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Abstract. A significant percentage of urban traffic is caused by the search for parking spots. One possible approach to improve
this situation is to guide drivers along routes which are likely to have free parking spots. The task of finding such a route can be
modeled as a probabilistic graph problem which is NP-complete. Thus, we propose heuristic approaches for solving this problem
and evaluate them experimentally. For this, we use probabilities of finding a parking spot, which are based on publicly available
empirical data from TomTom International B.V. Additionally, we propose a heuristic that relies exclusively on conventional road
attributes. Our experiments show that this algorithm comes close to the baseline by a factor of 1.3 in our cost measure. Last, we
complement our experiments with results from a field study, comparing the success rates of our algorithms against real human
drivers.
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1. Introduction

Three out of four urban citizens find the search for
a parking spot the most stressful aspect in their ev-
eryday life. This situation is found to be even more
stressful than the waiting time spent at public offices,
as shown by two representative studies of Bitkom Re-
search [7]. Besides the stress and time factors involved,
pollution is a further crucial issue to consider in the
parking place search. Up to 30 % of urban congestion
can be attributed to the search for an on-street parking
spot [12]. One solution to this problem might be off-
street parking facilities, such as car parks and parking
lots. However, these alternatives are usually expensive
and their availability is limited. For this kind of park-
ing, many solutions to find near off-street parking fa-
cilities already exist in the form of websites and several
smart phone apps.1 Since on-street parking makes up
the majority of parking spots in most cities [3], it is im-
portant to investigate how to use it efficiently. There-
fore, this article will concentrate on finding a curbside
parking spot.

Live data from dedicated sensors monitoring park-
ing spots have been tested [14] for applicability but do

*Corresponding author. E-mail: tobias.friedrich@hpi.de.
1For example, parkopedia.com.

not scale. An alternative focuses on already existing
historical data of urban traffic. With this data, it is pos-
sible to determine how likely it is to find a parking spot
on any given road.

Lately, the interest in such parking probabilities has
increased. Google proposed a machine learning ap-
proach for predicting such probabilities, based on data
from Android devices.2 Toyota has a patent with a sim-
ilar approach [13]. TomTom International B.V. has a
publicly available API3 with parking probabilities and
the average time spent searching for a parking place on
a per-street basis, covering 105 cities worldwide, using
data from 550 million of their devices. We complement
this trend by proposing a solution that uses these park-
ing probabilities and suggests roads to the user with a
high probability of available parking spots.

Using the parking data from TomTom for the area
of Berlin, Germany, we consider a routing problem,
modeled as a probabilistic graph. Our goal is to find
a route where there is a high probability of finding
a parking spot. Further, the desired route should be

2https://ai.googleblog.com/2017/02/
using-machine-learning-to-predict.html

3https://developer.tomtom.com/on-street-parking
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optimized with respect to a short driving duration as
well as a short walking distance to the desired desti-
nation, resulting in a bi-objective optimization prob-
lem. We describe algorithmic approaches for calculat-
ing optimized parking search routes, and we analyze
those approaches within different experiments. Last,
we present results of a practical field study that verify
the knowledge gained in the experiments.

This article extends our prior work [2], where we
tested our algorithms only in computer simulations. In
this article, we complement these results with our field
study.

2. Related work

Routing on conventional road networks has been
subject to extensive research. Especially the approach
of route queries on probabilistic graphs has recently
gained increasing attention. More specifically, the
problem of finding an urban area parking spot, which
can be distinguished into on-street and off-street park-
ing, has been examined.

Kanza et al. [6] calculate routes to a given destina-
tion on a probabilistic graph, maximizing the certainty
of visiting relevant points of interest. Hua and Pei [4]
study routing under uncertain travel time. They ei-
ther bound probability or duration and optimize for the
other. In contrast, we consider a multi-objective prob-
lem where the probability is a hard constraint. More-
over, their algorithms assume a specified destination
which does not apply in parking search, thus we cannot
apply their algorithms to our problem.

Probabilistic routing is usually modeled as a graph
of resources, each of which can either be available or
not [5,6,11]. Kanza et al. [6] and Jossé et al. [5] both
abstract from the road network and span their graphs
over resources only. Since we have a probability of
parking success for each road, we must span our graph
over the complete road network. While this is concep-
tually the same, it results in large graphs where back-
tracking, as used by Jossé et al. [5], is no longer suit-
able.

Kanza et al. [6] refer to uncertainty as the proba-
bility of a particular resource being relevant and avail-
able, similar to our per-street probabilities. As an an-
swer to a route-search query, they suggest two comple-
mentary length-bounded and probability-bounded sce-
narios. We use the latter approach with our probabil-
ity mass threshold. For an on-street parking search,
a bounded-probability scenario makes sense since a

parking spot can never be guaranteed completely and
routes can potentially be infinite.

