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Abstract. In the 1970s, Győri and Lovász showed that for a k-connected
n-vertex graph, a given set of terminal vertices t1, . . . , tk and natural
numbers n1, . . . , nk satisfying

∑k
i=1 ni = n, a connected vertex partition

S1, . . . , Sk satisfying ti ∈ Si and |Si| = ni exists. However, polynomial
algorithms to actually compute such partitions are known so far only
for k ≤ 4. This motivates us to take a new approach and constrain this
problem to particular graph classes instead of restricting the values of
k. More precisely, we consider k-connected chordal graphs and a broader
class of graphs related to them. For the first class, we give an algorithm
with O(n2) running time that solves the problem exactly, and for the
second, an algorithm with O(n4) running time that deviates on at most
one vertex from the required vertex partition sizes.
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1 Introduction

Partitioning a graph into connected subgraphs is a fundamental task in graph
algorithms. Such connected partitions occur as desirable structures in many ap-
plication areas such as image processing [8], road network decomposition [9], and
robotics [17].

From a theoretical point of view, the existence of a partition into connected
components with certain properties also gives insights into the graph structure.
In theory as well as in many applications, one is interested in a connected parti-
tion that has a given number of subgraphs of chosen respective sizes. With the
simple example of a star-graph, it is observed that not every graph admits a con-
nected partition for any such choice of subgraph sizes. More generally speaking,
if there exists a small set of t vertices whose removal disconnects a graph (sepa-
rator), then any connected partition into k > t subgraphs has limited choice of
subgraph sizes. Graphs that do not contain such a separator of size less than k
are called k-connected.

On the other hand, Győri and Lovász independently showed that k-connectivity
is not just necessary but also sufficient to enable a connected partitioning into
k subgraphs of required sizes, formally stated by the following result.
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Győri-Lovász Theorem ([4],[7]). Let k ≥ 2 be an integer, G = (V,E) a k-
connected graph, t1, . . . , tk ∈ V distinct vertices and n1, . . . , nk ∈ N such that∑k

i=1 ni = |V |. Then G has disjoint connected subgraphs G1, . . . Gk such that
|V (Gi)| = ni and ti ∈ V (Gi) for all i ∈ [k].

The caveat of this famous result is that the constructive proof of it yields an
exponential time algorithm. Despite this result being known since 1976, to this
day we only know polynomial constructions for restricted values of k. Specifically,
in 1990 Suzuki et al. [15] provided such an algorithm for k = 2 and also for
k = 3 [14]. Moreover in 1994 Wada et al. [16] also provided an extended result
for k = 3. For the case of k = 4 Nakano et al. [10] gave a linear time algorithm
for the case where k = 4, G is planar and the given terminals are located on
the same face of a plane embedding of G, while in 2016 Hoyer and Thomas [5]
provided a polynomial time algorithm for the case of k = 4. And so far, this is
where the list ends, thus for k ≥ 5 it remains open whether there even exists a
polynomial time construction.

Towards a construction for general k, we consider restricting the class of
k-connected graphs instead of the values of k. More precisely, we consider (gen-
eralizations of) chordal k-connected graphs. A graph is called chordal, if it does
not contain an induced cycle of length more than three. The restriction to chordal
graphs is known to often yield tractability for otherwise NP-hard problems, for
example chromatic number, clique number, independence number, clique cover-
ing number, stable set and treewidth decomposition [13]. Apart from the inter-
est chordal graphs have from a graph theoretic point of view, their structural
properties have also been proven useful in biology when it comes to studying
multidomain proteins and network motifs (see e.g. [12,11]).

Our contribution To the best of our knowledge, this paper is the first to pursue
the route of restricting the Győri-Lovász Theorem to special graph classes in
order to develop a polynomial construction for general values of k on a non-
trivial subclass of k-connected graphs. We believe that in general considering
the structure of the minimal separators of a graph is promising when it comes
to developing efficient algorithms for the Győri-Lovász Theorem.

We give a constructive version of the Győri-Lovász Theorem for chordal k-
connected graphs with a running time in O(|V |2). Observe here that this con-
struction works for all values of k. Then we show how this result can be gener-
alized in two directions.

First, we generalize our result to the vertex weighted version of the Győri-
Lovász Theorem (as proven independently by Chandran et al. [2], Chen et al. [3]
and Hoyer [5]), specifically deriving the following theorem.

Theorem 1. Let k ≥ 2 be an integer, G = (V,E,w) a vertex-weighted k-
connected chordal graph with w : V → N, t1, . . . , tk ∈ V distinct vertices, and
w1, . . . , wk ∈ N with wi ≥ w(ti) and

∑k
i=1 wi = w(V ) for all i ∈ [k]. A partition

S1, . . . , Sk of V , such that G[Si] is connected, ti ∈ Si and wi −wmax < w(Si) <
wi + wmax , for all i ∈ [k], can be computed in time O(|V |2).
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We further use this weighted version to derive an approximate version of
the Győri-Lovász Theorem for a larger graph class. Specifically we define Iij to
contain all graphs that occur from two distinct chordless Cj ’s that have at least
i vertices in common. We focus on I24-free combined with HH-free graphs. More
specifically, we consider the subclass of k-connected graphs that contain no hole
or house as subgraph (see preliminaries for the definitions of structures such as
hole, house etc.) and that does not contain two distinct induced C4 that share
more than one vertex. We call this class of graphs HHI24-free. Note that HHI24-
free, apart from being a strict superclass of chordal graphs, is also a subclass of
HHD-free graphs (that is house, hole, domino-free graphs), a graph class studied
and being used in a similar manner as chordal graphs as it is also a class where
the minimum fill-in set is proven to be polynomially time solvable [1] (see also [6]
for NP-hard problems solved in polynomial time on HHD-free graphs). Taking
advantage of the fact that given an HHI24-free graph, the subgraph formed by its
induced C4 has a treelike structure, we are able to derive the following result.

Theorem 2. Let k ≥ 2 be an integer, G = (V,E,w) a vertex-weighted k-
connected HHI24-free graph with w : V → N, t1, . . . , tk ∈ V distinct vertices, and
w1, . . . , wk ∈ N with wi ≥ w(ti) and

∑k
i=1 wi = w(V ) for all i ∈ [k]. A partition

S1, . . . , Sk of V , such that G[Si] is connected, ti ∈ Si and wi−2wmax < w(Si) <
wi + 2wmax , for all i ∈ [k], can be computed in time O(|V |4).

Notice that the above theorem implies a polynomial time algorithm with an
additive error of 1 for the unweighted case.

