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Abstract. Random walks are frequently used in randomized algorithms.
We study a derandomized variant of a random walk on graphs, called
rotor-router model. In this model, instead of distributing tokens ran-
domly, each vertex serves its neighbors in a fixed deterministic order.
For most setups, both processes behave remarkably similar: Starting with
the same initial configuration, the number of tokens in the rotor-router
model deviates only slightly from the expected number of tokens on the
corresponding vertex in the random walk model. The maximal difference
over all vertices and all times is called single vertex discrepancy. Cooper
and Spencer (2006) showed that on Z

d the single vertex discrepancy is
only a constant cd. Other authors also determined the precise value of cd

for d = 1, 2. All these results, however, assume that initially all tokens
are only placed on one partition of the bipartite graph Z

d. We show that
this assumption is crucial by proving that otherwise the single vertex
discrepancy can become arbitrarily large. For all dimensions d ≥ 1 and
arbitrary discrepancies � ≥ 0, we construct configurations that reach a
discrepancy of at least �.

1 Introduction

Algorithms that are allowed to make random decision can solve many prob-
lems more efficiently than purely deterministic algorithms. One such example is
the approximation of the volume of a convex body, where randomness gives a
super-polynomial speed-up in computing power [11]. The first polynomial-time
algorithm for this (and a number of other) problems is based on a certain ran-
dom walk (e.g. [1]). Random walks appear to be powerful tools for designing
efficient randomized algorithms.

Rotor-Router Model. The wide applicability of random walks raises the ques-
tion what properties of the random walk are crucial and how much randomness
is needed for this. To study this, we consider a derandomized variant of the ran-
dom walk on the infinite grid Z

d. In this rotor-router model, each vertex x ∈ Z
d

is equipped with a “rotor” together with a cyclic permutation (called a “rotor
sequence”) of the 2d cardinal directions of Zd. While the tokens performing a
random walk leave a vertex in a random direction, in the rotor-router model the
tokens deterministically go in the direction the rotor is pointing. After a token
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is sent, the rotor is rotated according to the fixed rotor sequence. This ensures
that the tokens are distributed evenly among the neighbors.

Synonyms of the Rotor-Router Model. The rotor-router model was redis-
covered independently several times in the literature. First under the name
“Eulerian walker” [20], then as “edge ant walk” [22] and “whirling tour” [10].
It was later popularized by James Propp [16] and therefore also called “Propp
machine” by Cooper and Spencer [6]. The same authors later also used the term
“deterministic random walk” [4,8]. To emphasize the working principle, we only
use the term “rotor-router model” in the rest of the paper.

Some Properties of the Rotor-Router Model. Many aspects of the model
have been studied. The vertex and edge cover time of the rotor-router model
can be asymptotically faster or slower as the classical random walk, depending
on the topology [2,12,23]. Very precise bounds are also known if multiple tokens
are deployed in parallel [7,15,17]. Our focus is on the single-vertex discrepancy
with which we compare the rotor-router model and the expected behavior of the
classical random walk. If particles are arbitrarily placed on the vertices and do
a simultaneous walk in both models, we are interested in the maximal difference
in the number of tokens between both models, at all times and on each vertex.

Known Results for the Single-Vertex Discrepancy. [6] proved that on Z
d

the single vertex discrepancy is a constant cd. For the case d = 1, that is, the
graph being the infinite path, Cooper et al. [4] showed that c1 ≈ 2.29. For d = 2
the constant is c2 ≈ 7.83 for circular rotor sequences and c2 ≈ 7.29 otherwise [8].
It is further known that there is no such constant for infinite trees [5]. There are
also (linear) upper and lower bounds for the discrepancy of finite graphs [14].
For some special finite graphs like hypercubes, stronger (i.e. polylogarithmic in
the number of nodes) upper bounds are known [14].

Open Question. All three aforementioned results for the grid Z
d assume that

the initial configuration is “even”, that is, it only has tokens on one partition
of the bipartite graph Z

d. This assumption is, however, essential for achieving a
constant discrepancy. Cooper et al. already pointed out for d = 1 that without
this assumption their results “cannot be expected” [4, p. 2074]. We make this
statement rigorous and present for each dimension d a configuration such that
the single-vertex discrepancy on Z

d becomes arbitrarily large.