As mentioned, Jossé et al. [5] propose a resource
graph model that they use to answer parking search
queries. Their main focus lies on resource reappear-
ance. In their model, the observed state of a resource
decays over time, allowing consumed resources to
reappear with a certain probability. They differentiate
between long-term and short-term observations. Long-
term observations correspond to our static probability
model, while we do not model short-term observations
because real reappearance data is not available. Fur-
ther, our routes usually do not take too long to travel,
making it unlikely that a parking spot will appear in a
street already scanned.

Another technique which models search in uncertain
environments are Markov Decision Processes (MDPs)
[10]. Since we do not assume that parking spots reap-
pear during the short search times we consider, the
transition probabilities in our problem depend on the
history of traversed streets. Because the problem is not
memoryless, it does not allow modeling those proba-
bilities as MDPs.

3. Model

Our goal is to optimize the time spent for the whole
parking search process. To do so, we model a road net-
work as a directed graph whose nodes represent cross-
ings and whose edges represent streets. Further, each
edge e is augmented with information about its (walk-
ing) distance d(e) to the destination, its time t (e) to
traverse the edge, and the probability p(e) of finding a
parking spot.

The search process starts at a crossing in the graph,
given by a specified node v0. For simplicity, this node
is also the desired destination, since we assume that the
driver has already reached the destination and will now
start looking for a parking spot from there. Our pro-
posed algorithms can also work with other destinations
without any modifications. The parking route is repre-
sented as a path P on the graph and is considered suc-
cessful if the probability of not finding a parking spot
is at most ε.

The overall cost of a successful path is a convex
combination with a parameter λ of, on the one hand,
the time spent not finding a parking place (the driv-
ing duration) and, on the other hand, the distance to
the destination v0 (the walking distance). We do not
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let probabilities reappear – meaning an edge can con-
tribute a positive probability of finding a parking spot
at most once, since we assume that a driver will most
likely not want to drive through the same street twice.
Further, if we would let probabilities reappear, this
would lead to an unrealistic scenario where it is prefer-
able to constantly drive through the same street that has
a high chance of finding a parking spot.

Since a driver usually scans opposing lanes of a
single street at once, we further introduce a function
D that maps edges of the graph to sets of edges that
share a single probability. If we traverse an edge (u, v),
the probabilities of all edges in D((u, v)) disappear as
well. Normally, for an edge (u, v), D((u, v)) would
consist of at most (u, v) and (v, u). If, however, oppos-
ing lanes were separated, only choosing D((u, v)) =
{(u, v)} would make sense. In the following defini-
tion, we make use of D in propositions of the form
∀k < j : ej /∈ D(ek), which say that we only use in-
dices that did not contribute any probability yet.

Definition 1 (Minimal Parking Spot Search).
Instance: Directed graph G = (V ,E), time func-
tion t : E → R�0, distance function d : E → R�0,
probability function p : E → [0, 1], specified vertex
v0 ∈ V , threshold ε ∈ [0, 1], and value λ ∈ [0, 1]. Let
D : E → P(E) such that, for all e ∈ E, e ∈ D(e).

Solution: Edge sequence P = (e1, e2, . . . , e�) ∈ El

with � � |E|2 such that e1 = (v0, v) for some v ∈ V

and ∀ i ∈ {1, 2, . . . , �−1}∃ u, v,w ∈ V : ei = (u, v)∧
ei+1 = (v,w) and

∏�
i=1:∀j<i : ei /∈D(ej )

(1 − p(ei)) � ε.

Measure: Minimize the cost c(P ) defined as

c(P )

= λ

driving duration︷ ︸︸ ︷
�∑

i=1

t (ei) ·
(

i−1∏
j=1:

∀k<j : ej /∈D(ek)

(
1 − p(ej )

))

+ (1 − λ)

·
�∑

i=1:∀k<i : ei /∈D(ek)

p(ei) · d(ei) ·
(

i−1∏
j=1:

∀k<j : ej /∈D(ek)

(
1 − p(ej )

))

︸ ︷︷ ︸
walking distance

.

Note that our measure is equivalent to

l∑
i=1:∀k<i : ei /∈D(ek)

p(ei)

(
i−1∏
j=1:

∀k<j : ej /∈D(ek)

(
1 − p(ej )

))

·
(

λ

i∑
j=1

t (ej ) + (1 − λ) · d(ei)

)

+ λ

l∑
i=1

t (ei) ·
l∏

j=1:
∀k<j : ej /∈D(ek)

(
1 − p(ej )

)
,

that is, a convex combination of the expected driving
duration and the expected walking distance plus an er-
ror term, which models an optimistic extension of the
route by a road which contributes zero time, zero dis-
tance, and a probability of one.