2 Preliminaries

All graphs mentioned in this paper are undirected, finite and simple. Given a
graph G and a vertex v ∈ V (G) we denote its open neighborhood by NG(v) :=
{u ∈ V (G) | uv ∈ E(G)} and by NG[v] its closed neighborhood, which is N(v) ∪
{v}. Similarly we denote by NG(S) :=

⋃
v∈S NG(v) \ S the open neighborhood

of a vertex set S ⊆ V (G) and by NG[S] := NG(S) ∪ S its closed neighborhood.
We omit the subscript G when the graph we refer to is clear from the context.
A vertex v ∈ V (G) is universal to a vertex set S ⊂ V (G) if S ⊆ N(v). Let G be
a graph and S ⊆ V (G). The induced subgraph from S, denoted by G[S], is the
graph with vertex set S and all edges of E(G) with both endpoints in S.

A graph G is chordal if any cycle of G of size at least 4 has a chord (i.e.,
an edge linking two non-consecutive vertices of the cycle). A vertex v ∈ V (G)
is called simplicial if N [v] induces a clique. Based on the existence of simplicial
vertices in chordal graphs, the following notion of vertex ordering was given.
Given a graph G, an ordering of its vertices (v1, . . . , vn) is called perfect elimi-
nation ordering (p.e.o.) if vi is simplicial in G[{vi, vi+1, . . . , vn}] for all i ∈ [n].
Given such an ordering σ : V (G) → {1, . . . , n} and a vertex v ∈ V (G) we call
σ(v) the p.e.o. value of v. Rose et al. [13] proved that a p.e.o. of any chordal
graph can be computed in linear time.
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Let e = {u, v} be an edge of G. We denote by G/e the graph G′, that occurs
from G by the contraction of e, that is, by removing u and v from G and replacing
it by a new vertex z whose neighborhood is (N(u) ∪N(v)) \ {u, v}.

A graph G is connected if there exists a path between any pair of distinct
vertices. Moreover, a graph is k-connected for some k ∈ N if after the removal
of any set of at most k− 1 distinct vertices G remains connected. Given a graph
G and a vertex set S ⊆ V (G), we say that S is a separator of G if its removal
disconnects G. We call S a minimal separator of G if the removal of any subset
S′ ⊆ V (G) with |S′| < |S| results in a connected graph.

We now define some useful subgraphs, see also Figure 1 for illustrations. An
induced chordless cycle of length at least 5 is called a hole. The graph that
occurs from an induced chordless C4 where exactly two of its adjacent vertices
have a common neighbor is called a house. When referring to just the induced
C3 that is part of a house we call it roof while the induced C4 is called body.
Two induced C4 sharing exactly one edge form a domino. A graph that contains
no hole, house or domino as an induced subgraph is called HHD-free. We call a
graph that consists of two C4 sharing a vertex, and an edge that connects the
two neighbors of the common vertex in a way that no other C4 exists a double
house.

Lastly, let G = (V,E) be a k-connected graph, let t1, . . . , tk ∈ V be k distinct
vertices, and let n1, . . . , nk be natural numbers satisfying

∑k
i=1 ni = |V |. We

call S1, . . . Sk ⊆ V (G) a GL-Partition of G if S1, . . . Sk forms a partition of
V (G), such that for all i ∈ [k] we have that G[Si] is connected, ti ∈ Si and
|Si| = ni. When there exists an l ∈ N, such that for such a partition only
ni − l ≤ |Si| ≤ ni + l holds instead of |Si| = ni, we say that S1, . . . , Sk is a
GL-Partition of G with deviation l.

Fig. 1. Specific subgraphs used throughout the paper, from left to right: house, double
house, domino and hole example

3 GL-Partition for Chordal Graphs

We present a simple implementable algorithm with quadratic running time that
computes GL-Partitions in chordal graphs. We then show that a slight mod-
ification of our algorithm is sufficient to compute a GL-Partition on a vertex
weighted graph, thus proving Theorem 1.

Due to space restrictions the proof of Lemma 1 has been moved to Appedix B,
and the proof of correctness of Algorithm 2 to Appendix A.
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3.1 GL-Partition for Unweighted Chordal Graphs

For simplicity, we first prove the restricted version of Theorem 1 to unweighted
graphs. We use a p.e.o. to compute a vertex partition, as described formally
in Algorithm 1. This algorithm receives as input a k-connected chordal graph
G = (V,E), terminal vertices t1, . . . , tk ∈ V , and natural numbers n1, . . . , nk sat-
isfying

∑k
i=1 ni = n, and outputs connected vertex sets S1, . . . , Sk ⊆ V such that

|Si| = ni and ti ∈ Si. In the beginning of the algorithm we initialize each set Si

to contain only the corresponding terminal vertex ti, and add vertices iteratively
to the non-full sets (Si’s that have not reached their demanded size). We say a
vertex v is assigned if it is already part of some Si and unassigned otherwise. At
each iteration, the unassigned neighborhood of the union of the previously non-
full sets is considered, and the vertex with the minimum p.e.o. value is selected
to be added to a non-full set. In case there is more than one non-full set in the
neighborhood of this vertex, it is added to the one with lowest priority, where
the priority of each set is defined to be the largest p.e.o. value of its vertices so
far. The algorithm terminates once all vertices are assigned, in O(|V |2) time.

Algorithm 1: ChordalGL
Input: k-connected chordal graph G = (V,E), terminal vertices

t1, . . . , tk ∈ V , and natural numbers n1, . . . , nk satisfying
∑k

i=1 ni = n
Output: Connected vertex sets S1, . . . , Sk ⊆ V such that |Si| = ni and ti ∈ Si

1 σ ← Compute p.e.o. of G as function σ : V → |V |
2 Si ← {ti}, for all i ∈ [k]
3 while

⋃
i∈[k] Si 6= V (G) do

4 I ← {i ∈ [k] | |Si| < ni}
5 V ′ ← N(

⋃
i∈I Si) \

⋃
i∈[k]\I Si

6 v′ ← argminv∈V ′ σ(v)
7 J ← {i ∈ I | v ∈ N(Si)}
8 j′ ← argminj∈J max(σ(Sj))

9 Sj′ ← Sj′ ∪ {v′}
10 end
11 return S1, . . . , Sk

For the correctness of Algorithm 1 it is enough to show that the unassigned
neighborhood V ′ of all non-full sets is not empty in each iteration of the while-
loop, since this implies that we enlarge a non-full set (in the algorithm denoted
as Sj′) by one vertex (in the algorithm denoted as v′) while maintaining the size
of all remaining sets. That is, in each iteration we make progress in the sense
that |

⋃
i∈[k] Si| increases while maintaining the invariant |Si| ≤ ni for all Si’s.

