
A Color-blind 3-Approximation for Chromatic Correlation
Clustering and Improved Heuristics

Nicolas Klodt
Lars Seifert
Arthur Zahn

{firstname.lastname}@uni-
potsdam.de

University Potsdam
Potsdam, Germany

Katrin Casel
Davis Issac

{firstname.lastname}@hpi.de
Hasso Plattner Institute
Potsdam, Germany

Tobias Friedrich
tobias.friedrich@uni-potsdam.de

University Potsdam
Hasso Plattner Institute
Potsdam, Germany

ABSTRACT
Chromatic Correlation Clustering (CCC) models clustering of ob-
jects with categorical pairwise relationships. The model can be
viewed as clustering the vertices of a graph with edge-labels (col-
ors). Bonchi et al. [KDD 2012] introduced it as a natural general-
ization of the well studied problem Correlation Clustering (CC),
motivated by real-world applications from data-mining, social net-
works and bioinformatics. We give theoretical as well as practical
contributions to the study of CCC.

Our main theoretical contribution is an alternative analysis of
the famous Pivot algorithm for CC. We show that, when sim-
ply run color-blind, Pivot is also a linear time 3-approximation
for CCC. The previous best theoretical results for CCC were a 4-
approximation with a high-degree polynomial runtime and a linear
time 11-approximation, both by Anava et al. [WWW 2015].

While this theoretical result justifies Pivot as a baseline compar-
ison for other heuristics, its blunt color-blindness performs poorly
in practice. We develop a color-sensitive, practical heuristic we
call Greedy Expansion that empirically outperforms all heuristics
proposed for CCC so far, both on real-world and synthetic instances.

Further, we propose a novel generalization of CCC allowing for
multi-labelled edges. We argue that it is more suitable for many of
the real-world applications and extend our results to this model.

CCS CONCEPTS
• Information systems→ Clustering; • Theory of computa-
tion→ Approximation algorithms analysis.

KEYWORDS
correlation clustering, edge-labeled graphs, approximation

ACM Reference Format:
Nicolas Klodt, Lars Seifert, Arthur Zahn, Katrin Casel, Davis Issac, and To-
bias Friedrich. 2021. A Color-blind 3-Approximation for Chromatic Correla-
tion Clustering and Improved Heuristics. In Proceedings of the 27th ACM

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’21, August 14–18, 2021, Virtual Event, Singapore

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8332-5/21/08.
https://doi.org/10.1145/3447548.3467446

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’21),

August 14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3447548.3467446

1 INTRODUCTION
Clustering is one of the most important computational tasks in data
science. Grouping similar objects has applications in most fields of
science, technology and engineering. One of the widely used clus-
tering methods is Correlation Clustering (CC) [5], which is suitable
when the objects to be clustered are given with a pairwise similarity
relationship. Indeed, in many applications we find such a scenario,
usually represented as a graph with objects as vertices and edges
as similarity relationship. This makes CC an indispensable tool in
any data miner’s toolkit [11]. The objective of CC is to minimize
disagreements i.e. the inter-cluster differences and intra-cluster
similarities. Since CC can be phrased as concise graph-theoretical
problem and allows the use of combinatorial techniques, it has also
attracted wide interest in theoretical computer science [10].

Correlation Clustering in its standard definition considers pair-
wise relationships in binary form. However, in many real-world
applications, we are presented with also categorical information
about relationships. As an example, consider a social networkwhere
similarity means friendship; there are different types of friendships
such as schoolmates, colleagues, and family. It is desirable to clus-
ter people into groups that have the same category of friendship
between them. Motivated by this, Bonchi et al. [7] gave a general-
ized model for CC called Chromatic Correlation Clustering (CCC),
that makes use of the categorical information. In this model, the
input is an edge-colored graph where colors model categories of
similarity, and the objective includes minimizing inter-cluster color
differences in addition to the CC objective. The chromatic model
has the additional benefit that each output cluster is associated
with a category, e.g. in the social network example, the output will
consist of schoolmate-, colleague-, and family-clusters.

Apart from social networks, CCC finds applications in many
other fields. Biological networks also tend to have different types of
interactions. For example, in protein-protein interaction networks,
the association between proteins can be physical, co-localization,
genetic and many other types [12]. Taking these types into account
allows to interpret the resulting clusters as functional modules, pro-
tein complexes, etc. Another application is the clustering of authors

https://orcid.org/0000-0001-6146-8684
https://orcid.org/0000-0003-0076-6308
https://doi.org/10.1145/3447548.3467446
https://doi.org/10.1145/3447548.3467446

based on collaborations and research topics to help researchers
navigate literature more easily [8].

1.1 Problem Statement
An instance 𝐺 = (𝑉 , 𝐸, 𝑐𝑜𝑙) of Chromatic Correlation Clustering
(CCC) is an edge-colored graph𝐺 with vertex set𝑉 , edge set 𝐸, and
color function 𝑐𝑜𝑙 : 𝐸 → N. We refer to 𝐿 = image(𝑐𝑜𝑙) as the set of
colors or labels. We use 𝑢𝑣 as short notation for {𝑢, 𝑣} ∈

(𝑉
2
)
.

A solution to a CCC instance 𝐺 = (𝑉 , 𝐸, 𝑐𝑜𝑙) is a clustering
𝑆𝑜𝑙 = (𝐶, 𝑐𝑐𝑜𝑙) consisting of a partition of the vertices into clusters
𝐶 : 𝑉 → N and a cluster color assignment 𝑐𝑐𝑜𝑙 : range(𝐶) → 𝐿.
The objective is to minimize the number of disagreements, where
a vertex pair is considered to be a disagreement if it is a non-edge
inside of a cluster (intra-cluster disagreements), an edge between
clusters (inter-cluster disagreements), or an edge inside a cluster
with a color different from the cluster color (color disagreements).
Formally, the number of disagreements 𝑑 (𝐺, 𝑆𝑜𝑙) is defined as

𝑑𝑢𝑣 (𝐺, 𝑆𝑜𝑙) =

1, if 𝑢𝑣 ∉ 𝐸 ∧𝐶 (𝑢) = 𝐶 (𝑣)
1, if 𝑢𝑣 ∈ 𝐸 ∧𝐶 (𝑢) ≠ 𝐶 (𝑣)
1, if 𝑢𝑣 ∈ 𝐸 ∧𝐶 (𝑢) = 𝐶 (𝑣) ∧ 𝑐𝑜𝑙 (𝑢𝑣) ≠ 𝑐𝑐𝑜𝑙 (𝐶 (𝑢))
0, otherwise

𝐷 (𝐺, 𝑆𝑜𝑙) = {𝑢𝑣 ∈
(𝑉
2
)
| 𝑑𝑢𝑣 (𝐺, 𝑆𝑜𝑙) = 1}

𝑑 (𝐺, 𝑆𝑜𝑙) = |𝐷 (𝐺, 𝑆𝑜𝑙) |

We refer to the objective value of an optimum solution with 𝑑∗ (𝐺).
In the above definitions, we omit the first argument 𝐺 when the
graph is clear from the context. Observe that the CC problem is a
special case of CCC where |𝐿 | = 1.

For a vertex 𝑣 ∈ 𝑉 , we define the primary color of 𝑣 as

𝑝 (𝑣) := 𝑎𝑟𝑔max
𝑐∈𝐿
|{𝑢𝑣 ∈ 𝐸 | 𝑐𝑜𝑙 (𝑢𝑣) = 𝑐}|.

Note that we break ties arbitrarily here. We call an edge a secondary
edge if it has a color different from the primary color of either of
its incident vertices, and define the set

𝐸2 = {𝑢𝑣 ∈ 𝐸 | 𝑐𝑜𝑙 (𝑢𝑣) ≠ 𝑝 (𝑢) ∨ 𝑐𝑜𝑙 (𝑢𝑣) ≠ 𝑝 (𝑣)}.

1.2 Our Results
We give a simple linear time 3-approximation algorithm for CCC.
The previous best approximation guarantees were 4 in polynomial
time and 11 in linear time, both by Anava et al. [4]. Our algorithm
is surprisingly simple: it just ignores the colors of the edges and
runs the well-known Pivot algorithm for CC. The key to our im-
proved approximation ratio is a clever charging method for directly
bounding the errors of Pivot by the errors of an optimum solution.