Given any route P = (e1, e2, . . . , e�), we call the
value 1 − ∏l

i=1:∀j<i : ei /∈D(ej )

(1 − p(ei)) the probability

mass of P . Note that this is the probability of having
found a parking spot along the route, as it is the inverse
probability of not having found a parking spot in each
street.

4. Algorithms

We now introduce two algorithms for optimizing the
problem of finding a parking spot quickly. The space of
potential solutions for this problem spans a tree where
each node represents a route. Each route begins with an
outgoing road of the start node, and children in the tree
extend their parent route by one possible edge each.
Since each node has at least two children, the time of
a brute-force search grows exponentially in the depth
of this tree. In addition to that, our problem is NP-
complete [2]. Thus, our algorithms only explore this
solution tree partially, in order to make computations
viable on large road networks.

The first algorithm we introduce is Branch and
Bound (Algorithm 1). It finds a near-optimal solution
and thus serves as baseline for a given probability mass
threshold ε in our experiments. For the case of not hav-
ing probability data available, we propose a Heuristic
Search (Algorithm 2) algorithm that explores the solu-
tion tree shallowly and chooses a route that is best with
respect to a certain heuristic.
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Algorithm 1: B&B(expands)

1 queue ← queue with empty route;
2 best ← empty route;
3 while probability mass of best < 1 − ε do
4 best ← best concatenated with outgoing edge

e where p(e)
c(best+e)−c(best) is largest;

5 if best.length > 50 then
6 c(best) ← ∞;
7 break;

8 for n = 1 to expands do
9 route ← queue.pop();

10 foreach outgoing edge from route do
11 if c(route concatenated with edge) >

c(best) then
12 continue;

13 if probability mass of route � 1 − ε then
14 best ← route;
15 continue;

16 queue.push(route concatenated with edge);

17 return best;

Algorithm 2: BFSH(expands) with its heuristic
objective h (Eq. (1))

1 queue ← queue with empty route;
2 for n = 1 to expands do
3 route ← queue.pop();
4 foreach outgoing edge from route do
5 queue.push(route concatenated with edge);

6 return P ∈ queue where h(P ) is largest;

4.1. Breadth-first branch and bound

Breadth-First Branch and Bound (B&B, Algo-
rithm 1) has knowledge of per-street probabilities and
the evaluation threshold ε. We follow the branch-and-
bound paradigm by first obtaining an initial upper
bound B and then exploring all branches of the solu-
tion tree that are still lower in cost than B. For the up-
per bound B, we greedily expand a single route from
v0. At each node, we choose an outgoing edge with
the largest local benefit as the next segment. We then
explore the whole solution tree, discarding any inter-
mediate routes that exceed this bound. If a considered
route reaches a probability mass of at least 1 − ε be-

fore getting pruned, it must be better than the previous
bound. Thus, we update B with the cost of this route
and proceed exploring the remaining solutions. We re-
strict the number of explored routes with an expands
parameter. In comparison to restricting the depth of the
search, this allows for consistent computation times, as
it is independent of the local branching factors of the
road network. We traverse the restricted solution tree in
a breadth-first search manner to look at shorter routes
first, with random ordering within each level.

Since our number of expands is fixed, a good initial
greedy solution allows B&B to explore more edges,
as worse solutions will be detected earlier. Thus, the
quality of the overall result depends on the quality of
the initial solution.

Note that in reality, a parking spot can never be guar-
anteed and routes found by B&B may not lead along a
vacant parking spot. The algorithm can be modified to
handle this scenario: if the returned route ends before
we find a vacant parking spot, we restart the algorithm
with the last visited node as new start node but the old
distance values. Since it knows per-street probabilities,
visited routes stay at zero probability. We use this ap-
proach for the experiment on inaccurate probabilities,
where the algorithm sees disturbed probabilities and
the returned route might not reach the probability mass
threshold.

4.2. Breadth-first search with heuristic objective

For some cities, the data used for generating proba-
bilities may not be available and only map data can be
used. Therefore, we introduce Breadth-First Search
with Heuristic Objective (BFSH, Algorithm 2),
which computes routes using a classical breadth-first
search approach, also limited by the number of ex-
pands. Since the algorithm does not access probabili-
ties, it cannot evaluate the real cost of a route. In fact,
BFSH only considers the cost of its route once it ex-
hausted its number of expands. Then, it uses a heuris-
tic h (Eq. (1)) in order to choose a good route from the
explored solution tree. Thus, this algorithm does not
optimize for the actual objective (the cost c(P ) of a
route P ) but a heuristic objective (h(P )).

