
Crossover for Cardinality Constrained Optimization∗

TOBIAS FRIEDRICH, Hasso Plattner Institute, University of Potsdam, Germany

TIMO KÖTZING, Hasso Plattner Institute, University of Potsdam, Germany

AISHWARYA RADHAKRISHNAN, Hasso Plattner Institute, University of Potsdam, Germany

LEON SCHILLER, Hasso Plattner Institute, University of Potsdam, Germany

MARTIN SCHIRNECK, Faculty of Computer Science, University of Vienna, Austria

GEORG TENNIGKEIT, Hasso Plattner Institute, University of Potsdam, Germany

SIMON WIETHEGER, Hasso Plattner Institute, University of Potsdam, Germany

To understand better how andwhy crossover can benefit constrained optimization, we consider pseudo-Boolean

functions with an upper bound 𝐵 on the number of 1-bits allowed in the length-𝑛 bit string (i.e., a cardinality

constraint). We investigate the natural translation of the OneMax test function to this setting, a linear function

where 𝐵 bits have a weight of 1 + 1/𝑛 and the remaining bits have a weight of 1. Friedrich et al. [TCS 2020]

gave a bound of Θ(𝑛2) for the expected running time of the (1+1) EA on this function.

Part of the difficulty when optimizing this problem lies in having to improve individuals meeting the

cardinality constraint by flipping a 1 and a 0 simultaneously. The experimental literature proposes balanced

operators, preserving the number of 1-bits, as a remedy. We show that a balanced mutation operator optimizes

the problem in𝑂 (𝑛 log𝑛) if𝑛−𝐵 = 𝑂 (1). However, if𝑛−𝐵 = Θ(𝑛), we show a bound of Ω(𝑛2), just as for classic
bit mutation. Crossover together with a simple island model gives running times of 𝑂 (𝑛2/log𝑛) (uniform
crossover) and 𝑂 (𝑛

√
𝑛) (3-ary majority vote crossover). For balanced uniform crossover with Hamming-

distance maximization for diversity we show a bound of 𝑂 (𝑛 log𝑛).
As an additional contribution, we present an extensive analysis of different balanced crossover operators

from the literature.

CCS Concepts: • Theory of computation→ Theory of randomized search heuristics; Optimization with
randomized search heuristics; Evolutionary algorithms.

Additional Key Words and Phrases: Balanced crossover, balanced mutation, constraint optimization, run time

analysis.

∗
An extended abstract of this work was presented at the 2022 Genetic and Evolutionary Computation Conference

(GECCO) [Friedrich et al. 2022]. The present work includes all proofs. It contains a new lower bound, showing a tight

expected running time of Θ(𝑛2/log(𝑛)) for the (2+1) island model with balanced uniform crossover if the constraint

satisfies 𝑛 − 𝐵 = Θ(𝑛) . The upper bound of O(𝑛 log(𝑛)) for the (2+1) Swap-GA with balanced uniform crossover and

Hamming-distance maximization was generalized to all possible constraints 𝐵.

Authors’ addresses: Tobias Friedrich, tobias.friedrich@hpi.de, Hasso Plattner Institute, University of Potsdam, Potsdam,

Germany; Timo Kötzing, timo.koetzing@hpi.de, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany;

Aishwarya Radhakrishnan, aishwarya.radhakrishnan@hpi.de, Hasso Plattner Institute, University of Potsdam, Potsdam,

Germany; Leon Schiller, leon.schiller@student.hpi.de, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany;

Martin Schirneck, martin.schirneck@hpi.de, Faculty of Computer Science, University of Vienna, Vienna, Austria; Georg

Tennigkeit, georg.tennigkeit@student.hpi.de, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany; Simon

Wietheger, simon.wietheger@student.hpi.de, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

2688-3007/2023/7-ART $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

HTTPS://ORCID.ORG/0000-0003-0076-6308
HTTPS://ORCID.ORG/0000-0002-1028-5228
HTTPS://ORCID.ORG/0000-0002-5667-8780
HTTPS://ORCID.ORG/0000-0001-7315-237X
HTTPS://ORCID.ORG/0000-0001-7086-5577
HTTPS://ORCID.ORG/0000-0003-0734-0684
HTTPS://ORCID.ORG/0000-0002-0734-0708
https://orcid.org/0000-0003-0076-6308
https://orcid.org/0000-0002-1028-5228
https://orcid.org/0000-0002-5667-8780
https://orcid.org/0000-0001-7315-237X
https://orcid.org/0000-0001-7086-5577
https://orcid.org/0000-0003-0734-0684
https://orcid.org/0000-0003-0734-0684
https://orcid.org/0000-0002-0734-0708
https://orcid.org/0000-0002-0734-0708
https://doi.org/XXXXXXX.XXXXXXX

2 Friedrich et al.

ACM Reference Format:
Tobias Friedrich, Timo Kötzing, Aishwarya Radhakrishnan, Leon Schiller, Martin Schirneck, Georg Tennigkeit,

and Simon Wietheger. 2023. Crossover for Cardinality Constrained Optimization. ACM Trans. Evol. Learn. 1, 1
(July 2023), 32 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The analysis of crossover, asking how, why, and when it helps optimization, is one of the most

important topics for understanding evolutionary computation. In practice, hardly any application

in the field proceeds without crossover. It is known to aid the search, but its theoretical background

still remains somewhat in the dark.

Focusing on the optimization of pseudo-Boolean functions (that is, 𝑓 : {0, 1}𝑛 → R), most theory

literature on the topic has used the Jump function as a setting to understand crossover, showing that

crossover can jump a fitness valley effectively where mutation fails. This line of work was started

by the seminal [Jansen and Wegener 2002], showing that crossover can find the optimum of Jump

in time 𝑂 (`𝑛 log𝑛), if it is used only very rarely (with probability of about 1/𝑛) and with sufficient

population size of Ω(log2 (𝑛)); this is in contrast to the time of 𝑂 (𝑛𝑘) taken by mutation-based

algorithms. This work was extended by [Kötzing et al. 2011] to higher parameter ranges. The low

crossover probability is crucial for the analysis: Fast optimization of Jump relies on generating very

different individuals to be used as parents by crossover; mutation can generate diversity, while

crossover is pessimistically assumed to reduce diversity.

Typical crossover probabilities are much higher than the required 1/𝑛; thus, further work focused
on closing this gap. For the case of diversity mechanisms, [Dang et al. 2016] shows efficient

optimization of Jump; note that these analyzes gain more insight into the working principles of

diversity mechanisms than into crossover itself. A breakthrough is [Dang et al. 2018], showing how

diversity emerges in the absence of diversity mechanisms.

A notable exception from this topical focus is the work by Sudholt [2017] on how crossover can

speed-up the optimization of the so-called OneMax function
1
by a factor of 2. This was a seminal

result since it considered crossover in a more natural setting than Jump, which gives crossover an

unfair advantage by placing the optimum where crossover frequently generates its output (see the

criticism offered by Jansen [2015] on the (in-)significance of the Jump function). Similarly, Corus

and Oliveto [2018] and Antipov et al. [2020] showed speedups for OneMax in a more intricate

setting of crossover.

The work Doerr and Doerr [2015] considers a very different algorithm employing crossover, the

(1 + (_, _))-GA. This algorithm, in each generation, produces a significant amount of diversity to

be used by crossover. The interesting outcome is that, on OneMax, this algorithm is asymptotically

faster than the Ω(𝑛 log𝑛) incurred by most other search heuristics on the OneMax test function.

In this work, we investigate a natural model for constrained optimization in evolutionary com-

putation. Friedrich et al. [2020] suggested an extension of OneMax, which we call BoundMax𝐵 ,

parametrized by the bound 𝐵 ∈ N on the maximum allowed number of ones. This function is

defined so that, for all 𝑥 ∈ {0, 1}𝑛 and with |𝑥 |1 being the number of ones in 𝑥 ,

BoundMax𝐵 (𝑥) =
{∑𝐵

𝑖=1 (1 + 1/𝑛)𝑥𝑖 +
∑𝑛

𝑖=𝐵+1 𝑥𝑖 if |𝑥 |1 ≤ 𝐵;

−|𝑥 |1 otherwise.

This linear function has a unique optimum with exactly 𝐵 many ones in positions 1 through 𝐵. The

first phase of the (1+1) EA2
when maximizing BoundMax𝐵 typically collects 1-bits with only a

1
OneMax maps a bit string to its number of 1-bits.

2
The (1+1) evolutionary algorithm ((1+1) EA) maintains a best-so-far solution and, in each iteration, makes a copy of it,

flips each bit independently with probability 1/𝑛 and keeps the new solution if it is at least as good as the previous one.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

https://doi.org/XXXXXXX.XXXXXXX

Crossover for Cardinality Constrained Optimization 3

slight preference for the first 𝐵 positions (which we call heavy; in contrast to the other positions,

which we call light). Once a solution at the cardinality bound 𝐵 is found, it can only be improved

by swapping out light bits for heavy ones. As shown by Friedrich et al. [2020], for some choice of

𝐵, the (1+1) EA takes time Θ(𝑛2) to optimize this function. The given 𝐵 was 𝑐𝑛 for some 𝑐 with

1/2 < 𝑐 < 1, we extend this to values of 𝐵 = 𝑛 − 𝑑 , where 𝑑 is a constant.

Intuitively, the problem when optimizing at the constraint is that both a 0 and a 1 need to be

flipped (in particular, for an almost optimal solution, a specific heavy 0 and a specific light 1).

The first remedy that comes to mind is to use an operator that does exactly that. Swap mutation
has been suggested in experimental works [Chen and Hou 2006; Manzoni et al. 2020; Meinl and

Berthold 2009] alongside the balanced crossover, that is, crossover that keeps the same number of

ones in the output. In a sense, this opens up the “black box” setting (which assumes no knowledge

about the fitness function) into more of a “gray box”, taking the specific problem knowledge

into account that the number of ones in a solution carries importance. This is not only useful in

our constrained setting, a special case of the knapsack problem, but also for other combinatorial

problems that assign importance to the number of ones. For example, finding a minimum spanning

tree requires finding exactly 𝑛 − 1 edges, a minimal vertex cover tries to minimize the number

of picked vertices, and so on. Understanding which general structural properties lead to better

optimization performance on a wide range of different problems can thus be very beneficial [Whitley

et al. 2016]. An operator swapping a 1 and a 0 would sacrifice the full unbiasedness
3
but maintains

problem-specific unbiasedness (see [Rowe and Vose 2011]). Note that a balanced operator always

needs to be paired with regular mutation, otherwise it is confined to only explore solutions with

the same number of 1-bits.

We define swap mutation formally in Section 3.2 and give a rigorous analysis in Section 5.

In particular, we show that it achieves an optimization time of 𝑂 (𝑛 log(𝑛)) on BoundMax𝐵 for

𝐵 = 𝑛 − 𝑑 with 𝑑 constant, intuitively being able to find a heavy 0 among constantly many 0s to

swap easily (Theorem 5.5). However, for 𝐵 = 𝑐𝑛 with 1/2 < 𝑐 < 1, we get a lower bound of Ω(𝑛2)
also for this operator, intuitively because there are a linear number of both 1- and 0-bits at the

constraint.

We also use the regime of 𝐵 = 𝑐𝑛 with 1/2 < 𝑐 < 1 to investigate the effectiveness of crossover.

(The bound 𝐵 = 𝑛 − 𝑑 for constant 𝑑 gives a quadratic optimization time for all considered cases.)

The use of crossover typically requires some kind of diversity, and while some diversity might

emerge on its own [Dang et al. 2018], we employ specific diversity mechanisms. We start by

considering island models [Doerr et al. 2019; Neumann et al. 2011], in particular the single-receiver
model [Watson and Jansen 2007]. Mutation-based algorithms are run in parallel on islands and
their individuals are then considered for crossover at the single receiver. This maintains perfect

independence of the individuals for maximum diversity.

We show that uniform crossover4 with the single-receiver island model can now optimize

BoundMax𝐵 in time𝑂 (𝑛2/log𝑛), an asymptotic speedup over mutation-based algorithms. Roughly

speaking, when only logarithmically many incorrect bits are left on each island, they are likely

to be in different positions and crossover finds the correct offspring in time exponential in the

number of incorrect bits. Note that, from the birthday paradox, we know that if at each island the

resident individual has only 𝑂 (
√
𝑛) many incorrect bits, then likely the islands have their incorrect

bits at different positions. This motivates us to use a ternary operator, the deterministic majority
vote [Friedrich et al. 2016], taking three parents and using the majority bit at each position for the

3
An operator is unbiased if, when given two problem instances where one is a perturbation – permutation of bit order and

bit flips – of the other, it performs analogously. See [Lehre and Witt 2012].

4
The output of the uniform crossover takes each bit independently from a parent chosen uniformly at random.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

4 Friedrich et al.

Algorithm Variant 𝑛 − 𝐵 = O(1) 𝑛 − 𝐵 = Θ(𝑛) Reference

(1+1) EA Θ
(
𝑛2

)
Θ

(
𝑛2

) [Friedrich et al. 2020]

Proposition 5.2

(1+1) Swap-EA O(𝑛 log(𝑛)) Θ(𝑛2) Theorem 5.5

Theorem 5.6

(2+1) islands,
(balanced) uniform

Θ
(
𝑛2

)
Θ

(
𝑛2

log(𝑛)

)
Theorem 6.12

Theorems 6.4 and 6.7

(3+1) islands,
majority vote

Θ
(
𝑛2

)
O

(
𝑛
√
𝑛
) Theorem 6.12

Theorem 6.8

(2+1) GA,
balanced uniform, with diversity

Θ
(
𝑛2

)
O(𝑛 log(𝑛)) Theorem 6.12

Theorem 6.11

(2+1) Swap-GA,
balanced uniform, with diversity

O(𝑛 log(𝑛)) O(𝑛 log(𝑛)) Theorem 6.14

Table 1. Overview of expected run times on BoundMax𝐵 . The Swap-EA uses swap and standard mutation.

Islands run the (1+1) EA and a single receiver with the stated crossover. The GA uses standard mutation and

balanced uniform crossover, the Swap-GA additionally has swap mutation.

offspring. Here we can show a run time bound of 𝑂 (𝑛
√
𝑛) on BoundMax𝐵 . Mutation reduces the

number of incorrect bits at each island within𝑂 (𝑛
√
𝑛) iterations to be𝑂 (

√
𝑛), then majority vote is

successful. Note that we only provide upper bounds, so a final decision on how the two algorithms

compare cannot be made. However, we believe that these bounds are tight, as mutation alone would

be slower, and crossover can be applied only once to speed up optimization (since any offspring of

crossover can never be the parent for another mutation nor crossover) in the single-receiver island

model.

In order to mitigate the disadvantage of the single-receiver setting, we consider a genetic

algorithm (GA) with the diversity mechanism of Hamming-distance maximization (but many others

would serve equally well, see [Dang et al. 2016]). We use an idea of Sudholt [2017] and show that a

population of equally good individuals first spreads in Hamming distance and then gains in quality

with crossover, making the process so fast that we obtain the desirable bound of 𝑂 (𝑛 log𝑛) for the
optimization of BoundMax𝐵 . Note that this improvement arises naturally from the interplay of

crossover and mutation and our analysis gives insight into this interplay.

Note that, for the last result, we employ a balanced uniform crossover: given two parents, the

matching bits are inherited and exactly half of the remaining bits are set to 1. This operator produces

the same number of 1s in the offspring as are in the parents. Using standard uniform crossover

instead can delay optimization by producing offspring with the wrong number of ones.

The literature already discusses a wide range of balanced crossover operators [Chen and Hou

2006; Manzoni et al. 2020; Meinl and Berthold 2009], but we find that all of them lack other useful

properties. They either do not bequeath matching bits or they are not order-unbiased (as defined in

[Lehre and Witt 2012]). To close this gap, we introduce the balanced uniform crossover, which is

fully unbiased and has all the desired properties.

Table 1 gives a summary of our results. The remainder of this paper is structured as follows. After

fixing the notation in Section 2, we review crossover and mutation operators from the literature in

Section 3. We introduce the balanced uniform crossover operator in Section 4 and then examine the

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 5

optimization time for BoundMax𝐵 under balanced mutation (Section 5) and crossover (Section 6).

We conclude in Section 7.

2 PRELIMINARIES
For some positive integer𝑛 ∈ N+, symbol [𝑛] stands for the set {1, . . . , 𝑛}. An array𝐴 = [𝑎1, 𝑎2, . . . , 𝑎𝑛]
is a sequence of natural numbers (incl. 0). For 𝑖, ℓ, 𝑟 ∈ [𝑛], we use 𝐴[𝑖] = 𝑎𝑖 to refer to its 𝑖th entry,

and 𝐴[ℓ, 𝑟] = [𝑎ℓ , 𝑎ℓ+1, . . . , 𝑎𝑟] for the subarray from indices ℓ to 𝑟 (if ℓ > 𝑟 , then 𝐴[ℓ, 𝑟] is empty).

A bit string of length 𝑛 is any element of {0, 1}𝑛 . We refer to its 𝑖th bit by 𝑥𝑖 , so 𝑥 = 𝑥1𝑥2 . . . 𝑥𝑛 ;

similarly, for𝑀 ⊆ [𝑛], 𝑥𝑀 denotes the bit string obtained by removing all bits with indices not in

𝑀 , and 𝑥 [ℓ, 𝑟] is the bit string 𝑥ℓ𝑥ℓ+1 . . . 𝑥𝑟 . We use |𝑥 |1 =
∑𝑛

𝑖=1 𝑥𝑖 and |𝑥 |0 = 𝑛 − |𝑥 |1 for the number

of 1- and 0-bits of 𝑥 , respectively. For two bit strings 𝑥,𝑦, we denote their concatenation as 𝑥𝑦.

The strings with 𝑛 0- or 1-bits are 0
𝑛
and 1

𝑛
, respectively. A permutation is a bijective function

𝜎 : [𝑛] → [𝑛]. We write 𝜎 = [𝑎1, 𝑎2, . . . , 𝑎𝑛] to refer to the permutation where, for every 𝑖 ∈ [𝑛],
𝜎 (𝑖) = 𝑎𝑖 . For every permutation 𝜎 of [𝑛] and every bit string 𝑥 , we define the permutation of 𝑥

respective to 𝜎 as 𝜎𝑏 (𝑥) = 𝑥𝜎 (1)𝑥𝜎 (2) . . . 𝑥𝜎 (𝑛) . For example, for 𝑥 = 10011 and 𝜎 = [3, 1, 5, 2, 4],
we get 𝜎𝑏 (𝑥) = 01101. An event occurs with high probability (w.h.p.) with respect to 𝑛, if it has

probability at least 1 − 1/𝑛𝑐 for some constant 𝑐 > 0.

