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Abstract

Several large-scale machine learning tasks,
such as data summarization, can be ap-
proached by maximizing functions that sat-
isfy submodularity. These optimization prob-
lems often involve complex side constraints,
imposed by the underlying application. In
this paper, we develop an algorithm with
poly-logarithmic adaptivity for non-monotone
submodular maximization under general side
constraints. The adaptive complexity of a
problem is the minimal number of sequential
rounds required to achieve the objective.
Our algorithm is suitable to maximize a non-
monotone submodular function under a p-
system side constraint, and it achieves a
(p+0O (\/ﬁ))—approximation for this problem,
after only poly-logarithmic adaptive rounds
and polynomial queries to the valuation or-
acle function. Furthermore, our algorithm
achieves a (p + O (1))-approximation when
the given side constraint is a p-extendible sys-
tem.

This algorithm yields an exponential speed-
up, with respect to the adaptivity, over any
other known constant-factor approximation
algorithm for this problem. It also competes
with previous known results in terms of the
query complexity. We perform various experi-
ments on various real-world applications. We
find that, in comparison with commonly used
heuristics, our algorithm performs better on
these instances.
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1 Introduction

Several machine learning optimization problems consist
of maximizing submodular functions. Examples include
subset selection |[Das and Kempe, 2018|, data summa-
rization |Lin and Bilmes| 2010, Mirzasoleiman et al.l
2016|, and Bayesian experimental design [Chaloner and
Verdinelli, 1995, [Krause et al., [2008|. These problems
often involve constraints imposed by the underlying
application. For instance, in video summarization tasks
several constraints on the solution space arise based on
qualitative features and contextual information [Mirza,
soleiman et al.|, [2016].

The problem of maximizing a submodular function is
NP-hard [Feigel [1998]. However, several approxima-
tion algorithms for this problem have been discovered
over the years. For monotone submodular functions,
the classical result of [Nemhauser et al.| [1978] shows
that a simple greedy algorithm provides a (1 — 1/e)-
approximation guarantee for the maximization of a
monotone submodular function under a uniform con-
straint. If an additional matroid constraint is imposed
on the solution space, then greedy achieves a (1/2)-
approximation guarantee on this problem |Fisher et al.,
1978]. A constant-factor approximation guarantee
can also be achieved in the case of a knapsack con-
straint [Sviridenko], 2004].

More complex constraints require more complex heuris-
tics. Several algorithms have been discovered, to max-
imize a monotone submodular function under gen-
eral side constraints such as p-systems and multiple
knapsacks [Badanidiyuru and Vondrak, [2014} (Chekuri
and Pal, 2005]. These algorithms include stream-
ing algorithms |Badanidiyuru et al.| 2014} |Chekuri
et all 2015, |(Chakrabarti and Kale| [2015], central-
ized algorithms [Badanidiyuru and Vondrak, [2014]
Mirzasoleiman et all |2015|, and distributed algo-
rithms [Mirzasoleiman et al.l 2013, Kumar et al.| 2015].

Many algorithms have also been proposed, to maximize
non-monotone submodular functions under a variety of
constraints [Feldman et al., 2011, |Chekuri et al.| (2014
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Table 1: Results for non-monotone submodular maximization with a p-system side constraint. Here, n is the
problem size, r is the maximum size of a feasible solution, and p the the parameter for the side constraint. The
results on the adaptivity for previously known algorithms follow from the adaptivity of the greedy algorithm.
Note also that all bounds on the adaptivity and query complexity for p-systems are parameterized by p. Whether
it is possible to obtain bounds independent of p for this problem remains an open question.

p-systems
Algorithm Approx. Adaptivity Query Complexity
RE[?S?&E;}ETG ~p+0(yp) | O (\/]3103” log 7 log 7‘) o <\/p7n log nlog  log 7‘)
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Capta et 41] £010] ~ 3 0 () O (o)
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REﬁhff ngli?c ~p+0(1) O (lognlog®r) O (nlognlog?r)
lFeldniilS:tS SIS 2020) *p+0O(1) O (p*nlogn) O (p*nlogn) .
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tThe Parallel Greedy algorithm requires access to the rank oracle for the underlying p-matchoid system. This oracle is

strictly less general then the independence oracle required by all other algorithms in Table

Gupta et al., [2010, [Lee et al., 2009} [Feige et al., 2011},
Buchbinder et al.| [2015]. These algorithms yield good
approximation guarantees, but their run time is poly-
nomial in the number of data-points, and polynomial
in the number of additional side constraints.
Recently, algorithms were discovered to maximize a
non-monotone submodular function under very general
side constraints [Mirzasoleiman et al., 2016, [Feldman
et al,[2017]. These constant-factor approximation algo-
rithms scale polynomially in the number of data-points,
but also in the number of additional side constraints.