We design h(P ) mainly based on the distances of
the edges d(ei) in the path P to the desired destina-
tion. This makes the heuristic widely applicable. In our
model, edges considered later in the algorithm tend
to contribute less to the cost, since a parking spot
most likely has already been found. Without the cor-
rect probabilities, we have to estimate this discount via
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a function s(i). We use a linear decreasing function for
s(i), but other models might apply as well.

Our heuristic is given by

h(P ) =
|P |∑
i=0:∀j<i : ei /∈D(ej )

s(i)

d(ei)
, (1)

which should be maximized.
We tried to improve the heuristic using commonly

available road attributes, such as information about
nearby points of interest and the importance of a road,
but none of these approaches yielded significant per-
formance improvements. Incorporating more informa-
tion, such as demographic data, could potentially yield
better heuristics, but this data may not be as widely
available.

Note that, contrary to B&B, a single run of BFSH
may not lead to a route with a probability mass of at
least 1 − ε, as the algorithm has no access to the prob-
abilities. However, if no parking spot has been found
during one run, the algorithm can be restarted from the
last visited node. In this case, the probabilities should
not reappear.

4.3. G2

In our experiments, we also compare a greedy algo-
rithm introduced by Jossé et al. [5], called G2, which
has knowledge of the per-street probabilities as well.
It greedily chooses the next edge that maximizes the
probability per driving duration. That is, this algorithm
is basically the greedy approach we use in our B&B
in order to come up with a good initial solution but it
chooses an edge e that maximizes p(e)/t (e).

5. Data set

Algorithms, experiments, and study results are based
on a data set consisting of 85,729 road segments and
43,564 nodes in Berlin, Germany. The raw data was
collected by the automotive navigation systems pro-
ducer TomTom as floating-car data. Anonymized GPS
information results were analyzed and filtered in or-
der to detect on-street parking events based on navi-
gational destinations, driving speed, and behavior. The
results were aggregated for each hour of day over a
multitude of traces in order to find the number of park-
ing searches and successes for each road segment. This
allows us to calculate per-street probabilities for find-

ing a parking spot successfully. The probabilities are
added to an existing road data base containing common
attributes such as length, functional road class, and av-
erage speed for each road segment. Unlike the other
properties, the probabilities are broken up by hour of
day and day of week to allow for time-dependent rout-
ing. Since the probability data were determined empiri-
cally, they include a human factor. For example, drivers
might have rejected a vacant parking spot because of
the small space, expensive parking fees, or other per-
sonal preference.

Because the data set contains a few unrealistic prob-
abilities of 1.0 in streets with too few detected park-
ing searches, we adjust the probabilities for a mean-
ingful result. This is based on the number of observa-
tions for each edge. For this, we use the lower bound of
the Agresti–Coull confidence interval [1] with a confi-
dence level of 95 %. That means we can be 95 % cer-
tain that a probability value for a road segment lies
within an interval [a, b]. We assign a to the road as the
new probability. This results in pessimistic estimates
of parking probabilities.

Since probabilities are not available for all cities and
roads, it would be interesting to predict them based
on other attributes. And indeed there is a correlation
between the probability and some attributes. Unfortu-
nately, every correlation we found can be explained by
the length of a road segment. In more detail, when nor-
malizing each road by its length, there is no significant
correlation among the attributes. This insight does not
allow us to predict a probability but leads us to the con-
clusion that the absolute probability of a road depends
on the length of the segment. Thus, for some experi-
ments it is necessary to consider the probability density
of a road: concerning a road e, we define its probability

Fig. 1. The probability density is a measure for the parking proba-
bility per meter. For our dataset, we assume an underlying Pareto II
distribution. (Data from Mon–Sun, 9 a.m.–4 p.m.)
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Fig. 2. We compute the probability densities of all roads at different times of day. The three heat maps show differences with respect to the
per-street averages over the whole day. Containing 90 % of values, we map the interval (−0.003, +0.003) from red (worse than average) to
green (better than average). One can see that parking becomes harder at night, especially in residential areas, which can also be observed in our
experiments. (All data for Mon–Sun.)

density, given its probability p(e) and length �(e), to

be 1 − (1 − p(e))
1

�(e) , which resembles the probability
of a unit-length part of the road. The collected proba-
bility mass stays the same, no matter whether we ob-
serve the whole road at once or each unit length sepa-
rately. Therefore, using densities counteracts the arbi-
trary splitting of roads into segments in the map.

The probability mass is approximately Pareto dis-
tributed, as shown in Fig. 1. The fitted distribution
(with parameters σ = 1.3445, μ = 0.0000, and
ξ = 0.0022) is the basis for the experiments on inac-
curate probabilities, which we will introduce later. We
further compare the probability densities over Berlin at
different time spans with the densities averaged across
the whole day in Fig. 2. We did not find a dramatic
difference between weekdays and weekends.

