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Abstract Evolutionary algorithms have been widely used

to tackle multi-objective optimization problems. Incorpo-

rating preference information into the search of evolu-

tionary algorithms for multi-objective optimization is of

great importance as it allows one to focus on interesting

regions in the objective space. Zitzler et al. have shown

how to use a weight distribution function on the objective

space to incorporate preference information into hypervo-

lume-based algorithms. We show that this weighted

information can easily be used in other popular EMO

algorithms as well. Our results for NSGA-II and SPEA2

show that this yields similar results to the hypervolume

approach and requires less computational effort.

Keywords Evolutionary algorithms � Multi-objective

optimization � User preferences

1 Introduction

Evolutionary algorithms are very powerful problem solvers

especially when dealing with multi-objective optimization

problems [5, 6]. Many successful methods have been

developed in evolutionary multi-objective optimization

(EMO) during recent years. Their basic goals are to com-

pute a set of solutions that

(i) should be close to the true Pareto front,

(ii) should cover the complete Pareto front, and

(iii) should be uniformly distributed.

Popular evolutionary algorithms for multi-objective

optimization are (among many others) NSGA-II [7] and

SPEA2 [20], as well as hypervolume-based approaches

such as SMS-EMOA [3] and MO-CMA-ES [13, 14].

Recently, there has been significant interest in strategies

for introducing user preferences into EMO methods. The

goal is to give specific regions of the objective space a

higher priority and therefore relaxing goals (ii) and (iii)

from above. Consequently, more solutions should be com-

puted and maintained in the population for highly preferred

regions of the objective space. For NSGA-II a reference

point based approach has been proposed by Deb and Sundar

[8]. They give the example that in the problem of maxi-

mizing throughput and minimizing latency, a decision

maker may have a clue that throughput should be about

99.9%. Several authors [16, 1, 10] also used reference

points to guide multi-objective particle swarm algorithms.

Wickramasinghe and Li [17] use preferred areas. Auger

et al. [2] present an approach of sampling the weighted

hypervolume to incorporate user-defined preferences into

the search for problems with many objectives. Thiele et al.

[15] extended this such that at each iteration, a decision

maker is asked to give preference information in terms of

his reference point. Furthermore, [11] changed the crowd-

ing distance assignment in NSGA-II in order to achieve a

non even spread of the points along the Pareto front.

We consider the case where there is a weight function

on the objective space. This preference information can be

used by the weighted hypervolume indicator instead of the

A conference version appeared in the Proceedings of the Australasian

Conference on Artificial Intelligence 2011 [9].
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standard hypervolume indicator. Zitzler et al. [18] show

that this weight integration is very well suited for incor-

porating user preferences. Furthermore, they compare their

results to the ones obtained by NSGA-II and SPEA2 and

show that these two algorithms do not perform well as they

do not take into account the preference information.

In this paper, we present a neat and simple approach to use

the preference information given by weightings on the

objective space in classical algorithms such as NSGA-II and

SPEA2. Up to now, this weight information has only been

used by hypervolume-based approaches that have the

drawback of needing a runtime exponential in the number of

dimensions [4]. We present very simple approaches to

incorporate the weight information on the objective space

into a wide range of EMO algorithms. We exemplify this by

using NSGA-II and SPEA2 and show that this leads to results

similar to the ones of the weighted hypervolume indicator

presented in [18]. Furthermore, our algorithms are as effi-

cient as the original implementation of NSGA-II and SPEA2

and do not have to deal with the expensive computations that

hypervolume-based algorithms have to face [4].

The outline is as follows. In Sect. 2, we introduce some

basic concepts of multi-objective optimization and the

weight functions used. Section 3 shows how to incorporate

weight information into NSGA-II and SPEA2. We report

our experimental results in Sect. 4 and finish with some

concluding remarks.

2 Preliminaries

A multi-objective optimization problem is given by a

vector-valued objective function

f ¼ ðf1; . . .; fdÞ: S! R
d

on a search space S. W. l. o. g. we assume that each

function fi, 1 B i B d, should be minimized. We first

define a partial order on the objective space. An objective

vector x ¼ ðx1; . . .; xdÞ 2 R
d weakly dominates an objec-

tive vector y ¼ ðy1; . . .; ydÞ 2 R
d (x � y) if it is not worse

in any objective, i.e., x � y :, xi� yi for 1� i� d:

Let f(A) be the set of objective vectors of the search

points in A, i.e., f ðAÞ ¼ ff ðaÞ: a 2 Ag: Then, we denote by

Minðf ðAÞ;�Þ the set of minimal objective vectors in f(A)

with respect to the partial order � on f(A). The goal in

multi-objective optimization is to compute a set X* with

f ðX�Þ ¼ Minðf ðSÞ;�Þ; where S is the considered search

space. f(X*) is called the Pareto front of the given problem.