In some cases, approximation algorithms do not ex-
hibit increasingly worse run time in the number of con-
straints. This is the case when maximizing a submodu-
lar function under p-extendible systems or p-matchoid
side constraints |[Feldman et al. [2017, |(Chekuri and
Quanrud) |2019]. These side constraints are strictly

less general than those studied in [Mirzasoleiman et al.
[2016], but they are general enough to capture a variety
of interesting applications.

Submodular functions are learnable in the standard
PAC and PMAC models [Valiant, |1984, Balcan and Har{
veyl, 2011]: given a collection of sampled sets and their
submodular function values, it is possible to produce a
surrogate that mimics the behavior of that function, on
samples drawn from the same distribution. However,
submodular objectives cannot be optimized from the
training data we use to learn them |Balkanski et al.)
2017, Rosenfeld et al., 2018|. The reason is that, when
learning from samples, resulting surrogate functions
can be inapproximable, and their global optima can be
far away from the true optimum.

Using an adaptive sampling framework |[Thompson)
1990], it is possible to design algorithms that reach
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a constant-factor approximation guarantee in poly-
logarithmic adaptive rounds for submodular maximiza-
tion, both in the monotone [Balkanski and Singer]
2018al |Balkanski et al.| [2019] [Balkanski and Singer,
2018b,, [Fahrbach et al., 2019b} [Ene and Nguyen, [2019|
and non-monotone case [Balkanski et al., 2018, [Ene
et al., 2019, [Fahrbach et al) [2019a]. At each adaptive
round, calls to the value oracle function are queried
independently. However, lower-bounds for algorithms
with low adaptivity are also known [Li et al., 2020,
Balkanski and Singer| 2018b).

Our contribution. Focusing on sampling tech-
niques, we study the problem of maximizing a non-
monotone submodular function, to which we have ora-
cle access. Furthermore, we consider general p-system
and p-extendible system side constraints for this prob-
lem.

Our algorithm has access to the side constraint struc-
ture via an oracle. Standard oracle models in the
literature are: the independence oracle, which takes as
input a set and returns whether that set is a feasible
solution; the rank oracle, that returns the maximum
cardinality of any feasible solution contained in a given
input set; and the span oracle, which for an input set .S
and a point {e} it returns whether or not S U {e} has
a higher rank than S. In this work, we assume access
to the independence oracle, which is the most general
oracle model of the three.

In this work, we develop the first algorithm with poly-
logarithmic adaptivity suitable to maximize a non-
monotone submodular function under a p-system side
constraint and a p-extendible system. In contrast to all
previous algorithms with low adaptivity, our algorithm
only requires access to the independence oracle for
the side constraints. This algorithm achieves strong
approximation guarantees and run time, competing
with known algorithms for this problem (see Table .
We study the performance of our algorithm in two real-
world applications, video summarization and Bayesian
experimental design. We test our algorithm against
other commonly used heuristics for this problem, and
show that our algorithm comes out on top.

Our paper is organized as follows. We define the prob-
lem in Section [2} and we describe our algorithm in
Section [3} Our theoretical analysis is presented in Sec-
tions [46] Applications and experiments are discussed
in Sections [l We conclude in Section

2 Problem Description

Submodularity. In this paper, we study optimiza-
tion problems that can be approached by maximizing
an oracle function that, given a solution set, estimates

its quality. We assume that oracle functions are sub-
modular.

Definition 1 (Submodularity). Given a finite set V,
we call a set function f: 2V — R submodular if for
all S,U C V we have that f(S)+ f(U) > f(SUU) +
f(SnU).

Note that we only consider functions that do not attain
negative values. This is because submodular functions
with negative values cannot be maximized, even ap-
proximately (see [Feige et al.|[2011]).

p-Systems. We study the problem of maximizing a
submodular function under additional side constraints,
defined as a p-system side constraint. As discussed,
i.e., in Mirzasoleiman et al.| [2016], (Gupta et al. [2010],
these constraints are significantly more general than
standard matroid intersections, and they arise in var-
ious domains, such as movie recommendation, video
summarization, and revenue maximization.