6. Experiments

We conduct experiments in three scenarios, which
we will describe and interpret. In all of them, we com-
pare our B&B, our BFSH, and G2. We do not con-
sider computation time in our evaluation but the solu-
tion qualities of the algorithms because all three algo-
rithms need less than one second to compute a route.
A query time in this order of magnitude does not affect
applicability in practice.

In contrast to the problem formalization, we weight
the two cost terms slightly differently in order to make
interpretation easier: while in the formalization the
driving duration and the walking distance are weighted
with factors λ and 1−λ, respectively, we first divide the
walking distance by a typical walking speed of 1.4 m

s
[9] and then add up both measures with equal weight.

Therefore, c(P ) refers to the total duration in seconds
of finding a parking spot and walking to the destina-
tion.

6.1. Setup

We consider three scenarios and analyze how well
the algorithms from Section 4 perform. That is, we
look at the costs of the algorithms when starting from
various nodes in the graph. First, we consider the per-
formance during different times of a day. Second, we
look at different weightings of the driving duration and
walking distance, i.e., different values of λ. Last, we
add noise to the edge probabilities in different intensi-
ties.

In each scenario, we let the algorithms run from the
same set of 1000 randomly sampled start nodes v0.
Each such node is chosen with a probability propor-
tional to the amount of parking searches in the time bin
as of our dataset. If not stated otherwise, the time bin
we use for the simulation is Monday to Friday from
9 a.m. to 5 p.m.

For all experiments, our probability mass threshold
ε is 0.05. That is, we say that an algorithm produced a
feasible solution when the probability of having found
a parking spot is at least 95 %. Whenever an algorithm
reaches this threshold, we stop the run and look at the
cost of the produced route. The decision of when an al-
gorithm should stop is not done by the algorithm itself
but by the testing framework.4 This evaluation is al-
ways done with respect to our original (unnoisy) prob-
ability data. Note that this entails that BFSH as well as

4This resembles the real-world equivalent of the driver telling the
algorithm when to stop proposing new routes.
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any of the three algorithms in the noisy setting may not
produce a feasible solution during a single run. If this
is the case, we restart the algorithms from the current
node but do not reset the probabilities.

In order to prevent infinite loops when an algorithm
drives through cycles of streets with no probabilities,
we limit the route length to 100 edges. This means that
a run of an algorithm can fail if the proposed routes
exceed this limit. If an algorithm fails at least 5 % of
the runs, we declare it as failing in a certain scenario.

In the first and third scenario, we choose λ = 1
2 ,

i.e., we weight driving duration and walking distance
equally.

For B&B, the parameter expands is 10,000, while
for BFSH it is 1000.5 For both algorithms, we did not
find a significant improvement in cost above those val-
ues. In other applications, we suggest experimentally
determining the number of expands, as they may vary
based on the road network. Further, we use a falloff
function of s(i) = 1 − i

20 for BFSH, which we deter-
mined via a parameter search. G2 does not have any
free parameters.

For each scenario, we provide the experimental re-
sults as box plots of the absolute cost c (Fig. 3) as de-
fined in Definition 1 and the relative cost cr (Fig. 4)
with respect to B&B. This means that for Fig. 4, B&B
is only depicted for the noisy scenario, since we use its
cost in the unnoisy scenario as baseline.

5The difference in these values stems from BFSH usually being
restarted whereas B&B is not.

6.2. Time of day

In Fig. 3(a), we compare the three algorithms against
each other in terms of cost throughout the day. Since
some roads have a 0 % parking probability at some
times due to the lack of data for that time point, we
merged the data into four-hour intervals.

We see that all algorithms perform worst during the
interval from 12 a.m. to 4 a.m. The variances of B&B
and BFSH are largest, and G2 even failed during this
interval. This is presumably due to the very low park-
ing probabilities during this time of day (cf. Fig. 2(c)
for an impression). The failure of G2 shows that its
myopic behavior is not preferable when the parking
probabilities are low. Considering multiple alternative
routes seems to be a clear advantage here. In the other
intervals, the performance per algorithm is almost the
same. Thus, all algorithms seem to be rather stable with
respect to the hour of day.

Comparing the algorithms relatively when consider-
ing Fig. 4(a), we see that B&B basically always out-
performs G2. This is due to B&B using a greedy ap-
proach very similar to G2 before it starts pruning. In
contrast to that, BFSH sometimes outperforms B&B
although it only does so outside its middle 50 %. This
may be a result of the restarts that BFSH uses: if it does
not reach the probability threshold after its expands, it
is restarted from its current location. This way, it can
potentially consider routes that B&B will not consider.