Often the size of the Pareto front is large, i.e., expo-

nential with respect to the given input or even infinite in the

case of continuous functions. In this case, it is not possible

to compute the whole set of minimal elements of f(S)

efficiently and f(X*) should be a smaller subset of them.

So far, there has not been any preference between

incomparable solutions. Having to cope with a large Pareto

front, we have to decide between incomparable solutions.

Basically, all successful evolutionary algorithms have

certain diversity mechanisms to deal with this issue. Our

goal is to investigate user preference in EMO. These user

preferences give additional information for the search

process and distinguish between sets of incomparable

solutions.

We assume that we have access to a weight function

w:Rd 7!R which describes the preferences of the decision

maker. In principle, w can be an arbitrary function that

gives preferences to certain regions of the objective space.

We will use the following weight distribution functions

on the objective space which have been introduced and

investigated by [18] in the context of hypervolume-based

algorithms:

• Uniform weight: wuni(x) = 1

• Sum of two exponential functions in the direction of the

axes:

wextðxÞ ¼ ðe20�x1 þ e20�x2Þ=ð2 � e20Þ

• Exponential function in the f2-direction:

wasymðxÞ ¼ e20�x2=e20

• Weighted depending on a reference point ref = (a, b):

wref ðxÞ ¼
cþ ð2�ðð2ðx1�aÞÞ2þð2ðx2�bÞÞ2ÞÞ

ð0:001þð2ðx1�aÞ�2ðx2�bÞÞ2Þ
if jx1 � aj\0:5 ^ jx2 � bj\0:5

c otherwise

8
><

>:

Note, that the uniform weight does not imply any prefer-

ences on the objective space. For NSGA-II and SPEA2 this

will imply that we are just running the original versions of

these algorithms. The weight distribution for the other three

functions are illustrated in Fig. 1 for the objective space

[0, 1]2 and we will show in the following sections how to

generalize NSGA-II and SPEA2 such that they can make

use of this preference information.

3 Algorithms

In this section, we show how to integrate the user prefer-

ences given by weightings on the objective space into

NSGA-II [7] and SPEA2 [20]. Both algorithms are based

on the Pareto dominance relation and use diversity mech-

anisms to decide between incomparable solutions. We

transfer the diversity mechanisms for incomparable solu-

tions to the weighted case and adjust them such that they

can make use of the weight information provided on the

objective space.
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3.1 Weighted NSGA-II

NSGA-II is a very popular evolutionary multi-objective

algorithm. It is based on dominance ranking which ensures

that non-dominated solutions are preferred over dominated

ones. Furthermore, the algorithm has a diversity mecha-

nism which distinguishes between incomparable solutions

by a crowding distance measure. This measure prefers

solutions of less crowded regions in the objective space.

We will keep the dominance ranking as in the original

algorithm. To incorporate the user preferences, we will

change the crowding distance assignment according to the

weight information on the objective space. Let X be a set of

incomparable solutions then the assignment of a crowding

distance, taking into account the weighting on the objective

space, is given in Algorithm 1.

As the original NSGA-II, it iterates over all objectives.

For each objective fi, the solutions are sorted in increasing

order and the distance of a solution is changed according to

its neighboring points for that objective. Solutions that are

maximal (or minimal) with respect to one objective obtain

an infinite distance which gives strong preference to the

extreme points of the Pareto front. Our weighted crowding

distance assignment differs from the original crowding

distance assignment by the last for-loop. In this loop the

crowding distance of each solution is multiplied by the

weight that its objective vector has according to the weight

distribution on the objective space. Note, that this does not

change the crowding distance assignment of the extreme

points as they have already obtained an infinite distance.

However, it changes the assignment and the preferences for

the other points and gives preferences based on the

weighting of the objective space. We use the weightening

on the objective space to change the crowding assignment

and incorporate the user preferences.

3.2 Weighted SPEA2

SPEA2 is another very popular approach. It sorts individ-

uals of a population based on a fitness assignment strategy

that incorporates both a coarse-grain evaluation of Pareto

dominance that results in an integer raw fitness value and a

fine-grained evaluation of density that allows the algorithm

to distinguish between solutions with the same raw fitness.