We improve the analysis of the monochromatic reduction al-
gorithmic framework for CCC proposed by Anava et al. [4]. This
framework reduces CCC to CC while incurring some error during
the reduction, and then runs a CC algorithm. We better bound the
error during the reduction and show that using an 𝛼 approximate
CC algorithm gives an (𝛼 + 2)-approximate CCC algorithm, im-
proving upon the (3𝛼 + 2)-guarantee given by Anava et al. [4]. In
particular, we prove that this framework with Pivot, called Reduce
and Cluster (RC), is in fact a linear time 5-approximation improving
upon the 11-approximate guarantee given by Anava et al. [4].

We propose an algorithm called Greedy Expansion (GE) and
compare it experimentally to the previous heuristics for CCC, on
synthetic and real-world datasets. We also compare GE with the
monochromatic reduction framework of Anava et al. [4] when com-
bined with Vote and RMM, which are two known heuristics for CC.
To the best of our knowledge, monochromatic reduction combined
with Vote and RMM has not been studied before. GE and the modified
Vote and RMM significantly outperform all the previously known
heuristics for CCC on all the synthetic and real-world datasets. Our
GE heuristic also performs significantly better than Vote and RMM
on most of the datasets and performs similarly on some of them.

We also propose a new multi-label model for CCC, where each
edge is allowed to have a set of colors. Our model is based on the
observation that many real-world data in fact has multiple labels
on edges and we may loose valuable information while convert-
ing it to single-label instances. We show that Pivot remains a
3-approximation even in the multi-label setting. Further, we ex-
tend our heuristics to the new model and compare it with other
heuristics (with their natural extensions to the multi-label setting)
experimentally. We find that the algorithms compare with each
other in a similar manner as in the single-label setting.

1.3 Related Work
The (non-chromatic) Correlation Clustering problem has been sub-
ject to a lot of research for over 20 years. It was first introduced by
Ben-Dor et al. [6] for gene patterns. Bansal et al. [5] proved it to be
NP-hard and gave the first constant-factor approximation. Charikar
et al. [9] gave an improved approximation with ratio 4 and showed
APX-hardness. Ailon et al. [2] proposed the linear time Pivot algo-
rithm for CC and proved it to be a randomized 3-approximation.
They also proposed a randomized 2.5-approximation with edge
probabilities determined by an LP relaxation. Chawla et al. [10]
gave an improved rounding strategy for the LP that gives a ran-
domized 2.06-approximation. The LP-based approaches become
infeasible for even moderate problem sizes as the number of con-
straints is cubic in the number of vertices.

There are many heuristics known for Correlation Clustering. El-
sner and Schudy [15] compared three greedy algorithms First[22],
Best[20], and Vote[14] and showed that Vote gives the best perfor-
mance empirically. Vote iteratively chooses a random vertex and
adds it to the cluster that fits best, if such a cluster exists, otherwise
the vertex forms a new singleton cluster. They improved the result
of Vote by using a post-processing local search BOEM, which repeat-
edly performs the best one element move to improve the clustering.
However, this post-processing is very computation-intensive and
can in practice only be used on small graphs. Lingas et al. [19]
proposed an algorithm called Randomized Maximum Merging RMM
that starts with singleton clusters and then iteratively merges the
clusters that reduce the error the most (with random tiebreakers).

Chromatic Correlation Clustering was proposed by Bonchi et
al. [7] who also gave a randomized degree-bound approximation
called CB (Chromatic Balls). Here, a pivot edge is chosen uniformly
at random and all vertices that form a monochromatic triangle with
the pivot edge are added to its cluster. Anava et al. [4] proposed
the first constant-factor approximation, a linear time 11-approx. RC
(Reduce and Cluster) based on Pivot fromAilon et al. [2]. RC deletes

all secondary edges and runs Pivot on the resultingmonochromatic
components. They also proposed a randomized 4-approximation
using linear programming. For better practical results they invented
DC (Deep Cluster). It starts by deleting secondary edges as well, but
after clustering the neighborhood of a pivot vertex it also considers
the extended neighborhood (distance of two to the pivot vertex)
and adds some of these vertices if that results in a lower error.

Recently, Amburg et al. [3] studied categorical edge clustering,
a problem similar to CCC; their objective differed in that they do
not penalize non-edge errors, the number of clusters is fixed, and
only one cluster is allowed per color.

There is also a version of Correlation Clustering that maximizes
agreements instead of minimizing disagreements. This variant ad-
mits a PTAS [5] as opposed to the APX-hard minimization variant.
Also, there is the weighted variant of CCwhere edges have weights
associated to them [5]. CC is further studied in a scenario where
some vertex-pairs are not considered in the objective function; this
models a practical scenario where pairwise relationship informa-
tion between some pairs is unknown. This variant is harder and is
unlikely to admit any constant approximation due to the equiva-
lence with the Multi-Cut problem [13]. In this work, by CCwe refer
to the unweighted, minimizing disagreements version throughout.

2 RANDOMIZED 3-APPROXIMATION
The Pivot algorithm is a well-known heuristic for CC proposed by
Ailon et al. [2]. By simply ignoring the colors, this algorithm can also
be run on CCC instances; after the clusters are built in a color-blind
fashion by the CC heuristic, one adds a color function that assigns
to each cluster its most common color (see Algorithm 1). Bonchi
et al. [7] used this algorithm as a baseline in their experiments
for comparing CCC algorithms, although there was no theoretical
guarantee known for Pivot in this chromatic setting. We show that
Pivot is a 3-approximation for CCC, by a novel analysis.

Ailon et al. [2] show that Pivot is a 3-approximation in expecta-
tion for CC by charging the disagreements of the heuristic solution
to bad triples (triples of vertices that induce a path of length two).
When analyzing Pivot for the generalization to CCC, the addition
of colors adds a new type of disagreement to be bounded: edges
with wrong color inside a cluster. The problem when estimating
these color-disagreements is that they depend on the unknown
coloring function of an optimum solution.

In our analysis, we therefore fix an optimum solution with its
coloring function and charge the disagreements of Pivot directly to
the disagreements of this optimum solution. Note that this approach
also yields an alternative proof for Pivot being a 3-approximation
for CC. Our direct charging to the optimum has the advantage that
we can estimate the ratio locally (in contrast to the previous global
comparison via an LP relaxation for hitting bad triples) which might
be a useful strategy also for other generalizations of CC.

Theorem 2.1. Pivot is a 3-approximation in expectation for Chro-

matic Correlation Clustering.

Proof. Let𝐺 be an edge-colored graph,𝑂𝑝𝑡 = (𝐶∗, 𝑐𝑐𝑜𝑙∗) be an
optimal clustering, and 𝑆𝑜𝑙 = (𝐶, 𝑐𝑐𝑜𝑙) be the result of Pivot on 𝐺 .
Let 𝑆𝑜𝑙 ′ = (𝐶, 𝑐𝑐𝑜𝑙 ′) where for each cluster 𝐶1 ∈ 𝐶 with cluster-
center 𝑝 , 𝑐𝑐𝑜𝑙 ′(𝐶1) = 𝑐𝑐𝑜𝑙∗ (𝑝). Note that by cluster-center, wemean

Figure 1: Charging cases in the proof of Theorem 2.1. Gray:
Cluster of 𝑆𝑜𝑙 ′ during critical iteration of 𝑎𝑏. Blue: Cluster
of𝑂𝑝𝑡 . Red: Charged edge. Note that slight variants of these
examples are possible.

the pivot whose neighborhood formed the cluster. Since 𝑆𝑜𝑙 selected
the best possible cluster colors, it is clear that 𝑑 (𝑆𝑜𝑙) ≤ 𝑑 (𝑆𝑜𝑙 ′).
Hence, it is sufficient to prove that 𝑑 (𝑆𝑜𝑙 ′) ≤ 3 · 𝑑 (𝑂𝑝𝑡).