Results. To allow a direct comparison, let us first restate the result of Cooper
and Spencer [6]. The mathematical notation is introduced in Sect. 2.

Theorem 1 ([6]). For all d ≥ 1 there is a constant cd ∈ R+ such that for all
even initial configurations, the single-vertex discrepancy on Z

d is bounded by cd.

Our main result is the following complement of the previous statement.

Theorem 2. For all d ≥ 1 and � ∈ R there is an initial configuration such that
the single-vertex discrepancy on Z

d is at least �.

The reason for the unbounded discrepancy observed for non-even initial con-
figurations is that the two partitions of Z

d subtly interfere with each other
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through the rotors. In every time step, all tokens switch back and forth between
even and odd positions. In a random walk they are distributed independently,
in the rotor-router model they follow the rotors, which exchange information
between both partitions. This causes the unbounded discrepancy for appropri-
ately set up initial configurations.

It should be noted that the discrepancy of � in Theorem 2 already occurs for
small configurations. In fact, Corollary 8 shows that a discrepancy of � can be
reached after Θ

(��2/d2�) time steps with O(�1 + �/d�2d+1) tokens.

Techniques. For proving Theorem2, we define a specific (infinitely large) initial
configuration called (k, d)-wedge (cf. Definition 4), for which we study explicitly
how it develops over time in the rotor-router and random walk model. We prove
that this configuration is “stable” in the rotor-router model, that is, it stays
unchanged after an even number of steps (cf. Lemma6). The proof needs to
consider 26 cases. We prove the cases using an automated theorem prover. Given
this structural insight on the behavior of (k, d)-wedge, we calculate the resulting
discrepancy (cf. Lemma 7). The proof makes use of the fact that the expected
behavior of the d-dimensional random walk starting with a (k, d)-wedge can
be decomposed into a collection of 1-dimensional random walks. To obtain a
result for finite time and finite configurations, we observe that a subset of the
(k, d)-wedge suffices to achieve a desired discrepancy (cf. Corollary 8).

2 Preliminaries

Random Walks. A random walk is a stochastic process that describes the
movement of a number of tokens on a graph G. At each time step, each token
at a vertex x chooses a neighbor independently and uniformly at random, and
moves to that neighbor.

We consider simple random walks on an infinite d-dimensional grid Z
d. A

token at coordinate x = (x1, . . . , xd) can move in the 2d cardinal directions,
as given by the unit vectors: e1 = (1, 0, 0 . . .),e2 = (0, 1, 0, . . .), . . . ,−e1 =
(−1, 0, 0, . . .),−e2 = (0,−1, 0, . . .), . . . ,−ed = (0, . . . ,−1). We refer to this set
of directions by E2d. Following [18], we write Zi for the direction that a token
took at time step i. As all directions are equiprobable and independent, we have
Pr[Zi = ej ] = Pr[Zi = −ej ] = 1

2d for all j. The position of a token after t steps
can then be described as a sum of random variables St = x+Z1 +Z2 + . . .+Zt.

We write Sd
t (x) to express the probability that a d-dimensional random walk

starting at the origin reaches vertex x after t steps. E.g., for dimension d = 1
we obtain S1

t (x) = 2−t
(

t
(t+x)/2

)
.

We denote by x̄ the sum of the individual components of x, i.e. x̄ := xT1 =∑d
i=1 xd. Observe that the grid Z

d is a bipartite graph where all nodes with even
x̄ form one partition, and nodes with odd x̄ form the other. With each time
step, a token therefore switches the partition. To this end, we have Sd

t (x) = 0 if
(x̄ − t ≡ 1) mod 2. We write a ∼ t to say that (a ≡ t) mod 2, and we call a
node x even if x̄ ∼ 0, and odd otherwise.
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Rotor-Router Model. Let us now formally define the rotor-router model on
the grid Z