The sum of the density and raw fitness values yields the

overall fitness of a solution, which is used within both the

mating selection and environmental selection functions of

the algorithm. The density D(i) of a solution i is calculated

as follows:

DðiÞ ¼ 1

rk
i þ 2

where ri
k is the distance within the objective space from the

solution i to its k th nearest neighbour in the population.

Solutions in less crowded regions of the objective space

will be assigned lower density values and will be preferred

when compared to solutions in more crowded regions of

the same Pareto front. In this way, SPEA2 maximises the

diversity of solutions within the population. Note that the

density function is constructed such that D(i) B 0.5 and as

such, the density cannot affect Pareto dominance rela-

tionships between solutions, which have a raw fitness value

of integer type.

Our weighted density measure incorporates information

from a weight distribution function as follows:
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Fig. 1 Contour plots of the weight distribution functions
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(a)

(b)

(c)

(d)

(e)

Fig. 2 Experimental results for NSGA-II on ZDT test functions
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Fig. 3 Experimental results for SPEA2 on ZDT test functions
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Fig. 4 Experimental results for NSGA-II on WFG test functions
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Fig. 5 Experimental results for SPEA2 on WFG test functions
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DðiÞ ¼ 1

ðwi � rk
i Þ þ 2

where wi is the value of the weight distribution function at

the point in the objective space corresponding to solution i.

Solutions corresponding to higher values of wi will have a

lower density D(i) and will be favoured by the SPEA2

selection functions. Conversely, solutions corresponding to

lower values of wi will be less favoured by the SPEA2

selection functions. It is important to note that for any

weight distribution function w:Rd 7!Rþ; it still holds that

D(i) B 0.5 and so, Pareto compliance is maintained.

For each iteration of the SPEA2 main loop, the envi-

ronmental selection function involves copying non-domi-

nated individuals from the archive and population at the

previous iteration into a new archive. If the nondominated

front fits exactly into the archive then the environmental

selection step is completed. If there are not enough non-

dominated individuals to fill the archive, the remaining

places in the archive are filled with dominated individuals

according to fitness. If there are too many non-dominated

solutions to fit into the archive, then a truncation procedure

is invoked to iteratively remove individuals until the non-

dominated solutions fit within the archive. At each iteration

of the truncation procedure, a solution i is chosen for

removal that has the minimum distance to another indi-

vidual. If there are several individuals with minimum dis-

tance then the second and, if necessary subsequent,

smallest distances are considered to break the tie. Our

weighted version of SPEA2 incorporates user preferences

within the truncation procedure by multiplying the calcu-

lated distance from a solution i to its k th nearest neighbor

by wi to yield a weighted distance. The result of this

modification is that solutions that are situated in highly

weighted regions of the objective space will have a rela-

tively high weighted distance and so will be less likely to

be removed by the truncation procedure.

4 Experimental results

In this section, we report on our experimental results for

the weight integration into NSGA-II and SPEA2. We use

the same setting as [18] for the weighted hypervolume

indicator and examine the classical benchmark functions

ZDT1, ZDT3, and ZDT6 [19] and the weight distribution

functions defined in Sect. 2. We also extend the experi-

mentation to examine seven additional benchmark func-

tions that include the ZDT functions ZDT2 and ZDT4, as

well as test functions WFG1, WFG2, WFG3, WFG4 and

WFG5 from [12].

We now examine how the three weight distribution

functions defined above influence the search process of

NSGA-II and SPEA2 for the five ZDT test problems. The

functions ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6, are

optimized by NSGA-II runs with population size 100 for

25,000 generations and SPEA2 runs with population and

archive sizes of 100 for 25,000 generations. For both

algorithms, a crossover probability setting of 0.90 is used

and mutation probability is set to 0.03. The test problems

ZDT1, ZDT2, ZDT3 and ZDT6 were constructed with 30

decision variables and the function ZDT4 constructed with

10 decision variables. All test problems were formulated to

be bi-objective.

Figures 2 and 3 show the computed Pareto front

approximations for NSGA-II and SPEA2 after 25,000

generations for the five ZDT functions and the three weight

distribution functions wext, wasym and wref. The reference

point for wref is chosen as ref = (0.5, 0.6) for ZDT1,

ZDT2, ZDT4 and ZDT6 and as ref = (0.5, 1.2) for ZDT3

which is the same as in [18]. The difference in reference

point position is due to the fact that the ZDT3 function has

a larger range of values in the f2-direction. The computed

Pareto front approximation for a uniform weighting

scheme wuni is also shown to allow comparisons to the

results of the original NSGA-II and SPEA2 variants.

