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Abstract

How do rational agents self-organize when trying to connect to a common target? We
study this question with a simple tree formation game which is related to the well-known
fair single-source connection game by Anshelevich et al. (FOCS'04) and sel�sh spanning tree
games by Gourvès and Monnot (WINE'08). In our game agents correspond to nodes in a
network that activate a single outgoing edge to connect to the common target node (possibly
via other nodes). Agents pay for their path to the common target, and edge costs are shared
fairly among all agents using an edge. The main novelty of our model is dynamic edge costs
that depend on the in-degree of the respective endpoint. This re�ects that connecting to
popular nodes that have increased internal coordination costs is more expensive since they
can charge higher prices for their routing service.

In contrast to related models, we show that equilibria are not guaranteed to exist, but
we prove the existence for in�nitely many numbers of agents. Moreover, we analyze the
structure of equilibrium trees and employ these insights to prove a constant upper bound on
the Price of Anarchy as well as non-trivial lower bounds on both the Price of Anarchy and
the Price of Stability. We also show that in comparison with the social optimum tree the
overall cost of an equilibrium tree is more fairly shared among the agents. Thus, we prove
that self-organization of rational agents yields on average only slightly higher cost per agent
compared to the centralized optimum, and at the same time, it induces a more fair cost
distribution. Moreover, equilibrium trees achieve a bene�cial trade-o� between a low height
and low maximum degree, and hence these trees might be of independent interest from a
combinatorics point-of-view. We conclude with a discussion of promising extensions of our
model.

1 Introduction

Network Design is an important optimization problem where for a given weighted host graph
and a given set of terminal pairs the cheapest subgraph which connects all terminal pairs has to
be found. Besides an abundance of research works with an optimization point-of-view, e.g. see
the survey by Magnanti and Wong [27], a strategic version of the Network Design problem [5, 4]
has kindled signi�cant interest in recent years. In the connection game, a weighted host graph
H is given and n agents with given terminal node pairs (si, ti), for 1 ≤ i ≤ n, strategically select
si-ti-paths in H to connect their respective terminal nodes. The union of the selected paths
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forms a subgraph G of H which constitutes the actually designed network. The usage cost of
each edge of H corresponds to its weight, and agents using some edge e in H have to pay this
cost. If an edge e is used by more than one agent, then a cost-sharing protocol determines how
the usage cost of e is split among its users. One of the most common cost-sharing protocols is
Shapley cost-sharing where each agent pays a fair share of the edge cost, i.e., the cost-share is
the edge cost divided by the number of users. This game-theoretic setting, called fair connection

game, was investigated by Anshelevich et al. [4] and has since become an in�uential paper in
Algorithmic Game Theory. An important special case is the setting in which all the strategic
agents want to connect to a common source node. This variant, where t1 = · · · = tn and where
every other node is a terminal node of some agent, is usually denoted as the (fair) single-source
connection game, with the interpretation that all the agents want to connect to a common source
node to receive broadcast messages and that the edge cost for connecting to the common source
is paid by the downstream users.

A similar related game-theoretic setting are sel�sh spanning tree games [20]. There a weighted
complete host graph with n+ 1 nodes, consisting of a common target node r and n nodes which
correspond to sel�sh agents, is given and every sel�sh agents now selects an incident edge to
connect to the common target node r either directly or indirectly via selected edges of other
agents. The cost of an agent is then determined by its unique path to r. Thus, in any equilibrium
the subgraph of all selected edges forms a spanning tree rooted at r.

This paper sets out to investigate a game-theoretic Network Design model that is closely
related to the fair single-source connection game and to sel�sh spanning tree games. The main
novel feature of our model is the twist that the cost of the edges in the formed spanning tree
depend on its topology. In particular, we consider dynamic edge costs which are proportional to
the in-degree of the node they connect to. Network nodes with high in-degree can be considered
as popular, and we assume that connecting to popular nodes is more expensive than connecting
to unpopular nodes. These dynamic edge costs can also be understood as the internal cost
of a node for coordinating data tra�c coming from di�erent connections. A node with many
incoming edges and thus higher internal coordination cost can charge higher prices for serving
each of the incoming edges.

To the best of our knowledge, we de�ne and analyze the �rst (game-theoretic) Network Design
model where the edge costs depend on the topology of the formed network. We believe that
this model sheds light on settings where the actual charges for establishing links are determined
by supply and demand and the agents act strategically to optimize their cost for receiving their
desired service.

1.1 Model, De�nition, Notation

We consider a strategic game called fair tree connection game with topology-dependent edge cost,
or tree connection game (TCG) for short. In the TCG we will consider a given unweighted
complete directed host graph H = (V,E), where V is the set of nodes and E is the set of edges
of H. The host graph H consists of n+ 1 nodes V = {r, v1, . . . , vn} where node r is the common
target node, also called the root, and every node vi, for 1 ≤ i ≤ n, corresponds to a sel�sh agent
i striving to be connected to the root r. For this, every agent i strategically activates a single
incident edge (vi, si), where si ∈ V \ {vi}. Hence, the strategy space of each agent is the set of
other nodes to connect to. Given a strategy pro�le s = (s1, . . . , sn), i.e., an n-dimensional vector
where the j-th entry corresponds to the node to which agent j wants to activate her edge, we
consider the directed network T (s) = (V,E(s)) which is induced by all the activated edges, i.e.,
E(s) = {(vi, si) | 1 ≤ i ≤ n}. We will see later that T (s) is a spanning tree rooted at r if s is an
equilibrium state of the TCG, hence the name.