We charge each disagreement of 𝑆𝑜𝑙 ′ to a disagreement of 𝑂𝑝𝑡
such that in total each disagreement of 𝑂𝑝𝑡 is charged at most 3
times in expectation, thus proving that Pivot is a 3-approximation.

We define the critical iteration of 𝑎𝑏 ∈
(𝑉
2
)
as the iteration at

whose beginning 𝑎 and 𝑏 are not yet clustered and at whose end
at least one of them is in a cluster. Hence, at the end of the critical
iteration, it is determined whether 𝑎𝑏 is a disagreement in 𝑆𝑜𝑙 ′.

Let 𝑎𝑏 be a disagreement in 𝑆𝑜𝑙 ′. Without loss of generality,
assume that 𝑎 was clustered before or in the same iteration as 𝑏.
Let 𝑐 be the pivot picked in the iteration that clustered 𝑎 (i.e. the
critical iteration of 𝑎𝑏). We charge a pair 𝐵𝑎𝑏 ∈ {𝑎𝑏,𝑏𝑐, 𝑎𝑐} for 𝑎𝑏
such that 𝐵𝑎𝑏 ∈ 𝐷 (𝑂𝑝𝑡), as follows (see also Figure 1):

1. If 𝑎𝑏 is a non-edge within a cluster of 𝑆𝑜𝑙 ′: then 𝑎𝑐 and 𝑏𝑐
are both edges as 𝑐 is the cluster-center.

1.1. If 𝑎 and𝑏 are in the same cluster in𝑂𝑝𝑡 : then 𝑎𝑏 ∈ 𝐷 (𝑂𝑝𝑡).
We charge 𝐵𝑎𝑏 := 𝑎𝑏.

1.2. If 𝑎 and 𝑏 are in separate clusters in𝑂𝑝𝑡 : then either 𝑎𝑐 or
𝑏𝑐 is an edge between clusters in𝑂𝑝𝑡 and so in𝐷 (𝑂𝑝𝑡). We
charge 𝐵𝑎𝑏 := 𝑎𝑐 if 𝑎𝑐 ∈ 𝐷 (𝑂𝑝𝑡), and 𝐵𝑎𝑏 := 𝑏𝑐 otherwise.

Algorithm 1: Pivot
Data: An undirected, edge-colored Graph 𝐺 = (𝑉 , 𝐸, 𝑐𝑜𝑙)
Result: A clustering 𝐶 = {(𝐶1, 𝑐1), . . . (𝐶𝑚, 𝑐𝑚)} with

𝐶𝑖 ⊆ 𝑉 and 𝑐𝑖 ∈ N.
1 Pick a random pivot 𝑣 ∈ 𝑉 as cluster-center;
2 𝐶 ← {𝑣};
3 for 𝑢 ∈ 𝑁 (𝑣) do
4 𝐶 ← 𝐶 ∪ {𝑢} ;
5 𝑐 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶𝑜𝑙𝑜𝑟𝑠 |{𝑎𝑏 ∈ 𝐸 ∩𝐶2 | 𝑐𝑜𝑙 (𝑎𝑏) = 𝑐}|;
6 return {(𝐶, 𝑐)} ∪ 𝑃𝑖𝑣𝑜𝑡 (𝐺 [𝑉 \𝐶]);

2. If 𝑎𝑏 is an edge between clusters of 𝑆𝑜𝑙 ′: then 𝑎𝑐 is an edge
and 𝑏𝑐 is a non-edge.

2.1. If𝑎 and𝑏 are in separate clusters of𝑂𝑝𝑡 : then𝑎𝑏 ∈ 𝐷 (𝑂𝑝𝑡).
We charge 𝐵𝑎𝑏 := 𝑎𝑏.

2.2. If 𝑎 and 𝑏 are in the same cluster of 𝑂𝑝𝑡 .
2.2.1. If 𝑐 is also in that cluster in 𝑂𝑝𝑡 : then 𝑏𝑐 ∈ 𝐷 (𝑂𝑝𝑡). We

charge 𝐵𝑎𝑏 := 𝑏𝑐 .
2.2.2. If 𝑐 is in a different cluster than 𝑎, 𝑏: then 𝑎𝑐 ∈ 𝐷 (𝑂𝑝𝑡).

We charge 𝐵𝑎𝑏 := 𝑎𝑐 .
3. If 𝑎𝑏 is an edge in a cluster of 𝑆𝑜𝑙 ′ but does not have the

color of its cluster:
3.1. If𝑎 and𝑏 are in separate clusters of𝑂𝑝𝑡 : then𝑎𝑏 ∈ 𝐷 (𝑂𝑝𝑡).

We charge 𝐵𝑎𝑏 := 𝑎𝑏.
3.2. If 𝑎 and 𝑏 are in the same cluster of 𝑂𝑝𝑡 :
3.2.1. If 𝑐 is in the same 𝑂𝑝𝑡 cluster as 𝑎, 𝑏: then the 𝑆𝑜𝑙 ′

cluster has the same color as the 𝑂𝑝𝑡 cluster due to the
cluster-color choice of 𝑆𝑜𝑙 ′, so 𝑎𝑏 is also a wrong-color
disagreement in 𝑂𝑝𝑡 . We charge 𝐵𝑎𝑏 := 𝑎𝑏.

3.2.2. If 𝑐 is in a separate𝑂𝑝𝑡 cluster: then 𝑎𝑐 is a disagreement
in 𝑂𝑝𝑡 . We charge 𝐵𝑎𝑏 := 𝑎𝑐 .

For 𝑒 ∈ 𝐷 (𝑂𝑝𝑡), we denote by𝑀𝑒 ⊆ 𝐷 (𝑆𝑜𝑙 ′), the set of disagree-
ments of 𝑆𝑜𝑙 ′ charged to edge 𝑒 during a run of Pivot.

Lemma 2.2. For each disagreement 𝑒 ∈ 𝐷 (𝑂𝑝𝑡), the expected size
of𝑀𝑒 is at most 3.

Proof. Let 𝑢𝑣 be a disagreement in 𝑂𝑝𝑡 . Consider the critical
iteration of 𝑢𝑣 . Observe that vertex-pairs are only charged in their
critical iteration. Let 𝑁 (𝑢), 𝑁 (𝑣) be the neighborhoods of 𝑢 and 𝑣
respectively, excluding both 𝑢 and 𝑣 , at the beginning of the critical
iteration of 𝑢𝑣 . Let 𝑆 = 𝑁 (𝑢) ∪ 𝑁 (𝑣) ∪ {𝑢, 𝑣} and 𝑠 = |𝑆 |. It is clear
that a vertex from 𝑆 is picked as cluster center, as at least one of 𝑢
and 𝑣 is clustered in this critical iteration. As the algorithm chooses
a vertex uniformly at random in each iteration, all vertices in 𝑆 have
the probability 1

𝑠 of being picked. We upper bound the expected
size of𝑀𝑢𝑣 for the different types of disagreements.
• If 𝑢𝑣 is a non-edge in a cluster of 𝑂𝑝𝑡 :
As 𝑢𝑣 is a non edge, 𝑢𝑣 could be charged according to the
construction above only in 1.1 or in 2.2.1. By construction,
𝑢𝑣 can be charged through 1.1 only for itself. Moreover, this
happens only if a common neighbor from 𝑁 (𝑢) ∩ 𝑁 (𝑣) is
picked as cluster center. Through 2.2.1 𝑢𝑣 can be charged
only if either 𝑢 or 𝑣 is picked as cluster center. If 𝑢 is picked
as cluster-center then 𝑀𝑢𝑣 = {𝑣𝑤 | 𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣)} and
if 𝑣 is picked then𝑀𝑢𝑣 = {𝑢𝑤 | 𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣)}. Thus,

E[|𝑀𝑢𝑣 |] =
|𝑁 (𝑢) ∩ 𝑁 (𝑣) |

𝑠
1 + 2

𝑠 |𝑁 (𝑢) ∩ 𝑁 (𝑣) |

= 3
𝑠 |𝑁 (𝑢) ∩ 𝑁 (𝑣) | < 3.