Fig. 3. Algorithm performance in the three experiments we conducted as described in Section 6.1. Displayed are the algorithms (from left to
right): B&B (blue), BFSH (red), and G2 (green) by Jossé et al. [5]. The black line inside each colored box depicts the median. The boxes
themselves indicate the interquartile range (middle 50 %). The whiskers limit 95 % of all values.
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Fig. 4. The data from Fig. 3 as relative performance. Figures 4(a) and 4(b) display (from left to right) BFSH (red), and G2 (green) and Fig. 4(c)
displays (from left to right) B&B (blue), BFSH (red), and G2 (green). Per run, the cost of each algorithm was divided by the cost of our (unnoisy)
baseline B&B.

6.3. Cost weighting

Until now, we have weighted driving duration and
walking distance equally. Because walking speeds and
user preferences may differ, this weighting is not uni-
versal. In order to investigate the influence of the
weighting parameters on the algorithms, we ran our
experiments with a range of different weightings. For
λ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, we ran the algorithms
with the same starting points. The new weighted cost
is defined as c(P ) = 2(λ · walking_distance + (1 −
λ) · driving_duration). For a correct interpretation, it is
important to note that B&B did have access to this cost
function, including the weighting factor λ.

Figure 3(b) shows that all algorithms perform bet-
ter when the driving duration is weighted high, since
it is faster to pass segments with high probabilities
than walking back from them. However, for B&B and
BFSH, mostly the variance increases, whereas G2 gets
considerably worse in general – even to the point where
it fails (when we only consider distance). This makes
sense, as G2 chooses those edges greedily that have a
good ratio of parking probability to driving duration.
That is, it completely ignores walking distance.

In general, we see that BFSH mostly performs quite
similarly to B&B, the single exception being when
we only consider driving duration. This is due to the
heuristic of BFSH, which only optimizes for the walk-
ing distance, as equation (1) only uses d(e) and not
t (e).

Overall, we conclude that it is better to focus on the
walking distance than on the driving duration, as indi-
cated by the different behavior of BFSH and G2.

6.4. Impact of inaccurate probabilities

Despite a high number of parking observations, we
can assume that computed success probabilities do
not fully correspond to real-life circumstances. Hence,
we need to assess the impact of inaccurate probabil-
ity values. We do this by applying an interpolated
noise model. When simulating noise, all algorithms
work with gradually mutated probabilities, while their
results continue to be evaluated on the original set-
ting with ground-truth data provided by TomTom. This
means that an algorithm requesting the costs of its next
step would obtain a noisy response and act potentially
less accurate. A probability-agnostic algorithm, how-
ever, would always perform the same, no matter which
noise setting. A noise parameter ρ from the interval
[0, 1] determines the level of accuracy, with 0 imply-
ing unaltered probabilities and 1 fully applied noise.
We have conducted simulations on various noise dis-
tributions, but in this experiment, we focus on an inter-
polated Pareto II distribution. For this model, we take
random samples from a Pareto distribution fitted on the
probability densities of all roads on the map. The re-
sulting density per road segment with applied noise is
the sum of its original density weighted by 1 − ρ and
the sampled density weighted by ρ.
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Figure 3(c) compares the costs of our algorithms on
noise levels within the interval of [0, 1]. As expected,
the performance of B&B and G2 decreases with a ris-
ing noise level, as the observed data deviates more
strongly from the actual data. However, this decline in
quality is not very large, and the variance of each al-
gorithm remains almost the same. That G2 does not
fail in at least 95 % of the runs for all noise levels may
be attributed to many fairly easy runs that have many
streets with acceptable probability. In this case, it does
not matter drastically which road segment to choose
next.

An interesting observation is that G2 regularly out-
performs B&B. This behavior may result from an in-
correct evaluation of the greedy baseline of B&B for
pruning (similar to G2) due to the noise. Thus, B&B
continues to prune routes based on wrong information,
which results in worse routes. Thus, for certain runs, it
would make sense to not try to improve the initial so-
lution. However, the middle 50 % of B&B are still far
better than G2.

As the performance of B&B and BFSH are quite
similar, it is interesting to compare them. Note that
BFSH does not change during different noise levels,
since it is noise-oblivious. We observe that B&B is bet-
ter than BFSH up to a noise level of ρ = 0.6. Thus,
granting an algorithm access to probability data (even
if they are inaccurate) seems to be often better than us-
ing no probability data at all.

7. Field study

Experimenting and analyzing in theory can offer
important insights, but it still examines just a model
of a real-world problem. In order to find out whether
an algorithm is in fact helpful regarding the parking
spot search, we conducted a field study. Within this
study, we compared the introduced algorithms B&B
and BFSH and, additionally, the human intuition.