3 BALANCED CROSSOVER AND MUTATION
A crossover operator is a potentially randomized algorithm that maps two parent bit strings 𝑥,𝑦 ∈
{0, 1}𝑛 to an output bit string 𝑧 ∈ {0, 1}𝑛 . We identify operators with their output distribution,

where 𝑝𝐴 (𝑧 | 𝑥,𝑦) denotes the probability that operator 𝐴 samples 𝑧 given inputs 𝑥,𝑦. In this paper,

we investigate balanced crossover operators that retain the same number of ones as the input

strings. We would also like to have certain additional regularity properties such as invariance under

permutations (order unbiasedness5) and that, whenever the parents agree on a bit position, this bit

is sampled in the output (inheritance respect6).

Definition 3.1 (Regularity properties). A crossover operator 𝐴 is

(1) balanced if |𝑥 |1 = |𝑦 |1 ≠ |𝑧 |1 implies 𝑝𝐴 (𝑧 | 𝑥,𝑦) = 0;

(2) order-unbiased if 𝑝𝐴 (𝑧 | 𝑥,𝑦) = 𝑝𝐴 (𝜎𝑏 (𝑧) | 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦)) holds for all permutations 𝜎 of [𝑛];
(3) inheritance-respectful if 𝑥𝑖 = 𝑦𝑖 ≠ 𝑧𝑖 for some 𝑖 ∈ [𝑛] implies 𝑝𝐴 (𝑧 | 𝑥,𝑦) = 0.

The idea of order unbiasedness is that the order of encoding the bits in the string should not

matter for the algorithm. A crossover should be inheritance-respectful if it wants to combine

strengths of different solutions (and leave creating novelty to mutation). This was studied in the

literature as geometric crossovers [Moraglio and Poli 2004]: crossovers are inheritance-respectful if

and only if they are geometric crossovers under the Hamming distance metric.

3.1 Existing Crossover Operators
We review several crossover operators from the literature and classify them according to the

regularity properties. We find that none of the existing crossovers are balanced, order-unbiased and

inheritance-respectful at the same time. We propose the balanced uniform crossover as an alternative

in Section 4. (The boring crossover that returns some parent also satisfies all three properties.)

We compare nine crossover operators: the uniform, single- and two-point crossover from the

survey by Katoch et al. [2021], the counter-based, zero lengths and map-of-ones crossover by

5
See Lehre and Witt [2012] for a discussion; they call this property “𝜎-invariance”.

6
See Radcliffe [1994]. He distinguishes respect (shared properties of the parents are inherited) and gene transmission (every

property of an offspring is inherited from at least one parent). These concepts are equivalent when limited to bit strings. We

use the more telling term inheritance respect.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

6 Friedrich et al.

Crossover

Operator

Balanced

Order-

Unbiased

Inheritance-

Respectful

Uniform × ✓ ✓

Single-Point × × ✓

Two-Point × × ✓

Counter-Based ✓ × ×
Zero Lengths ✓ × ×
Map-of-Ones ✓ ✓ ×
Shrinking ✓ × ✓

Balanced Two-Point ✓ × ×
Alternating ✓ × ✓

Boring ✓ ✓ ✓

Balanced Uniform ✓ ✓ ✓

Table 2. Overview of different crossover operators, where a ✓denotes that the given operator does have the

stated property, and × that it does not.

Manzoni et al. [2020], the shrinking crossover of Chen and Hou [2006] and finally the balanced

two-point crossover and alternating crossover
7
by Meinl and Berthold [2009]. Our results are

summarized in Table 2. In Section 3.2, we briefly discuss balanced mutation.

Uniform, single-point and two-point crossovers. The very common uniform crossover operator
iterates over all bit positions and, for each of them, selects a random parent and takes its bit at this

position. The single-point crossover chooses a random position in [𝑛] and swaps all bits after that

position between the parents. For swap position 𝑠 , this results in the two strings 𝑥 [1, 𝑠]𝑦 [𝑠+1, 𝑛]
and 𝑦 [1, 𝑠]𝑥 [𝑠+1, 𝑛]. Without losing generality, we define as output the string that starts with the

bits of 𝑥 . The two-point crossover samples two indices and swaps the bit-range between them among

the parents. Intuitively, none of those operators can be balanced as they take 1-bits from the parents

regardless of their total number.

Throughout this section, we let 𝑠 be an index drawn uniformly at random from [𝑛]. For two
indices that are independently and uniformly distributed in [𝑛], we use symbol ℓ to denote the

smaller one and 𝑟 for the larger.

Definition 3.2 (Uniform, single-point and two-point crossover). On input 𝑥,𝑦 ∈ {0, 1}𝑛 , the output
string 𝑧 ∈ {0, 1}𝑛 is as follows.

(1) Uniform crossover : For every 𝑖 ∈ [𝑛], bit 𝑧𝑖 is uniformly distributed in {𝑥𝑖 , 𝑦𝑖 }, independently
of all other choices.

(2) Single-point crossover : 𝑧 = 𝑥 [1, 𝑠−1] 𝑦 [𝑠, 𝑛].
(3) Two-point crossover : 𝑧 = 𝑥 [1, ℓ−1] 𝑦 [ℓ, 𝑟] 𝑥 [𝑟+1, 𝑛].

Lemma 3.3. The uniform crossover is inheritance-respectful and order-unbiased, but not balanced.

Proof. The operator is unbalanced since we have 𝑝 (00 | 01, 10) = 1

4
> 0. It is inheritance-

respectful by definition. Further, it is order-unbiased. For any permutation 𝜎 and input strings 𝑥,𝑦,

7
The alternating crossover is called “balanced uniform crossover” in the original work [Meinl and Berthold 2009]. We

reserve this name for Section 4.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 7

the bit at position 𝜎 (𝑖) is sampled from 𝑥𝜎 (𝑖) and 𝑦𝜎 (𝑖) , yielding the same probability distribution

over the permuted outcomes. □

We only show the proof for the single-point operator, the one for two points is essentially the

same.

Lemma 3.4. The single-point crossover is inheritance-respectful, but neither order-unbiased nor
balanced.

Proof. Inheritance respect is clear. The operator is unbalanced as 𝑝 (00 | 01, 10) = 1

2
> 0. It is

order-biased: Let 𝑛 = 4, 𝑥 = 0011, 𝑦 = 1100, 𝑧 = 1111 and 𝜎 = [1, 3, 2, 4]. We have 𝑝 (𝑧 | 𝑥,𝑦) = 1

4
, but

𝑝 (𝜎𝑏 (𝑧) | 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦)) =𝑝 (1111 | 0101, 1010) = 0. □

Counter-based, zero lengths and map-of-ones crossovers. To heal the unbalancedness of the uniform
crossover, the counter-based crossover stops once the number of ones/zeros in the output are equal

to that of the parent 𝑥 .

Definition 3.5 (Counter-based crossover). Inductively for all indices 𝑖 ∈ [𝑛], let 𝑧≤𝑖 be the string of
bits already set after the 𝑖th iteration. The bit 𝑧𝑖 is a uniform random value in {𝑥𝑖 , 𝑦𝑖 }, independently
of the previous choices. If |𝑧≤𝑖 |1 = |𝑥 |1, the final output is 𝑧 = 𝑧≤𝑖 0𝑛−𝑖 ; if |𝑧≤𝑖 |0 = |𝑥 |0, the output is
𝑧≤𝑖 1𝑛−𝑖 . Otherwise, the operator continues to the next iteration.

Lemma 3.6. The counter-based crossover is balanced, but neither inheritance-respectful nor order-
unbiased.

Proof. The operator is balanced because it explicitly keeps track of the number of ones and

zeros and, if this forces the remaining bits to be set in a certain way, does so. To show lack of

inheritance respect, let 𝑛 = 3, 𝑥 = 101, 𝑦 = 011 and 𝑧 = 110. We thus have 𝑝 (110 | 101, 011) =
1/2 · 1/2 = 1/4 > 0 and 𝑥3 = 𝑦3 ≠ 𝑧3. Regarding the order bias, let additionally 𝜎 = [3, 1, 2]. We

have that 𝑝 (𝑧 | 𝑥,𝑦) = 𝑝 (110 | 101, 011) = 1/4 but 𝑝 (𝜎𝑏 (𝑧) | 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦)) = 𝑝 (011 | 110, 101) = 0,

so 𝑝 is not order-unbiased. □

For the other two operators, we need alternative ways to represent bit strings. The zero lengths

representation is effectively a run-length encoding of consecutive 0-bits. Let 𝑥 ∈ {0, 1}𝑛 be such

that |𝑥 |1 = 𝑘 and 𝑥 = 0
𝑎1
10

𝑎2
1 . . . 0𝑎𝑘 10𝑎𝑘+1 with 𝑎𝑖 ∈ N0. Then, 𝑥 ’s zero lengths array is 𝑍𝑥 =

[𝑎1, 𝑎2, . . . , 𝑎𝑘 , 𝑎𝑘+1]. The 𝑘 +1 elements
8
of 𝑍𝑥 necessarily sum to 𝑛−𝑘 . Conversely, themap-of-ones

array 𝑀𝑥 contains the indices of all 1-bits in 𝑥 . Any permutation of𝑀𝑥 also represents 𝑥 , we tacitly

use set notation if no ambiguity arises.

The zero lengths crossover constructs the zero lengths array of the output from that of the parents

by picking each entry uniformly at random from the corresponding parent entries. It additionally

ensures that the sum of elements does not exceed the number of zeros. The map-of-ones crossover,
in each iteration, chooses a random parent string and samples one of its stored 1-indices that has

not already been selected.

Definition 3.7 (Zero lengths and map-of-ones crossover). Let 𝑘 = min(|𝑥 |1, |𝑦 |1). The representation
of output 𝑧 is defined as follows.

(1) Zero lengths crossover : For all 𝑖 ∈ [𝑘], let 𝑠𝑖−1 =
∑𝑖−1

𝑗=1 𝑍𝑧 [𝑗] be the sum of set entries. 𝑍𝑧 [𝑖] =
min(𝑎𝑖 , 𝑛 − 𝑘 − 𝑠𝑖−1), with 𝑎𝑖 uniformly distributed in

{
𝑍𝑥 [𝑖], 𝑍𝑦 [𝑖]

}
; 𝑍𝑧 [𝑘+1] = 𝑛 − 𝑘 − 𝑠𝑘 .

(2) Map-of-ones crossover : For all 𝑖 ∈ [𝑘], let 𝑢𝑖 be uniformly distributed vector in {𝑥,𝑦}, entry
𝑀𝑧 [𝑖] is set to a uniform random index in𝑀𝑢𝑖 [1, 𝑘]\𝑀𝑧 [1, 𝑖−1].

8
In [Manzoni et al. 2020], the authors claim that the zero lengths array has 𝑛 − 𝑘 + 1 entries. This is probably a typo, their

number really is 𝑘 + 1.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

8 Friedrich et al.

Lemma 3.8. The zero lengths crossover is balanced, but neither inheritance-respectful nor order-
unbiased.

Proof. We note that this operator is balanced, as it creates an offspring whose zero lengths

array is of the same size as the representation of the inputs, hence its number of ones matches the

number of ones in the input. Also, it explicitly keeps track of the number of zeros and sets the last

entry accordingly.

To show lack of inheritancy-respect, let 𝑛 = 3, 𝑥 = 101, 𝑦 = 011 and 𝑧 = 110, so 𝑍𝑥 = [0, 1, 0], 𝑍𝑦 =

[1, 0, 0], 𝑍𝑧 = [0, 0, 1].
We have that 𝑝 (𝑧 | 𝑥,𝑦) = 𝑝 ([0, 0, 1] | [0, 1, 0], [1, 0, 0]) = 1/2 · 1/2 · 1 = 1/4 > 0 and as

additionally 𝑥3 = 𝑦3 ≠ 𝑧3, the operator is not inheritance-respectful.

Regarding order bias, let additionally 𝜎 = [3, 1, 2]. We have that 𝑝 (𝑧 | 𝑥,𝑦) = 𝑝 ([0, 0, 1] |
[0, 1, 0], [1, 0, 0]) = 1/2 · 1/2 · 1 = 1/4 but 𝑝 (𝜎𝑏 (𝑧) | 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦)) = 𝑝 (011 | 110, 101) = 𝑝 ([1, 0, 0] |
[0, 0, 1], [0, 1, 0]) = 0, so the operator is not order-unbiased. □

Lemma 3.9. The map-of-ones crossover operator is balanced and order-unbiased, but not inheritance-
respectful.

Proof. This operator is balanced because it adds exactly 𝑘 distinct elements to𝑀𝑧 .

Regarding inheritance respect, let 𝑛 = 3, 𝑥 = 110, 𝑦 = 011, so we have 𝑀𝑥 = [1, 2], 𝑀𝑦 = [2, 3].
Consider the output𝑀𝑧 = [1, 3] representing the string 𝑧 = 101. We have that 𝑝 (101 | 110, 011) =
2 · 1/4 · 1/4 > 0, as the probability to first draw a 1 and then a 3, or to first draw 3 and then a 1, is

1/4 · 1/4 each. As additionally 𝑥2 = 𝑦2 ≠ 𝑧2, the operator is not inheritance-respectful.

Next, we prove the order-unbiasedness. For any permutation𝜎 of [𝑛], we denote its inverse by𝜎−1,
that is, the unique permutation such that 𝜎 (𝜎−1 (𝑖)) = 𝑖 for all 𝑖 ∈ [𝑛]. Recall that, after permuting

𝑥 according to 𝜎 , the 𝑗th bit of the outcome is (𝜎𝑏 (𝑥)) 𝑗 = 𝑥𝜎 (𝑗) . A 1-bit 𝑥𝑖 thus moves to position

𝑗 = 𝜎−1 (𝑖) in 𝜎𝑏 (𝑥). For the map-of-ones, that means 𝑀𝜎𝑏 (𝑥) = [𝜎−1 (𝑀𝑥 [1]), . . . , 𝜎−1 (𝑀𝑥 [|𝑥 |1])].
The map-of-ones crossover operator neither considers the order in the map nor the numerical value

of its elements. It only checks whether two elements are equal or not. For any string 𝑧 ∈ {0, 1}𝑛
and index 𝑖 ∈ [𝑛], the operator samples 𝑀𝑧 [𝑖] given 𝑥 and 𝑦 as inputs with the same (uniform)

probability as 𝑀𝜎𝑏 (𝑧) [𝑖] = 𝜎−1 (𝑀𝑧 [𝑖]) is sampled given 𝜎𝑏 (𝑥) and 𝜎𝑏 (𝑦). Hence, 𝑝 (𝑧 | 𝑥,𝑦) =
𝑝 (𝜎𝑏 (𝑧) | 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦)) and the operator is order-unbiased. □

Shrinking, balanced two-point and alternating crossover. Both the shrinking and balanced two-

point crossover operator are based on the regular two-point version. The shrinking crossover works
on the classical bit string representation. Before swapping the sampled bit-ranges the contained

ones are counted. If they are not equal between the parents, the index 𝑟 is reduced until they are.

See Figure 1. The reduction may result in 𝑟 = ℓ −1, that is, an empty range, the output then equals 𝑥 .

The balanced two-point crossover applies the two-point operator to the map-of-ones representations

of the parent strings. This may sample duplicate 1-indices. To recover balancedness, those are

replaced by elements from the unchosen range of𝑀𝑥 . Finally, the alternating crossover also works

on map-of-ones but is deterministic. It combines𝑀𝑥 ,𝑀𝑦 in a sorted manner, keeping duplicates,

and takes every other 1-index.

Below, let 𝐴 ⋄ 𝐵 denote the concatenation of arrays 𝐴 and 𝐵.

Definition 3.10 (Shrinking, balanced two-point and alternating crossover.). Let 𝑘 = min(|𝑥 |1, |𝑦 |1).
(1) Shrinking crossover : Let 𝑟 ′ be the largest index ℓ ≤ 𝑟 ′ ≤ 𝑟 such that |𝑥 [ℓ, 𝑟 ′] |1 = |𝑦 [ℓ, 𝑟 ′] |1, or

𝑟 ′ = ℓ − 1 if there is none. The output string is 𝑧 = 𝑥 [1, ℓ−1] 𝑦 [ℓ, 𝑟 ′] 𝑥 [𝑟 ′+1, 𝑛].

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 9

x = 000110110

y = 101010010

= 000110110

= 101010010

= 000110110

= 101010010

x
′
= 001010110

y
′
= 100110010

Fig. 1. Example run of the shrinking crossover operator. The initial range is shrunk twice. Then, the bits inside

the range contain the same number of ones and are swapped.

(2) Balanced two-point: Let 𝑢, 𝑣 , with 𝑢 ≤ 𝑣 , be independently and uniformly distributed in [𝑘]
and𝑀 = 𝑀𝑥 [1, 𝑢−1] ⋄𝑀𝑦 [𝑢, 𝑣] ⋄𝑀𝑥 [𝑣+1, |𝑥 |1]. The output representation𝑀𝑧 is generated

from𝑀 by removing duplicates, sampling uniform random replacements from𝑀𝑥 [𝑢, 𝑣]\𝑀𝑧 .

(3) Alternating crossover: Let 𝑀 be the result of sorting 𝑀𝑥 ⋄𝑀𝑦 . The output is 𝑀𝑧 = 𝑀 [1] ⋄
𝑀 [3] ⋄ · · · ⋄𝑀 [2𝑘 − 1].

Lemma 3.11. The shrinking crossover operator is balanced and inheritance-respectful, but not
order-unbiased.

Proof. The operator is designed to be balanced, the inheritance respect follows as for the

two-point crossover.

For the order bias, let 𝑛 = 4, 𝑥 = 0011, 𝑦 = 1100, 𝑧 = 1001 and 𝜎 = [1, 3, 2, 4]. We have that

𝑝 (𝑧 | 𝑥,𝑦) = 𝑝 (1001 | 0011, 1100) = 0, as it would require to swap exactly the first and third bit.

However, 𝑝 (𝜎𝑏 (𝑧) | 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦)) = 𝑝 (1001 | 0101, 1010) = 1/4 by having the left bound at the

first bit and the right bound at the second or third bit (and shrinking in the latter case). Thus, out

of the 16 possible values for the two indices, (1,2), (2,1), (1,3), and (3,1) lead to 1001, giving the

probability of 1/4. Hence, the operator is order-biased. □

Lemma 3.12. The balanced two-point crossover operator is balanced, but neither inheritance-
respectful nor order-unbiased.