• If 𝑢𝑣 is an edge between clusters of 𝑂𝑝𝑡 :
Here, there are 5 cases that could charge 𝑢𝑣 . The cases 2.1
and 3.1 only charge𝑢𝑣 for itself and can occur only if neither
𝑢 nor 𝑣 is chosen as cluster center. Through 2.1,𝑢𝑣 is charged
only if a vertex of 𝑁 (𝑢) ⊕ 𝑁 (𝑣) (symmetric difference) is
picked as cluster center. Through 3.1, 𝑢𝑣 is charged only if a
vertex from (𝑁 (𝑢) ∩ 𝑁 (𝑣))
The remaining 3 cases 1.2, 2.2.2 and 3.2.2 can occur only if

either 𝑢 or 𝑣 is picked as the center. W.l.o.g. let the center
be 𝑢. Through 1.2, 𝑢𝑣 can be charged only for the non-edges
between 𝑣 and𝑁 (𝑢) \𝑁 (𝑣). Through 2.2.2,𝑢𝑣 can be charged
only for the edges from 𝑣 to 𝑁 (𝑣) \ 𝑁 (𝑢). Through 3.2.2, 𝑢𝑣
can be charged only for the edges from 𝑣 to 𝑁 (𝑢) ∩ 𝑁 (𝑣).
Therefore,

E[|𝑀𝑢𝑣 |] ≤ 𝑠−2
𝑠 1 + 2

𝑠 (𝑠 − 2) < 3.

• If 𝑢𝑣 is an edge in a cluster of 𝑂𝑝𝑡 with disagreeing color:
Only 3.2.1 charges such disagreements, and there 𝑢𝑣 is only
charged for itself. Hence, E[|𝑀𝑢𝑣 |] ≤ 1.

Thus, in all cases, the expected size of𝑀𝑒 is at most 3. □

Since we have charged each disagreement of 𝑆𝑜𝑙 ′ to a disagree-
ment of 𝑂𝑝𝑡 , and each disagreement of 𝑂𝑝𝑡 was charged at most 3
times in expectation, we have that

E[|𝐷 (𝑆𝑜𝑙 ′) |] ≤ 3|𝐷 (𝑂𝑝𝑡) |. □

3 MONOCHROMATIC REDUCTION
Anava et al. [4] proposed a fast algorithmic framework to ap-
proximate CCC by using an approximation algorithm for the non-
chromatic version of the problem. They delete all secondary edges
𝐸2 to create the graph𝐺1 consisting of monochromatic components,
which are then approximated by a (non-chromatic) CC algorithm.

Anava et al. use this framework in combination with Pivot and
call it Reduce and Cluster (RC). They show that this yields an 11-
approximation in expectation. In general, they show that given an
𝛼-approximation algorithm for CC, this technique yields a (3 ·𝛼 +2)
approximation. We improve their analysis and show the following:

Theorem 3.1. The algorithmic framework by Anava et al. [4] when

used with an 𝛼-approximation for Correlation Clustering, guarantees

an (𝛼 + 2)-approximation for Chromatic Correlation Clustering.

Proof. First, we bound the number of secondary edges 𝐸2. The
following is implied by Lemma 2.3 in Anava et al. [4].

Lemma 3.2 (Secondary-Edge Lemma). |𝐸2 | ≤ 2𝑑∗ (𝐺).

Next, we argue that the optimum of𝐺1 (the graph after deleting
secondary edges) is at most the optimum of 𝐺 , improving on the
bound by Anava et al. [4]. Towards this, we prove the following.

Lemma 3.3. Given a graph 𝐺 , a vertex 𝑣 and a color 𝑐 . If 𝐺 ′ is the
graph derived from 𝐺 by removing all edges of color 𝑐 incident to 𝑣 ,

then 𝑑∗ (𝐺 ′) ≤ 𝑑∗ (𝐺).

Proof. Let 𝑂𝑝𝑡 be an optimum clustering on 𝐺 . If the cluster
color of 𝑣 in 𝑂𝑝𝑡 is different from 𝑐 , then 𝑑 (𝐺 ′,𝑂𝑝𝑡) ≤ 𝑑 (𝐺,𝑂𝑝𝑡)
as deleting the edges only removes inter-cluster disagreements and
turns wrong-color into non-edge disagreements. If the cluster of 𝑣
has color 𝑐 , we define𝑂𝑝𝑡𝑣 as𝑂𝑝𝑡 but with 𝑣 in its own cluster. We
see that 𝑑 (𝐺 ′,𝑂𝑝𝑡𝑣) ≤ 𝑑 (𝐺,𝑂𝑝𝑡) as all disagreements incident to 𝑣
on 𝐺 ′ were either color or inter-cluster disagreements before. In
both cases there exists a clustering for 𝐺 ′ that does not have more
disagreements than 𝑑∗ (𝐺), consequently 𝑑∗ (𝐺 ′) ≤ 𝑑∗ (𝐺). □

Now, let𝐶 be a clustering produced by an𝛼-approximateCC algo-
rithm on the (monochromatic) connected components of 𝐺1. Since
the components are CC instances, we have 𝑑 (𝐶,𝐺1) ≤ 𝛼𝑑∗ (𝐺1). By

Lemma 3.3, we know that 𝑑 (𝐶,𝐺1) ≤ 𝛼𝑑∗ (𝐺). Interpreting 𝐶 as a
clustering on𝐺 can, in the worst-case, result in all secondary edges
being additional disagreements, thus 𝑑 (𝐶,𝐺) ≤ 𝑑 (𝐶,𝐺1) + |𝐸2 | ≤
𝛼𝑑∗ (𝐺) + 2𝑑∗ (𝐺), where the last inequality is by Lemma 3.2. Thus
we conclude that the framework gives a (𝛼 + 2)-approximation. □

For RC in particular, the theorem implies:

Corollary 3.4. RC is a 5-approximation in expectation for Chro-

matic Correlation Clustering.

4 GREEDY EXPANSION
While Pivot and RC give constant factor approximations in theory,
heuristics without proven guarantees like CB (Bonchi et al. [7]) and
DC (Anava et al. [4]) outperform them on practical instances, as
shown by experiments in the respective publications. DC in particu-
lar starts building a cluster like Pivot but then expands it further
by greedily adding vertices of distance two from the cluster center,
as long as it is deemed beneficial. The idea of incrementally adding
vertices to clusters can also be found in the literature for CC. Lingas
et al. [19] describe that RMM starts with singleton clusters and then
iteratively merges the two clusters that give the highest error reduc-
tion. However, it can be observed that RMM often builds one cluster

Algorithm 2: Greedy Expansion
Data: An undirected, edge-colored Graph 𝐺 = (𝑉 , 𝐸, 𝑐𝑜𝑙)
Result: A clustering 𝑆𝑜𝑙 = {(𝐶1, 𝑐1), . . . (𝐶𝑚, 𝑐𝑚)} with

𝐶𝑖 ⊆ 𝑉 and 𝑐𝑖 ∈ N.
1 Algorithm greedy_expansion(G,g=25)
2 𝑆𝑜𝑙 ← ∅;
3 while 𝐸 ≠ ∅ do
4 choose 𝑢𝑣 ∈ 𝐸 u.a.r.;
5 (𝐶, 𝑐) ← expand_around(u,v,g);
6 𝑆𝑜𝑙 ← 𝑆𝑜𝑙 ∪ {(𝐶, 𝑐)};
7 𝑉 ← 𝑉 \𝐶;𝐸 ← 𝐸 \ {𝑢𝑣 ∈ 𝐸 | 𝑢 ∈ 𝐶};
8 Make remaining vertices in 𝑉 singleton clusters;
9 return 𝑆𝑜𝑙 ;

10 Function error(C)
11 return number of errors in 𝐶 when colored optimally;
12 Function merge_gain(C,w)
13 return error(C) + |𝐸 ∩ (𝐶 × {𝑤}) | − error(𝐶 ∪ {𝑤});
14 Procedure expand_around(u,v, g)
15 𝐶 ← {𝑢, 𝑣};
16 Draw up to 𝑔 vertices𝑤 ∈ 𝑁 (𝑢) ∪𝑁 (𝑣) and add them to

𝐶 , prefer vertices is 𝑁 (𝑢) ∩ 𝑁 (𝑣);
17 while min𝑤∈𝐶 merge_gain(𝐶 \ {𝑤},𝑤) ≤ 0 do
18 𝑤 ← 𝑎𝑟𝑔min𝑤∈𝐶 merge_gain(𝐶 \ {𝑤},𝑤) ;
19 𝐶 ← 𝐶 \ {𝑤};
20 while max𝑤∈𝑉 \𝐶 merge_gain(𝐶,𝑤) > 0 do
21 𝑤 ← 𝑎𝑟𝑔max𝑤∈𝑉 \𝐶 merge_gain(𝐶,𝑤) ;
22 𝐶 ← 𝐶 ∪ {𝑤};
23 𝑐 ← best color for 𝐶 ;
2525 return (𝐶, 𝑐);

at a time before moving on to the next. This can be explained by
observing that merging two connected singleton clusters always
has a gain of one, whereas the gain of merging a singleton into a
larger cluster can be much higher. RMM can be extended to the CCC
setting by accounting for colors when calculating the merge gain.
However, in preliminary experiments we noticed that this tends to
make bad choices for the first edges to merge.