Note that v′ ∈ N(Sj′) which in turn implies that G[Si] is always connected for
all i ∈ [k]. Finally, by

∑k
i=1 ni = n and through the way we update I we ensure

that the algorithm (or while-loop) terminates as
⋃

i∈[k] Si = V only if we have
|Si| = ni for all Si’s.
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Towards proving the required lemmata for the correctness of Algorithm 1 we
make the following observation for the p.e.o. of a graph.

Lemma 1. Let σ be a p.e.o of a graph G = (V,E) and P = {v1, v2, . . . , vk}
a vertex set of G that induces a simple path with endpoints v1 and vk. Then
σ(vi) > min{σ(v1), σ(vk)} for all i = 2, . . . , k − 1.

Lemma 2. In each iteration of the while-loop in Algorithm 1 we have V ′ 6= ∅.

Proof. We first define the z-connecting neighborhood of a vertex v to be the
neighbors of v that are included in some induced path connecting v to z.

We prove that every non-full set Si contains a vertex in its neighborhood
N(Si) that is unassigned, which implies that V ′ 6= ∅. Assume for a contradic-
tion that at some iteration of our algorithm there is an non-full set Si whose
neighborhood is already assigned to other sets. Let v be the vertex of Si of maxi-
mum σ value among its vertices and z be the vertex of maximum σ value among
the unassigned vertices. Note that vz 6∈ E(G). Let P be the set of all simple
induced paths of G with endpoints z and v. Consider now the following cases:

1. If σ(z) > σ(v), we get from Lemma 1 that every internal vertex of each path
in P has higher σ value than v. Note that no vertex of Si is an internal
vertex of some path in P, since all of them have smaller σ value than v by
the selection of v. Denote the z-connecting neighborhood of v by C.
Let a, b be two vertices in C and assume that a, b ∈ Sj for some j. Assume
also that during our algorithm, a is added to Sj before b. Since all vertices
of Si have smaller σ value than both a and b, and a is added to Sj before
b, the moment b is added to Sj , Si has already been formed. Consider now
the iteration that this happens. Since b ∈ N(v), G[Si ∪ {b}] is connected.
Moreover since σ(a) > σ(v) and Si is not full, b should be added to Si instead
of Sj . As a result each set apart from Si contains at most one such neighbor
of v, and hence |C| < k.
Observe that G \ C has no induced path connecting z and v which in turn
implies that G \ C has no z − v path in general. However, this contradicts
the k-connectivity of G.

2. If σ(z) < σ(v), since z is the unassigned vertex of the highest σ value among
all unassigned vertices, and by Lemma 1 all vertices in P have greater σ
value than z, all of its v-connecting neighbors in P are already assigned in
some set. Denote the set of v-connecting neighbors of z by C.
Assume now that there are two vertices of C, a and b, that are contained in
some Sj and assume also without loss of generality that a was added to Sj

before b. Note that since σ(z) < σ(b) at each iteration of our algorithm z
is considered before b to be added to some set if the induced graph remains
connected. As a result, after a is added to Sj , the induced subgraph G[Sj ∪
{z}] is connected and hence z should be added to Sj before b.
This means that each set contains at most one v-connecting neighbor of z
and therefore |C| < k. Since G \C has no induced path connecting z and v,
there is no z-v-path in G \ C, which contradicts the k-connectivity.
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Corollary 1. At each iteration of Algorithm 1, unless all vertices are assigned,
the neighborhood of each non-full set contains at least one unassigned vertex.

In the weighted case we use the above corollary of Lemma 2. In particular, it
follows from Corollary 1 that as long as we do not declare a set to be full, we
ensure that we are able to extend it by a vertex in its neighborhood that is
unassigned. Note that in the weighted case we do not know in advance how
many vertices are in each part.

3.2 GL-Partition for Weighted Chordal Graphs

With a slight modification of Algorithm 1 we can compute the weighted version
of a GL-Partition. In particular, we prove Theorem 1.

The input of our algorithm differs from the unweighted case by having a
positive vertex-weighted graph G = (V,E,w) and instead of demanded sizes
n1, . . . , nk we have demanded weights w1, . . . , wk for our desired vertex sets
S1, . . . , Sk, where

∑k
i=1 wi = w(V ). Note also that w(Si) is not allowed to deviate

more than wmax = maxv∈V w(v) from wi, i.e. wi−wmax < w(Si) < wi +wmax .

Algorithm 2: WeightedChordalGL
Input: k-connected vertex-weighted chordal graph G(V,E,w), terminal

vertices t1, . . . , tk ∈ V , and positive weights w1, . . . , wk satisfying∑k
i=1 wi = w(V )

Output: Connected vertex sets S1, . . . , Sk ⊆ V such that
wi − wmax < w(Si) < wi + wmax and ti ∈ Si

1 σ ← Compute p.e.o. of G as function σ : V → |V |
2 Si ← {ti}, for all i ∈ [k]
3 I ← {i ∈ [k] | w(Si) < wi}
4 while |I| 6= 1 and

⋃
i∈[k] Si 6= V (G) do

5 V ′ ← N(
⋃

i∈I Si) \
⋃

i∈[k]\I Si

6 v′ ← argminv∈V ′ σ(v)
7 J ← {i ∈ I | v ∈ N(Si)}
8 j′ ← argminj∈J max(σ(Sj))

9 if w(Sj′) + w(v′) < wj′ then
10 Sj′ ← Sj′ ∪ {v′}
11 end
12 else
13 I ← I \ {j′}
14 if

∑
i∈[k]\I(wi − w(Si)) ≥ 0 or w(Sj′) + w(v′) = wj′ then

15 Sj′ ← Sj′ ∪ {v′}
16 end
17 end
18 end
19 If |I| = 1, assign all vertices V \

⋃
i∈[k] Si (possibly empty) to Sj with j ∈ I.
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Again we set each terminal vertex ti to a corresponding set Si, and enlarge
iteratively the non-full weighted sets (Si’s that are not declared as full). One
difference to the previous algorithm is that we declare a set Si as full weighted
set, if together with the next vertex to be potentially added its weight would
exceed wi. After that, we decide whether to add the vertex with respect to the
currently full weighted sets. Similar to Algorithm 1 we interrupt the while-loop if
S1, . . . , Sk forms a vertex partition of V and the algorithm terminates. However,
to ensure that we get a vertex partition in every case, we break the while-loop
when only one non-full weighted set is left and assign all remaining unassigned
vertices to it.

Observe that we can make use of Corollary 1, since Algorithm 2 follows the
same priorities concerning the p.e.o. as Algorithm 1. Basically, it implies that as
long we do not declare a set as full weighted set and there are still unassigned
vertices then those sets have unassigned vertices in its neighborhood.