Proof. Regarding the operator’s balance, provided that both inputs 𝑥,𝑦 have |𝑥 |1 = |𝑦 |1 = 𝑘 , we

know that |𝑧 |1 = 𝑘 because𝑀 has exactly length 𝑘 after initializing𝑀 , and every element that is

deleted is replaced afterwards. We further note that the elements in𝑀𝑥 within the range suffice to

replace the duplicates without adding new duplicates: We know that𝑀𝑥 contains 𝑘 distinct values.

All these elements outside of the range are already in𝑀 and all elements within the range can be

added if needed. This way we are guaranteed to find enough replacements to reach 𝑘 many ones.

To show the lack of inheritance respect, let 𝑛 = 5, 𝑥 = 11010, 𝑦 = 01101 and 𝑧 = 10101. The

respective map-of-ones are 𝑀𝑥 = [1, 2, 4], 𝑀𝑦 = [2, 3, 5], 𝑀𝑧 = [1, 3, 5]. We have 𝑝 (10101 |
11010, 01101) = 𝑝 ([1, 3, 5] | [1, 2, 4], [2, 3, 5]) = 2/9 > 0 (the probability to select a range from the

second to the third map entry, so out of the 9 possible values for the two sampled values, (2,3) and

(3,2) succeed), but 𝑥2 = 𝑦2 ≠ 𝑧2.

Regarding order bias, we use the same𝑛, 𝑥,𝑦, and 𝑧 as above, so oncemore 𝑝 (10101 | 11010, 01101) =
2/9. However, given 𝜎 = [1, 3, 4, 5, 2], we have 𝑝 (𝜎𝑏 (𝑧) | 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦)) = 𝑝 (11010 | 10101, 01011) =
0 as there is no way for the last map entry to be anything other than 5. So the operator is not

order-unbiased. □

Lemma 3.13. The alternating crossover operator is balanced and inheritance-respectful, but not
order-unbiased.

Proof. Regarding balancedness, given that both inputs 𝑥,𝑦 have |𝑥 |1 = |𝑦 |1 = 𝑘 their map-of-

ones representations will each have length 𝑘 . The combined array will therefore have length 2𝑘 .

Because that length is even, taking every odd index from the array will yield 2𝑘/2 = 𝑘 indices. The

map-of-ones for the offspring consequently has length 𝑘 . It also cannot contain duplicates: If it did,

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

10 Friedrich et al.

identical values would have been at non-adjacent positions in the combined array, and since each

elements can appear twice at most, the array would be unsorted. The map-of-ones with length 𝑘

and no duplicates guarantees that the derived bit string has exactly 𝑘 many ones.

Regarding inheritance respect, let 𝑧 be the result of an alternating crossover of two bit strings

𝑥 and 𝑦 of length 𝑛. We prove for each bit 1 ≤ 𝑖 ≤ 𝑛 that if 𝑥𝑖 = 𝑦𝑖 = 1 then 𝑧𝑖 = 1. In this case 𝑖

will appear twice in the combined array, and because the array is sorted, both occurrences of 𝑖 are

adjacent. One of them will be at an odd index in the array and it will therefore be added to the

map-of-ones of the offspring. Thus 𝑧𝑖 = 1.

We further show for each bit that if 𝑥𝑖 = 𝑦𝑖 = 0 then 𝑧𝑖 = 0. In this case 𝑖 will not appear in the

combined array at all. Since elements for the map-of-ones of the offspring are taken only from that

array, 𝑖 cannot appear in it. Thus 𝑧𝑖 = 0.

We have therefore shown that 𝑥𝑖 = 𝑦𝑖 implies 𝑧𝑖 = 𝑥𝑖 , proving the alternating crossover operator

to be inheritance-respectful.

Regarding order bias, let 𝑛 = 5, 𝑥 = 11010, 𝑦 = 01101, 𝑧 = 11010. Per definition, 𝑀𝑥 =

[1, 2, 4], 𝑀𝑦 = [2, 3, 5], 𝑀𝑧 = [1, 2, 4]. As the combined and sorted array, we get 𝑀𝑥 ⋄ 𝑀𝑦 =

[1, 2, 2, 3, 4, 5], of which the elements at every odd index are exactly [1, 2, 4]. Therefore 𝑝 (𝑧 |
𝑥,𝑦) = 1.

However, for 𝜎 = [1, 2, 3, 5, 4] we have 𝜎𝑏 (𝑥) = 11001, 𝜎𝑏 (𝑦) = 01110, 𝜎𝑏 (𝑧) = 11001. Accordingly,

𝑀𝜎𝑏 (𝑥) = [1, 2, 5], 𝑀𝜎𝑏 (𝑦) = [2, 3, 4], 𝑀𝜎𝑏 (𝑧) = [1, 2, 5]. The combined array 𝑀𝜎𝑏 (𝑥) ⋄ 𝑀𝜎𝑏 (𝑦) =

[1, 2, 2, 3, 4, 5] happens to be the same as before. Thus, 𝑝 (𝜎𝑏 (𝑧) | 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦)) = 0, the operator is

order-biased. □

3.2 Balanced Mutation
A mutation operator is an algorithm mapping a single parent bit string 𝑥 ∈ {0, 1}𝑛 to an offspring

𝑧 ∈ {0, 1}𝑛 . The most common mutation operator is standard bit mutation (also called uniform
mutation), flipping each bit of 𝑥 independently with probability

1

𝑛
. This does not preserve the

number of ones. The asymmetric mutation operator from [Jansen and Sudholt 2010; Neumann

and Wegener 2007], which independently flips each 0-bit of 𝑥 with probability
1

2 |𝑥 |0 and each 1-bit

with probability
1

2 |𝑥 |1 , does so in expectation, but does not guarantee it. Adapting the notation of

Definition 3.1, a mutation operator is balanced if |𝑧 |1 ≠ |𝑥 |1 implies 𝑝𝐴 (𝑧 | 𝑥) = 0. The literature

discusses balanced mutation just very briefly, see [Chen and Hou 2006; Manzoni et al. 2020; Meinl

and Berthold 2009]. The only notable operator is swap mutation. It chooses a 1- and a 0-bit of 𝑥

uniformly at random and swaps them. (The strings 1
𝑛
and 0

𝑛
remain unchanged.) We use the name

(1+1) swap-evolutionary algorithm ((1+1) Swap-EA) for the variant of the (1+1) EA that, in the

mutation step, uses the swap operator with probability 𝑝𝑏 and standard bit mutation otherwise.

4 NEW BALANCED CROSSOVER OPERATOR
None of the crossovers discussed are balanced, order-unbiased and inheritance-respectful. Of course,

one could achieve all this by using what we call the boring crossover that merely returns one of

the parents (say, at random), but it defeats the purpose of recombining the strengths of multiple

individuals. We propose the balanced uniform crossover9 operator instead. To ensure inheritance

respect, it first fixes all positions in which the input strings are equal. For the others, it randomly

samples as many positions as required to match the number of ones in the input strings.

9
As mentioned, we discuss what is called “balanced uniform crossover” in [Meinl and Berthold 2009] as the alternating

crossover.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 11

Definition 4.1 (Balanced uniform crossover). Define the sets 𝐹 = {𝑖 ∈ [𝑛] | 𝑥𝑖 = 𝑦𝑖 } and 𝐹 = [𝑛]\𝐹 .
Let the set 𝐼 ⊆ 𝐹 with |𝐼 | = ⌊|𝐹 |/2⌋ be drawn uniformly at random. The output bit string 𝑧 has

𝑧𝑖 = 𝑥𝑖 for all 𝑖 ∈ 𝐹 , 𝑧𝑖 = 1 for 𝑖 ∈ 𝐼 and 𝑧𝑖 = 0 for 𝑖 ∈ 𝐹\𝐼 .

Theorem 4.2. The balanced uniform crossover operator is balanced, inheritance-respectful and
order-unbiased.

Proof. Regarding balancedness, consider the substrings 𝑥
𝐹
and 𝑦

𝐹
in which the parents disagree.

The 1-bits in 𝑥
𝐹
are in one-to-one correspondence to the 0-bits in 𝑦

𝐹
, whence |𝑥

𝐹
|1 = |𝐹 | − |𝑦𝐹 |1. If

additionally |𝑥 |1 = |𝑥𝐹 |1 + |𝑥𝐹 |1 and |𝑦 |1 = |𝑦𝐹 |1 + |𝑦𝐹 |1 are equal, we have |𝑥𝐹 |1 = |𝑦𝐹 |1. Then, |𝐹 |
must be even and |𝑥

𝐹
|1 = |𝐹 |/2 Both things together imply |𝑧 |1 = |𝑧𝐹 |1 + |𝐼 | = |𝑥𝐹 |1 + |𝐹 |/2 = |𝑥 |1.

The only other property that is possibly in doubt is the order bias. Let 𝜎 be a permutation of

[𝑛] and 𝐹𝜎 the set of indices on which the perturbed strings 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦) agree, 𝐹𝜎 its complement.

Note that 𝑖 ∈ 𝐹 holds if and only if 𝜎 (𝑖) ∈ 𝐹𝜎 , in particular, |𝐹 | = |𝐹𝜎 | and |𝐹 | = |𝐹𝜎 |. This means

that for every 𝑖 ∈ [𝑛] the probability of setting 𝑧𝑖 = 1 given 𝑥,𝑦 is equal to the probability of setting

𝑧𝜎 (𝑖) = 1 given 𝜎𝑏 (𝑥), 𝜎𝑏 (𝑦) and order unbiasedness follows. □

The next theorem gives an alternative distributional characterization of the balanced uniform

crossover.

Theorem 4.3. The output distribution of the balanced uniform crossover is the same as that of the
uniform crossover conditioned on having |𝑧 |1 = ⌊(|𝑥 |1 + |𝑦 |1)/2⌋ 1-bits in the output.

Proof. For all bit positions in 𝐹 , the output bits of the balanced uniform crossover are the same

as that of its regular counterpart, this holds even without the condition. For indices 𝑖 ∈ 𝐹 , the

operators differ in general. For the uniform crossover, 𝑧𝑖 = 1 and 𝑧𝑖 = 0 have the same probability.

In other words, the set of 1-bits in that part of the output is a uniform random subset of 𝐹 . When

conditioning on |𝑧 |1 = ⌊(|𝑥 |1 + |𝑦 |1)/2⌋, this subset must have size⌊
|𝑥 |1 + |𝑦 |1

2

⌋
− |𝑧𝐹 |1 =

⌊ |𝑥
𝐹
|1 + |𝑦𝐹 |1
2

⌋
=

⌊
|𝐹 |
2

⌋
□

5 OPTIMIZINGWITHOUT CROSSOVER
Here, we first show that the (1+1) EA has a quadratic lower bound on BoundMax𝐵 , even if

𝑛 − 𝐵 = O(1). For this case, we then break this bound by introducing balanced mutation: the

(1+1) Swap-EA has an expected run time in O(𝑛 log(𝑛)). For the case 𝑛 − 𝐵 = Θ(𝑛), however, the
run time remains in Ω(𝑛2). We formalize both algorithms with Algorithm 1, where we obtain the

standard (1+1) EA for 𝑝𝑏 = 0 and the (1+1) Swap-EA for 0 < 𝑝𝑏 < 1. In Section 6, we show how

crossover can improve optimization time in this case.

Theorem 5.1 ([Friedrich et al. 2020], Theorem 10). There exists a constant 0 < 𝑐 < 1 such that
the (1+1) EA using only standard bit mutations takes expected time Ω(𝑛2) to optimize BoundMax𝐵

under uniform constraint 𝐵 = 𝑐𝑛.

It is easy to verify that their proof remains valid for 𝐵 = 𝑐𝑛 for all constants 0 < 𝑐 < 1 and, in fact,

even for 𝐵 = 𝑛 − 𝑛𝑐 . Below, we extend this to the case that the bound differs from the maximum 𝑛

only by an additive constant, which is not covered by [Friedrich et al. 2020].

Proposition 5.2. For every positive integer constant 𝑑 , the (1+1) EA using only standard bit
mutation takes expected time Ω(𝑛2) to optimize BoundMax𝐵 under uniform constraint 𝐵 = 𝑛 − 𝑑 .

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

12 Friedrich et al.

Algorithm 1: (1+1) (Swap-)EA

𝑥 ← uniform choice from {0, 1}𝑛

while 𝑥 is not optimum for 𝑓 do
if 𝑝𝑏 > uniform choice from [0, 1] then

𝑥 ′ ← swap mutation(𝑥)
else 𝑥 ′ ← standard uniform mutation(𝑥)
if 𝑓 (𝑥 ′) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑥 ′

Proof. We first consider the case of 𝑑 = 1 and accordingly consider 𝐵 = 𝑛 − 1. Recall that the
bit positions with weight 1 + 1/𝑛 are “heavy” and others “light”, so, in this case, we have exactly

one light bit. Our first goal is to show that, when the algorithm reaches the bound of 𝐵 for the first

time, the light bit is set to 1 with probability at least 1/2.
To this end, let 𝑋𝑡 be the value of the light bit after 𝑡 iterations of the algorithm and let 𝑇 be the

first time that the algorithm samples a search point with at least 𝐵 many 1s. We show, by induction

on 𝑡 ,

∀𝑡 ≤ 𝑇 : Pr [𝑋𝑡 = 1] ≥ 1/2.
This holds trivially for 𝑡 = 0. Let now 𝑡 < 𝑇 be given with Pr [𝑋𝑡 = 1] ≥ 1/2. We abbreviate

𝑝 = Pr [𝑋𝑡 = 1]. Let 𝐶u be the event that the algorithm flips strictly more heavy bits from 0s to 1s

than vice versa (going up), 𝐶e the event that the flip of the algorithm flips the same number of

heavy bits from 0 to 1 as vice versa (equal), and 𝐶d that more bits are flipped from 0 to 1 than vice

versa (down).
We have

Pr [𝑋𝑡+1 = 1] = 𝑝 (1 − Pr [𝐶u] /𝑛) + (1 − 𝑝) Pr [𝐶u ∪𝐶e] /𝑛
by considering the two possible cases for 𝑋𝑡 in the law of total probability and seeing that flipping

a light 0 bit up to 1 is rejected exactly in case of 𝐶d, and a flip of a light bit from 1 to 0 is accepted

exactly in case of 𝐶u.

We use 𝑞u = Pr [𝐶u], 𝑞e = Pr [𝐶e] and 𝑞d = Pr [𝐶d] as abbreviations. Thus, we now have

Pr [𝑋𝑡+1 = 1] = 𝑝 (1 − 𝑞u/𝑛) + (1 − 𝑝) (𝑞u + 𝑞e)/𝑛 = 𝑝 − 𝑝𝑞u/𝑛 + 𝑞u/𝑛 + 𝑞e/𝑛 − 𝑝𝑞u/𝑛 − 𝑝𝑞e/𝑛
= 𝑝 + (1 − 2𝑝)𝑞u/𝑛 + (1 − 𝑝)𝑞e/𝑛.

First we consider the case 𝑝 ≥ 1/2 + 1/𝑛. From (1 − 2𝑝) ≥ −1, we get (1 − 2𝑝)𝑞u/𝑛 ≥ −1/𝑛, giving

𝑝 + (1 − 2𝑝)𝑞u/𝑛 + (1 − 𝑝)𝑞e/𝑛 ≥ 𝑝 − 1/𝑛 ≥ 1/2.

We now consider the case 𝑝 < 1/2 + 1/𝑛.
Before we can proceed, we consider the probability that a specific heavy bit is 1; by symmetry,

in any given iteration, this probability is the same for all bits (and by separability of the problem,

the value of the different bits are stochastically independent). This probability starts with 1/2
at initialization. Focusing on the optimization of the heavy bits only, we see that the algorithm

proceeds as if the (1+1) EA was optimizing OneMax on 𝑛 − 1 bits with mutation probability of

1/𝑛: flipping the light bit can only change acceptance of the offspring if there is no impact on the

heavy bits (only neutral steps might be discarded), which is not relevant for the optimization of

OneMax. Thus, the probability that a specific heavy bit is 1 only increases over time, and is thus

always at least 1/2.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 13

Consider now an iteration of the algorithm in which it flips a set 𝑆 of heavy bits. We match any

bit pattern that the current bit string might have on the bits 𝑆 with it’s complement and see that

the one of the two where at least as many 1s as 0s are flipped is at least as likely as the other. This

gives 𝑞u ≤ 𝑞d, and, in particular, 𝑞u ≤ (1 − 𝑞e)/2.
We continue the above equations using 𝑞u ≤ (1 − 𝑞e)/2.

= 𝑝 + (1 − 2𝑝)𝑞u/𝑛 + (1 − 𝑝)𝑞e/𝑛 ≥ 𝑝 + (1 − 2𝑝) (1 − 𝑞e)/(2𝑛) + (1 − 𝑝)𝑞e/𝑛

≥ 𝑝 − 2

𝑛
(1 − 𝑞e)/(2𝑛) + (1/2 − 1/𝑛)𝑞e/𝑛 = 𝑝 − 1

𝑛2
+ 1

2𝑛
𝑞e .

We have that 𝑞e ≥ 1/𝑒 , since the event that no heavy bit flips contributes to𝐶e. This shows that the

last expression in the derivation above is at least 𝑝 for 𝑛 ≥ 2𝑒 , as desired.

Now we know that, when the (1+1) EA for the first time matches (or exceeds) the bound of 𝐵,

the probability that the light bit is 1 is at least 1/2. Since, for any bit flip pattern that changes the

current bit string into the all-1 bit string (exceeding 𝐵) there are many more likely bit flip patterns

that do not exceed 𝐵, we get that, with constant probability, the first bit string with at least 𝐵 bits

has exactly 𝐵 bits. Thus, in this case, the solution is suboptimal and only one particular 2-bit-flip

can improve the fitness; the expected time for this 2-bit-flip to happen is Ω(𝑛2) as desired. The case
of larger (but still constant) 𝑑 follows from the observation that for more light bits it is overall more

likely to have at least one light bit set to 1, which means that still with constant probability the first

solution at the boundary is not optimal, and still there are only constantly many 2-bit-flips which

can improve. Also, it is still much more likely to reach the bound 𝐵 exactly than to overshoot it. □

Recall that the (1+1) Swap-EA applies swap mutation in each round with probability 𝑝𝑏 . Next,

we prove that it outperforms the (1+1) EA if 𝑛 − 𝐵 = O(1). To this end, we start with showing

that the expected optimization time from the point on where the first individual with 𝐵 1-bits is

sampled is O(𝐵(𝑛 − 𝐵)).