The cost of agent i in the network T (s) depends on its unique path Pi in T (s) to the root
r (if such a path exists). In case of existence, the path Pi must be unique, since the out-degree
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of every node in T (s) is at most 1. More precisely, let Pi be the directed path from vi to r in
T (s), let indegT (s)(v) denote the number of edges with endpoint v in T (s), let T (u) denote the
subgraph of T (s) rooted at node u, i.e., the subgraph of T (s) induced by the nodes u and every
node which has a directed path to u and let |T (u)| denote the number of nodes in T (u). See
Figure 1.
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Figure 1: Left: T (s) for n = 16 agents. The path P is colored blue and we have dP0 = 3, dP1 =
2, dP2 = dP3 = 1, dP4 = 0 and |TP1 | = 6, |TP2 | = 3, |TP3 | = 2, |TP4 | = 1, |T (w)| = 5. Nodes w and uP1
and also their corresponding agents are siblings. The shown network T (s) is not stable since the
agent colored red with cost 1 + 2

2 + 3
5 = 13

5 has an improving move. Right: the network after
the agent colored red improved its cost to 1 + 1

2 + 2
3 + 3

7 = 109
42 < 13

5 .

The cost of agent i in T (s) then is costT (s)(i) :=
∑

(u,v)∈Pi

indegT (s)(v)

|T (u)| , if Pi exists and ∞
otherwise. This cost function has the following very natural interpretation: the cost of activating
edge (u, v) from node u to node v is equal to node v's in-degree, and this cost is fairly shared by
all agents who use edge (u, v) on their path towards the root r, i.e., by all agents in T (u). We
assume that each agent activates a single edge strategically to minimize its cost in the induced
network T (s). Clearly, since every agent i can activate the edge (vi, r), i can enforce �nite cost
by enforcing that the path Pi exists.

Consider a strategy pro�le s = (s1, . . . , si−1, si, si+1, . . . , sn). We say that agent i has an

improving move in s if i has some alternative strategy s′i 6= si such that for the induced strategy
pro�le s′ = (s1, . . . , si−1, s

′
i, si+1, . . . , sn) we have costT (s′)(i) < costT (s)(i), i.e., agent i can

strictly decrease its cost by activating a di�erent outgoing edge. With this, we de�ne the strategy
pro�le s to be in pure Nash equilibrium (NE) or to be stable if no agent has an improving move
in s. If the context is clear, we use strategy pro�les and their induced network interchangeably,
i.e., we say that the network T (s) is in NE or stable, if s is in NE. Moreover, when we refer
to some network T (s) we will from now on omit the reference to the strategy pro�le s and call
the network simply T . Every stable network T must be a spanning tree rooted at r, since every
agent i can activate the edge (vi, r) to achieve �nite cost.

The social cost SC(T ) of a network T is simply the sum over all agents' costs, i.e.,

SC(T ) =
n∑
i=1

costT (i) =
∑
vi∈V

∑
(u,v)∈Pi

indegT (v)

|T (u)|
=

∑
(u,v)∈E

indeg(v)

|T (u)|
· |T (u)| =

∑
v∈V

(indeg(v))2.

Note that SC(T ) nicely re�ects the overall cost impact of the nodes' popularity or coordi-
nation costs which scales quadratically with the in-degree of a node. For a given number of
agents n, let OPTn denote the network which minimizes the social cost. Moreover, if stable
networks exist for n agents, we let worstNEn denote the stable network with the highest so-
cial cost and bestNEn the stable network with the lowest social cost. We de�ne the Price

3



of Anarchy (PoA) [26] as PoA = supn
SC(worstNEn)

OPTn
and the Price of Stability (PoS) [4] as

PoS = supn
SC(bestNEn)

OPTn
, where the supremum is taken over all n that admit a stable network.

Besides the PoA and the PoS, that both focus on the overall cost and compare with the cost of
a centrally designed social optimum network, we use a measure of the quality of networks which
focuses on the cost distribution among the agents, called the Fairness Ratio (FR), analogously to
the utility uniformity introduced in [18]. For a given network T , the FR(T ) is the ratio between

the maximum and the minimum cost incurred by any agent, i.e.,FR(T ) :=
maxvi∈V costT (i)

minvi∈V costT (i) .

Finally, we introduce some additional notation for arguing about the designed networks T (s).
(See Fig. 1 for an illustration). For our analysis we use directed paths in T (s) which start at
some non-root node z and end at the root r. Let P be such a path of length ` ∈ N. We denote
by uPj the node on P which is at distance j to r, hence the root r is denoted by uP0 and node
z by uP` . Moreover, let TPj := T (uPj ) and we use dPj for the in-degree of a node with distance
j from the root r on path P , hence, dPj := indegT (s)(u

P
j ). We omit the reference to path P

whenever it is clear from the context.

1.2 Related Work

Our model is closely related to several models that have been intensively studied.
We start with the (fair) single-source connection game [5, 4] which we already brie�y discussed

in the introduction. The key feature of this game is that agents strategically select a set of edges
to connect their respective terminals. The cost of each edge is shared among all the agents
who selected the respected edge. While in [5] and later also in [23] arbitrary cost sharing is
considered, the paper [4] focuses on fair cost sharing which can be derived from the Shapley
value [32]. For this Anshelevich et al. [4] show that stable networks always exist since the game
is a potential game [31], additional they prove that the PoA is n and the PoS is upper bounded
by Hn, where Hn is the n-th harmonic number. For a given directed host graph this bound
on the PoS is tight but the case for undirected host networks is still a major open problem.
More is known for single-source connection games on undirected networks. Chekuri et al. [11]
show that the PoA is in O(

√
n log2 n) if the agents join the game sequentially and play their

respective best response. A PoS in O(log log n) was proven by Fiat et al. [19] for the special case
where all nodes of the given network correspond to a terminal of some agent. Finally, Bilò et
al. [8] prove a constant PoS for the fair single-source connection game on undirected networks.
Moreover, Albers and Lenzner [1] show that the optimum is a Hn-approximate Nash equilibrium
for the fair single-source connection game. In contrast to our model, the cost of an edge in the
(fair single-source) connection game is given via a positively weighted host network. Hoefer and
Krysta [24] investigate a variant with edge weights derived from a geometry.