d. Each vertex x in this graph is equipped with a rotor rx ∈ E2d. The
rotor sequence for a vertex x is defined by a cyclic permutation r→

x : E2d → E2d.
At each time step t, all tokens at x do exactly one move as follows. A par-

ticular token moves in the direction of the rotor rx; and afterwards, the rotor is
updated to point to r→

x (rx). This is repeated until all tokens have been moved.
Since tokens are not labeled, the order in which the tokens are passed to the
rotor does not matter. All configurations of the rotor-router model are therefore
fully defined by the initial placement of tokens, the initial rotor configurations
rx and the rotor sequences r→

x for all vertices x ∈ Z
d. If all tokens are initially

on even vertices, we speak of an even configuration.

Single Vertex Discrepancy. When comparing the quality of the simulation of
the rotor-router model, one often refers to the single vertex discrepancy, which is
defined as follows. Let f(x, t) : Zd ×N0 → N0 be the number of tokens at vertex
x after t steps of the (deterministic) rotor-router model, and let E(x, t) : Zd ×
N0 → R

+ denote the expected number of tokens after t steps of a random walk
with the same starting configuration f(x, 0). To compute E(x, t) we determine
for each y ∈ Z

d the probability that a random walk starting at y reaches x after
exactly t steps and multiply the result with the number of tokens that were at
y. Hence,

E(x, t) =
∑

y∈Zd

f(y, 0) · Sd
t (x − y). (1)

Using this, we can define the single vertex discrepancy.

Definition 3. Let d ≥ 1 and an initial configuration f(x, 0) for all x ∈ Z
d be

given. We call Δ(x, t) = |f(x, t) − E(x, t)| the single vertex discrepancy at x
after t steps. Then, we define the single vertex discrepancy Δd as

Δd := sup
x∈Zd,t∈N

Δ(x, t). (2)

3 Stable Configuration of the Rotor-Router Model

According to Theorem 1, the single vertex discrepancy is constant if we start with
an even configuration. To prove that this condition is necessary, we construct
the (k, d)-wedge, a starting configuration of tokens that ensures that there are
effectively only two states of the rotor-router model.

The (k, d)-wedge intuitively forms a “peak” of tokens at the origin, and the
rest of the graph is populated with tokens in a way that stabilizes the peak. In
the random walk model, the expected number of nodes in the origin will decrease
over time, while in the rotor-router model, the number of nodes always stays the
same. The (k, d)-wedge is illustrated in Fig. 1 and formally defined as follows.

Definition 4. Let k, d ∈ N be given, where k adjusts the vertex discrepancy. The
rotor direction of vertex x at time t will be referred to by r(x, t) : Zd ×N0 → E2d.
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f(x, 0)

4k + 1

1

−2k 0 2k

x

Fig. 1. Illustration of the (k, 1)-wedge in dimension 1. The y-axis describes the number
of tokens at position x. Dark colored bars show the even partition, light colored bars
the odd one. This stable configuration is used to show our main result.

We define the (k, d)-wedge, a starting configuration of the rotor-router model,
as follows. For even vertices x with x̄ ∼ 0, we set

f(x, 0) := f0(x̄, 0) :=

⎧
⎪⎨

⎪⎩

d · (4k + 1 + 2x̄) if x̄ ∈ [−2k, 0] ,
d · (4k + 3 − 2x̄) if x̄ ∈ [1, 2k] ,
d otherwise.

r(x, 0) := r0(x̄, 0) :=

{
−e1 if x̄ ∈ [1, 2k] ,
e1 otherwise.

For odd vertices x with x̄ ∼ 1, we set

f(x, 0) := f1(x̄, 0) :=

⎧
⎪⎨

⎪⎩

d · (1 − 2x̄) if x̄ ∈ [−2k, 0] ,
d · (2x̄ − 1) if x̄ ∈ [1, 2k] ,
d · (4k + 1) otherwise.

r(x, 0) := r1(x̄, 0) :=

{
−e1 if x̄ ∈ [−2k,−1] ,
e1 otherwise.

The rotor sequences follow the order e1, . . . ,ed,−e1, . . . ,−ed.