Given a collection of feasible solutions Z over a ground
set V and a set T C V', we denote with Z | a collection
consisting of all sets S C T that are feasible in Z.
Furthermore, a base for Z is any maximum feasible set
U € Z. We define p-systems as follows.

Definition 2. A p-system Z over a ground set V is a
collection of subsets of V' fulfilling the following three

axioms:

e ) eZ;
o for any two sets SCQCV,if Q€T then S €Z;

e for any set T C 'V and any bases S,U € T |r it
holds |S| < p|U]|.

The second defining axiom is referred to as subset-
closure or downward-closed property. With this nota-
tion, we study the following problem.

Problem 1. Given a submodular function f : 2V —
R>o and a p-system L, find a set S C V mazimizing
f(S) such that S € T.

p-extendible Systems. We also consider a family of
side constraints of intermediate generality, commonly
referred to as p-extendible systems. These side con-
straints are strictly less general than p-systems, but
they capture various types of constraints found in prac-
tical applications.

Our main motivation in studying these constraints is
that they admit algorithms that obtain strong approxi-
mation guarantees, in much less time than in the case
of the p-systems. Hence, algorithms for p-extendible
systems scale much better than for general p-systems.
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Algorithm 1: RAND-SEQUENCE(X, S,7)

Algorithm 2: RAND-SAMPLING(f, V,Z, \, €, ¢1).

1: A<+ 0;

2: while X # 0 do

3:  sort the points {z;}; = X randomly;

4 n<—max{j: SUAU{Z‘i}iSj EI};

5 A+ AU{xi,...,z,};

6: X<+ {eecX\(SUA):SUAUeecTI}
7: end while
8: return A;

These p-extendible systems were first studied by [Mestre
[2006], and they are defined as follows.

Definition 3. A p-extendible system I over a ground
set 'V is a p-system, that fulfills the following additional
axiom: for every pair of sets S, € T with S C 2, and
for every element e ¢ S, there exists a set U C Q\ S
of size |U| < p such that Q\ U U{e} € T.

These side constraints generalize matroid intersections
and p-matchoids. While being strictly less general
than p-systems, this definition captures many interest-
ing constraints, such as the intersection of matroids
[Mestre, 2006]. In this paper, we also study the follow-
ing problem.

Problem 2. Given a submodular function f : 2V —
R>o and a p-extendible system Z, find a set S C V
mazimizing f(S) such that S € .

Adaptivity. An algorithm is T-adaptive if every
query f(S) for the f-value of a solution S occurs at
a round ¢ € [T] such that S is independent of the val-
ues f(S’) of all other queries at round ¢, with at most
polynomial queries at each round in the problem size.
The query complexity is the number of calls to the
evaluation oracle function.

Notation. For any submodular evaluation oracle
function f: 2Y — R and sets S,U C V, we de-
fine the marginal value of S with respect to U as
fULS)=f(SuU) = f(S).

Throughout the paper, we always use the notation
introduced in Problem [I} we denote with f the eval-
uation oracle function, with V' the ground set, and
with Z the p-system side constraint. We denote with
OPT a solution to Problem [} and we denote with n
the size of the ground set V, i.e., n is the number of
singletons in our solution space. We also denote with
r the maximum size of a feasible solution.

The notation introduced in Algorithm is used con-
sistently throughout the paper.

2 S @;
: X < argmax,.{f(e): e V AeeTI};
L 04 f(X), 80+ AS(X);
while § > &, do
while X # () do
{a;j}jes + RAND-SEQUENCE(X, S,Z);
7 <= BINARY-SEARCH(J, min{j € J: |X;| <
(1 —¢)|X]}) with
Xj :{EEXZ f(e | SU{CL1,...,aj_1}) >
5/\SU{0,1,...7(1]'_1}U6€I}
8: A < UNIF-SAMPLING({@a1, ..., ay—1},¢1);
9: X+ X,; S+ SUA,;
10:  end while
11: 0+ (1 —¢)d;
122 X<« {ecV:f(e|S)>dASUeeT};
13: end while
14: return S;

IR AN

3 Algorithms

Our method consists of three parts (see Algorithms
. We call these algorithms RAND-SEQUENCE, RAND-
SAMPLING, and REP-SAMPLING respectively. These
algorithms also call the BINARY-SEARCH and UNIF-
SAMPLING sub-routines. The following is a description
of each algorithm and sub-routine.