Charts of the experiments show that for test functions

ZDT1, ZDT2, ZDT4 and ZDT6, the weighted versions of

NSGA-II and SPEA2 were highly successful in directing

solutions towards regions of the objective space in accor-

dance with all three of the weight distribution functions

trialled. For the weighting scheme wext, both algorithms

yielded a set of solutions that were concentrated near the

boundary regions of the Pareto front. Similarly, the use of

the weighting scheme wasym resulted in a set of solutions

concentrated near the boundary of the Pareto front in the

f2-direction. When the wref weight distribution function was

used, both algorithms yielded results that were concen-

trated in a the region of the Pareto front that was closest to

the specified reference point.

Similar behaviour was observed for the ZDT3 test

function when the weighted NSGA-II and SPEA2 algo-

rithms were executed using weighting schemes wasym and

wref. However, both algorithms produced less definitive

results when using the ZDT3 test function and the wext

weighting scheme. In particular, it appears that for the

weighted SPEA2 algorithm, application of the wext weight

distribution function led to a poor approximation of the true

Pareto front in some regions.

We also examine how the three weight distribution

functions influence the search process of NSGA-II and

SPEA2 for the five WFG test problems. The functions

WFG1, WFG2, WFG3, WFG4 and WFG5, are optimized

by NSGA-II runs with population size 100 for 25,000

generations and SPEA2 runs with population and archive

sizes of 100 for 25,000 generations. For both algorithms, a
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crossover probability setting of 0.90 is used and mutation

probability is set to 0.03. Each WFG test problem was

constructed for the bi-objective case with 2 position-related

parameters and 4 distance related parameters.

Figures 4 and 5 show the computed Pareto front approx-

imations for NSGA-II and SPEA2 after 25,000 generations

for the five WFG functions and the three weight distribution

functions wext, wasym and wref. The reference point for wref is

chosen as ref = (1.0, 2.0) as the maximum values found

along the pareto front for each function in the f2-direction

were approximately twice the maximum value in the

f1-direction. As for the ZDT functions, the computed Pareto

front approximation for a uniform weighting scheme wuni is

also shown to allow comparisons to the results of the original

NSGA-II and SPEA2 variants.

Charts of the WFG experiments show that for all test

functions, the weighted versions of NSGA-II and SPEA2

were highly successful in directing solutions towards regions

of the objective space in accordance with the wasym and wref

weight distribution functions. For the wext weighting func-

tions, it was observed that the algorithms strongly prefer-

enced solutions towards the f2-direction of the objective

space, rather than extremal points with respect to both

objectives. It is likely that this is due to the fact that wext uses

and exponential weighting scheme and the fact that the

maximum values along the pareto front in the f2-direction are

approximately twice the maximum value in the f1-direction.

This combination of factors introduces a significant bias

towards solutions in the f2-direction of the objective space.

Interestingly, this was not the case for the WFG1 test func-

tion, where both algorithms favoured solutions in the

f1-direction, when the wext weighting scheme was applied. A

possible reason for this is the discontinuous nature of the

WFG1 pareto front and the fact that its shape is more complex

that the other WFG functions trialled.

Considering the performance on this range of test

functions, the experimental results clearly demonstrate that

the proposed weighted versions of NSGA-II and SPEA2

can be used successfully to guide solutions towards areas

of the objective space according to an arbitrary weight

distribution function. Importantly, these approaches are

implemented in such a way that they can be used to

incorporate user preferences without compromising Pareto

compliance of the algorithms. Furthermore, weights are

introduced to the diversity measures of each algorithm in

such a way as to modify, but not completely destroy its

diversity characteristics.

5 Conclusions

The integration of user preference into EMO methods is an

important research topic as it allows the user of an EMO

algorithm to focus on interesting regions of the objective

space. Different models for the integration of user prefer-

ence have been proposed. Incorporating user preferences

by weight information on the objective space has been

shown to work very well for hypervolume algorithms [18].

However, the hypervolume is highly expensive when

dealing with higher dimensions.

We have presented a simple and very effective alter-

native way to use these user preferences in other state-of-

the-art approaches such as NSGA-II and SPEA2. Our

experimental results show that the weight integration into

these algorithms performs very well, produces similar

results as the weighted hypervolume indicator, and requires

less computational effort than the hypervolume approach.
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