We conclude this section by extending the above algorithms to graphs having
distance k/2 from being chordal. In particular this corollary is based on the
observation that an edge added to a graph does not participate in any of the
parts those algorithms output if both of its endpoints are terminal vertices.

Corollary 2. Let G be a k-connected graph which becomes chordal after adding
k/2 edges. Given this set of edges, a GL-Partition (also its weighted version)
can be computed in polynomial time but without fixed terminals.

4 GL-Partition for HHI24-free

This section is dedicated to the proof of Theorem 2. The underlying idea for this
result is to carefully contract edges to turn a k-connected HHI24-free graph into
a chordal graph that is still k-connected. Note that we indeed have to be very
careful here to find a set of contractions, as we need it to satisfy three seemingly
contradicting properties: removing all induced C4, preserving k-connectivity, and
contracting at most one edge adjacent to each vertex. The last property is needed
to bound the maximum weight of the vertices in the contracted graph. Further,
we have to be careful not to contract terminal vertices.

The computation for the unweighted case of the partition for Theorem 2 is
given in Algorithm 3 below, which is later extended to the weighted case as well.
Note that we can assume that ni ≥ 2 since if ni = 1 for some i ∈ [k] we simply
declare the terminal vertex to be the required set and remove it from G. This
gives us a (k − 1)-connected graph and k − 1 terminal vertices.

Before starting to prove the Lemmata required for the correctness of Algo-
rithm 3 we give a structural insight which is used in almost all proofs of the
following Lemmata. Due to space restrictions the proofs of Lemmata 3 to 6, 8
and 10 have been moved to Appendix B.

Lemma 3. Given an HHI24-free graph G and an induced C4, C ⊆ V (G), then
any vertex in V (G) \ C that is adjacent to two vertices of C is universal to C.
Moreover, the set of vertices that are universal to C induces a clique.
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Algorithm 3: HHI24-free GL

Input: k-connected HHI24-free graph G(V,E), terminal vertices
t1, . . . , tk ∈ V , and positive integers n1, . . . , nk ≥ 2 satisfying∑k

i=1 ni = n
Output: Connected vertex sets S1, . . . , Sk ⊆ V such that

ni − 1 ≤ |Si| ≤ ni + 1 and ti ∈ Si

1 Add an edge between each pair of non-adjacent terminals that are part
of an induced C4

2 C ← Set of all induced C4 in G.
3 G′ ← (

⋃
C∈C V (C),

⋃
C∈C E(C))

4 E′ ← ∅
5 while C 6= ∅ do
6 Select three vertices v1, v2, v3 in G′ and the corresponding cycle

C ∈ C that satisfies that for all C ′ ∈ C \ {C} we have
V (C ′) ∩ {v1, v2, v3} = ∅.

7 Pick a vertex v from v1, v2, v3 that is not a terminal vertex and add
an incident edge of v in G′[{v1, v2, v3}] to E′.

8 Remove the cycle C from C and the vertices v1, v2, v3 from G′.
9 end

10 Transform G to a weighted graph G′′ by contracting each edge of E′ in
G, assigning to each resulting vertex as weight the number of original
vertices it corresponds to.

11 S1, . . . Sk ← Run Algorithm 2 with G′′, the given set of terminals
t1, . . . , tk, and the size (or weight) demands n1, . . . , nk as input.

12 Reverse the edge contraction of E′ in the sets S1, . . . , Sk accordingly.

Lemma 4. Let G be an HHI24-free graph. If G contains a double house as a
subgraph then at least one of the two C4 in it has a chord.

u13 u11

u3 u1 u21

u2 u22

C1

C2

z2

z1z3

z4

u w
u1

u3

u2 w2

w3

w1 v2 v3

v1 v4

u w

u1

u2

w1

w2

Fig. 2. Illustrations for the vertex namings used in proofs, from left to right: Lemma 4,
Lemma 7 and Lemma 8

The following lemma captures the essence of why the algorithm provided
in this section cannot be applied also on HHD-free graphs, since it holds for
HHI24-free graphs but not for HHD-free graphs. Think for example of a simple
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path P of length 5 and a vertex disjoint induced chordless C4, C. Consider also
each vertex of P being universal to C. Observe that this graph is HHD- but not
HHI24-free. Every two non adjacent vertices of C together with the endpoints of
P create an induced chordless C4. Adding a chord connecting the two endpoints
of P creates a hole and hence the resulting graph is not HHD-free.

Lemma 5. Let G be a HHI24-free graph and C = {v1, v2, v3, v4} an induced C4

in G. Then the graph G′ created by adding the chord v1v3 to G is HHI24-free and
has one less induced C4 than G.

An essential property of the graph class we work on is being closed under
contraction, since our algorithm is based on contracting edges iteratively until the
resulting graph becomes chordal. Before proving this property though, although
“after an edge contraction a new cycle is created” is intuitively clear, we formally
define what it means for a C4 to be “new”.

Definition 1. Let G be a graph, uv ∈ E(G) and G′ = G/uv. Let also w be the
vertex of G′ that is created by the contraction of uv. We say that an induced
cycle C containing w in G′ is new if NC(w) 6⊆ NG(v) and NC(w) 6⊆ NG(u).

Lemma 6. HHI24-free graphs are closed under contraction of an edge of an in-
duced C4.

In order to prove that the contractions of our algorithm do not affect the
connectivity, we first study the possible role of vertices on an induced C4 in
minimal separators in HHI24-free graphs.

Lemma 7. Let G be a k-connected HHI24-free graph for k ≥ 5. Then no three
vertices of an induced C4 belong in the same minimal separator.

Proof. Let G be a k-connected HHI24-free graph for k ≥ 5 and v1, v2, v3, v4 ver-
tices that induce a C4, C. Assume that v1, v2, v3 belong in the a same minimal
separator S and hence, (G \ {v1, v2, v3}) is only k− 3 connected. Let also u and
w be two distinct vertices belonging in different connected components of G \S.

Consider now the chordal graph G′ created, by adding v2v4 to C and one
chord to each other induced C4 of G. By Lemma 5 this is possible by adding
exactly one chord to each induced C4 of G - in particular each addition does
not create new induced C4. Since G′ is chordal each minimal separator induces
a clique, and hence v1, v2, v3 cannot be part of the same minimal separator in
G′ because they do not induce a triangle in G′. Thus G′ \ S remains connected.

Let P1 be a u− w path in G′ \ S that contains a minimal number of added
edges. Let z1z3 ∈ E(P1) be one of the added edges, such that z3 is closer to u on
P1 than z1. Note that z1 and z3 are part of some induced C4, C ′ = {z1, z2, z3, z4}
in G. Since z1z3 cannot be replaced by neither z1z2, z2z3, nor z1z4, z4z3 (oth-
erwise we get a path with strictly less added edges than P1) it follows that
z2, z4 ∈ S.