RAND-SEQUENCE. It is based on the work of |Karp
et al.|[1988]|. Given as input a ground set X, a current
solution S, and a p-system Z, this algorithm finds a
random set A such that SU A is a base for Z.

RAND-SAMPLING. This algorithms generalizes a
sampling algorithm proposed in Balkanski et al.|[2019]
to non-monotone submodular maximization. This algo-
rithm requires as input an oracle function f, a ground
set V| a p-system or p-extendible system Z, and param-
eters A\, e,p1. The parameter A\ determines the total
number of iterations for the RAND-SAMPLING, the pa-
rameter € determines the rate with which the variable
0 decreases, whereas ¢; determines the distribution
for the UNIF-SAMPLING sub-routine. For a constant
d, points are added to the current solution yielding a
marginal contribution upper-bounded by é. Note that
at each adaptive step, the RAND-SAMPLING uses the
BINARY-SEARCH and the UNIF-SAMPLING sub-routine.
If Algorithm [2| reaches an iteration with X = (), then
it decreases the value of ¢ so that points with lower
marginal contribution can be added to the current
solution.

BINARY-SEARCH. This sub-routine is just the stan-
dard binary search algorithm. It is used to locate an
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Algorithm 3: REP-SAMPLING(f, V,Z, €, ¢1, 02, m)
cA—e(p+1)/m;
: for j < m iterations do
}; < RAND-SAMPLING(f,V, T, A, €, ¢1);
A < UNIF-SAMPLING(£;, ©2);
end for
return argmax; {f(Q;), f(A;)};

NP TR Wy

index 1 such that n = min{j: |X;| < (1 —¢)|X|},
with X, where the index j spans over the set J. This
sub-routine uses the fact that, due to submodularity,
it holds |X,| < |Xj41] for all j € J.

UNIF-SAMPLING. For a given input set and proba-
bility ¢, this algorithm samples points of the input set
independently, with probability .

REP-SAMPLING. This algorithm requires as input
an oracle function f a ground set V', a p-system or p-
extendible system Z and parameters A, m,e and 1, 3.
At each step, the REP-SAMPLING calls Algorithm [2] to
find a partial solution €2;. Then, Algorithm samples a
subset of €2;, where each point is drawn independently
with probability 2. Afterwards, the REP-SAMPLING
removes all points of Q; from the ground set, and it
runs the REP-SAMPLING on the resulting ground set.
This procedure is iterated m times.

4 Analysis for p-Systems

In this section, we discuss theoretical run time analysis
results for Problem [I} We remark that all proofs can
be found in the full version, see |Quinzan et al.
[2021]. Approximation guarantees for Algorithm
follow from the following general theorem.

Theorem 1. Fiz constants € € (0,1), m > 2, ¢1 =1,
and @3 = 1/2. Denote with Q* the output of Algorithm
[3 Then,

f(OPT)§m< (1+E)(p+1))+2>E[f(Q*)}.

1-e)2(m—1

A proof of this theorem is given in|Quinzan et al. [2021].

We estimate the number of adaptive rounds until Algo-
rithm [3] reaches the desired approximation guarantee.
The following lemma holds.

Lemma 1. Fiz constants ¢ € (0,1), ¢1,02 € [0,1]
and m > 0. Then Algorithm [3 terminates af-

ter O (E% log (L) log r log n)

pe
Furthermore, Algorithm? has query complexity of

o (% log (é) log rlogn

rounds of adaptivity.

A proof of this result is given in |Quinzan et al.| [2021].
The following lemma follows from Theorem [l and
Lemma [1

Lemma 2. Fiz a constant € € (0,1), and define pa-
rametersm = 1+[1/(p+1)/2], o1 = 1, and p2 = 1/2.
Denote with Q* the optimal solution found by Algorithm
[3 Then,

foPT) < (11_;;2 (p+2v20+ 1) +5)EL F(29) .

Furthermore, with this parameter choice Algo-

rithm |9 terminates after O (g log n log (ﬁ) log r)

rounds of adaptivity, and its query complexity is
\/pn

@) ( log n log (p—ra) logr).