Also sel�sh spanning tree games [20] are close to our model and we already brie�y discussed
them in the introduction. The key di�erence to our model is that a weighted complete network is
given and that the cost of an agent is de�ned di�erently. Gourvès and Monnot [20] de�ne three
variants of the agents' cost function: either it is the weight of the �rst edge on the path to the
common root r, or the minimum or maximum weight edge on the entire path towards r. Cost
sharing is not considered. The authors prove bounds on the PoA which vary from unbounded
to 1 depending on the exact setting. The games in [20] are inspired by the classical problem of
allocating the cost of a spanning tree among its nodes by Claus and Kleitman [12] and its variant
from cooperative game theory considered by Bird [9]. Later, Granot and Huberman [21, 22]
considered minimum cost spanning tree games and di�erent cost allocation protocols for this
have been considered by Esco�er et al. [16]. The key di�erence of all these models to our
model is that a cooperative game is considered which is a stark contrast to our non-cooperative
setting. Also game-theoretic topology control problems are related to spanning tree games and
our model. Eidenbenz et al. [15] consider a setting where a set of agents which correspond to
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wireless devices want to connect terminal nodes, whereas Mittal et al. [30] consider wireless
access point selection by sel�sh agents.

Also classical network formation games [25, 6, 17] are related to our model. There the agents
correspond to nodes in a network and every agent buys a set of incident edges to connect to other
agents. The goal of each agent is to create a connected network and to occupy a central position
in this network. For the in�uential network creation game of Fabrikant et al. [17], that has a
parameter α for the trade-o� between edge cost and distance costs, the PoA was shown to be
constant for almost all values of α [13, 2]. For high values of α all equilibrium networks of these
games are known to be trees [29, 28, 7]. A variant of the network creation game where agents
can only buy a single edge was considered by Ehsani et al. [14]. Most notably, the topology
dependent edge costs that we employ in our model were proposed by Chauhan et al. [10] for
the network creation game [17]. To the best of our knowledge, this is the only setting where
topology dependent edge costs have been considered.

1.3 Our Contribution

We study a novel game-theoretic model for the formation of a tree network which is related
to the well-known fair single-source connection game by Anshelevich et al. [4, 5] and to sel�sh
spanning tree games by Gourvès and Monnot [20]. The key di�erence of our model is that we
consider dynamic edge costs which depend on the topology of the created spanning tree. In
particular, the cost of an edge is equal to the in-degree of its endpoint. This speci�c choice was
proposed in [10] for the classical network creation game [17] and we transfer this idea to the
Network Design domain. Our analysis holds for any edge cost function of the form α times the
in-degree of the target node, for any constant α. However, our general approach is valid also for
edge cost functions that depend non-linearly on the degrees of the involved nodes.

Regarding the existence of stable trees we show that our model is in stark contrast to the
models in [4, 17, 20] since in our model stable trees may not exist. In particular, we show that
our game has no NE for n = 16 and n = 18 which implies that the TCG cannot admit a potential
function. This is contrasted with a proof that for in�nitely many n stable trees do exist, and
we conjecture that we have found all examples for NE non-existence. Towards investigating
the quality of the equilibrium networks of our model, we �rst provide a rigorous study of the
structural properties of stable trees. We show that every stable tree consists of stable subtrees

and that the height of any stable tree is in O
(

logn
log logn

)
. For the root r, which turns out to be

the node with the highest in-degree in any stable network, we show that its in-degree is between

Ω
(

logn
log logn

)
and 2O

(√
logn

)
. This shows that the maximum internal coordination overhead of a

single node in any stable tree is rather small.
Our main results are on the quality of equilibrium trees. By using the established structural

properties and a connection to the Riemann zeta function we obtain an upper bound on the
PoA of 8.62 which is contrasted with a lower bound of 2.4317. For the PoS we derive a lower
bound of 7

5 − ε. Moreover, we give for an in�nite number of values for n an upper bound of 2.83
on the PoS. Regarding the Fairness Ratio, we �rst show that the socially optimal tree is rather
unfair, i.e., having a Fairness Ratio of n · Hn. In contrast, we prove that any equilibrium tree
has a Fairness Ratio in o(n).

This shows that stable trees have only slightly higher social cost compared to the social
optimum. In particular, on average every agent pays only a constant factor more than the
trivial lower bound for any spanning tree. At the same time stable trees are more fair, have low
height and low in-degrees.

We conclude with a brief discussion of the path version extension of our model, where agents
select paths as strategies as in [5, 4]. This extension seems promising for future work since we
show that allowing a richer strategy space yields a larger set of equilibria and we give equilibria
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for n = 16 and n = 18. Hence, in the path-version equilibria may always exist, but the PoA
could be higher.