As the first vertices added to a cluster have a high impact on
its future growth, we propose our own heuristic that focuses more
on the initial stage of a cluster. The idea is to stabilize the clusters
at their initial stage by exploring potential clusters in the immedi-
ate neighbourhood before greedily adding additional vertices. Our
heuristic Greedy Expansion (GE) iteratively chooses an unclustered
edge and builds a cluster around it as described in algorithm 2.
First, we consider the neighborhood of the edge and temporarily
add a sample of it to our cluster. Then, vertices that do not fit are
iteratively removed to produce a good starting cluster. As taking
the whole neighborhood can be time consuming for vertices with
high degree, we restrict the sample size of neighbored vertices with
the parameter 𝑔. To increase the chances of finding a good initial
cluster, we prefer vertices from the common neighborhood of the
starting edge for our sample. Then, the initial cluster is greedily
expanded with the vertices that maximise the merge gain.

GE can be implemented to run in O(|𝑉 |Δ + |𝐸 |Δ𝐿) for constant 𝑔
(we chose 𝑔 = 25 as this resulted in a good trade-off between quality
and running time in our experiments), where Δ is the maximum
degree of𝐺 and Δ𝐿 the maximum number of distinct colors incident
to a vertex. (See Appendix A for a formal proof.) This worst-case
runtime seems to be overly pessimistic and the algorithm runs
much faster in the real-world datasets as can be seen in Table 3.

5 EXPERIMENTAL EVALUATION
To evaluate the practical effectiveness of our algorithms, we com-
pare them with the state-of-the-art for CCC: Chromatic Balls (CB)
from Bonchi et al. [7], Reduce and Cluster (RC) and Deep Cluster (DC)
from Anava et al. [4], on synthetic and real-world data. While their
experiments have already shown RC to be inferior, we include it to
compare with Pivot, which offers the better theoretical guarantee.

Both RC and DC start by deleting all secondary edges, leaving
only monochromatic subcomponents. We therefore also consider
known CC heuristics with this preprocessing step. We evaluate
the performance of Vote from Elsner and Charniak [14] and Ran-
dom Maximum Merging (RMM) from Lingas et al. [19] on the graph
without secondary edges. For our proposed heuristic GE, we use an
initial growth limit of 𝑔 = 25. Furthermore, we include a modified
version GER which runs on the preprocessed graph. In GER, the
difference is that we do not consider colors when calculating the
error, as GER runs on graphs with monochromatic components.

All our experiments were conducted on an Intel(R) Xeon(R) Gold
5118 CPU @ 2.30GHz with 64GB of RAM. The algorithms are im-
plemented in Python 3 using networkx 2.5 [16]. To get access to
the code and datasets, see Appendix B.

5.1 Synthetic
The synthetic data is generated identically to Anava et al. [4]. The
graph created has 𝑛 vertices and |𝐿 | colors. Initially, each vertex is

Figure 2: Experimental results on synthetic data. Mean error (number of disagreements) in upper, and F-Score (1.0 for perfect
reconstruction of the ground truth) in lower row, averaged over 10 graphs with 5 runs on each. One parameter of 𝑝, 𝑘, |𝐿 | is
varied at a time keeping the others at 𝑛 = 10000, 𝑝 = 0.1, 𝑘 = 100 and |𝐿 | = 20. Pivot is omitted if it is far out of the plotted area.

assigned u.a.r. to one of 𝑘 clusters. Each cluster has a color drawn
u.a.r. and all vertices within it are connected with an edge of the
cluster color. This cluster graph is then modified by random noise.
We change each 𝑢𝑣 ∈

(𝑉
2
)
with a probability 𝑝 . If 𝑢𝑣 ∉ 𝐸, we create

a new edge with a color drawn u.a.r. If 𝑢𝑣 ∈ 𝐸, we draw a color
u.a.r. and recolor the edge or remove it if we draw its current color.
We use the initial assignment of vertices to the 𝑘 clusters as ground
truth, although it is not guaranteed to be an optimum solution.

As default parameters, we use 𝑛 = 10000, 𝑝 = 0.1, 𝑘 = 100 and
|𝐿 | = 20. We evaluate the impact of one parameter at a time on
the algorithms’ performances. For each parameter combination, we
measure the mean over 10 graphs with 5 runs on each per algorithm.

We measure the number of disagreements and the F-score for
clustering, which reflects the similarity between a clustering and
the ground truth. For a ground truth (𝐶∗

𝑖
, 𝑐∗
𝑖
)𝑖∈[𝑘∗] and a clustering

(𝐶𝑖 , 𝑐𝑖)𝑖∈[𝑘] , it is computed as follows

𝐹 (𝐶,𝐶∗) = 1
𝑛

𝑘∗∑
𝑖=1
|𝐶∗𝑖 | max

1≤ 𝑗≤𝑘
𝐹𝑖 𝑗 ,

where 𝐹𝑖 𝑗 = (2𝑃𝑖 𝑗𝑅𝑖 𝑗)/(𝑃𝑖 𝑗 +𝑅𝑖 𝑗) and 𝑅𝑖 𝑗 = |𝐶∗𝑖 ∩𝐶 𝑗 |/|𝐶∗𝑖 | is recall
and 𝑃𝑖 𝑗 = |𝐶∗𝑖 ∩𝐶 𝑗 |/|𝐶 𝑗 | is precision.

Figure 2 shows the results. As expected, increasing the noise 𝑝
increases the error and makes it harder to find the original clus-
tering. When the number of colors |𝐿 | is increased, it is easier to
distinguish noise edges, as they are less likely to have the cluster
color. Increasing 𝑘 decreases the expected cluster size which makes
it more difficult to differentiate them from noise.

In all settings, we clearly see that Pivot is outperformed by all
other algorithms, despite having the best proven approximation

Dataset |V| |E| |L| p`
Facebook 2,884 62,334 193 8.3%
DAWN 2,109 96,047 10 41.4%
MAG 80,198 237,261 11 7.2%
String_S 18,152 401,582 4 n/a
Twitter 22,964 431,329 4,065 10.4%
Cooking 6,714 479,921 20 29.4%
DBLP_S 73,624 835,414 100 n/a
DBLP 2,578,154 14,470,369 6,606 25%
String 492,199 22,151,767 7 54.9%

Table 1: Overview of the real-world datasets used in the ex-
perimental section where 𝑝` is the percentage of edges with
multiple colors in the multi-chromatic version in section 6.

guarantee. We also see that the adapted CC heuristics RMM and
Vote perform much better than the previous heuristics suggested
for CCC (CB, DC). Further, we observe that GE is outperformed by
GER, which together with RMM yields the best results by a slim
margin. Intuitively, this might be the effect of removing secondary
edges which on these synthetic graphs reduces the noise and makes
clustering easier. We see that in all but the most extreme parameter
settings, the CC algorithm RMM and especially our heuristic GER are
able to reconstruct the ground truth almost perfectly.

5.2 Real-World Data
We evaluate the algorithms on real-world edge-labeled data from
various domains. Table 1 gives an overview of our datasets.