Next, we show that the (k, d)-wedge is a stable configuration, meaning that
the rotor-router model returns to the initial configuration every two steps. To this
end, we introduce a function g : Zd ×E2d ×E2d ×N → N, where g(x,±ei,±ej , t)
denotes the number of tokens that vertex x receives from vertex x ± ei at time
t when r(x ± ei, t) = ±ej . Therefore,

g(x,e,f , t) =

{
f(x+e,t)−d

2d if sgn(e) = sgn(f),
f(x+e,t)+d

2d otherwise,
(3)
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where sgn(−ei) = −1 and sgn(+ei) = 1 for all i = 1, . . . , d. Then we can write

f(x, t + 1) =
d∑

i=1

g(x,ei, r(x + ei, t), t) +
d∑

i=1

g(x,−ei, r(x − ei, t), t), (4)

which results from summing up the number of tokens that the neighbors of x
pass to x at time step t. Recall that f(x, 0) = f(x̄, 0) and therefore f(x±e1, 0) =
f(x̄± 1, 0). The same holds for r(x, 0). The definition of g in Eq. (3) can in this
case be extended to g(x̄,±1,±e1, 0), and we can simplify Eq. (4) to

f(x̄, 1) =
d∑

i=1

g(x̄, 1, r(x̄ + 1, 0), 0) +
d∑

i=1

g(x̄,−1, r(x̄ − 1, 0), 0)

= d · (g(x̄, 1, r(x̄ + 1, 0), 0) + g(x̄,−1, r(x̄ − 1, 0), 0)). (5)

To prove stability, it remains to show the following Lemmata.

Lemma 5. Given a (k, d)-wedge, it holds

r(x, 1) = −r(x, 0) and f(x, 1) =

{
f1(x̄, 0) if x̄ ∼ 0,

f0(x̄, 0) if x̄ ∼ 1.

Lemma 6. Given a (k, d)-wedge, it holds r(x, 2) = r(x, 0) and f(x, 2) = f(x, 0).

Lemma 5 states that the configuration of the rotor-router model after one step
is again the (k, d)-wedge, except that it is shifted by one to the left. Furthermore,
all rotors point in the opposite direction. By the same intuition, the next step
undoes these changes and the configuration returns to the (k, d)-wedge after 2
steps, which is shown by Lemma 6.

These statements can be proven by a case distinction over Eq. (5). While none
of the cases are mathematically challenging, there are 26 of them. Proving every
case by hand is tedious and provides little to no further insight to the problem.
Nevertheless, even small off-by-one errors break the stability of the (k, d)-wedge,
which is why we wanted to convince ourselves that the (k, d)-wedge is indeed
correct. To this end, we used the automated prover Isabelle/HOL [19] for the
case distinction. Our code can be found in the long version of this paper.

Such provers excel at keeping track of all subgoals (i.e. cases) of a proof.
Mostly, the proofs are not human readable, as they rely on internal proof rou-
tines. Automated proof systems like Isabelle/HOL, however, contain a certified
kernel; so trusting the automated proof boils down to trusting the formalization
of the problem and the correctness of the kernel. It is debated whether an auto-
mated proof can be considered correct or not—in our case, we believe that it
is more reasonable to trust the correctness of Isabelle’s kernel than to trust a
lengthy and error-prone proof of 26 cases.
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Discrepancy with Infinite Steps. If the rotor-router model is initialized
with the (k, d)-wedge, the number of tokens stays the same at all vertices x,
independent of the number of steps the process is run (mod 2), as was shown
above. In contrast, the expected number of tokens on the even partition decreases
over time for the random walk. The reason for this is that at every time step
and on every vertex the number of tokens is not a multiple of the number of
neighboring vertices, ensuring that the rotor-router model cannot distribute the
tokens equally to all neighbors as the random walk does. To show a lower bound
on the discrepancy, we inspect the difference between the actual and the expected
number of tokens at the origin after enough steps. We prove the following lemma.

Lemma 7. If the rotor-router model is initialized with the (k, d)-wedge, we have

lim
t→∞ Δ(0, t) ≥ 4dk.