£2

A proof is given in |Quinzan et al.[[2021]. We remark
that there exists an algorithm with constant adaptiv-
ity for unconstrained non-monotone submodular max-
imization that achieves an approximation guarantee
arbitrarily close to 1/2 (see |Chen et al.[2019]). Using
this algorithm as a sub-routine in line [4 of Algorithm
yields a constant-factor improvement over the ap-
proximation guarantee of Lemma [2] without affecting
the upper-bound on the adaptivity. However, this al-
gorithm requires access to a continuous extension of
the value oracle f, whereas Algorithm [3| only requires
access to f.

5 Analysis for p-extendible Systems

In this section, we perform the theoretical analysis for
the REP-SAMPLING, when maximizing a non-monotone
submodular function under a p-extendible system side
constraint, as in Problem 2] We prove that, with
different sets of input parameters, our algorithm has
adaptivity and query complexity that is not dependent
on p. Again, all proofs can be found in the full version,
see (Quinzan et al.|[2021]. The following theorem holds.

Lemma 3. Fiz parameters ¢ € (0,1), m =1, ¢1 =
(p+1)71, and ¢ € [0,1]. Denote with Q* the output
of Algorithm[3. Then,

(1+e)(p+1)?
p(l—¢)?

With this parameter choice, Algorithm [3 terminates
after O (5*2 log n log (g) log 7") rounds of adaptivity,
and it requires O (E% log n log (g) log r) function evalu-
ations.

f(opT) <

E[F(Q%)].

For a proof of this result see Quinzan et al.| [2021]. The
proof of this lemma is based on the work of |[Feldman
et al.||2017], together with the fact that Algorithm
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yields expected marginal increase lower-bounded by
the best possible greedy improvement, up to a multi-
plicative constant.

We remark that Lemma [3] also holds when side con-
straints are p-matchoids and the intersections of ma-
troids, since p-extendible systems are a generalization
of both.

6 Query Complexity and Adaptivity
of the Independence Oracle

We conclude our analysis with a general discussion on
the performance of Algorithm [3]in the number of calls
to the independence oracle for the p-system constraint.
The independence oracle takes as input a set .5, and
returns as output a Boolean value, true if the given set
is independent in Z and false otherwise. The following
lemma holds.

Lemma 4. Fiz parameters ¢ € (0,1), m > 1,
and ¢1,¢92 € [0,1]. Then Algorithm [3 requires ex-
pected O (me‘ﬁ é) log rlog n) rounds of indepen-
dent calls to the oracle for the p-system constraint.
Furthermore, the total number of calls to the indepen-
dence system is O (”";23/2 log (é) log 7 log n)

log (

A proof of this result is given in |Quinzan et al.|[2021],
and it follows from the work of [Karp et al.| [1988]. Note
that the rounds of independent calls to the oracle are
sub-linear, but not poly-logarithmic in the problem size.
The reason is that Algorithm |1| requires O (v/n) rounds
of independent calls to the oracle for the p-system. We
are not aware of any algorithm that finds a base in less
than O (y/n) rounds. Furthermore, it is well-known
that there is no algorithm that obtains an approxima-
tion guarantee that is constant in the problem size for
Problem 1} than Q(n!/3) steps of independent calls to
the oracle for the p-system constraint (see [Karp et al.
[1988], Balkanski et al.| [2019]).

For a p-system Z, the rank of a set S is the maximum
cardinality of its intersection with a maximum indepen-
dent set in Z. Given access to an oracle that returns
the rank of a set in Z, it is possible to design an al-
gorithm that finds a maximum independent set of a
p-system in O (log n2) rounds of independent calls to
the rank oracle (see Karp et al.| [1988]). However, this
work focuses on general constraints where the rank of
a set is not known.

7 Experimental Framework

In our set of experiments, we implement the REP-
SAMPLING as describe in Algorithm [3] We always
test our algorithm against these algorithms:

e FANTOM. This algorithm, which iterates a den-
sity greedy algorithm multiple times, is studied
in |Gupta et al|[2010] and Mirzasoleiman et al.
[2016].

e REPEATEDGREEDY. This algorithm, studied in
Feldman et al.| [2017], consists of iterating a greedy
algorithm multiple times. It uses Algorithm 1 in
Buchbinder et al.|2015] as a sub-routine.

e FASTSGS. This algorithm is studied in |[Feldman
et al[2020], and it is essentially a fast implementa-
tion of the SIMULTANEOUSGREEDYS [Feldman et al.
[2020]. This algorithm updates multiple solutions
concurrently, and it picks the best of them.

e SAMPLEGREEDY. This algorithm is specifically
designed to handle p-extendible systems (see [Feld{
man et al.| [2017]). This algorithm samples points
independently at random, and then it builds a
greedy solution over the resulting set.