2 Structure and Properties of Equilibrium Trees

It is clear that each agent can compute her best response in polynomial time as the number of
possible strategies for an agent is n, and the agent can easily compute her cost in linear time. In
the following we show that any stable tree consists of stable subtrees, we prove an upper bound

of O
(

logn
log logn

)
to the number of edges of any leaf-to-root path of any stable network, and in the

end, we provide bounds on the degree of the root. We start with the statement that any stable
tree consists of stable subtrees.

Lemma 1. If T is stable, then any subtree T (x) is stable in the corresponding subgame.

Proof. Consider T . Assume to the contrary that there is a subtree T (x) which is not stable.
Then there is an agent y ∈ T (x) which can improve her strategy by swapping her edge (u, u1)
with an edge (u, v). Let u = u0, u1, . . . , uk = x be the path from u to x and v = v0, . . . , vm = x
be the path from v to x. Let T ′(x) be the subtree obtained after u changed her strategy towards
(u, v). Then the new strategy implies the following di�erence of the costs equals to

costT ′(x)(u)− costT (x)(u)

=
indeg(v0) + 1

|T (u)|
+

indeg(v1)

|T (u)|+ |T (v)|
+ . . .+

indeg(x)

|T (vm−1)|+ |T (u)|
− indeg(u1)

|T (u)|
− . . .− indeg(x)

|T (uk−1)|
.

Since T is stable, agent u cannot improve her strategy by the same swap. Let T ′ be a tree
obtained from T after u changed her strategy towards (u, v), and let x = x0, x1, . . . , xl = r be
the path from x to the root r. Then we have

0 ≤ costT ′(u)− costT (u)

=
indeg(v0) + 1

|T (u)|
+

indeg(v1)

|T (u)|+ |T (v)|
+ . . .+

indeg(x)

|T (vm−1)|+ |T (u)|
+

indeg(x1)

|T (x)|
+ . . .+

indeg(r)

|T (xl−1)|

− indeg(u1)

|T (u)|
− . . .− indeg(x)

|T (uk−1)|
− indeg(x1)

T (x)
− . . .− indeg(r)

|T (xl−1)|
= costT ′(x)(u)− costT (x)(u).

Hence, an agent obtains the same cost improvement in a restricted game as in the original
game because a strategy change does not a�ect the load and the in-degree of edges outside
of the considering subtree. Therefore, since T is stable, every T (x) is stable as well in the
corresponding subgame.

Next, we will consider the height of a stable network and need the following technical lemmas.

Lemma 2. Let k ∈ N be the length of a �xed leaf-to-root-path P in a stable network T . Then,

for every 1 < i < k, di−1 ≥
|Ti|

|Ti| − |Ti+1|
(di − 1).

Proof. As agent ui+1 has no incentive to swap the edge (ui+1, ui) with the edge (ui+1, ui−1), it
follows that di

|Ti+1| + di−1

|Ti| ≤
di−1+1
|Ti+1| , the claim follows.

Since |Ti+1| > 0, Lemma 2 yields that the sequence d0, d1, . . . , dk, is monotonically decreasing.

Corollary 3. Let k ∈ N be the length of a leaf-to-root-path P in a stable network T . Then, for
every 1 < i < k, di ≥ di+1.
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The next lemma shows that the in-degree of nodes strictly decreases after a constant number
of hops.

Lemma 4. Let k ∈ N be the length of a �xed leaf-to-root-path P in a stable network T . Then,

for every subtree T (v) of T with |T (v)| > 4 and for every 1 < i < k − 2 we have di−1 > di+1.

Proof. By Corollary 3 we know that di ≥ di+1. Hence, the in-degree sequence cannot decrease
towards the root. Assume to the contrary that there is a subtree T (v) of T with |T (v)| > 4 and
a subpath P ′ = (u, x), (x, y), (y, v) with P ′ ⊆ P and indeg(x) = indeg(y) = indeg(v) = d.
Assume that T (u) is the largest subtree of T (x) and T (x) the largest subtree of T (y). We will
later show that there exists always such a node x with indeg(x) = d. Since T is stable u cannot
improve by swapping her edge (u, x) with the edge (u, v). Therefore,

0 ≥
(

d

|T (u)|
+

d

|T (x)|
+

d

|T (y)|

)
− d+ 1

|T (u)|

≥ d

|T (u)| · d+ 1
+

d

|T (x)| · d+ 1
− 1

|T (u)|

≥ d

|T (u)| · d+ 1
+

d

(|T (u)| · d+ 1) · d+ 1
− 1

|T (u)|

=
|T (u)| · d

|T (u)| · (|T (u)| · d+ 1)
+

d

|T (u)| · d2 + d+ 1
− |T (u)| · d+ 1

|T (u)| · (|T (u)| · d+ 1)

=
d

|T (u)| · d2 + d+ 1
− 1

|T (u)|2 · d+ |T (u)|

=
d · (|T (u)| − 1) · (|T (u)| · d+ 1)− 1

|T (u)| · (|T (u)| · d+ 1) · (|T (u)| · d2 + d+ 1)
.

Since |T (u)| and d are non-negative integer values the denominator is positive, hence, we have to
show that d·(|T (u)|−1)·(|T (u)|·d+1)−1 ≤ 0. However, the inequality does not hold if |T (u)| ≥ 2
since every multiplier is larger than 1, and therefore the product d · (|T (u)| − 1) · (|T (u)| · d+ 1)
is strictly larger than 1.

If |T (u)| = 1 it implies d > 1 since |T (v)| > 4. Since T (u) is the largest subtree of T (x) there
has to be a leaf node u′ with an edge (u′, x). However, the costs of agent u in T are equal to
d+α for α ≥ 0, while the cost of u swapping her edge (u, x) with (u, u′) is equal to 1 + d−1

2 +α,
which is an improvement for d > 1. Hence, T cannot be stable.