Mean Error Cluster Count
Dataset Pivot RC DC CB Vote RMM GER GE Pivot RC DC CB Vote RMM GER GE

[2] [4] [4] [7] [14] [19] [ours] [ours] [2] [4] [4] [7] [14] [19] [ours] [ours]
Facebook 56,245 0.881 0.829 0.853 0.722 0.703 0.705 0.700 560 1.430 1.405 1.655 1.682 1.645 1.618 1.355
DAWN 114,636 0.911 0.884 0.824 0.783 0.765 0.763 0.734 983 1.149 1.151 1.249 1.318 1.339 1.323 1.209
MAG 199,325 0.823 0.824 0.689 0.677 0.679 0.665 0.653 29,927 1.067 1.061 1.140 1.151 1.145 1.144 1.115
String_S 161,469 0.970 0.848 0.994 0.748 0.703 0.708 0.708 1,038 1.075 0.837 1.397 1.114 1.061 0.991 0.952
Twitter 572,772 0.702 0.693 0.699 0.674 0.664 0.662 0.658 6,267 1.528 1.479 1.651 1.672 1.628 1.623 1.373
Cooking 712,742 0.702 0.706 0.665 0.645 0.641 0.641 0.643 2,775 1.208 1.205 1.271 1.386 1.405 1.391 1.226
DBLP_S 838,504 0.736 0.711 0.736 0.690 0.674 0.670 0.654 9,392 2.448 2.282 2.467 2.627 2.496 2.481 1.556
DBLP 16,534,591 0.703 0.701 0.666 0.660 0.659 0.656 0.642 1,040,069 1.239 1.230 1.204 1.289 1.282 1.281 1.159
String 28,076,379 0.852 0.838 0.770 0.731 0.728 0.726 0.705 213,982 1.083 0.993 1.226 1.184 1.174 1.096 1.010

Table 2: Experimental results on real-world datasets. Mean error and cluster count normalized with Pivot, i.e. divided by the
result of Pivot, given in the Pivot columns. Lowest errors are highlighted in bold, if the difference is statistically significant.

Figure 3: The scatter plots display the distribution of the number of disagreements across the 50 runs on single-label data. It
is restricted to the best performing heuristics for scaling purposes.

Facebook and Twitter are social network graphs from [18].
Here, vertices represent persons which are connected if they are
friends (or one follows the other). Similarly to the Facebook and
Twitter datasets of Anava et al. [4], we colored edges based on
the social circles attributes of the dataset. When two vertices are
grouped within the same social circle, the edge between them is
labeled with that circle; when they belong to multiple circles we
choose one of them randomly for the single-label dataset.

The DBLP_S and String_S datasets are identical to those used
in [4, 7]. Since these are rather small and only fit the single-label
setting, we created our own version of these from the same sources.

DBLP is a coauthorship network obtained from DBLP1. Vertices
(authors) are connected with an edge labeled with the journal or
conference they published in together most frequently. The Mi-
crosoft Academic Graph (MAG) obtained from [3, 21] also categorizes
co-author relationships based on their most common venue.

STRING DB [23] is a database on protein-protein interactions. In
particular, the table ‘network’ contains pairs of interacting proteins
along with a mode of interaction. This can be modeled as a graph
String where proteins are represented by vertices, interactions by
edges, and the modes of interaction by edge-colors. For edges with
multiple types of interaction, one of them is chosen u.a.r. for the

1The dblp team: dblp computer science bibliography. Monthly snapshot release of
December 2020. dblp.org

single-label data. As the whole String DB is very large, we only
used a subset of it. As the graph consists of multiple components,
we evaluate them separately to reduce the memory consumption.

Further, we include two datasets used by Amburg et al. [3] who
studied a different model of clustering with categorical edge-labels.
We select the two datasets with highest percentage of multi-label-
edges aiming for interesting graphs for our setting in section 6. The
DAWN dataset [1] models a drug abuse warning network. Vertices
are drugs and edges mean that they were used together before
an emergency room visit. The color represents the most common
outcome of that visit. In the Cooking dataset [17], vertices are
ingredients that are connected with an edge if they co-occur in
recipes with a color of the most common cuisine of those.

On each dataset, we ran the algorithms 50 times each and aver-
aged the error. To account for the randomness of the experiments,
we performed a Mann-Whitney-U Test to test for statistical signifi-
cance with a 𝑝 threshold of 0.01. The results are given in Table 2.
As before, we see that Pivot gives the worst results. Deleting sec-
ondary edges beforehand (RC) already gives a drastic improvement.
The heuristics suggested by previous papers on CCC generally per-
form better, but there is no clear winner among CB and DC. Both
of them are significantly outperformed by the CC algorithms and
our heuristics on all datasets. Of those, Vote loses to RMM on all but
one datasets. Comparing GE to the best of previous CCC heuristics,

https://dblp.org/xml/release/dblp-2020-12-01.xml.gz

Dataset Pivot RC DC CB Vote RMM GER GE

Facebook 0.04 0.35 0.54 0.06 0.34 1.42 0.65 0.77
DAWN 0.04 0.44 0.90 0.10 0.46 1.71 0.85 1.18
MAG 0.43 2.16 2.43 0.61 2.36 6.46 3.99 3.68
String_S 0.47 2.65 2.98 0.56 2.41 11.36 4.57 2.57
Twitter 0.29 2.10 2.35 0.79 2.15 4.85 2.90 14.64
Cooking 0.19 1.93 3.02 0.69 2.00 5.43 2.96 7.57
DBLP_S 0.91 6.07 6.27 2.20 6.09 16.20 8.77 18.24
DBLP 24.29 122.90 132.50 52.20 130.57 310.48 176.34 338.26
String 12.28 102.92 258.67 33.36 108.75 417.47 206.19 287.33

Table 3:Wall clock times of the algorithms on the real-world
data in seconds. The values are averaged over 50 runs.

the largest improvement is 16.5% on String_S, and the smallest is
3.4% on Cooking. GE significantly improves over RMM in the range
4.1% to 2.6% on five datasets. In contrast to the synthetic data, here
GE outperforms its modification GER, which is more similar to RMM.
On the two datasets where GE is not the best, the difference to
the best one is only 0.7% and 0.3%. On all but two datasets, the
statistical testing shows that GE is significantly better than all other
algorithms. Looking further into the measurements, we see that
on six datasets GE’s worst run is better than the best run of any
other algorithm (see Figure 3). On String_S, RMM has a statistically
significant lead, yet the difference in the distributions is less clear.

The run times of the algorithms are presented in Table 3. GE
and RMM are generally the slowest, yet fast enough considering the
size of the input data; e.g., the largest time taken by GE is about 5
minutes on the DBLP dataset that has about 2.5 million vertices
and 15 million edges. We remark that we did not optimize the code
for run time, as all runtimes are well under feasible times.

In Table 2, we have also included the mean number of clusters
found. It can be seen that GE builds relatively few clusters compared
to other algorithms except Pivot and DC.

6 A NOVEL MULTI-LABEL MODEL FOR CCC
Motivated by the real-world datasets of CCC, we propose a new
multiple edge-label model of CCC. Our proposition is based on
the following limitation of CCC we observed. Often, edges in the
datasets have multiple potential labels, i.e. in a social network two
people A and B might be schoolmates as well as colleagues, and
two proteins in a protein-protein interaction network often have
multiple types of interaction. When using this data in the single-
label clustering setting, it has to be preprocessed to only have one
of these colors, for example by choosing the most prominent label.
But this causes errors in the model that do not reflect the real-world
scenario. Consider our social network example where A and B are
preprocessed to have a colleague-edge between them. It could then
happen that they are clustered into a schoolmates cluster (possibly
due to havingmany common schoolmates), then the edge AB counts
as an error even though they are in fact schoolmates.