We will use the u− w paths through S in G to reach a contradiction. Since
S is a minimal u − w separator in G, there are two internally vertex disjoint
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u − w paths P2 and P3, with P2 ∩ S = {z2} and P3 ∩ S = {z4}. Let w2 be the
neighbor of z2 on P2 closer to w, w1 the respective neighbor of z1 on P1 and
w3 the respective neighbor of z4 on P3. Let also u1, u2, u3 be the corresponding
neighbors of these paths closer to u. See the illustration in Figure 2 for these
namings, keeping in mind that it could be w1 ∈ {w2, w3} or u1 ∈ {u2, u3} or
also w1 = w2 = w3 = w or u1 = u2 = u3 = u.

We claim that, in G, z3 is adjacent to a vertex on P [w2,w]
2 or P [w3,w]

3 . Assume
otherwise, and assume that P [w2,w]

2 , P [w3,w]
3 are induced paths in G (shortcut

them otherwise). If w2 = w3 then notice that w2 = w = w3. In order for
z3, z2, z4, w not to induce a C4 with three common vertices to C, z3 has to be
adjacent to w which is on P

[w2,w]
2 . If w2 6= w3 then assume without loss of

generality that w2 6= w. In order to not be a hole, there has to be a chord in the
cycle build by P [w2,w]

2 , P [w3,w]
3 with z4, z3, z2. By assumption, this chord cannot

be from z3, so it has to involve z4 or z2. Since P
[w2,w]
2 and P [w3,w]

3 are induced
and w2 6= w, either w2 is adjacent to z4, or w3 6= w is adjacent to z2. Both
cases create a C4 that has three vertices in common with C, (w2, z2, z3, z4, and
w3, z2, z3, z4, resp.) and since z4z2 /∈ E(G), the added chord for these C4 has to
be w2z3, resp. w3z3, leading again to z3 being adjacent to some vertex on P [w2,w]

2

or P [w3,w]
3 .
Thus we conclude that z3 is adjacent to a vertex x on P [w2,w]

2 or P [w3,w]
3 in G.

This however allows to create a path from u to w with (at least) one added edge
less than P1 in G (since P2, P3 do not contain any added edges). Specifically, if
x is on P2 we get P ′1 = P

[u,z3]
1 xP

[x,w]
2 and if x ∈ P3, P ′1 = P

[u,z3]
1 xP

[x,w]
3 .

Since C ′ was an arbitrary cycle we conclude that v1, v2, v3 cannot be part of
the same minimal separator in G.

Lemma 8. Let G be an HHI24-free k-connected graph and C = {v1, v2, v3, v4} be
an induced C4. The graph G′ = G/v1v2 is still k-connected.

Now, we finally look specifically at Algorithm 3, and first show that its sub-
routine creating G′′ works correctly.

Lemma 9. Given an HHI24-free graph G, the vertices selected in line 6 of Algo-
rithm 3 indeed exist as long as an induced C4 exists.

Proof. Let G be an HHI24-free graph and C the set of all induced C4 in G, consider
the bipartite graph T constructed through the following procedure: Its vertices
are partitioned into two sets B, and S referred to as big and small vertices of
T , respectively. Each big vertex represents an induced C4 of C while each small
vertex represents a vertex of G participating in at least two induced C4. Each
small vertex is adjacent to the big vertices which represent a C4 this vertex
participates in. We claim that with this definition T is indeed a tree (actually
a forest). Assume now for a contradiction that T contains a cycle and let C be
one of the shortest such cycles in T .

First, consider the case that C has length l ≥ 6. Since T is bipartite, due
to its construction, l is even and the vertices of C = {s1, b1, s2, b2, . . . , sl/2, bl/2}
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alternate between big and small. We denote by P sw,sz
bi

a shortest path containing
edges from the C4 represented by the big vertex bi with endpoints the vertices
represented by sw and sz. Due to C, the cycle P s1,sl/2

b1
. . . P

sl/2−1,sl/2
bl/2

exists in G
as a subgraph. Note that since we have assumed that C is a minimal length cycle
of T it is also chordless. Hence, in order for a hole not to be an induced subgraph
of G at least one chord must exist connecting two vertices corresponding to two
small ones of T . This however would create a double house as a subgraph with
the two C4 forming it being the two that correspond to big vertices of T . By
Lemma 4 this means that one of the C4 is not induced, a contradiction to the
construction of T . Notice also that in the case where l = 6 we directly find a
double house and reach a contradiction using the same arguments.

Moreover the assumption that l = 4, leads us to a contradiction to the fact
that two C4 have at most one vertex in common. Hence, T is a forest and the
vertices mentioned in line 6 are the ones belonging only to a cycle represented
by one leaf belonging in B.

Lemma 10. Given an HHI24-free graph G, lines 1-10 of Algorithm 3 transforms
G into a weighted chordal graph G′′, with the same connectivity as G and such
that each vertex from G is involved in at most one edge contraction to create G′′.

At last, notice that we can easily alter Algorithm 3 to also work for weighted
graphs, with the simple change of setting the weights of a vertex in G′′ in line 10
to the sum of the weights of the original vertices it was contracted from. With
this alteration, we can conclude now the proof of Theorem 2 with the following.

Lemma 11. Algorithm 3 works correctly and runs in time O(|V |4).

Proof. By Lemma 10,G′′ is a chordal graph with maximum vertex weight 2wmax .
Further, observe that we did not merge terminal vertices with each other, thus
we can properly run Algorithm 2 on it. By the correctness of this algorithm
(Theorem 1), we know that S1, . . . , Sk in line 11 is a GL-partition for G′′ with
deviation 2wmax . Since reversing edge-contraction does not disconnect these sets,
the unfolded sets S1, . . . , Sk are thus also a GL-partition for G with deviation
2wmax ; note here that the only edges we added to create G′′ are between terminal
vertices, which are in separate sets Si by definition.

The most time consuming part of Algorithm 3 is the preprocessing to trans-
form the input graph into a weighted chordal graph which requires O(|V |4) time
in order to find all the induced C4 (note that the induced C4 are at most (n−4)/3
since they induce a tree).

Moreover, as is the case for chordal graphs, we can sacrifice terminals to
enlarge the considered graph class.

Corollary 3. Let G be a k-connected graph which becomes HHI24-free after adding
k/2 edges. Then, given those edges, a GL-Partition of G with deviation 1 (also
its weighted version with deviation 2wmax − 1) can be computed in polynomial
time but without fixed terminals.
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A Correctness of Algorithm 2 (WeightedChordalGL)

For the correctness Algorithm 2, we need to prove that all vertices are assigned,
i.e. the algorithm terminates, and if this is the case, then S1, . . . , Sk corresponds
to a connected vertex partition satisfying the required weight conditions for each
Si. We start by proving that the Algorithm 2 eventually ends up assigning all
vertices into connected vertex sets.