Lemma 5.3. For any 0 < 𝑝𝑏 < 1, consider the (1+1) Swap-EA on BoundMax𝐵 with uniform
constraint 𝐵. Assume that the initial individual has exactly 𝐵 1-bits and let 𝑇 be the random variable
describing the number of steps until the algorithm finds the optimal solution. Then 𝐸 [𝑇] ≤ 𝐵 (𝑛−𝐵)𝜋2

6𝑝𝑏
.

Proof. We use the fitness level method to derive the upper bound. For this, consider the fitness-

based partition 𝐴0, . . . , 𝐴𝐵 of {0, 1}𝑛 where 𝐴𝑖 is the set of bit strings that have exactly 𝑖 heavy

1-bits. Note that this partition is valid since the number of 1-bits in an offspring can neither increase

nor decrease compared to its parent as we assume the process to start with an individual with

exactly 𝐵 ones and thus a mutation that changes the number of 1-bits would decrease fitness and

thus be rejected.

Let 𝑝𝑖 be a lower bound on the probability of jumping to a fitness level above 𝐴𝑖 assuming that

the current individual is in 𝐴𝑖 . Then, the fitness level method allows us to estimate an upper bound

for 𝐸 [𝑇] as 𝐸 [𝑇] ≤ ∑𝐵−1
𝑖=0

1

𝑝𝑖
(cf. [Wegener 2002, Section 8 Lemma 1]).

We show that the probability 𝑝𝑖 is lower-bounded by 𝑝𝑖 ≥ 𝑝𝑏
(𝐵−𝑖)2
𝐵 (𝑛−𝐵) . For this, consider a bit

string 𝑥 ∈ 𝐴𝑖 recall that it has 𝑖 heavy 1-bits. The swap mutation operator converts 𝑥 to a higher

fitness level if it swaps one of the 𝐵 − 𝑖 heavy 0-bits and one of the 𝐵 − 𝑖 light 1-bits. There are 𝐵
1-bits and 𝑛 − 𝐵 0-bits, since we start with an individual with 𝐵 1-bits and cannot lose 1-bits as this

would decrease fitness. Hence, an improving swap happens with probability
𝐵−𝑖
𝐵
· 𝐵−𝑖
𝑛−𝐵 =

(𝐵−𝑖)2
𝐵 (𝑛−𝐵) .

Since the swap mutation operator is invoked with probability 𝑝𝑏 , we obtain 𝑝𝑖 ≥ 𝑝𝑏
(𝐵−𝑖)2
𝐵 (𝑛−𝐵) .

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

14 Friedrich et al.

Using the fitness level method, this means 𝐸 [𝑇] is at most

𝐵−1∑︁
𝑖=0

1

𝑝𝑖
≤ 𝐵(𝑛 − 𝐵)

𝑝𝑏

𝐵−1∑︁
𝑖=0

1

(𝐵 − 𝑖)2 =
𝐵(𝑛 − 𝐵)

𝑝𝑏

𝐵∑︁
𝑖=1

1

𝑖2
≤ 𝜋2𝐵(𝑛 − 𝐵)

6𝑝𝑏

since the series

∑∞
𝑖=1

1

𝑖2
converges to 𝜋2/6 (the Basel problem). □

For the time until the first individual with 𝐵 1-bits is sampled, we get the following upper bound.

The proof extends the argument of Friedrich et al. [2020, Theorem 9] to the notion that using

balanced mutation with constant probability only adds a constant factor.

Lemma 5.4. For any 0 ≤ 𝑝𝑏 < 1, consider the (1+1) Swap-EA on BoundMax𝐵 with uniform
constraint 𝐵. Let 𝑇 be the random variable describing the number of steps until the algorithm finds a
solution with exactly 𝐵 1-bits. Then, 𝐸 [𝑇] is in O(𝑛 log(𝑛)).

Proof. This is shown for the standard (1+1) EA on OneMax under uniform constraint 𝐵

in [Friedrich et al. 2020, Theorem 9]. This proof is analogous for the optimization of the function

BoundMax𝐵 since any mutation flipping only a single 0-bit is accepted as long as the number of

ones is strictly smaller than 𝐵. If the number of ones is larger than 𝐵, any mutation flipping only a

single 1-bit is accepted. The run time of our algorithm that additionally uses balanced mutation

is the same asymptotically since the balanced mutation does not change the number of ones and

hence only contributes a constant factor to the run time. □

Combining Lemmas 5.3 and 5.4 now yields the following bounds.

Theorem 5.5. For any 0 < 𝑝𝑏 < 1, consider the (1+1) Swap-EA on BoundMax𝐵 . Let 𝑇 be the
random variable describing the number of steps until the algorithm finds the optimum. Assume that
𝑝𝑏 is constant and that 𝐵 = 𝑛 − 𝑑 . If 𝑑 = O(log(𝑛)), then 𝐸 [𝑇] is in O(𝑛 log(𝑛)). If 𝑑 = Ω(log(𝑛)),
𝐸 [𝑇] is in O(𝑛𝑑).

Proof. The expected time until the first solutionwith exactly𝐵 1-bits is obtained is inO(𝑛 log(𝑛))
by Lemma 5.4.

From Lemma 5.3, it follows that the expected time until the optimum is reached from that point

is at most
𝐵 (𝑛−𝐵)𝜋2

6𝑝𝑏
=

𝑑 (𝑛−𝑑)𝜋2

6𝑝𝑏
. For 𝑑 = O(log(𝑛)), this term is in O(𝑛 log(𝑛)), yielding a total

expected optimization time of O(𝑛 log(𝑛)). For 𝑑 = Ω(log(𝑛)), the term is in O(𝑛𝑑), which gives a

total expected optimization time of O(𝑛 log(𝑛) + 𝑛𝑑) = O(𝑛𝑑). □

Next, we show that the run time bound of O
(
𝑛2

)
for the case of 𝐵 = 𝑐𝑛 is tight by giving a

matching lower bound. The proof is similar to that of [Friedrich et al. 2020, Theorem 10], which

treated the case 𝑝𝑏 = 0. We show that for the focal points of the analysis swap mutation does not

help. In more detail, we prove that w.h.p. either Ω(𝑛2) iterations pass without finding the optimum

or the process samples an individual with a constant, positive Hamming distance to the optimum.

Fixing the last missing positions then takes quadratic time.

Theorem 5.6. For any constant 0 ≤ 𝑝𝑏 ≤ 1, consider the (1+1) Swap-EA on BoundMax𝐵 . Let 𝑇
be the random variable describing the number of steps until the algorithm finds the optimum. There is
a constant 0 < 𝑐 < 1 such that, for 𝐵 = 𝑐𝑛, it holds that 𝐸 [𝑇] = Ω(𝑛2).

Proof. We lean on the proof of Theorem 10 in [Friedrich et al. 2020], e.g., we consider the same

bound 𝑐 = 3

4
, whence the constraint is 𝐵 = 3

4
𝑛. The (1+1) EA samples an initial solution with at

most
2

3
𝑛 1-bits w.h.p. due to a Chernoff bound. If 𝑝𝑏 = 1, then the (1+1) Swap-EA never reaches

the optimum 𝑥∗ because a balanced operator cannot increase the number of 1-bits. We can thus

assume 𝑝𝑏 < 1.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 15

Note that the Hamming distance between the initial solution and the 𝑥∗ is linear in 𝑛. We claim

that w.h.p. either Ω(𝑛2) iterations pass or a solution with Hamming distance between 4 and 8 to

the optimal solution is sampled. Let 𝑑 denote that Hamming distance. In their proof, Friedrich et al.

[2020] have shown that the probability of directly jumping from an individual with 𝑑 > 8 to a

solution with 𝑑 < 4 is in O(1
𝑛6
) when employing only the standard mutation operator (𝑝𝑏 = 0). We

note that any application of the swap mutation is also unable to skip the range, since it can reduce

𝑑 by 2 at most. The probability of skipping the range thus remains in O(1/𝑛6) in our case. The

probability that no such jump happens in the first Ω(𝑛2) iterations is therefore at least 1− O(1/𝑛4).
We continue our analysis at the first point in time at which a solution with Hamming distance

between 4 and 8 is sampled. Either the individual already has exactly 𝐵 1-bits or we can apply the

following argument to show that it reaches exactly 𝐵 1-bits before reaching the optimum w.h.p. To

this end, we prove that after 𝑟 =
2 ln(𝑛)
1−𝑝𝑏 iterations the sampled solution will have 𝐵 many 1-bits w.h.p.

but has still not reached the optimum. Again, only standard mutation can increase the number of

1s. By once more employing a Chernoff Bound argument, we get that among 𝑟 iterations w.h.p.

at least ln(𝑛) standard mutation steps will happen. From here, we again refer to [Friedrich et al.

2020], where the probability for reaching exactly 𝐵 many 1-bits after ln(𝑛) standard mutations is

proven to be 1 − 1

𝑛Ω (1) .

Conversely, we prove that w.h.p. the optimal solution 𝑥∗ is not sampled within these 𝑟 =
2 ln(𝑛)
1−𝑝𝑏

iterations for any constant 𝑝𝑏 . Let 4 ≤ 𝑑 ≤ 8 be the number of wrong bits in the current solution 𝑥 ,

i.e., the Hamming distance between 𝑥 and 𝑥∗. To sample 𝑥∗, at least these 𝑑 bits have to change their

value at least once. Let 𝑝flip be an upper bound on the probability of flipping
10
any specified bit in an

iteration. Then the probability to never flip a certain bit in 𝑟 iterations is at least (1−𝑝flip)𝑟 . Now the

probability to not flip all of the 𝑑 incorrect bits in 𝑟 iterations is at least 1− (1− (1− 𝑝flip)𝑟)𝑑 . When

standard bit mutation is applied, we get 𝑝flip ≥ 1

𝑛
. For swap mutation, the probability of flipping

a 1-bit is at most
1

𝐵
, and the probability of flipping any specific 0-bit is at most

1

𝑛−𝐵 = 1

𝑛−𝑐𝑛 = 4

𝑛
,

which is greater than
1

𝑛
and

1

𝐵
= 4

3𝑛
. Hence, we safely assume 𝑝flip =

4

𝑛
. By Bernoulli’s inequality,

we get that the probability of not flipping all 𝑑 wrongly set bits is

1 − (1 − (1 − 𝑝flip)𝑟)𝑑 ≥ 1 −
(
1 −

(
1 − 4

𝑛

)𝑟)𝑑
≥ 1 −

(
4𝑟

𝑛

)𝑑
≥ 1 −

(
8 ln(𝑛)
(1 − 𝑝𝑏) · 𝑛

)
4

≥ 1 − 8
4
ln(𝑛)4

(1 − 𝑝𝑏)4 · 𝑛4
= 1 − O

(
1

𝑛3

)
.

We have established that the algorithms either runs for Ω(𝑛2) iterations or reaches a solution
that has exactly 𝐵 1-bits but is not optimal. Namely, it has a Hamming distance to 𝑥∗ between
4 and 8. This part even holds with high probability. To show 𝐸 [𝑇] = Ω(𝑛2) over all, it suffices

to prove that from this point to an optimal solution requires expected quadratic time. Note that

in the current situation we have 2 to 4 incorrect heavy 0-bits and the same number of incorrect

light 1-bits. We assume that every mutation of the bit string that reduces the Hamming distance is

accepted. For standard bit mutation to achieve this, it must flip at least one of the heavy 0-bit and

one light 1-bit at the same time. The chances for this event are maximum if there are 4 incorrect

bits to choose in each block, but even then the probability is at most
16

𝑛2
. Similarly, regarding swap

mutation the chance of an improvement is at most
4

𝐵
· 4

𝑛−𝐵 = 16

𝑐𝑛 (𝑛−𝑐𝑛) =
256

3𝑛2
. In both cases, even a

single improvement already requires an optimization time in Ω(𝑛2). □

10
Throughout this proof we use the more common term “flipping” to indicate the change of a bit value, regardless of whether

it is by standard bit mutation or swapping.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

16 Friedrich et al.

Algorithm 2: (` + 1) Single-Island Receiver Model

𝑥1, . . . , 𝑥`, 𝑦 ← independent, uniform choices from {0, 1}𝑛

while 𝑦 is not optimum for 𝑓 do
foreach 𝑥𝑖 do

𝑥 ′𝑖 ← mutate(𝑥𝑖)
if 𝑓 (𝑥 ′𝑖) ≥ 𝑓 (𝑥𝑖) then 𝑥𝑖 ← 𝑥 ′𝑖

𝑥𝑖1 , 𝑥𝑖2 ← independent, uniform choices from {𝑥1, . . . , 𝑥`}
𝑦′ ← crossover(𝑥𝑖1 , 𝑥𝑖2)
if 𝑓 (𝑦′) ≥ 𝑓 (𝑦) then 𝑦 ← 𝑦′

We have hence shown that swap mutation is superior to balanced mutation for BoundMax𝐵

at least if 𝑛 − 𝐵 = O(1) since then, the number of possible outcomes of swap mutation is small.

However, this advantage vanishes if 𝑛 − 𝐵 = Θ(𝑛) (Theorem 5.6) as this results in a significantly

higher number of possible mutation outcomes.

6 OPTIMIZATIONWITH CROSSOVER
We are interested whether crossover can break the quadratic barrier for BoundMax𝐵 . For this,

we analyze different scenarios. We start with a (2 + 1) single-receiver island model as described

in [Watson and Jansen 2007] with unbalanced as well as balanced uniform crossover. We then extend

our analysis to a (3 + 1) single-receiver island model with majority vote crossover, see [Friedrich

et al. 2016].

In the (`+1) single-receiver island model, ` instances of the (1+1) EA are running independently

on their own island using standard mutation. After each iteration, crossover is applied to two

randomly selected residents of these ` islands. The offspring replaces the resident on the receiver

island if it has at least the same fitness. See Algorithm 2 for a formalization. In the case of majority

vote crossover, three instead of two out of ` individuals are chosen. Our analysis focuses on the

cases ` = 2 and ` = 3, respectively, as it would not benefit from a larger population.

After analyzing the island models, we consider the (` + 1) GA with balanced uniform crossover

and a diversity mechanism (Algorithm 3). In this setting, a population of ` individuals is maintained

whereby in each iteration, one offspring is created. This happens with probability 𝑝𝑐 by means

of crossover on two randomly chosen individuals, and otherwise by means of standard mutation

on a randomly selected individual. Out of the ` + 1 individuals at the end of each iteration, one

individual with lowest fitness is removed. Ties are broken according to a rule aimed at increasing

diversity. We use Hamming-distance maximization, where an individual is chosen such that the sum

of the pairwise Hamming distances of the remaining population is maximized. We refer to [Dang

et al. 2016, Section 4.2] for details. Again, we focus on ` = 2.

At the end of the section, we analyze a variant of the (2+1) GA that incorporates both balanced

(uniform) crossover and balanced (swap) mutation. We call it the (2+1) Swap-GA. Here, in each

iteration, crossover is applied with probability 𝑝𝑐 and otherwise it performs balanced mutation

with probability 𝑝𝑏 and unbalanced mutation else.

A summary of our results can be found in Table 1. It turns out that for cardinality constraints

that satisfy 𝑛 − 𝐵 = Θ(𝑛), crossover provides polynomial gains over the performance of the

(1+1) Swap-EA, all the way down to an expected running time of O(𝑛 log(𝑛)) for the (2+1) GA

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 17

Algorithm 3: (2+1) GA. Selection ties are broken by maximizing the Hamming distance.

𝑥1, 𝑥2 ← independent, uniform choices from {0, 1}𝑛

while neither 𝑥1 nor 𝑥2 is optimum for 𝑓 do
if 𝑝𝑐 > uniform choice from [0, 1] then

𝑦 ← crossover(𝑥1, 𝑥2)
else

𝑥 ← uniform choice from {𝑥1, 𝑥2}
𝑦 ← mutate(𝑥)

{𝑥1, 𝑥2} ← maximum-fitness subset of {𝑥1, 𝑥2, 𝑦}

as well as the (2+1) Swap-GA. If, however, 𝐵 is additively close to 𝑛 (i.e., 𝑛 − 𝐵 = O(1)), then we

show that not even the (2+1) GA can be better than quadratic. This is in stark contrast to the

(1+1) Swap-EA optimizing those instances in timeO(𝑛 log(𝑛))without any crossover (Theorem 5.5).

The (2+1) Swap-GA, which combines the advantages of both balanced crossover and mutation,

indeed maintains its superior performance also for 𝑛 − 𝐵 = O(1).

6.1 (2+1) Island Model with (Balanced) Uniform Crossover
We show that the run time is reduced from O

(
𝑛2

)
for the (1+1) Swap-EA to O

(
𝑛2/log(𝑛)

)
in

this setting. For this, we divide the optimization process into two stages. First we wait until the

individuals on all non-receiver-islands have 𝐵 1-bits and only a certain number of heavy 0-bits.

This step is captured in Lemma 6.1. Then, we analyze the time it takes the crossover to sample the

optimum given that we have passed the first stage. We note that our fitness function ensures that

we never go back to the first stage.

Lemma 6.1. Consider the (1+1) EA using only standard mutations on BoundMax𝐵 starting with
an individual with exactly 𝐵 1-bits. Let 𝑇 be the random variable describing the number of steps until
the algorithm finds a solution with at most 𝑘 ∈ N+ heavy 0-bits. Then, 𝐸 [𝑇] is in O

(
𝑛2

𝑘

)
.

Proof. We find an upper bound by employing the fitness level method with fitness levels

𝐴≤𝑘 , 𝐴𝑘+1, . . . , 𝐴𝐵 , where 𝐴𝑖 is the set of bit strings with 𝑖 heavy 0-bits and 𝐴≤𝑘 contains all bit

strings with at most 𝑘 such bits. Note that the partition is not over all bit strings of length 𝑛 but

only over those with exactly 𝐵 1-bits as we assume that the optimization starts with one such

individual. The initial solution is at worst in 𝐴𝐵 and we are interested in the time until a solution

in 𝐴≤𝑘 is first sampled.