To show that there exists a node x with indeg(x) = d as the root of the largest subtree of T (y),
we assume to the contrary that there is another subtree T (x′) of T (y) with indeg(x′) < d and
|T (x′)| > |T (x)|. Since T is stable u cannot improve by swapping her edge (u, x) with the edge

(u, x′). However, 0 ≥ d
|T (u)| +

d
|T (x)| −

indeg(x′)
|T (u)| −

d
|T (x′)| does not hold in this case. This completes

the proof.

In the following we investigate upper and lower bounds on the in-degree of the root in stable trees.
More precisely, we show an upper bound of 2O(

√
logn) and a lower bound of Ω(log n/ log logn).

Theorem 5. The in-degree of the root in a stable network T is at least
ln
(
4
√
n/5

)
ln ln

(
4
√
n/5

) .
Proof. Consider a stable network T of height h. Consider the case when h ≥ 4, otherwise, T
can be a path, i.e., the minimal in-degree of the root is 1. For h ≥ 4, we observe that the root
of T has a minimal in-degree if the sequence of the in-degrees dPh , . . . , d

P
0 of the nodes in the

longest leaf-to-root path P = vPh , . . . , v
P
0 is minimally increasing on the way to the root, i.e.,

dPi ≤ dPi−1 + a where a ≥ 0 is the smallest possible value. Hence, by Lemma 4, dP0 is minimal
if dPh = 0, dPh−1 = dPh−2 = dPh−3 = 1 and, for 0 ≤ i ≤ h − 4, dPi = dPi−1 + 1 if h − i is even, and
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dPi = dPi−1 if h− i is odd. Then dP0 ≥ bh−22 c+ 1, and we need to get a lower bound for h with
respect to n = |T | to �nish the proof.

Note that the size of the tree T is maximal if every subtree Ti+1 rooted at a child of a
node vPi in the vPh -v

P
0 path has maximal size. Hence, the in-degree of the root of Ti+1 is

maximal, i.e., it equals max{dPi − 1, dPi−1 − 1}. This implies that T is a balanced tree BT =
(0, 1, 1, 1, 2, 2, 3, 3, . . . , d0), i.e., each leaf-to-root path in T corresponds to the in-degree sequence
dh := dPh , . . . , d

P
0 := d0. Without loss of generality assume h− 4 is even. Then we have:

n = |T | ≤ |BT | =
h−1∑
i=0

i∏
j=0

dj = d0 + d2
0 + d2

0 (d0 − 1) + . . .+ d2
0 (d0 − 1)2 · . . . ·

(
d0 −

h− 4

2

)2

· 4

< d0 + d2
0 + d3

0 + . . .+ dh−50 + 4 · dh−40 =
d0(d

h−4
0 − 1)

d0 − 1
+ 3 · dh−40

< dh−40

(
d0

d0 − 1
+ 3

)
≤ 5dh−40 ≤ 5

16
d2d0
0 .

Therefore, d0 >
ln(16n/5)

2W
(

ln(16n/5)
2

) > ln
(
4
√
n/5

)
ln ln

(
4
√
n/5

) , where W (x) is the Lambert function.

To give an upper bound on the in-degree of the root, we �rst have to provide the following
technical lemmas. The �rst technical lemma bounds the in-degree of the parent of any leaf.

Lemma 6. In a stable network T the in-degree of the parent of any leaf is 1.

Proof. Consider a node v in T which has two children v1 and v2 such that v1 is a leaf node.
Then v2 can swap to the leaf v1 and improve its cost by at least

indeg(v)

|T (v2)|
−
(

1

|T (v2)|
+

indeg(v)− 1

|T (v2)|+ 1

)
= (indeg(v)− 1)

(
1

|T (v2)|
− 1

|T (v2)|+ 1

)
> 0.

The second technical lemma shows how the in-degrees of two sibling nodes are related.

Lemma 7. Consider a subtree T (x) of a stable network T . Then indeg(x) ≤ indeg(v) ·(
1 + |T (u)|

|T (v)|

)
+ 1, where v and u are di�erent children of x.

Proof. Consider two children u and v of the root x in the subtree T (x). Since T is stable, u
cannot improve her strategy by swapping the edge (u, x) with the edge (u, v). Let T ′(x) be the
subtree obtained after u changed her strategy towards (u, v). This implies that

0 ≤ costT ′(x)(u)− costT (x)(u) =
indeg(v) + 1

|T (u)|
+

indeg(x)− 1

|T (u)|+ |T (v)|
− indeg(x)

|T (u)|

=
1

|T (u)| (|T (u)|+ |T (v)|)

((
1 +
|T (u)|
|T (v)|

)
· indeg(v) + 1− indeg(x)

)
Therefore, indeg(x) ≤ indeg(v) ·

(
1 + |Tu|

|Tv |

)
+ 1.

From Lemma 7, we derive the following remark and corollary.

Remark 8. Consider a subtree T (x) in a stable network T . Then indeg(x) ≤ 2 · indeg(v) + 1,
where v is a root of the second smallest subtree of T (x).

Corollary 9. If T is a stable network, then every node u in T has at least indeg(u)−1 children

of in-degree at least (indeg(u)− 1)/2.
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Now we can prove an upper bound to the in-degree of the root of any stable tree.

Theorem 10. The in-degree of the root in a stable network T is 2O(
√
logn).