Lemma 12. Algorithm 2 terminates, such that all vertices are assigned, where
G[Si] is connected for all i ∈ [k]. Further, the while-loop iterates at most |V |
times.

Proof. Similarly to Algorithm 1, because we add only vertices to non-full weighted
sets from its unassigned neighborhood, the Sis correspond always to connected
vertex sets. Note that by Corollary 1 as long as we have non-full weighted sets
and unassigned vertices, the while-loop makes progress in the sense that either an
unassigned vertex becomes assigned or a set is declared to be a full weighted set.
Thus, if there are unassigned vertices after the while-loop, and we have |I| = 1
and we assign the remaining ones to the last non-full weighted set Sj with j ∈ I
(cf. line 19). Observe that Corollary 1 implies that G[Sj ] is still connected after
adding the remaining vertices.

For the second part of the lemma, when we reach the while loop, there are
exactly |V | − k unassigned vertices. Except of at most k times an unassigned
vertex becomes assigned in an iteration of the while-loop. This in turn implies
that we have not more than |V | iterations.

The running time in Theorem 1 is O(|V |2) since the while-loop iterates at
most |V | times and each operation in this loop runs in O(|V |) time. Hence, to
prove Theorem 1 it remains to show that the required weight condition for each
part of the connected vertex partition S1, . . . , Sk is satisfied.

The indices in I denote the non-full weighted sets and therefore, I := [k] \ I
the indices of the full weighted sets. Declaring a set Sj′ as complete weighted set,
i.e. we remove j′ from I, implies that w(Sj′) +w(v′) ≥ wj′ . If w(Sj′) +w(v′) 6=
wj′ , whether we add v′ to Sj′ depends on whether the value of

∑
i∈I(wi−w(Si))

is less than zero or not. Basically, this sum serves to balance the variations in the
required weights of the sets S1, . . . , Sk, and determines the moment we declare
Sj′ to be a full weighted set whether we want w(Sj′) < wj′ or w(Sj′) > wj′ .
During the algorithm the sum

∑
i∈I(wi−w(Si)) satisfies the following invariant.

Lemma 13. In the Algorithm 2, before reaching line 19 we have each time
|
∑

i∈I(wi − w(Si))| < wmax .

Proof. We prove this lemma by induction on |I|. After assigning each terminal
to a corresponding vertex set, we initialize I by I = {i ∈ [k] | w(Si) < wi}. That
is,

∑
i∈I(wi−w(Si)) = 0, since either I = ∅ or each i ∈ I satisfy w(Si) = wi by

w(ti) ≤ wi.
Assume |

∑
i∈I(wi − w(Si))| < wmax for |I| ≤ ` < k and we now add j′

to I according to the algorithm, i.e. we remove j′ from I. First, we show that
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|wj − w(Sj′)| < wmax in both possible future cases v′ ∈ Sj′ or v′ /∈ Sj′ . By
w(Sj ∪ {v′}) = wj we have added v′ to Sj′ and |wj −w(Sj′)| = 0 < wmax holds.
Thus, we can assume that w(Sj′ \ {v′}) < wj and w(Sj′ ∪ {v′}) > wj′ which in
turn results to |wj′ −w(Sj′ ∪{v′})| < wmax and |wj′ −w(Sj′ \ {v′})| < wmax by
w(v′) ≤ wmax .

If w(Sj′ ∪{v′}) = 0, we have
∑

i∈I\{j′}(wi−w(Si)) =
∑

i∈I(wi−w(Si)) and
we are done by the induction hypotheses

We can assume that w(Sj′∪{v′}) > wj′ . If 0 ≤
∑

i∈I\{j′}(wi−w(Si)) < wmax

we add v′ to Sj′ . It follows that
∑

i∈I(wi − w(Si)) <
∑

i∈I\{j′}(wi − w(Si)) by
wj′ − w(Sj′) < 0. By −wmax < wj − w(Sj′) < 0 the sums might deviate by at
most wmax − 1 from each other. Thus, by

∑
i∈I\{j′}(wi − w(Si)) ≥ 0 we obtain

|
∑

i∈I(wi − w(Si))| < wmax .
In case −wmax <

∑
i∈I\{j′}(wi−w(Si)) < 0 we do not add v′ to Sj′ and ob-

tain
∑

i∈I(wi−w(Si)) >
∑

i∈I\{j′}(wi−w(Si)) by wj′−w(Sj′) > 0. Furthermore,
by 0 < wj−w(Sj′) < wmax the sums deviate by at most wmax−1 from each other
and finally, by

∑
i∈I\{j′}(wi−w(Si)) < 0 we obtain |

∑
i∈I(wi−w(Si))| < wmax .

With Lemma 13 we prove now the last part of the proof Theorem 1.

Lemma 14. If Algorithm 2 terminates, then we have wi − wmax < w(Si) <
wi + wmax for each i ∈ [k].

Proof. The sets in S1, . . . , Sk with indices [k]\I in the initialization of I, i.e. I =
{i ∈ [k] | w(Si) < wi}, satisfy clearly its weight conditions as w(ti) ≤ wi for
all i ∈ [k]. Next, we show that each set that is declared as full weighted set in
the while-loop satisfies its weight condition, i.e. |wi − w(Si)| < wmax for i ∈ I.
According to Algorithm 2 let j′ be the index that we remove from I and consider
Sj′ before possibly adding v′ to it. w(Sj′) < wj′ and w(Sj′) + w(v′) ≥ wj′

implies that w(Sj′) < wj′+wmax independent of v′ being added to Sj′ or not by
w(v′) ≤ wmax . Similarly, w(Sj′)+w(v

′) > wj′ implies that w(Sj′) > wj′−wmax .
In case w(Sj′) = wj′ − wmax and w(v′) = wmax the algorithm adds v′ to Sj′

(cf. line 14) and we have wj′ − w(Sj′ ∪ {v′}) = 0 < wmax .
Hence, it remains to prove that the weight conditions are satisfied from the

non-full sets if either the while-loop terminates with all vertices assigned, or
with |I| = 1. We start with the former case. If all vertices are assigned we
have

∑k
i=1(wi − w(Si)) =

∑k
i=1 wi −

∑k
i=1 w(Si)) = w(V ) − w(V ) = 0. Let I

be the indices of the non-full weighted sets after the while-loop is terminated
with all vertices assigned and recall I = [k] \ I. Each non-full weighted set
Si for i ∈ I satisfies w(Si) < wi and therefore

∑
i∈I wi − w(Si) > 0 as each

value wi −w(Si) is greater than zero. Thus, by
∑k

i=1(wi −w(Si)) =
∑

i∈I(wi −
w(Si))+

∑
i∈I(wi−w(Si)) = 0 we have

∑
i∈I(wi−w(Si)) < 0 and by Lemma 13

−wmax <
∑

i∈I(wi − w(Si)) < 0. Suppose there is an i ∈ I with wi − w(Si) ≥
wmax . This would imply that 0 =

∑
i∈I(wi − w(Si)) +

∑
i∈I(wi − w(Si)) >

−wmax +
∑

i∈I(wi − w(Si)) ≥ −wmax + wmax = 0, which is a contradiction.
It remains to consider the case that the while-loop terminates when |I| = 1.