When driving under the guidance of the two algo-
rithms, new aspects occur. First, turning in a different
direction costs a different amount of time on average.
Second, in some situations, maneuvers are forbidden
by the road traffic regulations. Both of these aspects
had to be considered for the resulting routes to be fea-
sible in their execution. For the study, we thus added
turning penalties to the cost function with respect to
the angle of the turning maneuver. The additional costs
are based on the turning penalty model introduced by
Luxen and Vetter [8].

As before, we sampled the destinations proportional
to the amount of parking searches. The respective hour,
its prior, and its subsequent hour of day were aggre-
gated in order to have a larger amount of data to sample
on. Due to reasons of feasibility, we took the nearest
few samples to the current location of the car. Different
districts of Berlin were selected in order to ensure that
the results are representative for the whole city.

When drivers had already searched for parking spots
in one situation, it would not be legitimate to let them
drive in another situation within the same area. This
is because they could have knowledge of available
parking spots from the previous situation, which they
would usually not have if this were their first situation.
Therefore, no sample is closer than 1,300 meters to an-
other, in the case of one driver.6

A destination is represented by an edge of the road
graph. More specifically, the crossing v the edge (u, v)

is pointing at is the start of a run as well as the de-
sired destination (a run is exactly one search for a park-
ing spot). Thus, it is considered as the point where the
driver would have to walk after finding a parking spot.
At every destination, three runs are performed starting
at this destination: one guided by human intuition and
one under navigation of each of the two algorithms.
A run lasts for five minutes or until five parking spots
are found. At each destination, the three runs are per-
formed by the same driver. All drivers first search in-
tuitively to guarantee that they do not have any knowl-
edge from previous runs. Then a run is performed un-
der the guidance of B&B and one using BFSH. How-
ever, a run is not performed if the suggested route is ex-
actly the same as in one of the previous runs. Instead,
the run is noted as equivalent to the previous one. To
obtain comparable results, every run at a destination is
performed by the same driver.

Each run was recorded via GPS using the Android
app Geo Tracker.7 Every time the driver found a park-
ing spot that was big enough to park an average car,
its GPS coordinates and the current time stamp were
recorded. The driver then continued driving without
delay. The total driving duration for a parking spot was
then calculated from the time stamps as the time it
took the driver to find the respective spot. The walking
distance was calculated from the GPS coordinates as
the beeline distance from the spot to the origin of the
search.

61,300 m is an estimate of five minutes driving distance in the city
of Berlin.

7geo-tracker.org

http://geo-tracker.org
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7.1. Discussion

In this field study, seven students participated as vol-
unteers. 39 destinations were selected, two of which
had to be aborted due to construction work and one
due to outdated map data. 36 situations were used for
the presentation of results and their discussion. Within
these 36 situations, 87 runs were performed, and 21
times an algorithm suggested exactly the same route
which already has been performed before. The field
study was conducted over four days from a Monday to
a Thursday between 10 a.m. and 8 p.m., each day.

Some situations turned out to be very easy regard-
ing finding a parking spot. Therefore an easy situa-
tion is defined as such if both algorithms and the hu-
man intuition found five parking spots within five min-
utes. All others are defined as difficult situations. Since
the purpose of testing B&B and BFSH was to find
out whether they can optimize the search for a parking
spot, it is not necessarily sensible to consider situations
where parking is not a problem in the first place. There-
fore, the following analysis focuses on difficult situa-
tions. 15 out of the total 36 situations were considered
difficult according to this definition.

The comparison considers two aspects of each run:
the number of parking spots (Fig. 5) and the average
cost of all parking spots (Fig. 6). The former describes
the total number of parking spots found by the respec-
tive algorithm, the latter the cost of all parking spots
found. This cost again consists of the driving duration
and the walking distance converted into time. For this,
we use the Euclidean distance to the destination as an
estimate and divide it by the typical walking speed of
1.4 m

s [9].

Fig. 5. The number of parking spots found within a run. The plot
shows 15 situations determined as difficult. Displayed are the Hu-
man Intuition (Human; in yellow; left) and the algorithms: B&B
(B&B; in blue; center) and BFSH (HS; in red; right). Please refer to
Fig. 4 for an explanation of the box plot.

Even though only one single parking spot is needed
to park a car, finding and proposing more than one
might offer advantages. For example, a greater selec-
tion of parking spots would give the driver the oppor-
tunity to choose a parking spot more suitable to their
needs, especially in the matter of walking distance to
the desired destination. Besides, there are other factors
that could let a driver want to have a greater variety, for
example, whether a parking spot is located in the shade
or surrounded by puddles. As Fig. 5 shows, B&B finds
45 % more parking spots than the human intuition or
BFSH.