Proof. Consider a stable tree T of height h. Let vh, . . . , v0 be a path from a leaf to the root.
Note that the in-degree of the root v0 is maximal if the in-degree of each node in the vh-
v0-path is maximal, i.e., by Lemma 7 and 6, it corresponds to the in-degree sequence D :=
(0, 1, dh−2, . . . , d0), where di−1 = 2di + 1.

Next, we show that nodes at distance h − 2 from the root can have an in-degree of at
most 2. Assume to the contrary that there is a node u having an edge to a node x such that
indeg(x) = 3 and x is at distance h−2 from the root v0. As we have proved above, the in-degree
of all children of x is at most 1. Thus, u can swap to any leaf node of the subtree T (x). Let
T ′ be the tree obtained after u swapped. If u swaps to a child of x, it decreases its cost by
costT (u)− costT ′(u) = 3

2 −
1
2 −

2
3 > 0, i.e., it is an improving move. The swap to a leaf node at

distance 2 from x implies an improvement by costT (u)− costT ′(u) = 3
2 −

1
2 −

1
3 −

2
4 > 0, i.e., it

is an improvement. Since T is stable, we get a contradiction. Thus, D = (0, 1, 2, 5, 11, . . . , d0),
i.e.,

di = 3 · 2h−i−2 − 1 for i ≤ h− 3, where dh = 0, dh−1 = 1, dh−2 = 2. (1)

We now estimate the minimum possible number of nodes in the tree T . By Corollary 9 if the
in-degree of a node is equal to k, then it has at least k− 1 children with an in-degree of at least
(k − 1)/2. Thus, starting from the root, the in-degrees of the nodes on each level decrease no
more than twice. Hence, the total size of the tree is at least

h−1∑
i=1

di

i−1∏
j=0

(dj − 1)

 >

h−1∑
i=1

i−1∏
j=0

2h−j−2 > 2
∑h−3

j=0 (h−j−2) = 2
(h−1)(h−2)

2 ,

where h is the height of T . Thus, h < 3+
√
1+8 logn
2 . With equation (1), this implies d0 ∈

2O(
√
logn).

Now we are able to show that the length of any node-to-root path is O
(

logn
log logn

)
.

Theorem 11. If T is a stable network, then its height h ∈ O
(

logn
log logn

)
.

Proof. Consider a leaf-to-root path P in T . We show that there are O
(

logn
log logn

)
indices such that

|TPi | − |TPi+1| ≥ 3
√

log n · |TPi+1| and O
(

logn
log logn

)
indices such that |TPi | − |TPi+1| < 3

√
log n · |TPi+1|.

Let k be the number of indices i that satisfy |TPi | − |TPi+1| ≥ 3
√

log n · |TPi+1|. Then we have
that |TPi | = |TPi | − |TPi+1|+ |TPi+1| > 3

√
log n · |TPi+1|. Since |TPi | > |TPi+1| for every i, and because

|TPi | ≤ n, we have that |TP0 | > (log n)k/3 and |TP0 | = n+1, from which we derive (log n)k/3 ≤ n,
i.e., k = O

(
logn

log logn

)
.

By Lemma 4 and Corollary 3, there are O( 3
√

log n) = O
(

logn
log logn

)
indices i such that dPi ≤

4 3
√

log n. We now prove that there areO
(

logn
log logn

)
indices such that |TPi |−|TPi+1| < 3

√
log n·|TPi+1|

and such that dPi ≥ 4 3
√

log n. By Lemma 2 and using the fact that dPi ≥ 4 3
√

log n and n ≥ 2,
we have that

dPi−1 ≥
|TPi |

|TPi | − |TPi+1|
(dPi − 1) ≥ 1 + 3

√
log n

3
√

log n
(dPi − 1) ≥

√
1 + 3
√

log n
3
√

log n
dPi .
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By Corollary 3 we have that dPi−1 ≥ dPi for every i. Hence d0 ≥
(
1+ 3√logn

3√logn

)k/2
. Moreover,

by Theorem 10, dP0 ≤ 2α
√
logn for some constant α > 0. As a consequence, we have that(

1+ 3√logn
3√logn

)k/2
≤ 2α

√
logn, i.e., 2

k
2
log 1+ 3√logn

3√logn ≤ 2α
√
logn, which implies, k ≤ 2α

√
logn

log(1+1/ 3√logn)
.

We complete the proof by showing that
√
logn

log 1+ 3√logn
3√logn

≤ 3 logn
log logn , for large enough n, i.e., we

have to show that log log n ≤ 3
√

log n · log 1+ 3√logn
3√logn . Let M = 3

√
log n. We have to prove that

logM ≤M3/2 log
1 +M

M
= log

(
1 +M

M

)M3/2

. (2)

By Bernoulli's inequality,
(
1 + 1

M

)M3/2

≥ 2M
1/2 ≥ M for M ≥ 16. Thus, inequality (2) is

satis�ed.

3 Existence of Equilibrium Trees

In this section we analyze whether the TCG admits equilibrium trees for all agent numbers n.
We �rst show that in general equilibrium existence is not guaranteed since for n = 16 and n = 18
no stable tree exists. We contrast this negative result with a NE existence proof for in�nitely
many agent numbers n. This positive result is achieved for so-called balanced trees, i.e., trees
where all nodes with the same distance to the root have the same in-degree. We believe that our
positive results can be strengthened to proving that stable trees exist for all n except n = 16
and n = 18, and we leave this as an intriguing open problem. Figure 2 shows sample equilibrium
trees for small n.