Let say I = {`} and the remaining unassigned vertices are already added to S`
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according to line 19. Same as above, the Si’s with i ∈ [k] \ {`} = I satisfy its
required weight condition and hence, we need to show that w`−wmax < w(S`) <
w`+wmax holds. By

∑
i∈I(wi−w(Si))+

∑
i∈I(wi−w(Si)) =

∑
i∈I(wi−w(Si))+

(w` − w(S`)) = 0 we obtain
∑

i∈I(wi − w(Si) = w(S`) − w`. As a result, since
|
∑

i∈I(wi − w(Si)| < wmax by Lemma 13, it follows that |w(S`)− w`| < wmax .

B Omitted Proofs

Proof of Lemma 1

Proof. Assume for a contradiction that there is an index j ∈ {2, . . . , k− 1} such
that σ(vj) = mini∈[k]{σ(vi)}. As a result σ(vj−1) > σ(vj) and σ(vj) < σ(vj+1).
This means however when vj is assigned a σ value, none of vj−1 and vj+1 have
been assigned such a value. Since vj is a simplicial vertex at that point, its
neighbors that still have not been assigned a σ value induce a clique. Hence,
vj−1vj+1 ∈ E(G), which contradicts the fact that P induces a simple path.

Proof of Lemma 3

Proof. Let v ∈ V \ C be adjacent to two vertices u and w in C. If uw ∈ E(G)
then, since G is house-free, v is also adjacent to at least one vertex of C other
than u and w. Then however, if v is only adjacent to three vertices of C, it
induces a C4 with two of the adjacent and the non adjacent vertex, that shares 3
vertices with C. In the case where uw 6∈ E(G), in order to not have two induced
C4 sharing three vertices, v has to also be adjacent to another vertex of C, which
leads us to the previous case where v is adjacent to two vertices of C inducing
an edge and hence universal to C.

Moreover notice that any set of universal vertices to C, induces a clique
since otherwise two induced C4 exist that share two vertices (consider C and the
C4 induced by two non adjacent vertices that are universal to C and two non
adjacent vertices of C).

Proof of Lemma 4

Proof. Let G be an HHI24-free graph and H be a subgraph of G that is a double
house. As illustrated in Figure 2, we denote by C1 and C2 the two induced C4

of H, by u1 their common vertex, by u2 and u3 the ones adjacent to u1 and to
each other, belonging in C2 and C1, respectively and finally by uij the vertex of
Ci that is adjacent to uj .

Notice that by Lemma 3, since u2 is adjacent to two vertices of C1 it is
universal to C1, while the same holds for u3 and C2. After adding those edges to
H however u21 is adjacent to two of the vertices of C1, and hence is universal to
C1 in G, while the same holds for u11 and C2. After this addition however u13
is adjacent to both u2 and u21 of C2 and hence universal to C2, which creates
the chord u13u1 in C1 that concludes this proof.
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Proof of Lemma 5

Proof. Assume for a contradiction that the addition of v1v3 creates a new in-
duced C4, C ′ = {v′1, v1, v3, v′3}, where v′1, and v′3 are the neighbors on C ′ of
v1 and v3 respectively. Notice that v′1 and v′3 do not belong in C. In order for
v1, v2, v3, v

′
3, v
′
1 not to induce a hole in G, either v′1 or v′3, say v′1, has to also be

adjacent to either v2 or v3. This however, due to Lemma 3, means that v′1 is
universal to C in G, which creates a chord on C ′.

It remains now to show that G′ is still HHI24-free. Using similar arguments
as before we see that no hole is formed from the addition of v1v3 and since
no new C4 is formed also, the remaining C4 keep having pairwise at most one
vertex in common. Assume now for a contradiction that adding v1v3 creates an
induced house H in G′. Since, as we showed above, v1v3 does not participate in
any induced C4 it must be one of the two roof’s edges. Notice also that from the
vertices of C, only v1 and v3 participate in this house because otherwise G would
contain two induced C4 sharing two vertices. Let u be the third vertex of the
roof and notice that by Lemma 3, u is also adjacent to v2 and v4, and let w and
z be the remaining two vertices of the house (assume that wu, zv3 ∈ E(G)). In
order for wzv2v3u not to induce a house in G either v2z ∈ E(G) or v2w ∈ E(G).
Notice that through these cases we conclude, again by Lemma 3, that either w
or z is universal to C. We have assumed however that H is an induced house,
hence w is not universal to C because that would create a chord in the body of
the house. As a result z is universal to C, which again leads to a contradiction
to the fact that H is an induced house because of the edge v1z.

Proof of Lemma 6

Proof. As we have stated before HHI24-free graphs are in particular HHD-free.
Since HHD-free graphs are closed under edge contraction, no hole or house occurs
after contracting any edge of an HHI24-free graph.

Let C = {v1, v2, v3, v4} be an induced C4 in G and consider contracting the
edge v1v2. Let G′ be the graph resulting from this contraction, and let v12 be
the newly added vertex.

We first show that contracting v1v2 does not create any new C4. Assume for
a contradiction that G′ contains a new induced C4, C ′ = {v12, u1, u2, u3}.

– v3 6∈ C ′
Let u1, u2 be the neighbors of v12 on C ′. Since C ′ is new we have that
u1v1, u2v2 ∈ E(G) and u1v2, u2v1 6∈ E(G). In order for u3, u2, v2, v1, u1 to
not induce a hole in G, at least one of u3v1, u3v2, u1u2 has to also exists as
edges in G. This however would create a chord in C ′ which contradicts our
assumption that C ′ is an induced C4 in G′.