Proof. Recall that f(0, t) describes the number of tokens at x = 0 when the
rotor-router model is run, whereas E(0, t) describes the expected number of
tokens at x = 0 for the random walk after t steps. By Definition 3,

Δ(0, t) = |f(0, t) − E(0, t)|.
For the sake of brevity, we assume from now on that t is even; however, the
statement holds for all t. Then, since the (k, d)-wedge was proven to be stable,
we obtain f(0, t) = d · (4k + 1).

The calculation of E(0, t) is more involved. According to Eq. (1),

E(0, t) =
∑

y∈Zd

f(y, 0) · Sd
t (y),

where Sd
t (y) is the probability that a d-dimensional random walk that starts

at y = (y1, . . . , yd) ends at 0 after t steps. Sd
t (y) admits simple formulas for

d ∈ {1, 2}, but there are no simple equations for d ≥ 3 known to us.
To circumvent this problem, we show that the expected number of tokens

E(x, t) is actually the same for all dimensions d ≥ 1; if the starting configuration
is the (k, d)-wedge.

Consider the expected number of tokens at a vertex x with respect to x̄ =
x1 + . . .+xd. With one step, a token starting at x can only reach vertices y with
ȳ ∈ {x̄ − 1, x̄ + 1}. The probability that either happens is 1/2, i.e.

∑

y∈Z
d

ȳ=b

Sd
1 (x − y) =

{
1
2 , if b ∈ {x̄ − 1, x̄ + 1}
0 otherwise.

Consider now the following variation of a random walk on Z
d, where each

token can only move in one dimension, i.e.

Pr[Zi = e1] = Pr[Zi = −e1] = 1/2,

Pr[Zi = ej ] = Pr[Zi = −ej ] = 0 for all j > 1.



Unbounded Discrepancy of Deterministic Random Walks on Grids 219

In this setting, we obtain a collection of 1-dimensional random walks operating
independently of each other. We write E

′(x, t) to denote the expected number
of tokens in this random walk; and we initialize E

′(x, 0) again with the (k, d)-
wedge. Note that E′(x, t) = E

′(x̄, t) again only depends on x̄ and t. By showing
E

′(x, t) = E(x, t) we can analyze a 1-dimensional random walk and directly
obtain results for d-dimensional random walks.

We prove E
′(x, t) = E(x, t) by induction over t. For the base case, we have

E(x, 0) = E
′(x, 0) by definition. For the inductive step t → t + 1, we obtain

E(x, t) =
∑

y∈Z
d

E(y, t − 1) · Sd
1 (x − y) (6)

=
∑

y∈Z
d

ȳ=x̄+1

E
′(ȳ, t − 1) · Sd

1 (x − y) +
∑

y∈Z
d

ȳ=x̄−1

E
′(ȳ, t − 1) · Sd

1 (x − y)

= E
′(x̄ + 1, t − 1) · 1

2
+ E

′(x̄ − 1, t − 1) · 1
2

= E
′(x̄, t) = E

′(x, t), (7)

where Eqs. (6) and (7) hold by the tower rule for expectation.
We now focus on the 1-dimensional random walk initialized with the (k, d)-

wedge. Let I1 := [−2k, 2k] and I2 := Z \ I1. We know that f(x, t) = d for all
x ∈ I2, x ∼ 0. We denote the expected number of tokens that started in S ⊆ Z

and arrive at the origin after t ∼ 0 steps by ES(0, t).

EI2(0, t) =
∑

x∈I2
x∼0

f(x, 0) · S1
t (|x|) ≤

∑

x∈[−t,t]
x∼0

d · 2−t ·
(

t

(t + |x|)/2

)
.

We now split the sum using that S1
t (x) = S1

t (−x):

EI2(0, t) ≤ d

2t
·

⎛

⎜
⎝

t∑

x=0
x∼0

(
t

(t + x)/2

)
+

t∑

x=2
x∼0

(
t

(t + x)/2

)
⎞

⎟
⎠ =

d

2t
·

t∑

x=0

(
t

x

)
= d.

This approximation shows that EI2(0, t) ≤ d, which is obviously independent of
the number of steps the process is run.

