rounding Y fulfilling the additional constraints
that

∀b ∈ [1..n], i ∈ [1..m] :
b∑

j=1

xij ≈
b∑

j=1

yij,

∀b ∈ [1..m], j ∈ [1..n] :
b∑

i=1

xij ≈
b∑

i=1

yij,

m∑
i=1

n∑
j=1

xij ≈
m∑

i=1

n∑
j=1

yij

can be computed in time O(mn�).

For a matrix with arbitrary entries xij :=
∑�

d=1 x
(d)
ij 2−d + x′

ij where x′
ij < 2−�

and x
(d)
ij ∈ {0, 1} for i ∈ [1..m], j ∈ [1..n], d ∈ [1..�], we may use the � highest

bits to get an approximate randomized rounding. If (before doing so) we
round the remaining part x′

ij of each entry to 2−� with probability 2�x′
ij and

to 0 otherwise, we still have that Y ≈ X, but we introduce an additional error
of at most 2−�mn in the constraints of Theorem 3.2.

4 Other Applications

One of the most basic rounding results states that any sequence x1, . . . , xn of
numbers can be rounded to an integer one y1, . . . , yn such that the rounding
errors |∑b

j=a(xj − yj)| are less than one for all a, b ∈ [1..n]. Such roundings
can be computed efficiently in linear time by a one-pass algorithm resembling
Kadane’s scanning algorithm (described in Bentley’s Programming Pearls [4]).
Extensions in different directions have been obtained in [9,10,13,17,19]. This
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rounding problem has found a number of applications, among others in image
processing [1,18].

Theorem 1.1 extends this result to two-dimensional sequences. Here the
rounding error in arbitrary intervals of a row or column is less than two. In
[11] a lower bound of 1.5 is shown for this problem. Thus an error of less than
one as in the one-dimensional case cannot be achieved.

Rounding a matrix while considering the errors in column sums and partial
row sums also arises in scheduling [5,14,15,20]. For this, however, one does
not need our result in full generality. It suffices to use the linear-time one-
pass algorithm given in [11]. This algorithm rounds a matrix having unit
column sums and can be extend to compute a quasi rounding for arbitrary
matrices. While this algorithm keeps the error in all initial row intervals small,
for columns only the error over the whole column is considered.
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