Let 𝑝𝑖 be the probability of leaving the fitness level 𝐴𝑖 in an iteration. We show that 𝑝𝑖 ≥ 𝑖2

𝑒𝑛2
. To

leave the level 𝐴𝑖 , it suffices to flip one of the 𝑖 heavy 0-bits as well as one of the 𝑖 light 1-bits while

leaving all other bits unchanged. The probability for this event is
𝑖
𝑛
· 𝑖
𝑛
· (1 − 1

𝑛
)𝑛−2 ≥ 𝑖2

𝑒𝑛2
.

We now apply the fitness level method to find the desired upper bound. Let 𝑇 ′ be the random
variable denoting the number of iterations to reach level 𝐴≤𝑘 . We get

𝐸 [𝑇 ′] ≤
𝐵∑︁

𝑖=𝑘+1

1

𝑝𝑖
≤

𝐵∑︁
𝑖=𝑘+1

𝑒𝑛2

𝑖2
= 𝑒𝑛2

𝐵∑︁
𝑖=𝑘+1

1

𝑖2
.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

18 Friedrich et al.

Then we use the integral to bound the sum. Because
1

𝑖2
is strictly decreasing and we decrease the

lower end by one, we get a valid upper bound of

𝐸 [𝑇 ′] ≤ 𝑒𝑛2
∫ 𝐵

𝑘+1−1
𝑖−2 𝑑𝑖 = 𝑒𝑛2

[
−1 · 𝑖−1

]𝐵
𝑘
= 𝑒𝑛2

(
− 1
𝐵
+ 1

𝑘

)
.

This implies a total run time in O
(
𝑛2

𝑘

)
. □

In order for crossover to be able to create the optimal solution, we need the individuals 𝑥 and 𝑦

on the first two islands to be free of so called blocking bits. We define a blocking bit as a position 𝑖

such that 𝑥𝑖 = 𝑦𝑖 = 0 if 𝑖 ≤ 𝐵 and 𝑥𝑖 = 𝑦𝑖 = 1 if 𝑖 > 𝐵. Intuitively, a blocking bit is a position for

which both individuals differ from the optimal solution. By counting the possibilities to remove

a blocking bit by means of flipping two bits, one gets an estimate for the probability to remove

blocking bits.

Lemma 6.2. Let 𝑥,𝑦 ∈ {0, 1}𝑛 be two individuals that both have exactly 𝐵 1-bits where 𝐵 = 𝑐𝑛 for
some constant 0 < 𝑐 < 1. Assume further that both 𝑥 and 𝑦 have at most 𝑖 = 𝑜 (𝑛) heavy 0-bits and
there is at least one blocking bit. The probability that a standard mutation on one of 𝑥 and 𝑦 removes a
blocking bit without decreasing fitness is at least min(𝑐,1−𝑐)

2𝑒𝑛
for large enough 𝑛.

Proof. We consider the event that a blocking bit is removed by only swapping the blocking bit

with another bit in the same block of the chosen individual 𝑥 . If the blocking bit is a heavy bit of 𝑥 ,

the bit that it is swapped with must be at a position where both 𝑥 and 𝑦 have a 1-bit as otherwise

the number of blocking bits would remain unchanged. Analogously, if the blocking bit is light, its

swap partner must be at a position for which both individuals are 0. We call such bits suitable bits.
Since 𝑥 and 𝑦 have at most 𝑖 heavy 0-bits and hence at most 𝑖 light 1-bits each, there are at least

𝐵 − 2𝑖 = 𝑐𝑛 − 2𝑖 suitable heavy bits and 𝑛 − 𝐵 − 2𝑖 = (1− 𝑐)𝑛 − 2𝑖 suitable light bits. The probability
𝑝 of removing a blocking bit hence becomes

𝑝 ≥ min(𝑐, 1 − 𝑐)𝑛 − 2𝑖
𝑛2

(
1 − 1

𝑛

)𝑛−2
≥ min(𝑐, 1 − 𝑐)

𝑒𝑛
− 2𝑖

𝑒𝑛2

since 𝑖 = 𝑜 (𝑛), we have 2𝑖
𝑒𝑛2

= 𝑜
(
1

𝑛

)
and hence 𝑝 ≥ min(𝑐,1−𝑐)

2𝑒𝑛
for large enough 𝑛. □

Next, we analyze the probability that, assuming the parent individuals are free of blocking bits,

balanced uniform crossover samples the optimal solution.

Lemma 6.3. Let 𝑥,𝑦 ∈ {0, 1}𝑛 be two individuals without blocking bits that both have exactly
𝐵 1-bits and Hamming distance ℎ. For any 𝑧 ∈ {0, 1}𝑛 , the sampling probability 𝑝 (𝑧 | 𝑥,𝑦) of the
balanced uniform crossover is either 0 or Θ

(√
ℎ/2ℎ

)
.

Proof. Note that for each heavy bit position 𝑖 on which 𝑥 and 𝑦 agree, we have 𝑥𝑖 = 𝑦𝑖 = 1 as

otherwise there would be blocking bits. Let 𝑘 be the number of heavy bits in which the individuals

differ. Since both have 𝐵 1-bits, the number of differing light bits is also 𝑘 . Each position in the

light block for which one of the individuals is 1 is a differing position as otherwise there would be

blocking bits. We thus have ℎ = 2𝑘 for the Hamming distance. Among those ℎ positions, both 𝑥

and 𝑦 have 𝑘 1-bits and 𝑘 0-bits.

The balanced uniform crossover chooses exactly 𝑘 1-bits at the differing positions with each of

the

(
ℎ
𝑘

)
possible outcomes being equally likely. We lower-bound the probability 1/

(
2𝑘
𝑘

)
via Stirling’s

approximation as

√
𝜋𝑘/22𝑘 via the following computation.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 19

To lower-bound the probability 1/
(
2𝑘
𝑘

)
, we give an upper bound for

(
2𝑘
𝑘

)
= (2𝑘)!/(𝑘!)2. Using

Stirling’s approximation, we get

√
2𝜋𝑛

(𝑛
𝑒

)𝑛
𝑒

1

12𝑛+1 ≤ 𝑛! ≤
√
2𝜋𝑛

(𝑛
𝑒

)𝑛
𝑒

1

12𝑛 .

This yields (
2𝑘

𝑘

)
≤

√
4𝜋𝑘

(
2𝑘
𝑒

)
2𝑘

𝑒
1

24𝑘(√
2𝜋𝑘

(
𝑘
𝑒

)𝑘
𝑒

1

12𝑘+1

)
2
=

2
2𝑘

√
𝜋𝑘
· 𝑒 1

24𝑘
− 2

12𝑘+1 ≤ 2
2𝑘

√
𝜋𝑘

.

The last step uses
1

24𝑘
− 2

12𝑘+1 ≤ 0. As 𝑘 = ℎ/2, we get that the crossover finds any specific solution

with probability at least

√︁
𝜋
2

√
ℎ

2
ℎ . □

With this, we derive the following upper bound for the (2 + 1) single-receiver island model. It is

independent of whether the balanced uniform crossover or the regular variant is used. The idea is

to first estimate the time until both individuals have 𝐵 1-bits and at most log
2
(𝑛/4) heavy 0-bits by

using Lemmas 5.4 and 6.1. Then, drift analysis is employed on a potential function reflecting the

number of blocking bits as well as the probability of the crossover sampling the optimum given

that there are no more blocking bits, by employing Lemmas 6.2 and 6.3.

Theorem 6.4. The expected optimization time of the (2+1) single-receiver island model using
(balanced) uniform crossover for BoundMax𝐵 with 𝐵 = 𝑐𝑛 for any constant 0 < 𝑐 < 1 is in𝑂

(
𝑛2

log(𝑛)

)
.

Proof. We analyze three stages separately. The first one is the run time until both EA islands

have an individual with 𝐵 1-bits and at most log
2
(𝑛/4) heavy 0-bits. Secondly, we look at the time

until there are no blocking bits, and the third stages is the time until the balanced uniform crossover

samples the optimal solution from individuals without blocking bits.

From Lemmas 5.4 and 6.1 we get that each EA island produces an individual with 𝐵 1-bits and at

most log
2
(𝑛/4) heavy 0-bits in O

(
𝑛 log(𝑛) + 𝑛2

log(𝑛)

)
iterations. The time until both EA islands have

reached this point is at most twice as long, yielding the same asymptotic run time.

Assuming two individuals with at most log
2
(𝑛)/4 heavy 0-bits, we now employ drift analysis

over the number of blocking bits to analyze how long it takes until there are no blocking bits left.

Let therefore𝑋𝑡 be the potential in iteration 𝑡 . We define the potential to be 0 if the optimal solution

is on the receiver island. Otherwise, the potential is

𝑋𝑡 = 𝑖 · 2𝑒𝑛

min(𝑐, 1 − 𝑐) + 𝑛,

where 𝑖 is the number of blocking bits. We upper-bound the expected change in potential for each

iteration, given 𝑖 .

Negative drift. The potential increases only if a 1-bit and a 0-bit within a block of one individual

are flipped where the other individual has the respective inverted bit as follows. If a bit is the same

in both parents, swapping it with another bit would at best create a blocking bit while also removing

a blocking bit. Swapping bits between blocks would be rejected if a blocking bit was created because

the fitness decreases. Because both individuals have at most log
2
(𝑛)/4 heavy 0-bits and respectively

log
2
(𝑛)/4 light 1-bits, either block of one parent has at most log

2
(𝑛)/4 bits that can be swapped.

The probability of this event is at most
log

2 (𝑛)
16𝑛2

and it increases the potential by at most
2𝑒𝑛

min(𝑐,1−𝑐)
since either the 1-bit or the 0-bit in a block can cause a blocking bit, not both. It is also possible

that multiple bits are swapped at once, but this probability decreases rapidly and can be accounted

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

20 Friedrich et al.

for with a constant factor 𝛾 . Therefore, the resulting negative drift is 2𝑒𝑛
min(𝑐,1−𝑐) ·𝛾

log
2 (𝑛)

16𝑛2
= 𝑜 (1) and

approaches 0 for large n.

Positive drift for 𝑖 > 0. The potential decreases by 2𝑒𝑛
min(𝑐,1−𝑐) for each blocking bit that is removed.

If there is any blocking bit, we get from Lemma 6.2 that a blocking bit is removed with probability

at least
min(𝑐,1−𝑐)

2𝑒𝑛
. The overall positive drift for 𝑖 > 0 is therefore at least 1.

Positive drift for 𝑖 = 0. For the last stage, we now lower bound the probability of creating the

optimal solution in the crossover given that there are no blocking bits. At this point, individuals

with at most log
2
(𝑛)/4 heavy 0-bits have been sampled on both islands and any individual with

more 0-bits has been rejected. With at most log
2
(𝑛)/4 heavy 0-bits, both current individuals have

at most log
2
(𝑛)/2 bits that differ from the optimal solution. They therefore differ from one another

in at most log
2
(𝑛) bits. We get from Lemma 6.3 with𝑚 = log

2
(𝑛) that balanced uniform crossover

samples the optimal solution at this point with a probability of at least

√︁
𝜋
2

√
log

2
(𝑛)

2
log

2
(𝑛) =

√︁
𝜋
2

√
log

2
(𝑛)

𝑛
.

For (unbalanced) uniform crossover, the optimal solution is sampled with probability 1/2𝑚 . Hence,
we get for large enough 𝑛, that the probability of sampling the optimal solution for both operators

is at least 1/2𝑚 = 1/𝑛. Since the potential reduces by 𝑛 when the optimal solution is sampled, this

results in a positive drift of at least 1.

Hence, there is a constant 𝛿 > 0 such that the drift 𝐸 [𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑠] ≤ 𝛿 . By applying the

additive drift theorem, we therefore get an expected run time of at most 𝛿 ·
(
log

2
(𝑛) 2𝑒𝑛

min(𝑐,1−𝑐) + 𝑛
)

when starting with solutions that have at most log
2
(𝑛) blocking bits. This is in O(𝑛 log(𝑛)). The

overall run time is then O
(

𝑛2

log(𝑛) + 𝑛 log(𝑛)
)
= O

(
𝑛2

log(𝑛)

)
. □

We further prove an identical lower bound. Lemma 6.6 gives a lower bound in cases where the

first solution with 𝐵 1-bits has few 0-bits. Theorem 6.7 derives a general lower bound. The following

lemma bounds the probability 𝑣𝑖 required for the fitness level method.

Lemma 6.5. Consider the (1+1) EA using only standard mutation on BoundMax𝐵 with cardinality
constraint 𝐵 = 𝑐𝑛 for some constant 𝑐 > 0. Then the following two statements hold.

(i) If the optimization starts with an individual with exactly 𝐵 1-bits and 𝑏 heavy 0-bits, then, for
all 0 ≤ 𝑖 < 𝑏, the probability 𝑣𝑖 that there is an iteration such that the current individual has
exactly 𝑖 heavy 0-bits is at least 1 − 𝑒𝑖2

2𝑛2
.

(ii) If the optimization starts with an individual with 𝑏 > 𝐵 1-bits, then the probability 𝑣 that there
is an iteration such that the current individual has fewer than 𝐵 1-bits before the first individual
with exactly 𝐵 1-bits is sampled is at most 𝑒𝐵

𝑛
.

Proof. For the first statement, we define the fitness levels 𝐴0, 𝐴1, . . . , 𝐴𝐵 , where 𝐴𝑖 is the set of

bit strings of length 𝑛 with 𝑖 heavy 0-bits and 𝐵 1-bits. Note that these fitness levels partition the

set of all individuals reachable in the process since no individual with less than 𝐵 1-bits is ever

accepted. We further use the notation 𝐴≤𝑖 to describe the set 𝐴0 ∪𝐴1 ∪ . . . ∪𝐴𝑖 .

We denote by 𝐴 𝑗 → 𝐴≤𝑖 the event that the process jumps, in one iteration, from the current

individual being in 𝐴 𝑗 to a state in which the individual is in 𝐴≤𝑖 . As shown by Doerr and Kötzing

[2021, Lemma 3.10], if we can prove for a 𝑞 ∈ [0, 1] that it satisfies Pr
[
𝐴 𝑗 → 𝐴𝑖 | 𝐴 𝑗 → 𝐴≤𝑖

]
≥ 𝑞

for all 𝑗 > 𝑖 , then 𝑞 is a valid lower bound for the probability 𝑣𝑖 . Equivalently, if we find a 𝑞′ such
that Pr

[
𝐴 𝑗 → 𝐴≤𝑖−1 | 𝐴 𝑗 → 𝐴≤𝑖

]
≤ 𝑞′, then this implies 𝑣𝑖 ≥ 1 − 𝑞′.

We therefore estimate Pr

[
𝐴 𝑗 → 𝐴≤𝑖−1 | 𝐴 𝑗 → 𝐴≤𝑖

]
. Note that

Pr

[
𝐴 𝑗 → 𝐴≤𝑖−1 | 𝐴 𝑗 → 𝐴≤𝑖

]
=
Pr

[
(𝐴 𝑗 → 𝐴≤𝑖−1) ∩ (𝐴 𝑗 → 𝐴≤𝑖)

]
Pr

[
𝐴 𝑗 → 𝐴≤𝑖

] =
Pr

[
𝐴 𝑗 → 𝐴≤𝑖−1

]
Pr

[
𝐴 𝑗 → 𝐴≤𝑖

] .

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 21

In order to jump from 𝐴 𝑗 with 𝑗 > 𝑖 to 𝐴≤𝑖 , at least 𝑗 − 𝑖 heavy 0-bits need to be “swapped”, i.e.,

flipped at the same time, with 𝑗 − 𝑖 light 1-bits in a single iteration. The probability that this occurs

for a fixed set of 𝑗 − 𝑖 heavy 0-bits and 𝑗 − 𝑖 light 1-bits is 𝑛−2(𝑗−𝑖) . A union bound over all choices

of such pairs of sets gives Pr

[
𝐴 𝑗 → 𝐴≤𝑖

]
≤

(
𝑗

𝑗−𝑖
)2
𝑛−2(𝑗−𝑖) .

On the other hand, swapping any set of 𝑗 − 𝑖 heavy 0-bits with any set of 𝑗 − 𝑖 light 1-bits and
not changing any other bit is sufficient to jump from 𝐴 𝑗 to 𝐴≤𝑖 , so

Pr

[
𝐴 𝑗 → 𝐴≤𝑖

]
≥

(
𝑗

𝑗 − 𝑖

)
2

1

𝑛2(𝑗−𝑖)

(
1 − 1

𝑛

)𝑛−2(𝑗−𝑖)
≥

(
𝑗

𝑗 − 𝑖

)
2

1

2𝑒𝑛2(𝑗−𝑖)
.

In conclusion,

Pr

[
𝐴 𝑗 → 𝐴≤𝑖−1 | 𝐴 𝑗 → 𝐴≤𝑖

]
≤

(
𝑗

𝑗−𝑖+1
)2
𝑛−2(𝑗−𝑖+1)(

𝑗
𝑗−𝑖

)2 (2𝑒𝑛2(𝑗−𝑖))−1 =

(
𝑗

𝑗−𝑖+1
)2
2𝑒𝑛2(𝑗−𝑖)(

𝑗
𝑗−𝑖

)2
𝑛2(𝑗−𝑖+1)

=
2𝑒𝑖2

(𝑗 − 𝑖 + 1)2𝑛2 ≤
𝑒𝑖2

2𝑛2
,

where the last step holds for all 𝑖 < 𝑗 as then 𝑗 − 𝑖 + 1 ≥ 2.

For the second statement, we instead define the fitness level 𝐴𝑖 as the set of bit strings with

exactly 𝑖 1-bits for all 0 ≤ 𝑖 ≤ 𝑛. To bound the probability of ever jumping from a level 𝐴 𝑗 with

𝑗 > 𝐵 to a level with 𝑖 < 𝐵, we note that for any 𝑗 > 𝐵, Pr
[
𝐴 𝑗 → 𝐴≤𝑖

]
≤

(
𝑗

𝑗−𝑖
)
𝑛−(𝑗−𝑖) which

follows by an analogous argument as above, now the 𝑗 − 𝑖 bits only need to be flipped not swapped.

Similarly, we obtain for any 𝑗 > 𝐵, Pr
[
𝐴 𝑗 → 𝐴≤𝑖

]
≥

(
𝑗

𝑗−𝑖
)
𝑛−(𝑗−𝑖)/(2𝑒) and thus

Pr

[
𝐴 𝑗 → 𝐴≤𝑖−1 | 𝐴 𝑗 → 𝐴≤𝑖

]
≤

(
𝑗

𝑗−𝑖+1
)
2𝑒𝑛 𝑗−𝑖(

𝑗
𝑗−𝑖

)
𝑛 𝑗−𝑖+1

=
2𝑒𝑖

(𝑗 − 𝑖 + 1)𝑛 ≤
𝑒𝑖

𝑛
.