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12

n = 13 n = 14 n = 15 n = 17 n = 19 n = 19

(0, 1, 2) (0, 1, 1, 2) (0, 1, 1, 1, 2) (0, 1, 1, 3) (0, 1, 2, 2)

(0, 1, 1, 2, 2) (0, 1, 2, 3)

Figure 2: Sample equilibrium trees for n = 4 to n = 19. All depicted trees for n < 19 are the
unique equilibria for the respective n. For n = 19 two equilibrium trees exist. No stable tree
exists for n = 16 and n = 18. The stable trees for n = 4, 6, 8, 9, 10, 14, 15 are balanced trees and
are annotated with their identifying in-degree sequence of all leaf-to-root paths. (See Section 3.1
for de�nitions.)

Theorem 12. For n = 16 there exists no stable network.

10



Proof. Assume for the contrary that there is a stable network T . We �rst show that the in-degree
of the root r in T is equal to 2 or 3. By Lemma 4 we already know that indeg(r) ≥ 2 in T .

Assume that indeg(r) ≥ 4 and that there is a subtree T (x) with an edge (x, r) and |T (x)| ≤ 3.
Hence, apart from x, there can be at most two additional nodes, x′ and x′′, in T (x). By Lemma
1 we know that T (x) is a path and therefore indeg(x) < 2. Otherwise T (x) is not stable since x′

can swap the edge (x′, x) with (x′, x′′) and decrease her cost from 2 to 3
2 . Hence, indeg(x) = 0

or indeg(x) = 1.
Consider an agent y 6= x with an edge (y, r) and a strategy change from (y, r) to (y, x). The

current costs of y are indeg(r)
|T (y)| . If indeg(x) = 0 the swap results in cost of 1

|T (y)|+
indeg(r)−1
|T (y)|+1 . This

is an improvement for y. If indeg(x) = 1 the costs for y would be at most 2
|T (y)| + indeg(r)−1

|T (y)|+2

which is an improvement if |T (y)| ≤ 4. However, since indeg(r) ≥ 4 and |T (x)| ≥ 2 there has to
be an agent y with an edge (y, r) and |T (y)| ≤ 4. Therefore, for all agents x with (x, r) it holds
that |T (x)| ≥ 4 which is only possible if indeg(r) = 4 and |T (x)| = 4. Let u, v, w and x be the
nodes which belong to T (x).

There are three di�erent remaining cases how the subtrees T (x) can look like:

� indeg(x) = 3: There are two leaf nodes u and v with an edge to x. Swapping (u, x) to
(u, v) decreases the cost of u from 4 to 3.

� indeg(x) = 2: T (x) includes the edges (u, x), (v, x) and (w, u). Agent v can reduce her
cost from 3 to 17

6 by swapping (v, x) to (v, w).

� indeg(x) = 1: Because of Corollary 3, T includes two paths (u1, v1), (v1, w1), (w1, x1),
(x1, r) and (u2, v2), (v2, w2), (w2, x2), (x2, r). Agent x1 can improve by swapping her edge
to (x1, x2) which reduces her costs from 1 to 7

8 .

Hence, T with indeg(r) ≥ 4 cannot be stable.
We �rst consider the case indeg(r) = 2. By Corollary 3 and Lemma 4 we know that besides

the two nodes x′ and x′′ directly connected to the root with (x′, r) and (x′′, r), all agents i have
an in-degree indeg(i) ≤ 1. Since Lemma 4 bounds the maximum length of a simple path where
all edges costs are equal 1 by 4, it holds that indeg(x′) = indeg(x′′) = 2 and |T (x′)| ≤ 9 and
|T (x′′)| ≤ 9, respectively. Otherwise it would be impossible to place all agents in the equilibrium
tree T . For the same reason there is at least one path of length 4, (t, u), (u, v), (v, w), with
(w, x′) or (w, x′′) with t as a leaf node with indeg(t) = 0. The current costs of agent v are at
least 1

3 + 2
4 + 2

9 = 19
18 . However, agent v can improve by swapping her edge towards the root to

(v, r) and gains costs equal 1.
Therefore r has an in-degree indeg(r) = 3. For every subtree T (x) with a root x and an edge

(x, r) it holds that |T (x)| ≥ 2. Otherwise another agent x′ with (x′, r) can improve by swapping
her edge towards x and reducing her costs from 3

|T (x′)| to
1

|T (x′)| + 2
|T (x′)|+1 .

Assume that for every subtree T (x) with x having the edge (x, r) it holds that |T (x)| ≥ 5,
which implies that there are two subtrees of size 5 and one subtree of size 6. Because of Theorem
1 there is only one possible tree T , see Figure 3a. However, this is not stable since agent 9 can
improve by swapping her edge towards (9, 6) and reduces her costs from 1 + 1 + 3

5 = 13
5 to

1 + 1
2 + 2

3 + 3
7 = 109

42 .
Hence, there are three remaining cases. Let T (x) be the smallest subtree with x having the

edge (x, r), i.e., with a direct edge to the root, T (y) be the second smallest subtree with (y, r)
and T (z) be the largest subtree with (z, r). It holds that |T (x)| ≤ 4 and T (x) is therefore a
path.