It does not always make sense to just take the first
parking spot that opens up. Another one might be
found later that is closer to the destination and thus
be lower in total cost by our definition. Thus, it might
be sensible to examine the average cost of all parking
spots found during a run. Figure 6 shows that the me-
dian average combined cost of both B&B and BFSH is
lower than that of the human intuition. This suggests,
that both algorithms are more forward-looking than
human intuition. Furthermore, the standard deviation
of the combined cost of B&B is lower than those of
BFSH and human intuition. This may imply that B&B
is more stable in its results and thus more predictable.
The advantage of B&B both in median as well as in
standard deviation would be even greater if all runs
had been continued until 5 parking spots were found.
Since BFSH and the human intuition in most cases
came to a conclusion after 5 minutes, as can be seen in
Fig. 5, they often only average over fewer than 5 val-
ues. Values with longer driving durations (and suppos-
edly longer walking time) are not considered.

Figure 6 also allows us to compare the influence of
driving duration and walking time on overall costs in
a realistic scenario. It seems like for human intuition
and BFSH the influence of both factors is comparably
high in most cases. Only for B&B we note a difference
with the median of walking time being distinctly lower
than that of driving duration. Especially, it is lower than
the walking time of BFSH. This might be due to sce-
narios where the run starts in an area with generally
few parking spots. B&B is target-oriented enough to
lead the driver to a close-by area with higher parking
probabilities, while BFSH starts looking in a random
direction, thus finding parking spots which might be
further away. Also, for both algorithms and the human
intuition the standard deviation of the walking time
is lower than that of the driving duration. This might
be attributed to walking distances being similar inde-
pendent of where in a certain region a parking spot is
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Fig. 6. The average cost of all parking spots found within a run in seconds, separated in driving duration (left), walking time (middle), and both
summed up (right). The data presented is based on 15 situations determined as difficult. Displayed are (from left to right) the Human Intuition
(Human; in yellow) and the algorithms B&B (B&B; in blue) and BFSH (HS; in red). Please refer to Fig. 4 for an explanation of the box plot.

found, i.e. the duration of the search does not affect the
walking time as much as the driving duration.

We can also compare our experimental results to the
ones from the field study. However, a quantitative com-
parison would not make sense, since our problem defi-
nition does not capture a lot of factors that affect driv-
ing duration in the real world, like traffic conditions
and costs for waiting at intersections or traffic lights.
Therefore, we only compare Fig. 3(c) and Fig. 5 qual-
itatively. We notice that the results of the field study
look similar to one of the scenarios with little to no
noise with respect to the relative positions of median
and quantiles of B&B and BFSH. This suggests that
the probabilities we derived from our data are not too
noisy and can be used to achieve an advantage over
BFSH.

8. Conclusion

State-of-the-art algorithms using probabilistic per-
street parking data are able to find parking routes that
are both shorter and closer to the destination than that
of the human intuition. They offer a greater variety of
parking spots and are generally able to save time. Our
experiments show that even with inaccurate probabili-
ties it is still possible to achieve benefits.

There are several possible improvements of our ap-
proach, which can be considered in the future. When
searching for a parking spot, it is probably not best to
only start searching after arriving at the desired des-
tination. It rather is advisable to begin shortly before
the arrival. In such a more likely scenario, an algo-

rithm like B&B looking further ahead might yield even
larger advantages over conventional parking search.

When many drivers (agents) use the same algorithm
for finding parking spots, a challenging situation re-
sults in which the agents compete against one another
for the available resources. One possible idea to dimin-
ish this effect would be to use a central system that op-
timizes for multiple routes at once such that all drivers
are likely to find a parking spot. However, this ap-
proach gets infeasible when considering a great num-
ber of agents. Hence, it may make sense to let each
agent act independently, using data from a server that
caches different routes of other agents and adjusts the
data to the current needs. These approaches all need ac-
cess to a server, though. Thus, it may also make sense
to have different algorithms stored on each device and
choose one randomly when a system has no connection
to the server. Alternatively, the algorithm itself could
be randomized with respect do different parameters.
Hence, multiple agents behave differently without the
overhead of the server connection.

Another important next step involves improving the
method of acquiring data. It would be best if some sort
of live data could be used, like sensor data or infor-
mation about major events that may block many park-
ing spots, like sport games or music festivals. Another
way to get better data could be to use the users them-
selves. For example, if a user found a parking spot and
drives away after some time, this could be signaled to a
server. Additionally, having information of where and
what type of parking spots are in each street could also
greatly improve the success rate, as the user could be
told where exactly to look. Furthermore, parking spots
that do not fit the need of the user could immediately
be rejected by the algorithm.
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