Inserting 𝑖 = 𝐵 concludes the proof. □

In the next lemma, we use the above findings to derive a lower tail bound on the number of steps

needed to reduce a solution with exactly 𝐵 1-bits and 𝑏 heavy 1-bits to a solution with 𝑎 heavy

1-bits. Our method is similar to that used by Witt [Witt 2014]. However, the bounds in [Witt 2014]

are not applicable directly to our case so we use a modified version.

Lemma 6.6. Consider the (1+1) EA using only standard mutation on BoundMax𝐵 with cardinality
constraint 𝐵 = 𝑐𝑛, for some constant 𝑐 > 0, optimizing an individual with exactly 𝐵 1-bits and 𝑏 heavy
0-bits. Let𝑇 be the random variable describing the number of steps until the algorithm finds a solution
with at most 𝑎 heavy 0-bits. If 𝑏 = 𝑜 (𝑛), 𝑎 ≥ 1, and 𝑏 = 𝜔 (𝑎), then 𝐸 [𝑇] ≥ (1 − 𝑜 (1)) 𝑛2

𝑎+1 and

Pr

[
𝑇 ≤ 𝑛2

2𝑒2 (𝑎 + 1)

]
≤ exp

(
− 𝑎

8𝑒

)
+ 𝑒𝑏3

2𝑛2
.

Proof. To bound the expectation of 𝑇 , we employ the fitness level method for lower bounds

from[Doerr and Kötzing 2021]. We define the fitness levels 𝐴≤𝑎, 𝐴𝑎+1, . . . , 𝐴𝐵 , where 𝐴𝑖 is the set of

𝑛-bit strings with exactly 𝐵 1-bits and 𝑖 heavy 0-bits. Set 𝐴≤𝑎 contains all bit strings with exactly 𝐵

1-bits and at most 𝑎 heavy 0-bits. Again, the levels partition the relevant search space.

We are interested in the time until a solution in 𝐴≤𝑎 is sampled for the first time. Let 𝑝𝑖 be the

probability of leaving the fitness level 𝐴𝑖 in one iteration. Because at least one heavy 0-bit and one

light 1-bit needs to be flipped simultaneously for that, we get 𝑝𝑖 ≤ 𝑖2

𝑛2
.

Furthermore, let 𝑣𝑖 be the probability of ever visiting level 𝐴𝑖 when starting in 𝐴𝑏 . Lemma 6.5 (i)

gives 𝑣𝑖 ≥ 1 − 𝑒𝑖2

𝑛2
which is lower bounded by 1 − 𝑜 (1) for all 𝑖 ≤ 𝑏 = 𝑜 (𝑛). The fitness level method

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

22 Friedrich et al.

implies 𝐸 [𝑇] ≥ ∑𝑏
𝑖=𝑎+1

𝑣𝑖
𝑝𝑖
≥ (1 − 𝑜 (1))∑𝑏

𝑖=𝑎+1
𝑛2

𝑖2
. We use an integral to bound the sum.

𝐸 [𝑇] ≥ (1 − 𝑜 (1))𝑛2
∫ 𝑏

𝑎+1
𝑥−2 d𝑥 = (1 − 𝑜 (1))𝑛2

[
−𝑥−1

]𝑏
𝑎+1

= (1 − 𝑜 (1))𝑛2
(
−1
𝑏
+ 1

𝑎 + 1

)
= (1 − 𝑜 (1))

(
1 − 𝑎 + 1

𝑏

)
𝑛2

𝑎 + 1 = (1 − 𝑜 (1)) 𝑛2

𝑎 + 1 ,

where we used 𝑏 = 𝜔 (𝑎).
We now turn to the probability bound in the second part of the lemma. Recall that we derived

above that the probability of skipping level 𝐴𝑖 is at most
𝑒𝑖2

2𝑛2
. We show that likely none of the levels

𝐴𝑖 for 𝑎 ≤ 𝑖 ≤ 𝑏 are skipped. We denote this event by E. Conditioned on E, the time spent in each

of these levels is an independent geometric random variable. We subsequently apply a Chernoff

bound on their sum. First note that, by a union bound, we get that the probability of skipping any

of the levels 𝐴𝑖 for 𝑎 ≤ 𝑖 ≤ 𝑏 is

Pr

[
E
]
≤

𝑏∑︁
𝑖=𝑎

𝑒𝑖2

2𝑛2
≤ 𝑒𝑏3

2𝑛2
.

Denote by 𝑇𝑖 the (random) time spent in level 𝐴𝑖 . Conditioned on E, each 𝑇𝑖 (for 𝑎 ≤ 𝑖 ≤ 𝑏) is

an independent geometric random variable with success probability 𝑝𝑖 ≤ 𝑖2

𝑛2
. Indeed, if level 𝐴𝑖 is

visited, the number of steps spent there and the index of the next level visited after 𝐴𝑖 are in fact

independent. Thus, conditioning on the event that the level visited after 𝐴𝑖 is 𝐴𝑖−1 for all 𝑖 does not
influence the number of time spent in each level.

Accordingly, conditioned on E, we have that 𝑇 =
∑𝑏

𝑖=𝑎𝑇𝑖 where each 𝑇𝑖 is an independent

geometric random variable and 𝐸 [𝑇 | E] = ∑𝑏
𝑖=𝑎

1

𝑝𝑖
≥ ∑𝑏

𝑖=𝑎
𝑛2

𝑖2
= (1 − 𝑜 (1)) 𝑛2

𝑎+1 as shown above. Let

𝑝min = min{𝑝1, 𝑝2, . . . , 𝑝𝑛}. We refer to Janson [Janson 2018, Theorem 3.1], who showed that if 𝑋 is

a sum of independent geometric variables 𝑋𝑖 with success probability 𝑝𝑖 , then for any _ < 1 we

have,

Pr[𝑋 ≤ _𝐸 [𝑋]] ≤ exp (−𝑝min 𝐸 [𝑋] (_ − 1 − ln(_))) .

In our case 𝑝min ≥ 𝑎2

2𝑒𝑛2
and 𝐸 [𝑇 | E] ≥ 𝑛2

2(𝑎+1) , thus choosing _ = 𝑒−2 gives

Pr

[
𝑇 ≤ 𝑛2

2𝑒2 (𝑎 + 1) | E
]
≤ exp

(
− 𝑎2

4𝑒 (𝑎 + 1) (𝑒
−2 − 1 + 2)

)
≤ exp

(
− 𝑎

8𝑒

)
,

where we used that 𝑎 ≥ 1, whence 𝑎 + 1 ≤ 2𝑎. Let T abbreviate the event that 𝑇 ≤ 𝑛2/2𝑒2 (𝑎 + 1).

Pr[T] = Pr

[
T | E

]
· Pr

[
E
]
+ Pr

[
T | E

]
· Pr

[
E

]
≤ Pr

[
T | E

]
+ Pr

[
E

]
≤ exp

(
− 𝑎

8𝑒

)
+ 𝑒𝑏3

2𝑛2
. □

Using the last two preparatory lemmas, we now present a lower bound on the expected running

time of our island model that matches the upper bound in Theorem 6.4. Note that we prove

Theorem 6.7 below only for balanced uniform crossover while Theorem 6.4 also holds for the

unbalanced version. We believe that the lower bound can be generalized but this may involve a

more tedious case distinction.

Theorem 6.7. There exists a constant 0 < 𝑐 < 1 such that the expected optimization time of the
(2+1) single-receiver island model using balanced uniform crossover for BoundMax𝐵 with cardinality
constraint 𝐵 = 𝑐𝑛 is in Ω

(
𝑛2

log(𝑛)

)
.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 23

Proof. We choose 𝑐 = 1/8 and show that there is at least a constant probability that the optimal

solution is not sampled within the first 𝑟𝑛2/log(𝑛) iterations, where 𝑟 is a constant to be fixed later.

Note that balanced crossover can only sample the optimal solution if both parent individuals

have exactly 𝐵 1-bits. We show that with constant probability on both non-receiver islands the

first individual with exactly 𝐵 1-bits has a linear number of heavy 0-bits. We then use the tail

bound from Lemma 6.6 to show that in the following 𝑟𝑛2/log(𝑛) iterations (again with constant

probability) no individual with at most log(𝑛) heavy 0-bits is sampled. We finally show that, under

this condition, it is sufficiently unlikely that crossover creates the optimum solution in this phase.

Fix some non-receiver island. We claim that with constant probability, the individual on the

island does not achieve a state with exactly 𝐵 1-bits and at most log(𝑛) heavy 0-bits within the first

𝑟𝑛2/log(𝑛) iterations. By a Chernoff bound, we get that the first sampled individual has more than

𝐵 = 𝑛/8 1-bits w.h.p. Then, by Lemma 6.5 (ii), the probability of ever jumping from a state with

𝑗 > 𝐵 1-bits to a state with 𝑖 < 𝐵 1-bits before the first individual with exactly 𝐵 1-bits is sampled

is at most
𝑒𝐵
𝑛

= 𝑒
8
. Hence, with probability at least (1 − 𝑜 (1)) (1 − 𝑒/8), the first individual with

exactly 𝐵 1-bits on our island is obtained before the first individual with strictly less than 𝐵 1-bits

is sampled. In this case, no bias regarding the number of heavy 1-bits can occur and thus the first

time our individual has exactly 𝐵 1-bits, these bits are distributed uniformly within the bit string.

By another Chernoff bound, the number of heavy 0-bits is thus linear in 𝑛 w.h.p.

Now we get from Lemma 6.5 (i) that the probability of never obtaining an individual with 𝑖 =
√
𝑛

heavy 0-bits when starting with linearly many heavy 0-bits is at most
𝑒
2𝑛

= 𝑜 (1). We thus get that

with probability at least (1 − 𝑜 (1)) (1 − 𝑒/8), there is an iteration in which our individual has

√
𝑛

heavy 0-bits. We show that from this point forward, with probability 1− 𝑜 (1), the number of heavy

0-bits after 𝑟𝑛2/log(𝑛) iterations is still greater than log(𝑛). Denoting by 𝑇 the (random) number

of steps until there are at most 𝑎 = log(𝑛) heavy 0-bits when starting at 𝑏 =
√
𝑛 heavy 0-bits, we

get from the tail bound in Lemma 6.6 that

Pr

[
𝑇 >

𝑛2

2𝑒2 (log(𝑛) + 1)

]
≥ 1 − exp

(
− log(𝑛)

8𝑒

)
− 𝑒

2

√
𝑛
= 1 − 𝑜 (1).

In total, with probability at least (1 − 𝑜 (1)) (1 − 𝑒/8), our individual still has more than log(𝑛)
heavy 0-bits after 𝑟𝑛2/log(𝑛) iterations, where 𝑟 = 1

3𝑒2
. Accordingly, the probability that this does

not occur on one island is in Ω(1) and, as both islands are independent, with probability in Ω(1) it
occurs on both islands.

Conditioned on this event, we show that the probability that balanced crossover samples the

optimal solution within these first 𝑟𝑛2/log(𝑛) iterations is 𝑜 (1). Again, the probability that crossover
samples the optimum is 0 until both individuals on the non-receiver islands have exactly 𝐵 1-bits.

The first time both these individuals have exactly 𝐵 1-bits, we may now assume that for the

following 𝑟𝑛2/log(𝑛) iterations, both individuals have at least log(𝑛) heavy 0-bits and thus their

Hamming distance is at least 4 log(𝑛) assuming that they are free of blocking bit positions (positions

at which both individuals have a heavy 0-bit or a light 1-bit), which we may freely assume as

otherwise the probability of sampling the optimum by means of crossover is 0 due to the inheritance

respectfulness of our operator. Thus, by Lemma 6.3, the probability that the optimum is not sampled

within the first 𝑟𝑛2/log(𝑛) iterations is at least

(
1 −

√︁
4 log(𝑛)
𝑛4

)𝑟𝑛2/log(𝑛)

≥
(
1 − 1

𝑛3

)𝑛2

= 1 − 𝑜 (1). □

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

24 Friedrich et al.

6.2 (3+1) Island Model with Majority Vote Crossover
We further reduce the optimization time to O

(
𝑛
√
𝑛
)
by instead using the deterministic majority vote

crossover as introduced in [Friedrich et al. 2016]. This operator requires three parent individuals and

sets each bit in the offspring to the value that the majority of the parents exhibits at the respective

position.

Theorem 6.8. The expected optimization time for BoundMax𝐵 with 𝐵 = 𝑐𝑛 for constant 0 < 𝑐 < 1

in the (3+1) single-receiver island model with majority vote crossover operator is in 𝑂
(
𝑛
√
𝑛
)
.

Proof. We first wait until all EA islands have sampled individuals with 𝐵 1-bits. By Lemma 5.4,

this takes parallel time O(𝑛 log(𝑛)).
Let 𝑇 be the random variable describing the number of iterations until the optimum is sampled

starting with three individuals with 𝐵 1-bits. By rewriting the definition of the expected value, we

have

𝐸 [𝑇] =
∞∑︁
𝑡=1

Pr[𝑇 ≥ 𝑡] ≤ 𝑛
√
𝑛 ·

∞∑︁
𝑟=0

Pr

[
𝑇 ≥ 𝑟𝑛

√
𝑛
]
. (1)

Note that we switched from the number of iterations 𝑡 to the number 𝑟 of cycles of 𝑛
√
𝑛 iterations.

Further, Pr[𝑇 ≥ 0] = 1 and Pr[𝑇 ≥ 𝑡 + 1] = Pr[𝑇 ≥ 𝑡] · (1 − Pr[𝑇 = 𝑡 | 𝑇 ≥ 𝑡]). Hence,

Pr[𝑇 ≥ 𝑡 + 1] =
𝑡∏
𝑖=1

(1 − Pr[𝑇 = 𝑖 | 𝑇 ≥ 𝑖]) ≤ 1 − Pr[𝑇 = 𝑡 | 𝑇 ≥ 𝑡] .

In order to estimate Pr[𝑇 = 𝑡 | 𝑇 ≥ 𝑡], we defineS as the event that majority vote crossover succeeds

in creating the optimum in a single step, and E𝑘 that there are at most 𝑘 wrong bits in each of

the two blocks of each individual. The occurrence of S given E𝑘 holds means that necessarily no

wrongly set bit is shared by two or more individuals. Suppose these errors inside each block are

uniformly distributed and independent from the previous cycle, then

Pr[S | E𝑘] ≥
(
𝐵−𝑘
𝑘

)(
𝐵
𝑘

) (
𝐵−2𝑘
𝑘

)(
𝐵
𝑘

) · (𝑛−𝐵−𝑘𝑘

)(
𝑛−𝐵
𝑘

) (
𝑛−𝐵−2𝑘

𝑘

)(
𝑛−𝐵
𝑘

)
≥

(
1 − 6𝑘2

𝐵

)
·
(
1 − 6𝑘2

𝑛 − 𝐵

)
= 1 − 6𝑘2𝑛 + 36𝑘4

(𝑐 − 𝑐2)𝑛2 ,

because of the following reasons. The majority vote crossover succeeds if there is no bit position

where at least two individuals have an incorrect value. For the first block of 𝐵 bits, the second

individual does not share an incorrect bit with the first individual with probability at least

(
𝐵−𝑘
𝑘

)
/
(
𝐵
𝑘

)
.

Similarly, third individual does not share an incorrect bit with neither the first nor second individual

with probability at least

(
𝐵−2𝑘
𝑘

)
/
(
𝐵
𝑘

)
. Using an analogous estimation for the second block of 𝑛−𝐵 bits

yields the first inequality. The second inequality employs the same estimate as used in [Friedrich

et al. 2016, Theorem 3.3].

By Lemma 6.1 we get that the expected number of heavy 0-bits after 𝑟 · 𝑛
√
𝑛 − 1 iterations is at

most 𝑐′
√
𝑛/𝑟 for a constant 𝑐′ and large enough 𝑛. As each individual has 𝐵 1-bits, the number of

light 1-bits is the same. Further, we have Pr[𝑇 = 𝑡 | 𝑇 ≥ 𝑡] ≥ Pr[S | E𝑘] with 𝑘 being the maximum

number of wrongly set bits in each block after 𝑡 iterations. Hence, there is a constant 𝑐′′ such that

Pr

[
𝑇 = 𝑟𝑛

√
𝑛 − 1 | 𝑇 ≥ 𝑟𝑛

√
𝑛 − 1

]
is at least

1 − 6(𝑐′/𝑟)2 + 36(𝑐′/𝑟)4
(𝑐 − 𝑐2) ≥ 1 − 𝑐′′

𝑟 2
.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 25

We get Pr

[
𝑇 ≥ 𝑟𝑛

√
𝑛
]
≤ 𝑐′′/𝑟 2 and by inserting this back in Equation (1) and once more applying

the Basel problem, we get

𝐸 [𝑇] ≤ 𝑛
√
𝑛

∞∑︁
𝑟=0

𝑐′′

𝑟 2
≤ 𝑛
√
𝑛 · 𝑐

′′𝜋2

6

.

It remains to argue that w.h.p., at the end of each cycle, the wrongly set bits are uniformly distributed

and independent from the previous cycle. This holds for the first cycle, as all weights inside both

blocks are equal and standard mutation is order-unbiased. For all other cycles it holds w.h.p., as

there are sufficiently many correctly set bits such that the probability of a wrongly set bit being

swapped to another position by flipping a correctly and and incorrectly set bit is in 𝑂 (1
𝑛
), yielding

w.h.p. each wrongly set bit position is swapped inside its block at least twice each cycle. The desired

uniformity and independence follows by the following argument. From the second cycle on, we

know that per block there are O
(√
𝑛
)
wrongly set bits. In particular, there is a constant 𝛼 such that

there are at least 𝛼𝑛 correctly set bits in each block. Hence, the probability of swapping any specific

wrongly set bit to another position is at least

𝛼𝑛

𝑛2

(
1 − 1

𝑛

)𝑛−2
≥ 𝛼𝑛

𝑒𝑛2
=

𝛼

𝑒𝑛
.