– v3 ∈ C ′
In order for v12v3 not to be a chord in C ′, this edge participates in the induced
C4, and also u1, u3 6= v2, v4 (assuming v3 = u2 and that u3v3, u1v12 ∈
E(G′)). Since C ′ is new and v2v3 ∈ E(G) we conclude that v1u1 ∈ E(G)
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and v2u1 6∈ E(G). Notice now that in order for v1, u1, v2, v3, u3 not to induce
a hole in G, u3 should be adjacent in G to either v1 or v2. This however
would create a chord on C ′ in G′ which leads to a contradiction.

Now it remains to show that contracting v1v2 does not create two induced
C4 that share more than one vertex. Assume now for a contradiction that G′
contains two C4 Z = {z1, z2, z3, z4}, W = {w1, w2, w3, w4} that share more than
one vertex.

First, assume that Z and W share an edge, thus let z1 = w1 and z2 = w2 be
two of the common vertices of Z and W . We can directly assume that z1 = v12,
and z3, z4 /∈ W and w3, w4 /∈ Z, since previously any pair of C4 shared at most
one vertex. By Lemma 5, contracting v1v2 did not create any new induced C4,
thus Z and W with the vertex v12 replaced by either v1 or v2 were already
induced C4 in G, so assume that {v1, w2, w3, w4} induces a C4 in G.

Since G was HHI24-free it follows that v1 is not adjacent to z4 (otherwise
{v1, w2, w3, w4} and {v1, z2, z3, z4} are two induced C4 sharing more than one
vertex), thus {v2, z2, z3, z4} also induces a C4 in G.

Then, however in order for v1, v2, z2, w3, w4 not to induce a house in G either
w3 or w4 is adjacent to v2, which would create a chord inW after the contraction
of v1v2 that leads to a contradiction.

It remains to consider the case that Z andW share two non-adjacent vertices,
i.e. w1 = z1 = v12 and w3 = z3 are the two common vertices. Similarly to
the previous case, we can use Lemma 5 to assume that {v1, w2, w3, w4} and
{v2, z2, z3, z4} are induced C4 in G. Since v1, v2, z2, z3 does not create an induced
house or hole together with w2 or w4, it follows that either v1 is adjacent to z3,
which would create a chord for Z in G′, or w2 and w4 are adjacent to v1 or z2. In
the latter case, w2 and w4 are adjacent to more than one vertex of the induced
C4 Z, which means they are both universal to Z and have to form a clique by
Lemma 3. Then however w2w4 is a chord for W in G′.

Proof of Lemma 8

Proof. Assume for a contradiction that G′ is only k− 1-connected, thus there is
a separator of size k − 1 that disconnects two distinct vertices u and w in G′.

Since the connectivity between u and w dropped after contracting v1v2, in
G there are two internally vertex disjoint paths P1 and P2 that connect u and
w such that v1 ∈ P1 and v2 ∈ P2. We can further assume that P1 and P2 are
two such paths of minimal length, respectively. Denote also by u1 and by w1 the
neighbors of v1 on P1 which are closer to u and w, respectively. (See the right
illustration in Figure 2 for an example of these namings, keeping in mind that
it could be that u1 = u2 = u and/or w1 = w2 = w.) Similarly, denote by u2 and
w2 these neighbors of v2 on P2.

In order for v1, v2 and u not to be part of an induced hole (given that u1
and u2 are not u) either u1u2 ∈ E(G) or u1v2 ∈ E(G) or u2v1 ∈ E(G). The
first case, however, if no other edges existed, would create a domino while the
other cases form a house. Hence at least one of the edges u1v3, u1v4, u2v3, u2v4
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exists. Similarly, assuming that neither w1 nor w2 is equal to w, since our graph
is HHI24-free, also one of w1v3, w1v4, w2v3, w2v4 exists. We show now that by
using the remaining vertices of C we can recreate the two vertex disjoint paths
that previously existed in G.

1. u1v3 ∈ E(G)
(a) w1v3 ∈ E(G): Notice that the two u − w vertex disjoint paths are pre-

served in G′, specifically P ′1 = P
[u,u1]
1 v3P

[w1,w]
1 and P ′2 = P2 (where in

P2 we have instead of v2 the newly created vertex v12).
(b) w1v4 ∈ E(G): P ′1 = P

[u,u1]
1 v3v4P

[w1,w]
1 , P ′2 = P2

(c) w2v3 ∈ E(G): P ′1 = P
[u,u1]
1 v3w2P

[w2,w]
2 , P ′2 = P

[u,v12]
2 P

[v12,w]
1

(d) w2v4 ∈ E(G): P ′1 = P
[u,u1]
1 v3v4w2P

[w2,w]
2 , P ′2 = P

[u,v12]
2 P

[v12,w]
1

2. u1v4 ∈ E(G)

(a) w1v3 ∈ E(G): P ′1 = P
[u,u1]
1 v4v3P

[w1,w]
1 and P ′2 = P2

(b) w1v4 ∈ E(G): P ′1 = P
[u,u1]
1 v4P

[w1,w]
1 , P ′2 = P2

(c) w2v3 ∈ E(G): P ′1 = P
[u,u1]
1 v4v3w2P

[w2,w]
2 , P ′2 = P

[u,v12]
2 P

[v12,w]
1

(d) w2v4 ∈ E(G): P ′1 = P
[u,u1]
1 v4w2P

[w2,w]
2 , P ′2 = P

[u,v12]
2 P

[v12,w]
1

3. The remaining cases are symmetrical to the ones written above.

Similar arguments can be used to find such paths if u1 = u2 = u or w1 = w2 = w.
Due to Lemma 7 we know that v3 and v4 are free to be used for the creation

of the above paths since they can not be part of the same minimal separator as
v1 and v2.

Proof of Lemma 10

Proof. Observe that by Lemma 5 we can safely add the edges in line 1, in the
sense that we still have an HHI24-free graph, and that we do not create new C4

that our terminal vertices might participate in. Thus, the graph we consider
moving forward in the algorithm is HHI24-free and the induced C4 considered in
line 2 do not contain two non-adjacent terminals.

Consider now the tree T constructed by C in Lemma 9. We proceed in arguing
that the contraction order described in line 6 of Algorithm 3 is indeed the desired
one.

Let v be a leaf of T . If v ∈ S (representing a single vertex in G) then delete v
and update T accordingly. If v ∈ B then consider the induced C4 corresponding
to v. The fact that v is a leaf in T means that there are at least three vertices
in the corresponding C4 that are not included in any other induced C4 of G.
These three vertices v1, v2, v3 are candidates for line 6 of Algorithm 3, and after
removal of them and the C4 corresponding to v in G′ in line 8, removing v from
T yields a tree for which this procedure can be repeated.

Since we remove all vertices involved in a contracted edge from G′ as soon
as their first adjacent edge is chosen, we can ensure that no vertex is contracted
twice. Thus when we create G′′ all vertices indeed have maximum weight at
most 2.
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