The number of expected tokens that started in I1 and end at the origin after

t steps will be approximated using the upper bound
(

t
t/2

) ≤
√

2
πt · 2t · e− 18t−1

72t2+12t

[21]. Then, EI1 can be estimated the following way:

EI1(0, t) =
k∑

i=1

S1
t (2i) · f(2i, 0) +

k∑

i=0

S1
t (2i) · f(−2i, 0)

= d2−t

(
k∑

i=1

(
t

t
2 + i

)
· (4k + 3 − 4i) +

k∑

i=0

(
t

t
2 + i

)
· (4k + 1 − 4i)

)
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≤
(

t

t/2

)
· d2−t ·

(
k∑

i=1

(4k + 3 − 4i) +
k∑

i=0

(4k + 1 − 4i)

)

=
(

t

t/2

)
· d2−t · (2k + 1)2 ≤

√
2
πt

· e
− 18t−1

72t2+12t · d · (2k + 1)2.

Knowing EI1(0, t) and EI2(0, t), we compute E(0, t) by adding these terms and

obtain E(0, t) ≤ d+
√

2
πt ·e− 18t−1

72t2+12t ·d ·(2k+1)2. This results in a discrepancy of

|f(0, t) − E(0, t)| ≥ max

{

0, 4dk −
√

2
πt

· e
− 18t−1

72t2+12t · d · (2k + 1)2
}

. (8)

For large enough t, this proves the claim. �
This means that by using the second partition of Z

d in the rotor-router
model, it is possible to produce an arbitrarily large discrepancy of Ω(dk) which
reveals that there is no constant bound for the single vertex discrepancy. Figure 2
illustrates the single vertex discrepancy in a (k, 1)-wedge over time for k ∈
{16, 32, 64}.

Discrepancy Within Finite Steps. Lemma 7 shows that a discrepancy of 4dk
can be reached if the processes are run for t → ∞ steps. It is, however, possible
to achieve high discrepancy using already few steps by investigating Eq. (8) more
carefully. We show the following Corollary.

Corollary 8. Given dimension d ≥ 1 and a discrepancy � ∈ R+, there exists
a (k, d)-wedge that reaches the discrepancy � in t ∈ O (⌈

�2/d2
⌉)

steps using
O(�1 + �/d�2d+1) tokens.

Proof. By Eq. (8), the number of steps that are needed to reach discrepancy �
with a (k, d)-wedge are

�
!≤ 4dk −

√
2
πt

· e
− 18t−1

72t2+12t · d · (2k + 1)2

⇐ t ≥ 2
π

· d2(2k + 1)4

(4dk − �)2

Using standard analysis tools, we find that the minimum number of steps nec-
essary to reach the given discrepancy � is

t =
2 · d2(

⌈
d+�
2d

⌉
+ 1)4

π · (2d + �)2
∈ Θ

(⌈
�2

d2

⌉)

when using a (
⌈

d+�
2d

⌉
, d)-wedge. As the process runs t steps, it visits Θ(td) posi-

tions of the grid Z
d, each of which needs ≤ d · (4k+1) tokens. Therefore, in total

it needs at most O(�1 + �/d�2d+1) tokens. �
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Fig. 2. The simulated single vertex discrepancies for different (k, 1)-wedges. The plots
show that even for small t and k a high discrepancy can be achieved. This intuition is
formalized in Corollary 8.

4 Conclusion

The rotor-router model is a derandomized variant of the classical random walk.
It can be used algorithmically for example in broadcasting [9], external merge-
sort [3] and load balancing [13]. We study the similarity of the rotor-router model
to the expected behavior of the random walk. It was observed and well studied
that on grids the number of tokens only differs by some small constant at all
times and on each vertex [4,6,8]. We closely look at the underlying assumptions
of these results and prove that if tokens are allowed to start at an arbitrary
position, both models can deviate arbitrarily far. Besides the revealed combi-
natorial structure, our result indicates that also in algorithmic applications the
rotor-router model can deviate significantly from the expected behavior of the
random walk, which should be studied further.
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