The probability of swapping each wrongly set bit at least once during half a cycle is hence at least(
1 −

(
1 − 𝛼

2𝑒𝑛

)𝑛√𝑛/2)𝑐′√𝑛
≥

(
1 −

((
1 − 𝛼

2𝑒𝑛

)𝑛)√𝑛/2)𝑐′√𝑛
≥

(
1 −

(
𝑒−𝛼/(2𝑒)

)√𝑛/2)𝑐′√𝑛
=

(
1 − 𝑒−𝛼

√
𝑛/(2𝑒)

)𝑐′√𝑛
≥ 1 − 𝑒−𝛼

√
𝑛/(2𝑒)𝑐′

√
𝑛 ≥ 1 − 1

𝑛1/2

where we employed Bernoulli’s Inequality for the third step, and where the last line holds for large

enough 𝑛. Hence, w.h.p. each wrongly set bit is swapped once during half a cycle, so w.h.p. every

wrongly set bit is swapped two times each cycle, yielding a uniform distribution and independence

from the previous cycle. □

6.3 (2+1) GA with Hamming-Distance Maximization.
We show that we can reduce the run time to O(𝑛 log(𝑛)) by employing the (2+1) GA and balanced

uniform crossover. The crucial step in our analysis is to consider the event that the algorithm

can reduce the number of wrongly set bits not only by means of mutation, but also by means of

crossover, since the offspring produced by crossover is not put on an individual island, but instead

competes with the other individuals directly. The probability of making progress by such an event

is in fact constant if there is at least one non-blocking bit in each block.

Lemma 6.9. Let 𝑥,𝑦 ∈ {0, 1}𝑛 be two individuals with exactly 𝐵 1-bits and exactly 𝑖 heavy 1-bits.
Assume that there are 2𝑎 heavy bit positions and 2𝑏 light bit positions (𝑎, 𝑏 ≥ 1) at which 𝑥 and 𝑦
differ. The probability that balanced uniform crossover samples a solution with more than 𝑖 heavy
1-bits is at least 1

6
and thus in Ω(1).

Proof. Let 𝑋 be the random variable denoting the number of heavy 1-bits in the offspring 𝑧.

We want to find a lower bound on the probability Pr[𝑋 > 𝑖]. For this, we note that Pr[𝑋 > 𝑖] =
Pr[𝑋 < 𝑖] since the number of possible outcomes of the crossover having more than 𝑎 of the 2𝑎

heavy bit positions set to 1 is exactly equal to the number of possible outcomes with less than 𝑎 of

the 2𝑎 heavy bit positions set to 1. This is true since each bit string with less than 𝑎 1-bits can be

obtained by inverting a bit string with more than 𝑎 1-bits.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

26 Friedrich et al.

Hence, we note that 2 Pr[𝑋 > 𝑖] + Pr[𝑋 = 𝑖] = 1. We show that the probability Pr[𝑋 = 𝑖] is at
most

2

3
, which implies that the probability Pr[𝑋 > 𝑖] is at least 1/6. For this, we note that 𝑋 = 𝑖 if

exactly half of the 2𝑎 differing positions in the first block are set to 1. This even has probability

Pr[𝑋 = 𝑖] =
(
2𝑎
𝑎

) (
2𝑏
𝑏

)(
2𝑎+2𝑏
𝑎+𝑏

)
since there are

(
2𝑎
𝑎

) (
2𝑏
𝑏

)
possible outcomes with exactly 𝑎 of 2𝑎 differing heavy bit positions set to

1 and

(
2𝑎+2𝑏
𝑎+𝑏

)
possible outcomes of the crossover in total. We show that the above expression is

maximal for 𝑎 = 𝑏 = 1 where it reaches a value of
(2
1
) (2

1
)

(4
2
) = 2

3
. For this, we simplify as follows

Pr[𝑋 = 𝑖] =
(
2𝑎
𝑎

) (
2𝑏
𝑏

)(
2𝑎+2𝑏
𝑎+𝑏

) =
(2𝑎)!(2𝑏)!
(𝑎!)2 (𝑏!)2

((𝑎 + 𝑏)!)2
(2𝑎 + 2𝑏)! =

(2𝑎)!(2𝑏)!
(2𝑎 + 2𝑏)!

(
(𝑎 + 𝑏)!
𝑎!𝑏!

)
2

.

We denote the last term with 𝑔(𝑎, 𝑏) and show that it is strictly monotonically decreasing in both

𝑎 and 𝑏. For this, we show that 𝑔(𝑎 + 1, 𝑏) < 𝑔(𝑎, 𝑏).

𝑔(𝑎 + 1, 𝑏) = (2𝑎 + 2)!(2𝑏)!(2𝑎 + 2𝑏 + 2)!

(
(𝑎 + 𝑏 + 1)!
(𝑎 + 1)!𝑏!

)
2

= 𝑔(𝑎, 𝑏) (2𝑎 + 2) (2𝑎 + 1)
(2𝑎 + 2𝑏 + 2) (2𝑎 + 2𝑏 + 1)

(
𝑎 + 𝑏 + 1
𝑎 + 1

)
2

= 𝑔(𝑎, 𝑏) 2(𝑎 + 1) (2𝑎 + 1) (𝑎 + 𝑏 + 1)2
2(𝑎 + 𝑏 + 1) (2𝑎 + 2𝑏 + 1) (𝑎 + 1)2 = 𝑔(𝑎, 𝑏) (2𝑎 + 1) (𝑎 + 𝑏 + 1)(2𝑎 + 2𝑏 + 1) (𝑎 + 1)

= 𝑔(𝑎, 𝑏) 2𝑎
2 + 2𝑎𝑏 + 3𝑎 + 𝑏 + 1

2𝑎2 + 2𝑎𝑏 + 3𝑎 + 2𝑏 + 1 < 𝑔(𝑎, 𝑏).

since the denominator of the last fraction is strictly greater than the numerator. In the same

way, we can show that 𝑔(𝑎, 𝑏 + 1) < 𝑔(𝑎, 𝑏). Therefore, we get that Pr[𝑋 = 𝑖] is at most 2/3 for all
𝑎, 𝑏 ≥ 1. Hence Pr[𝑋 > 𝑖] is at least 1

6
. □

In contrast to that, we note that (unbalanced) uniform crossover has a strictly worse probability

of achieving improvement that is sub-constant and decreases with the number of positions at which

two individuals differ. We use Stirling’s approximation and exploit that even the probability of

maintaining the number of 1-bits is less than constant.

Proposition 6.10. Let 𝑥,𝑦 ∈ {0, 1}𝑛 be two individuals with exactly 𝐵 1-bits and exactly 𝑖 heavy
1-bits. Assume that there are 2𝑎 heavy bit positions and 2𝑏 light bit positions (𝑎, 𝑏 ≥ 1) at which 𝑥 and
𝑦 differ. The probability that uniform crossover samples a solution with B many 1-bits and more than 𝑖
heavy 1-bits is in O

(
1/
√
𝑎 + 𝑏

)
.

Proof. Let again 𝑋 be the random variable denoting the number of heavy 1-bits in the offspring

𝑧. Let further E be the event that 𝑧 has exactly 𝐵 1-bits. The probability 𝑝 that uniform crossover

samples a solution with more than 𝑖 heavy 1-bits but exactly 𝐵 1-bits is thus

𝑝 = Pr[𝑋 > 𝑖 | E] Pr[E] ≤ Pr[E] .

The probability of E is equal to the number of bit strings with exactly 𝐵 1-bits divided by the total

number of possible outcomes of the crossover operator, i.e., Pr[E] =
(
2𝑎+2𝑏
𝑎+𝑏

)
/22𝑎+2𝑏 . Using Stirling’s

approximation like in Lemma 6.3, we get that

Pr[E] =
(
2𝑎+2𝑏
𝑎+𝑏

)
2
2𝑎+2𝑏 ≤

2
2𝑎+2𝑏√︁

𝜋 (𝑎 + 𝑏)
1

2
2𝑎+2𝑏 = O(1/

√
𝑎 + 𝑏). □

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 27

This illustrates the advantage of balanced uniform vs. unbalanced crossover. However, this

advantage is only relevant if the number of differing positions in 𝑥 and 𝑦 becomes large.

Exploiting the above statements, the expected optimization time of the (2+1) GA with Hamming-

distance maximization and balanced uniform crossover improves to O(𝑛 log(𝑛)) for 𝑛 − 𝐵 = Θ(𝑛).

Theorem 6.11. For constant 0 < 𝑝𝑐 < 1, consider the (2+1) GA onBoundMax𝐵 with constraint𝐵 =

𝑐𝑛 for constant 𝑐 , using Hamming-distance maximization for tie-breaking. The expected optimization
time is in O(𝑛 log(𝑛)).

Proof. We split the proof in three stages. We first analyze the time until both individuals have

exactly 𝐵 1-bits, then the time until both individuals have at most
min(𝑐,1−𝑐)𝑛

2
many heavy 1-bits, and

lastly the time until the optimal solution is created. In the following, we denote the two individuals

of the GA with 𝑥 and 𝑦.

For the first part, by employing Lemma 5.4, the expected number of iterations until both indi-

viduals have exactly 𝐵 1-bits is in O(𝑛 log(𝑛)). For the second part, we get from Lemma 6.1 that

the time until the (1+1) EA creates an individual with at most 𝑘 ≔
min(𝑐,1−𝑐)𝑛

2
heavy 1-bits is O(𝑛).

Since the number of heavy 0-bits of the best individual does not decrease if both individuals have

𝐵 1-bits, and any worsening by crossover only contributes a constant factor to the run time, the

expected time until the first individual has at most 𝑘 heavy 1-bits is in O(𝑛). The expected time

until this holds for both individuals is at most twice this.

For the third part of the proof, we employ the fitness level method [Wegener 2002] and define

the fitness levels 𝐴𝑘,0, 𝐴𝑘,1, 𝐴𝑘,2, 𝐴𝑘,3, 𝐴𝑘−1,0, 𝐴𝑘−1,1, 𝐴𝑘−1,2, 𝐴𝑘−1,3 . . . , 𝐴0,0 where the algorithm is

in level 𝐴𝑖, 𝑗 for 𝑗 ∈ {0, 1, 2, 3} if the individual with highest fitness has exactly 𝑖 heavy 0-bits. Again,

note that these fitness levels partition the set of all individuals with exactly 𝐵 1-bits. Each fitness

level is partitioned in four sub levels with the following interpretations:

• 𝐴𝑖,0: exactly one individual has 𝑖 heavy 0-bits and the other has more than 𝑖 heavy 0-bits.

• 𝐴𝑖,1: both individuals have 𝑖 heavy 0-bits and are duplicates.

• 𝐴𝑖,2: both individuals have 𝑖 heavy 0-bits and differ in at least one position in the first or

second block but not in both blocks.

• 𝐴𝑖,3: both individuals have 𝑖 heavy 0-bits and differ in at least one position in the first and in

the second block.

We analyze the probability 𝑝𝑖, 𝑗 of advancing from level𝐴𝑖, 𝑗 . Following the idea of the fitness-level

method, the expected run time is then upper bounded by 𝐸 [𝑇] ≤ ∑𝐵
𝑖=1

∑
3

𝑗=0
1

𝑝𝑖,𝑗
.

Note that, in contrast to usual application of the fitness level method, it is possible to fall back

from level 𝐴𝑖,3 to 𝐴𝑖,2. However, the probability that this happens before we transition to levels

above 𝐴𝑖,3 is 𝑜 (1), so a simple restart argument shows that this has only a lower order impact on

the run time which we will ignore. Furthermore, no population can fall back from 𝐴𝑖,1, 𝐴𝑖,2 or 𝐴𝑖,3

to 𝐴𝑖,0 as this would require that the fitness of an individual decreases. No population can fall back

from 𝐴𝑖,2 or 𝐴𝑖,3 to 𝐴𝑖,1 as this would imply a decrease of Hamming distance.

For probability 𝑝𝑖,0, we consider the event that the fittest individual gets duplicated by means

of a standard mutation that does not flip any bit. This happens with a probability of at least

1−𝑝𝑐
2

(
1 − 1

𝑛

)𝑛 ≥ 1−𝑝𝑐
4𝑒

= Ω(1) which shows that 𝑝𝑖,0 = Ω(1).
For 𝑝𝑖,1 and 𝑝𝑖,2, we note that in the levels 𝐴𝑖,1 and 𝐴𝑖,2, the first or the second block of 𝑥 and 𝑦

are identical. We consider the event of advancing to a following level by swapping a one and a zero

within one of the identical blocks by means of the mutation operator. Since such a mutation does

not change the fitness of the offspring but increases its Hamming distance to the other individuals

by 2, it is always accepted. From the fact that there are 𝑖 ≤ min(𝑐, 1 − 𝑐)𝑛/2 heavy 0-bits and light

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

28 Friedrich et al.

1-bits, respectively, in both 𝑥 and 𝑦, we get that the probability of the described event is at least

𝑖 (min(𝑐, 1 − 𝑐)𝑛 − 𝑖)
𝑛2

(
1 − 1

𝑛

)𝑛−2
≥ 𝑖min(𝑐, 1 − 𝑐)𝑛/2

𝑒𝑛2
.

Hence, both 𝑝𝑖,1 and 𝑝𝑖,2 are in Ω(𝑖/𝑛). For 𝑝𝑖,3, we consider the event that crossover creates a
solution with exactly 𝐵 1-bits and more than 𝑖 heavy 1-bits. Since they differ in at least two positions

in each block, we get from Lemma 6.9 that this probability is ≥ 1/6.
We can thus estimate the expected run time as

𝐸 [𝑇] ≤
𝐵∑︁
𝑖=1

3∑︁
𝑗=0

1

𝑝𝑖, 𝑗
≤

𝐵∑︁
𝑖=1

(
𝛼 + 𝛽 𝑛

𝑖
+ 𝛾

)
where 𝛼, 𝛽,𝛾 are positive constants. Hence, for some constant 𝛿 > 0

𝐸 [𝑇] ≤
𝐵∑︁
𝑖=1

(
𝛼 + 𝛽 𝑛

𝑖
+ 𝛾

)
≤ 𝛿𝑛 log(𝐵) = O(𝑛 log(𝑛)). □

If 𝐵 is only a constant away from 𝑛, we can show that none of the analyzed crossover scenarios

brings any improvements over just a (1+1) EA with standard mutation. There is a constant proba-

bility of having a blocking light bit once the constraint is met, and the probability to remove it is in

O
(
1/𝑛2

)
for small 𝑑 .

Theorem 6.12. For the (2+1) GA using Hamming-distance maximization as well as for the island
models employing balanced uniform or majority vote crossover, there is a constant 𝑑 such that the
expected optimization time when optimizing BoundMax𝐵 with constraint 𝐵 = 𝑛 − 𝑑 is in Θ

(
𝑛2

)
.

Proof. We choose 𝑑 = 1. The probability of the only light bit in both initial individuals being a

1-bit is 1/4, which results in a blocking light bit. In the proof for Proposition 5.2 we already showed

that after an individual has reached 𝐵 = 𝑛 − 1 many 1-bits, the last bit is 1 with a probability of at

least 1/2. Consequently, the probability of having a blocking light bit after reaching 𝐵 many 1-bits

is at least 1/4. For the island models, this is trivial. For majority vote, the probability is even higher

as there are more bit strings available to initially share a blocking light bit. For Hamming-distance

maximization, an application of the crossover can never remove a blocking bit on the way to 𝐵

many 1-bits, and both individuals can be considered independently with respect to this probability.

No inheritance-respectful crossover operator can resolve such a blocking bit, so it needs to be

removed by the standard mutation. For that, the only light bit needs to be swapped with the only

0-bit, resulting in a probability of at most
1

𝑛2
. This together with the constant probability of reaching

this case yields the lower bound of Ω
(
𝑛2

)
. Since standard mutation alone requires only O

(
𝑛2

)
and

optimization is finished when all individuals reach the optimum via standard mutation alone, that

bound is also tight. □

6.4 (2+1) Swap-GA
We have seen that the (2+1) GA achieves a run time of O(𝑛 log(𝑛)) if 𝐵 = 𝑐𝑛 but takes Θ(𝑛2) steps
for the case of 𝐵 = 𝑛 − 𝑑 . On the other hand, the (1+1) Swap-EA takes time Θ(𝑛2) for 𝐵 = 𝑐𝑛 but

O(𝑛 log(𝑛)) for 𝐵 = 𝑛 − 𝑑 . In this section, we show that combining the two strategies together in

the (2+1) Swap-GA, yields an expected run time of O(𝑛 log(𝑛)) in both cases, and, in fact, for all

choices of 𝐵. The proof is given below in Theorem 6.14, it involves the following lemma.

Lemma 6.13. Consider the (1+1) Swap-EA on BoundMax𝐵 with constraint 𝐵 and starting on an
individual with exactly 𝐵 1-bits. Let 𝑇 be the random variable describing the number of steps until the
algorithm finds a solution with at most 𝑘 ∈ N+ heavy 0-bits. Then, 𝐸 [𝑇] is in O

(
𝑛𝐵−𝐵2

𝑘

)
.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 29

Proof. Like in Lemma 6.1, we employ the fitness levelmethodwith fitness levels𝐴≤𝑘 , 𝐴𝑘+1, . . . , 𝐴𝐵 ,

where 𝐴𝑖 is the set of bit strings with 𝑖 heavy 0-bits and 𝐴≤𝑘 contains all bit strings with at most 𝑘

such bits. The initial solution is at worst in 𝐴𝐵 and we are interested in the time until a solution in

𝐴≤𝑘 is first sampled.

Let 𝑝𝑖 be the probability of leaving the fitness level𝐴𝑖 in an iteration.We show that 𝑝𝑖 ≥ (1−𝑝𝑐)𝑝𝑏 ·𝑖
2

𝑛𝐵−𝐵2
.

To leave the level 𝐴𝑖 , we only consider the event that swap mutation flips one of the 𝑖 heavy 0-bits

with one of the 𝑖 light 1-bits. The probability for this event is (1 − 𝑝𝑐)𝑝𝑏 · 𝑖𝐵 ·
𝑖

𝑛−𝐵 ≥
(1−𝑝𝑐)𝑝𝑏 ·𝑖2

𝑛𝐵−𝐵2
.

We again apply the fitness level method. Let 𝑇 ′ be the random variable denoting the number of

iterations to reach level 𝐴≤𝑘 . We get

𝐸 [𝑇 ′] ≤
𝐵∑︁

𝑖=𝑘+1

1

𝑝𝑖
≤

𝐵∑︁
𝑖=𝑘+1

𝑛𝐵 − 𝐵2

(1 − 𝑝𝑐)𝑝𝑏 · 𝑖2
=

𝑛𝐵 − 𝐵2

(1 − 𝑝𝑐)𝑝𝑏

𝐵∑︁
𝑖=𝑘+1

1

𝑖2
.