Note that these algorithms only require access to the
independence oracle for the side constraints. In our
experiments we do not consider algorithms that require
access to the rank oracle, since they are impractical for
our applications. We perform two sets of experiments,
on the following applications:

e Video Summarization. This problem asks to
find a set of representative frames for a given video.
We use Determinantal Point Processes to select
a diverse set of frame. In order to get better
summaries, we employ a face-recognition tool to
identify faces in each segment. This experiment is
described in Section[8] and the results are displayed

in Figure

e Bayesian D-Optimality. Here, the goal is to de-
sign an experiment that maximizes the expected
utility of the outcome, using preliminary obser-
vations. We use observations from the Berkeley
Earth data-set to select thermal stations around
the world, to measure the temperature with. This
experiment is described in Section [, and the re-
sults are displayed in Figure

The code and the datasets are available upon request.

8 Video Summarization

We study an application of our setting to a data sum-
marization task: Given a video consisting of ordered
frames, choose a subset of frames that gives a descrip-
tive overview of the video. An effective way to select
a diverse set of items is to apply Determinantal Point
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Figure 1: Results for the experiments on Video Summarization on movie segments taken from FLIC
. Each plot shows the average performance over segments with fixed p. Error bars correspond to the
best and worst case. Note that the y-axis in the two leftmost plots uses a logarithmic scale. The FASTSGS uses
parameters £ = |2+ +/p + 1| and € = 0.1; the REP-SAMPLING (1) uses parameters ¢ = 0.1, m = 1+ [/(p + 1)/2],
01 =1, ¢ = 0.5; the REP-SAMPLING (2) uses parameters ¢ = 0.01, m =1, p; = (1 +p)7 !, o = 1.

Processes |Macchi, |1975]. For a thorough survey on

Determinantal Point Processes and their applications,
we refer the reader to [Kulesza and Taskar| [2012].

For a set of items V = {1,...,n}, a Determinan-
tal Point Process (DPP) defines a discrete probabil-
ity distribution over all subsets S C V as Pr(S) =
det(S)/det(L + I), where L € R™*"™ is a positive
semidefinite matrix, dety,(S) == det((L; ;)i jes) is the
determinant of the sub-matrix of L indexed by S and I
is the n x n-identity matrix. Intuitively, if L expresses
pairwise similarity, then the DPP prefers diversity.

In our setting, each item corresponds to a frame of a
video segment. For each frame 7, we compute a feature
vector f;, consist of both visual features, such as color
and SIFT features [Kulesza and Taskar, 2011|, and
qualitative information, such as size, colorfulness and
luminosity. Following |Gong et al.| [2014], we parame-
terize L as L; ; == 2l WTWz;, where z; := tanh(Uf;).
We then learn the parameters U and W using a neural
network.

We select a representative summary by maximizing
the function logdety(S). We impose the following
additional side constraints. First, we impose an upper-
bound on the maximum number of frames of each
summary. Then, we partition each video into segments,
and define a partition matroid to select at most ¢;
frames in each segment j. Following
let al.|[2018]|, [Feldman et al.|[2018], we also use a face-
recognition tool to identify actors in each movie, and
select a summary containing at most k; frames showing
face i. This additional constraint corresponds to a
p-system Z = {S C V: |SNV;| < k;}, with V; all

frames containing face ZEI In our experiments, the
parameters k; are always set to a fixed constant for all
videos. Hence, the only variable that affects p is the
total number of distinct faces in each movie.

For our experimental investigation, we use movies from
the Frames Labeled In Cinema (FLIC) data-set [Sapp
land Taskar} [2013]. We consider all movies in this data-
set with at least 200 frames, as to highlight performance
when dealing with large problem size.

The results are displayed in Figure[I} where we describe
the parameter choice for each algorithm. For each non-
deterministic algorithm, results are the sample mean
of 100 independent runs. We observe that, for different
parameter choice, our algorithm outperforms FANTOM
and the FASTSGS, and it has better adaptivity than
the greedy algorithms. The solution quality for the
SAMPLEGREEDY and REP-SAMPLING, with parameters
as in Lemma [3] is worse on these instances.