To counter this limitation of the CCC model, we propose the
Single-Satisfy Multi-Chromatic Correlation Clustering (SSMCCC)

model. Here, each edge has a set of accepted colors 𝐶𝑜𝑙 : 𝐸 → 2𝐿
associated with it. The solutions assign a single color to each cluster
as in CCC. An edge 𝑢𝑣 counts as a wrong-color disagreement if
𝐶 (𝑢) = 𝐶 (𝑣) and 𝑐𝑐𝑜𝑙 (𝐶 (𝑢)) ∉ 𝐶𝑜𝑙 (𝑢𝑣). The edges across clusters
and non-edges within clusters remain disagreements.

We remark that Bonchi et al. [7] also considered a different
multi-label model. They assign to clusters not just one but a set of
colors and the color errors are calculated as the Hamming distance
between cluster and edge colors. The issue of not properly reflecting
real-world data can occur even in this model. Thus, we opted to
study our new multi-label model, hoping to resolve this.

We refer to the number of disagreements of a solution in the
SSMCCC model as 𝑑𝑀 (𝐺, 𝑆𝑜𝑙) and to the minimum number of
disagreements as 𝑑∗

𝑀
(𝐺). Observe that the cost of a clustering will

only improve, when allowing additional colors for an edge. More
formally the following lemma holds.

Lemma 6.1. Given a graph𝐺 and a clustering 𝑆𝑜𝑙 . Let𝐺 ′ be derived
from 𝐺 by an additional accepted color at an already existing edge.

Then 𝑑𝑀 (𝐺 ′, 𝑆𝑜𝑙) ≤ 𝑑𝑀 (𝐺, 𝑆𝑜𝑙).

Using this lemma, we show that Pivot also retains its approxi-
mation guarantee in the single-satisfy setting.

Theorem 6.2. Pivot is a 3-approximation in expectation for Single-

Satisfy Multi-Chromatic Correlation Clustering.

Proof. Let 𝐺 be an instance of SSMCCC and 𝑂𝑝𝑡 a respective
optimum solution. We define a CCC instance𝐺 ′ depending on𝐺
and𝑂𝑝𝑡 as follows.𝐺 ′ has the same set of edges as𝐺 , and the color
of 𝑢𝑣 in𝐺 ′ is assigned as follows: if 𝑢𝑣 is an agreement in𝑂𝑝𝑡 , then
assign 𝑢𝑣 the cluster color of its cluster in 𝑂𝑝𝑡 , otherwise assign it
an arbitrary color from its set of acceptable colors in 𝐺 . Then by
Lemma 6.1 and the construction of 𝐺 ′ we see that

𝑑∗ (𝐺 ′) = 𝑑 (𝐺 ′,𝑂𝑝𝑡) = 𝑑𝑀 (𝐺,𝑂𝑝𝑡) = 𝑑∗𝑀 (𝐺) .

As Pivot is an expected 3-approximation for CCC, we know that

E[𝑑 (𝐺 ′, 𝑃𝑖𝑣𝑜𝑡 (𝐺 ′))] ≤ 3𝑑∗ (𝐺 ′).

Since Pivot does not look at colors for the clustering part, it outputs
a specific partition of the vertex-set on𝐺 , with the same probability
as it would have on 𝐺 ′. Since each cluster color is determined by
majority vote, the associated clustering produces no more errors on
𝐺 than on 𝐺 ′. Hence, the expected error of Pivot on G is at most
the expected error on G’. Thus, we get:

E[𝑑𝑀 (𝐺, Pivot(𝐺))] ≤ E[𝑑 (𝐺 ′, Pivot(𝐺 ′))]
≤ 3𝑑∗ (𝐺 ′) ≤ 3𝑑∗𝑀 (𝐺). □

While Pivot retains its approximation guarantee for SSMCCC,
this is not the case for the natural generalization of RC. We can
create monochromatic components by interpreting the instance
as a multigraph (where each edge has exactly one color) and then
remove all secondary edges. The following example shows why the
error caused by this is no longer bounded by a constant factor.

Let𝑛 ∈ N and 𝐿 = [𝑛]. Consider a graphwith vertices {𝑎𝑖 }𝑖∈[𝑛]∪
{𝑏𝑖 }𝑖∈[𝑛] . For all 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 , there is an edge of all colors from
𝑎𝑖 to 𝑎 𝑗 , so {𝑎𝑖 }𝑖∈[𝑛] is a clique. For all 𝑖 ∈ [𝑛], there is an edge of
color 𝑖 between 𝑎𝑖 and 𝑏𝑖 . Evidently, the optimum solution clusters
{𝑎𝑖 }𝑖∈[𝑛] into one big cluster and isolates all vertices from {𝑏𝑖 }𝑖∈[𝑛] ,
thus incurring 𝑛 disagreements. On the other hand, all vertices from
{𝑎𝑖 }𝑖∈[𝑛] have distinct primary colors, so deleting secondary edges
removes all edges from the clique and leads to a pairwise clustering
between 𝑎𝑖 and 𝑏𝑖 with an error in O(𝑛2).

Pivot RC DC Vote RMM GER GE
Dataset [2] [4] [4] [14] [19] [ours] [ours]
Facebook 54,978 0.886 0.843 0.720 0.697 0.697 0.695
DAWN 106,678 0.936 0.962 0.776 0.764 0.763 0.708
MAG 196,397 0.833 0.835 0.680 0.683 0.668 0.656
Twitter 537,268 0.730 0.719 0.695 0.684 0.683 0.681
Cooking 612,092 0.813 0.808 0.746 0.741 0.741 0.736
DBLP 16,595,563 0.696 0.696 0.653 0.654 0.651 0.630
String 26,020,637 0.900 0.868 0.688 0.694 0.694 0.660

Table 4: Experimental results on real-world multi-label data
normalized by Pivot. Lowest errors in bold, if the difference
is statistically significant.

To evaluate our suggested multi-label setting, we use the same
datasets as described in subsection 5.2, except that we allowmultiple
labels for edges instead of enforcing single labels.

Our heuristic can naturally be extended to the multi-label setting
by creating copies of each edge 𝑢𝑣 for each of its accepted colors,
and then working with the resultant multi-graph. Since most of the
other algorithms delete secondary edges and work with monochro-
matic components, they can also be generalized. Note that we did
not run CB here, as it has no clear generalization to the multi-label
scenario. We again run each algorithm 50 times on each dataset
and use a U-Test for statistical significance as in subsection 5.2.

Looking at the results in Table 4, we observe that the algorithms
that delete secondary edges, although proven to be bad on some
SSMCCC instances, still perform much better than the theoreti-
cally proven 3-approximation Pivot. As before, the adapted CC
heuristics Vote and RMM are much better than DC. On all datasets but
Facebook, statistical analysis proves that GE performs significantly
better than the other algorithms. On four of them, the improvement
over RMM in mean error ranges from 3.6% to 7.3%.

Comparing Table 4 and Table 2, we see a significant drop of
errors for SSMCCC compared to CCC. Especially, GE on DAWN and
String produces 10.2% and 13.3% less errors than on the single-
label model. This supports our hypothesis that errors that do not
model the real-world scenario can occur in the single-label setting.

The theoretical runtime of GE for SSMCCC remains the same as
that of the single-label setting interpreting |𝐸 | as the total number of
labels across all edges. The experimental runtimes of all algorithms
in the multi-label setting are more or less similar to those in the
single-label setting, so we do not show them here.

7 FURTHERWORK
From a theoretical standpoint, it would be interesting to see if CCC
admits better than 3-approximation in polynomial time. Looking
at successful approaches for CC, it might be worth to reconsider
LP relaxation. It is probably much harder to improve upon a ratio
of 3 in linear time as this remains an open problem also for the
more intensely studied CC. From a practical viewpoint, we think
that our SSMCCC model offers a more realistic setting, and hence
developing better heuristics in this model is an interesting direction.

ACKNOWLEDGMENTS
We thankNoaAvigdor-Elgrabli, for sharing the DBLP_S and String_S
datasets with us.

REFERENCES
[1] Substance Abuse and Mental Health Services Administration. 2013. Drug Abuse

Warning Network, 2011: National Estimates of Drug-Related Emergency Depart-
ment Visits. HHS publication no.(SMA) 13 (2013), 4760.

[2] Nir Ailon, Moses Charikar, and Alantha Newman. 2008. Aggregating inconsistent
information: Ranking and clustering. J. ACM 55, 5 (2008), 23:1–23:27.