Just like in the proof for Lemma 6.1, the integral can be used to bound the sum. We get

𝐸 [𝑇 ′] ≤ 𝑛𝐵 − 𝐵2

(1 − 𝑝𝑐)𝑝𝑏

(
− 1
𝐵
+ 1

𝑘

)
≤ 𝑛𝐵 − 𝐵2

(1 − 𝑝𝑐)𝑝𝑏 · 𝑘
.

This implies a total expected running time in O
(
𝑛𝐵−𝐵2

𝑘

)
. □

We proceed by proving the main result of this section and remark that the following proof has

large intersections with the proof of our earlier and related statement theorem 6.11.

Theorem 6.14. For constant 0 < 𝑝𝑏, 𝑝𝑐 < 1, consider the (2+1) Swap-GA on BoundMax𝐵 , using
Hamming-distance maximization for tie-breaking. The expected optimization time is in O(𝑛 log(𝑛)).

Proof. We split the proof in three stages. We first analyze the time until both individuals have

exactly 𝐵 1-bits, then the time until both individuals have at most
min(𝐵,𝑛−𝐵)

2
many heavy 1-bits, and

lastly the time until the optimal solution is created. In the following, we denote the two individuals

of the GA with 𝑥 and 𝑦.

For the first part, by once more employing Lemma 5.4, the expected number of iterations until

both individuals have exactly 𝐵 1-bits is in O(𝑛 log(𝑛)). For the second part, we get from Lemma 6.13

that the time until the (1+1) EA creates an individual with at most 𝑘 ≔
min(𝐵,𝑛−𝐵)

2
heavy 1-bits is in

O(𝑛). Since the number of heavy 0-bits of the best individual does not decrease if both individuals

have 𝐵 1-bits, and since the crossover and the standard mutations can only contribute a constant

factor to the run time, the expected time until the first individual has at most 𝑘 heavy 1-bits is

likewise in O(𝑛) for the GA. The expected time until this is the case for both individuals is at most

twice as long.

For the third part of the proof, we employ the fitness level method [Wegener 2002] and define

the fitness levels 𝐴𝑘,0, 𝐴𝑘,1, 𝐴𝑘,2, 𝐴𝑘,3, 𝐴𝑘−1,0, 𝐴𝑘−1,1, 𝐴𝑘−1,2, 𝐴𝑘−1,3 . . . , 𝐴0,0 where the algorithm is

in level 𝐴𝑖, 𝑗 for 𝑗 ∈ {0, 1, 2, 3} if the individual with highest fitness has exactly 𝑖 heavy 0-bits. Again,

note that these fitness levels partition the set of all individuals with exactly 𝐵 1-bits. Each fitness

level is partitioned in four sub levels with the following interpretations:

• 𝐴𝑖,0: exactly one individual has 𝑖 heavy 0-bits and the other has more than 𝑖 heavy 0-bits.

• 𝐴𝑖,1: both individuals have 𝑖 heavy 0-bits and are duplicates.

• 𝐴𝑖,2: both individuals have 𝑖 heavy 0-bits and differ in at least one position in the first or

second block but not in both blocks.

• 𝐴𝑖,3: both individuals have 𝑖 heavy 0-bits and differ in at least one position in the first and in

the second block.

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

30 Friedrich et al.

We analyze the probability 𝑝𝑖, 𝑗 of advancing from level𝐴𝑖, 𝑗 . Following the idea of the fitness-level

method, the expected run time is then upper bounded by

𝐸 [𝑇] ≤
𝐵∑︁
𝑖=1

3∑︁
𝑗=0

1

𝑝𝑖, 𝑗
.

Note that, in contrast to usual application of the fitness level method, it is possible to fall back

from level 𝐴𝑖,3 to 𝐴𝑖,2. However, the probability that this happens before we transition to levels

above 𝐴𝑖,3 is 𝑜 (1), so a simple restart argument shows that this has only a lower order impact on

the run time which we will ignore in the following.

For probability 𝑝𝑖,0, we consider the event that the fittest individual gets duplicated by means

of a standard mutation that does not flip any bit. This happens with a probability of at least

(1−𝑝𝑐) (1−𝑝𝑏)
2

(
1 − 1

𝑛

)𝑛 ≥ (1−𝑝𝑐) (1−𝑝𝑏)
4𝑒

= Ω(1) which shows that 𝑝𝑖,0 = Ω(1).
For 𝑝𝑖,1 and 𝑝𝑖,2, we note that in the levels 𝐴𝑖,1 and 𝐴𝑖,2, the first or the second block of 𝑥 and

𝑦 are identical. We consider the event of advancing to a following level by swapping a one and

a zero within one of the identical blocks by means of the swap mutation operator. Since such a

mutation does not change the fitness of the offspring but increases its Hamming distance to the

other individuals by 2, it is always accepted. Recall that there are 𝑖 ≤ min(𝐵, 𝑛 − 𝐵)/2 heavy 0-bits

and light 1-bits, respectively, in both 𝑥 and 𝑦. For the probability of swapping in the heavy block,

we hence have

(1 − 𝑝𝑐)𝑝𝑏
𝑖

𝑛 − 𝐵 ·
𝐵 − 𝑖
𝐵
≥ (1 − 𝑝𝑐)𝑝𝑏

𝑖

𝑛 − 𝐵 ·
𝐵

2𝐵
= Ω

(
𝑖

𝑛 − 𝐵

)
.

For the probability of swapping in the light block, we get analogously get

(1 − 𝑝𝑐)𝑝𝑏
𝑖

𝐵
· 𝑛 − 𝐵 − 𝑖

𝑛 − 𝐵 ≥ (1 − 𝑝𝑐)𝑝𝑏
𝑖

𝐵
· 𝑛 − 𝐵
2(𝑛 − 𝐵) = Ω

(
𝑖

𝐵

)
.

Hence, both 𝑝𝑖,1 and 𝑝𝑖,2 are in Ω(𝑖/𝑛).
For 𝑝𝑖,3, we consider the event that crossover on both individuals creates a solution with exactly

𝐵 1-bits and more than 𝑖 heavy 1-bits. Since both individuals differ in at least two positions in each

block, we get from Lemma 6.9 that this probability is at least 1/6.
We can thus estimate the expected run time as

𝐸 [𝑇] ≤
𝐵∑︁
𝑖=1

3∑︁
𝑗=0

1

𝑝𝑖, 𝑗
≤

𝐵∑︁
𝑖=1

(
𝛼 + 𝛽 𝑛

𝑖
+ 𝛾

)
where 𝛼, 𝛽,𝛾 are constants greater than 0. This gives the existence of a constant 𝛿 > 0 such that

𝐸 [𝑇] ≤
𝐵∑︁
𝑖=1

(
𝛼 + 𝛽 𝑛

𝑖
+ 𝛾

)
≤ 𝛿𝑛 log(𝐵) = O(𝑛 log(𝑛)). □

7 CONCLUSION
In this paper, we gave run time analyzes for several different settings of crossover on the test

function BoundMax𝐵 , a OneMax-like function with a constraint of at most 𝐵 many 1s in a bit

string. We showed how island-settings can be used to generate the optimum in one final crossover,

and we contrasted this with settings where offspring from crossover can also serve as parents for

crossover which, in our setting, leads to much better run time guarantees.

Regarding the use of balanced crossovers, we strongly believe that any crossover should either

(a) incorporate problem knowledge to gain performance or (b) be balanced, order unbiased and

inheritance-respectful. The reason for this is that, in the absence of meaning of the order of bits,

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

Crossover for Cardinality Constrained Optimization 31

the bit positions should be treated symmetrically. For this setting we recommend the balanced

uniform crossover, a balanced variant of the uniform crossover.

The formal analysis of crossover remains challenging. We see both potential and challenge in this

area: even though crossover has been the subject of study for decades, results remain somewhat

scarce and further insights might be the key to understanding the success of evolutionary algorithms

on real world problems.

REFERENCES
Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2020. Fast Mutation in Crossover-Based Algorithms. In Proceedings

of the 2020 Genetic and Evolutionary Computation Conference (GECCO ’20). 1268–1276. https://doi.org/10.1145/3377930.

3390172

Jiah-Shing Chen and Jia-Leh Hou. 2006. A Combination Genetic Algorithm with Applications on Portfolio Optimization. In

Advances in Applied Artificial Intelligence (Lecture Notes in Computer Science), Moonis Ali and Richard Dapoigny (Eds.).

Springer, 197–206. https://doi.org/10.1007/11779568_23

Dogan Corus and Pietro S. Oliveto. 2018. Standard Steady State Genetic Algorithms Can Hillclimb Faster Than Mutation-

Only Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 22, 5 (2018), 720–732. https://doi.org/10.

1109/TEVC.2017.2745715

Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt,

and Andrew M. Sutton. 2018. Escaping Local Optima Using Crossover With Emergent Diversity. IEEE Transaction on
Evolutionary Computation 22 (2018), 484–497. https://doi.org/10.1109/TEVC.2017.2724201

Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt, and

Andrew M. Sutton. 2016. Escaping Local Optima with Diversity Mechanisms and Crossover. In Proceedings of the 2016
Genetic and Evolutionary Computation Conference (GECCO ’16). 645–652. https://doi.org/10.1145/2908812.2908956

Benjamin Doerr and Carola Doerr. 2015. A Tight Runtime Analysis of the (1 + (_, _)) Genetic Algorithm on OneMax. In

Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO) (Madrid, Spain) (GECCO
’15). Association for Computing Machinery, New York, NY, USA, 1423–1430. https://doi.org/10.1145/2739480.2754683

Benjamin Doerr, Philipp Fischbeck, Clemens Frahnow, Tobias Friedrich, Timo Kötzing, and Martin Schirneck. 2019. Island

Models Meet Rumor Spreading. Algorithmica 81 (2019), 886–915. https://doi.org/10.1007/s00453-018-0445-2

Benjamin Doerr and Timo Kötzing. 2021. Lower Bounds from Fitness Levels Made Easy. In Proceedings of the 2021
Genetic and Evolutionary Computation Conference (GECCO ’21). Association for Computing Machinery, 1142–1150.

https://doi.org/10.1145/3449639.3459352

Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nallaperuma, Frank Neumann, and Martin Schirneck. 2016. Fast

Building Block Assembly by Majority Vote Crossover. In Proceedings of the 2016 Genetic and Evolutionary Computation
Conference (GECCO ’16). 661–668. https://doi.org/10.1145/2908812.2908884

Tobias Friedrich, Timo Kötzing, J. A. Gregor Lagodzinski, Frank Neumann, and Martin Schirneck. 2020. Analysis of the

(1+1) EA on Subclasses of Linear Functions under Uniform and Linear Constraints. Theoretical Computer Science 832
(2020), 3–19. https://doi.org/10.1016/j.tcs.2018.04.051

Tobias Friedrich, Timo Kötzing, Aishwarya Radhakrishnan, Leon Schiller, Martin Schirneck, Georg Tennigkeit, and Simon

Wietheger. 2022. Crossover for Cardinality Constrained Optimization. In Proceedings of the 2022 Genetic and Evolutionary
Computation Conference (GECCO). 1399–1407. https://doi.org/10.1145/3512290.3528713

Thomas Jansen. 2015. On the Black-Box Complexity of Example Functions: The Real Jump Function. In Proceedings of the
13th Conference on Foundations of Genetic Algorithms (FOGA ’17). 16–24. https://doi.org/10.1145/2725494.2725507

Thomas Jansen and Dirk Sudholt. 2010. Analysis of an asymmetric mutation operator. Evolutionary Computation 18, 1 (Mar

2010), 1–26. https://doi.org/10.1162/evco.2010.18.1.18101

Thomas Jansen and Ingo Wegener. 2002. The Analysis of Evolutionary Algorithms - A Proof That Crossover Really Can

Help. Algorithmica 34 (2002), 47–66. https://doi.org/10.1007/s00453-002-0940-2

Svante Janson. 2018. Tail bounds for sums of geometric and exponential variables. Statistics & Probability Letters 135 (Apr
2018), 1–6. https://doi.org/10.1016/j.spl.2017.11.017

Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. 2021. A Review on Genetic Algorithm: Past, Present, and Future.

Multimedia Tools and Applications 80 (2021), 8091–8126. https://doi.org/10.1007/s11042-020-10139-6

Timo Kötzing, Dirk Sudholt, and Madeleine Theile. 2011. How Crossover Helps in Pseudo-Boolean Optimization. In

Proceedings of the 2011 Genetic and Evolutionary Computation Conference (GECCO ’11). 989–996. https://doi.org/10.1145/

2001576.2001711

Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Variation. Algorithmica 64, 4 (2012), 623–642.
https://doi.org/10.1007/s00453-012-9616-8

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

https://doi.org/10.1145/3377930.3390172
https://doi.org/10.1145/3377930.3390172
https://doi.org/10.1007/11779568_23
https://doi.org/10.1109/TEVC.2017.2745715
https://doi.org/10.1109/TEVC.2017.2745715
https://doi.org/10.1109/TEVC.2017.2724201
https://doi.org/10.1145/2908812.2908956
https://doi.org/10.1145/2739480.2754683
https://doi.org/10.1007/s00453-018-0445-2
https://doi.org/10.1145/3449639.3459352
https://doi.org/10.1145/2908812.2908884
https://doi.org/10.1016/j.tcs.2018.04.051
https://doi.org/10.1145/3512290.3528713
https://doi.org/10.1145/2725494.2725507
https://doi.org/10.1162/evco.2010.18.1.18101
https://doi.org/10.1007/s00453-002-0940-2
https://doi.org/10.1016/j.spl.2017.11.017
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1145/2001576.2001711
https://doi.org/10.1145/2001576.2001711
https://doi.org/10.1007/s00453-012-9616-8

32 Friedrich et al.

Luca Manzoni, Luca Mariot, and Eva Tuba. 2020. Balanced Crossover Operators in Genetic Algorithms. Swarm and
Evolutionary Computation 54 (2020), 100646. https://doi.org/10.1016/j.swevo.2020.100646

ThorstenMeinl andMichael R. Berthold. 2009. Crossover Operators forMultiobjective𝑘-Subset Selection. In Proceedings of the
2009 Genetic and Evolutionary Computation Conference (GECCO ’09). 1809–1810. https://doi.org/10.1145/1569901.1570173

Alberto Moraglio and Riccardo Poli. 2004. Topological Interpretation of Crossover. In Proceedings of the 2004 Genetic and
Evolutionary Computation Conference (GECCO ’04), Kalyanmoy Deb (Ed.). Springer, 1377–1388. https://doi.org/10.1007/

978-3-540-24854-5_131

Frank Neumann, Pietro Simone Oliveto, Günter Rudolph, and Dirk Sudholt. 2011. On the effectiveness of crossover for

migration in parallel evolutionary algorithms. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation (GECCO ’11). Association for Computing Machinery, 1587–1594. https://doi.org/10.1145/2001576.2001790

Frank Neumann and Ingo Wegener. 2007. Randomized local search, evolutionary algorithms, and the minimum spanning

tree problem. Theoretical Computer Science 378, 1 (Jun 2007), 32–40. https://doi.org/10.1016/j.tcs.2006.11.002

Nicholas J. Radcliffe. 1994. The algebra of genetic algorithms. Annals of Mathematics and Artificial Intelligence 10, 4 (Dec
1994), 339–384. https://doi.org/10.1007/BF01531276

Jonathan E. Rowe and Michael D. Vose. 2011. Unbiased Black Box Search Algorithms. In Proceedings of the 2011 Genetic and
Evolutionary Computation Conference (GECCO ’11). 2035–2042. https://doi.org/10.1145/2001576.2001850

Dirk Sudholt. 2017. How Crossover Speeds up Building Block Assembly in Genetic Algorithms. Evolutionary Computation
25 (2017), 237–274. https://doi.org/10.1162/EVCO_a_00171

Richard A. Watson and Thomas Jansen. 2007. A building-block royal road where crossover is provably essential. In

Proceedings of the 9th annual conference on Genetic and evolutionary computation (GECCO ’07). Association for Computing

Machinery, 1452–1459. https://doi.org/10.1145/1276958.1277224

Ingo Wegener. 2002. Methods for the Analysis of Evolutionary Algorithms on Pseudo-Boolean Functions. In Evolutionary
Optimization, Ruhul Sarker, Masoud Mohammadian, and Xin Yao (Eds.). Springer, 349–369. https://doi.org/10.1007/0-

306-48041-7_14

L. Darrell Whitley, Francisco Chicano, and Brian W. Goldman. 2016. Gray Box Optimization for Mk Landscapes (NK

Landscapes and MAX-kSAT). Evolutionary Computation 24 (2016), 491–519. https://doi.org/10.1162/EVCO_a_00184

Carsten Witt. 2014. Fitness levels with tail bounds for the analysis of randomized search heuristics. Inform. Process. Lett.
114, 1 (Jan 2014), 38–41. https://doi.org/10.1016/j.ipl.2013.09.013

ACM Trans. Evol. Learn., Vol. 1, No. 1, Article . Publication date: July 2023.

https://doi.org/10.1016/j.swevo.2020.100646
https://doi.org/10.1145/1569901.1570173
https://doi.org/10.1007/978-3-540-24854-5_131
https://doi.org/10.1007/978-3-540-24854-5_131
https://doi.org/10.1145/2001576.2001790
https://doi.org/10.1016/j.tcs.2006.11.002
https://doi.org/10.1007/BF01531276
https://doi.org/10.1145/2001576.2001850
https://doi.org/10.1162/EVCO_a_00171
https://doi.org/10.1145/1276958.1277224
https://doi.org/10.1007/0-306-48041-7_14
https://doi.org/10.1007/0-306-48041-7_14
https://doi.org/10.1162/EVCO_a_00184
https://doi.org/10.1016/j.ipl.2013.09.013

	Abstract
	1 Introduction
	2 Preliminaries
	3 Balanced Crossover and Mutation
	3.1 Existing Crossover Operators
	3.2 Balanced Mutation

	4 New Balanced Crossover Operator
	5 Optimizing without Crossover
	6 Optimization with Crossover
	6.1 (2+1) Island Model with (Balanced) Uniform Crossover
	6.2 (3+1) Island Model with Majority Vote Crossover
	6.3 (2+1) GA with Hamming-Distance Maximization.
	6.4 (2+1) Swap-GA

	7 Conclusion
	References