9 Bayesian D-Optimality

Bayesian experimental design provides a general frame-
work to select a set of experiments, that maximize the
expected utility of the outcome. Formally, we want to
estimate the parameter 6 of a function y = fy(z) + w,
where w is an error. In this framework, the input z is
generated by a set of experiments. Assuming that pa-
rameters are equipped with a prior, Bayesian optimality
criteria are useful in identifying the right experiments

'The parameter p is estimated by counting the total
number of distinct faces ¢ that appear in more than k;
frames.
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Figure 2: Solution quality for fixed time budget for Bayesian D-Optimality. Results for the randomized algorithms
are the average over 100 independent runs. Note that the z-axis of both plots uses a logarithmic scale. For a limited
number of calls to the oracle function, the REP-SAMPLING yields best performance. The REP-SAMPLING (1)-(3)
use parameters m = 1+ [\/(p+1)/2],1 = 1,92 = 0.5 and € = 0.7,0.5, 0.3 respectively. The REP-SAMPLING
(4)-(6) use parameters m = 1,1 = (p+1)~1, o = 1 and, again, ¢ = 0.7,0.5,0.3. The FASTSGS uses parameters

(=24 +/p+1] and € = 0.25.

to perform, in order to generate the input z.

We focus on linear regressions of the form y = 7 X +w,
with y,w € R™, § € R™ and X € R™*". Furthermore,
we assume independent and homoscedastic noise. We
approach experimental design with the D-optimality
criterion, although other methods can be used to this
end |[Krause et al| 2008]. This criterion consists of
maximizing the determinant of the Fisher information
matrix. As shown in |Sebastiani and Wynn| [2000],
for regressions as described above the D-optimality
criterion is equivalent to maximizing the entropy.

We apply the Bayesian D-optimality criterion to the
following setting. Consider a data-set consisting of
monthly temperatures measured by thermal stations at
different locations, over a period of time. We want to
collect data to perform a regression for a model explain-
ing the temperature variation from one measurements
to the other one. Here, collecting temperatures with
a single station corresponds to performing an experi-
ment, and the goal is to identify appropriate stations
to perform future measurements with.

Assuming independent and homoscedastic noise, we
search for a feasible set of stations maximizing the
entropy. Since temperature variation series follow a
Gaussian process |[Krause et al., 2008, [Friedrich et al
, the entropy is defined as H(S) = %(2”) |S]+
5 Indetx(S), with S a subset of stations, and X the
covariance matrix. The function dets(S) is the deter-
minant of the covariance matrix corresponding to a set
S of stations. Note that the function H(S) is submodu-
lar and non-monotone. We consider an upper-bound on

the solution size as a side constraint. Furthermore, we
group stations that are located in the same geographical
area, and we impose an upper-bound on the number
of stations that can be chosen in each group. This
additional constraint is useful when stations are not
distributed uniformly across a territory (see Friedrich
[2019]). In our experiment, geographical areas
correspond to continents. We remark that, if only a
single cardinality constraint is given, then Bayesian op-
timality criteria can be optimized well via regularized
Determinantal Point Processes [Derezinski et al., 2020].

For our experiments we consider the Berkeley Earth cli-
mate data-set (http://berkeleyearth.org/data/). This
data-set combines 1.6 billion temperature reports from
16 preexisting data archives, for over 39,000 unique
stations worldwide. We run all algorithms with param-
eters described as in Figure [2] for a fixed time budget.

In Figure [2] we report on the average solution quality
achieved by each algorithm, after a fixed number of
oracle calls. We observe that the REP-SAMPLING gets to
a good solution more quickly that the other algorithms.
All algorithms find similar solution qualities, for unlim-
ited time budget, with the FANTOM and REP-SAMPLING.
slightly outperforming the other algorithms.

10 Conclusion

In this paper, we develop the first algorithm for non-
monotone submodular maximization under p-system
and p-extendible system side constraints, with poly-
logarithm adaptivity (see Lemma [2| and Theorem [3)).
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This algorithm also competes with previous known
results in terms of the query complexity and approxi-
mation guarantee (see Table [L).

We consider two applications and study the perfor-
mance of our algorithm against several other algorithms
suitable for this problem. We observe that our algo-
rithms has superior adaptivity, and that it competes
in terms of the query complexity (see Figure .
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