[3] Ilya Amburg, Nate Veldt, and Austin R. Benson. 2020. Clustering in graphs and
hypergraphs with categorical edge labels. InWWW ’20: The Web Conference 2020.
ACM / IW3C2, 706–717.

[4] Yael Anava, Noa Avigdor-Elgrabli, and Iftah Gamzu. 2015. Improved Theoretical
and Practical Guarantees for Chromatic Correlation Clustering. In Proceedings of

the 24th International Conference on World Wide Web (WWW). ACM, 55–65.
[5] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation Clustering.

Mach. Learn. 56, 1-3 (2004), 89–113.
[6] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. 1999. Clustering Gene Expression

Patterns. J. Comput. Biol. 6, 3/4 (1999), 281–297.
[7] Francesco Bonchi, Aristides Gionis, Francesco Gullo, Charalampos E. Tsourakakis,

and Antti Ukkonen. 2015. Chromatic Correlation Clustering. ACM Trans. Knowl.

Discov. Data 9, 4 (2015), 34:1–34:24.
[8] Stefani Chan, Raymond K Pon, and Alfonso F Cárdenas. 2006. Visualization

and clustering of author social networks. In Distributed Multimedia Systems

Conference. 174–180.
[9] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. 2005. Clustering

with qualitative information. J. Comput. Syst. Sci. 71, 3 (2005), 360–383.
[10] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavt-

sev. 2015. Near Optimal LP Rounding Algorithm for Correlation Clustering on
Complete and Complete k-partite Graphs. In Proceedings of the Forty-Seventh

Annual ACM on Symposium on Theory of Computing, (STOC). ACM, 219–228.
[11] Flavio Chierichetti, Nilesh N. Dalvi, and Ravi Kumar. 2014. Correlation clustering

in MapReduce. In The 20th ACM International Conference on Knowledge Discovery

and Data Mining, (SIGKDD). ACM, 641–650.
[12] Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. 2015.

Structural reducibility of multilayer networks. Nature communications 6, 1 (2015),
1–9.

[13] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. 2006. Corre-
lation clustering in general weighted graphs. Theor. Comput. Sci. 361, 2-3 (2006),
172–187.

[14] Micha Elsner and Eugene Charniak. 2008. You Talking to Me? A Corpus and
Algorithm for Conversation Disentanglement. In Proceedings of the 46th Annual

Meeting of the Association for Computational Linguistics (ACL). The Association
for Computer Linguistics, 834–842.

[15] Micha Elsner and Warren Schudy. 2009. Bounding and Comparing Methods for
Correlation Clustering Beyond ILP. In Proceedings of the Workshop on Integer

Linear Programming for Natural Langauge Processing. 19–27.
[16] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network

Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th

Python in Science Conference. 11 – 15.
[17] Kaggle. 2015. What’s Cooking? https://www.kaggle.com/c/whats-cooking.
[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.
[19] Andrzej Lingas, Mia Persson, and Dzmitry Sledneu. 2014. Iterative merging

heuristics for correlation clustering. Int. J. Metaheuristics 3, 2 (2014), 105–117.
[20] Vincent Ng and Claire Cardie. 2002. Improving machine learning approaches to

coreference resolution. In Proceedings of the 40th annual meeting of the Association

for Computational Linguistics. 104–111.
[21] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Paul Hsu,

and Kuansan Wang. 2015. An Overview of Microsoft Academic Service (MAS)
and Applications. In Companion Proceedings of the 24th International Conference

on World Wide Web (WWW). ACM, 243–246.
[22] Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim. 2001. A machine

learning approach to coreference resolution of noun phrases. Computational

linguistics 27, 4 (2001), 521–544.
[23] Damian Szklarczyk, Annika L. Gable, David Lyon, Alexander Junge, StefanWyder,

Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T. Doncheva, John H. Morris,
Peer Bork, Lars Juhl Jensen, and Christian vonMering. 2019. STRING v11: protein-
protein association networks with increased coverage, supporting functional
discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, Database-
Issue (2019), D607–D613. https://doi.org/10.1093/nar/gky1131

https://www.kaggle.com/c/whats-cooking
http://snap.stanford.edu/data
https://doi.org/10.1093/nar/gky1131

A GREEDY EXPANSION: RUN TIME
ANALYSIS

In this section, we analyze the run time of our GE heuristic and
discuss how it could be implemented most efficiently. The analysis
is theoretical though and does not reflect the implementation used
during the experiments, as in practice, the algorithm runs efficiently
even without some of those optimizations. In particular, we found it
to be sufficient to do a linear scan for the best vertex to add, instead
of using (bucket) priority queues.

We use Δ to refer to the maximum degree of the input graph
and Δ𝐿 for the maximum number of colors incident to a vertex.
The graph is stored as an adjacency list. We focus on the function
expand_around in algorithm 2, which is called at most O(|𝑉 |)
times.

When sampling from the neighborhood in line 16, we create an
array of common neighbors and an array of exclusive neighbors
by iterating through the adjacency lists of 𝑢 and 𝑣 and marking
the respective vertices. Afterwards, we sample up to 𝑔 vertices
from those arrays, so the complexity is in O(Δ). Next, we copy the
subgraph induced by the vertices of 𝐶 in O(𝑔Δ).

While shrinking the initial cluster during the loop in line 17, we
work on this copied subgraph.We keep track of the number of edges
of each color within the cluster, and incident to each vertex. For
each of the O(𝑔) iterations, we check for each of the O(𝑔) vertices
the removal gain in O(Δ𝐿) time based on this information. When
a vertex gets removed, we must update its neighbors within the
cluster. Overall this reqiures time in O(𝑔2Δ𝐿). Accumulated over

the whole run of the algorithm, this gives us O(|𝑉 | (𝑔Δ + 𝑔2Δ𝐿))
time for the shrinking part, i.e. O(|𝑉 |Δ) for constant 𝑔.

We now analyse the expansion (loop in line 20) amortized across
all calls of expand_around. Again, we keep track of the number of
edges for each color within the cluster. For each vertex 𝑤 neigh-
bored to the cluster and each color 𝑐 ∈ 𝐿, we also keep track of
the number of edges 𝑎𝑐𝑤 = |{𝑤𝑥 ∈ 𝐸 | 𝑥 ∈ 𝐶 ∧ 𝑐𝑜𝑙 (𝑤𝑥) = 𝑐}|. To
efficiently determine the best vertex to add, we maintain a priority
queue for each color occurring. For color 𝑐 ∈ 𝐿, the priority of a
vertex𝑤 in the respective queue is computed as 𝑎𝑐𝑤 + 1

2
∑
𝑐′≠𝑐 𝑎

𝑐′
𝑤 .

Moreover, we use a priority queue containing the top entries of each
color queue adjusted for the respective number of colored edges
within the cluster. The different edge counters are only updated
when a vertex is added to the cluster permanently, so we can upper
bound the number of updates with O(|𝐸 |). When a vertex gets
updated because a neighbor has been added to 𝐶 , it must update
its entries in all the priority queues it is part of, so in at most Δ𝐿

queues. Since the priorities change in steps of one or one-half, we
can perform them in constant time by using bucket queues. This
allows for the expansion process to run in O(|𝐸 |Δ𝐿).

Overall, this yields a run time of O(|𝑉 |Δ + |𝐸 |Δ𝐿) for constant 𝑔.

B DATA AND CODE
The code and data used in our experiments can be found in the
following GitHub repository. Please consult the README for in-
structions on how to use the code. https://github.com/arthurz0/3-
approx-for-ccc-and-heuristics

https://github.com/arthurz0/3-approx-for-ccc-and-heuristics
https://github.com/arthurz0/3-approx-for-ccc-and-heuristics

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Our Results
	1.3 Related Work

	2 Randomized 3-Approximation
	3 Monochromatic reduction
	4 Greedy Expansion
	5 Experimental Evaluation
	5.1 Synthetic
	5.2 Real-World Data

	6 A Novel Multi-Label Model for CCC
	7 Further Work
	Acknowledgments
	References
	A Greedy Expansion: Run Time Analysis
	B Data and Code