� |T (x)| = 2: It holds that |T (y)| > 3 since otherwise agent y can improve by swapping her
edge towards the leaf node of T (x) and having costs of 1

|T (y)| + 1
|T (y)|+1 + 2

|T (y)|+2 instead

11



96

52

3

4

8

71

10

11 14

13

16

15

12

(a)

1

2

5

7 8

6

4

3

(b)

1 4 7

852

3 6 9

(c)

Figure 3: (a) The only possible tree T due to Theorem 1 where every subtree T (x) with x having
an edge (x, r) has size |T (x)| ≥ 5. (b) The stable subtrees T (x), T (y) and T (z) for 5 ≤ T (i) ≤ 9
for i ∈ {x, y, z}. (c) The stable subtree T (z) for |T (z)| = 10.

of 3
|T (y)| . Considering now the possible swap from x towards y leads to indeg(y) > 1 and

hence, |T (y)| > 4. Remember that due to Lemma 1 we know how the subtrees T (x), T (y)
and T (z) look like. We have three remaining cases:

� |T (y)| = 5 and |T (z)| = 9: This is not a stable tree since agent 8, cf. Figure 3b, from
T (z) can improve by swapping her edge towards the leaf node of T (x) and reduces
her cost from 8

3 to 5
2 .

� |T (y)| = 6 and |T (z)| = 8: This is not a stable tree since agent 7, cf. Figure 3b, from
T (z) can improve by swapping her edge towards the leaf node of T (x) and reduces
her cost from 65

24 to 5
2 .

� |T (y)| = 7 and |T (z)| = 7: This is not a stable tree since agent 6, cf. Figure 3b, from
T (z) can improve by swapping her edge towards the leaf node of T (x) and reduces
her cost from 109

42 to 5
2 .

� |T (x)| = 3: It holds that |T (y)| 6= 4 since otherwise agent x can reduce her current costs
of 1 to 20

21 by swapping her edge towards y and choose (x, y). We have three remaining
cases:

� |T (y)| = 3 and |T (z)| = 10: This is not a stable tree since agent 9, cf. Figure 3c, from
T (z) can improve by swapping her edge towards the leaf node of T (x) and reduces
her cost from 14

5 to 31
12 .

� |T (y)| = 5 and |T (z)| = 8: This is not a stable tree since agent 7, cf. Figure 3b, from
T (z) can improve by swapping her edge towards the leaf node of T (x) and reduces
her cost from 65

24 to 31
12 .

� |T (y)| = 6 and |T (z)| = 7: This is not a stable tree since agent 6, cf. Figure 3b, from
T (z) can improve by swapping her edge towards the leaf node of T (x) and reduces
her cost from 109

42 to 31
12 .

� |T (x)| = 4: We have three remaining cases:

� |T (y)| = 4 and |T (z)| = 8: This is not a stable tree since agent 7, cf. Figure 3b, from
T (z) can improve by swapping her edge towards agent x and reduces her cost from
65
24 to 13

5 .

� |T (y)| = 5 and |T (z)| = 7: This is not a stable tree since agent 6, cf. Figure 3b, from
T (z) can improve by swapping her edge towards agent x and reduces her cost from
41
14 to 13

5 .
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� |T (y)| = 6 and |T (z)| = 6: This is not a stable tree since agent 5 from T (z) can
improve by swapping her edge towards agent 4 from T (y) and reduces her cost from
8
3 to 109

42 , cf. Figure 3b.

Observe that there are unique stable states for n ∈ {4, . . . , 9} and, together with Theorem 1,
this shows that there exists no stable tree T for n = 16.

The non-existence of a stable tree for n = 16 directly implies that the TCG cannot have the
�nite improvement property, which states that every sequence of improving moves must be �nite,
i.e., reaches a Nash equilibrium. Thus, since the �nite improvement property is equivalent to
the game admitting a potential function [31] this implies the following statement.

Corollary 13. The TCG is not a potential game.

Remark 14. By computational experiments we have obtained equilibrium trees for the TCG for

1 ≤ n ≤ 100, except for n = 16 and n = 18. For n = 18 we have veri�ed via a brute-force search

over all possible trees that no stable tree exists. Interestingly, for n ≥ 19 equilibrium trees are no

longer unique and in general the number of non-isomorphic equilibrium trees grows as n grows.

3.1 Balanced Trees

Despite the negative result of the non-existence of a stable tree for n = 16, in this section we
prove the existence of NE's for in�nitely many values of n. We prove this result by showing an
interesting set of conditions for ruling out potential edge swaps; the proved conditions altogether
allow us to show that there are in�nitely many (balanced) trees that are stable. More precisely,
we say that T is balanced if any two nodes at the same distance from the root r have equal
in-degrees. Note, that any balanced tree T of height h can be uniquely encoded by a sequence of
node degrees (0, dh−1, . . . , d0), where di is an in-degree of nodes at level i, i.e., at distance i from
the root. In this section we show that all the balanced trees of the form (0, 1, 2, 4, dh−4, . . . , d0)
such that di < di−1 ≤ 2di + 1, for every 1 ≤ i ≤ h − 4 are stable. (See Fig. 4 for an example.)
Some of the provided conditions hold only for such balanced trees, while some other conditions

n = 190
(0, 1, 2, 4, 9)

Figure 4: Sample of an extremal balanced tree with degree sequence (0, 1, 2, 4, 9).

hold for any tree (not necessarily balanced) that satis�es all the stated constraints.
The �rst two conditions (Condition 1 and Condition 2) rule out the case in which an agent

swaps her edge towards her proper ancestors under the assumption that the tree satis�es some
properties. In the rest of this section, we use the subscript i to a node to emphasize that we are
talking about a node that is at distance i from the root of T .

Lemma 15 (Condition 1). Consider a tree T and a leaf-to-root path P in T . Let i ≥ 2. If

dPi−2 ≥ dPi−1 and |TPi−1| ≥
dP
i−2

dP
i−2+1−dP

i−1
|TPi |, then for uPi it is not pro�table to swap towards her

ancestor of level i− 2.

Proof. Consider a tree T for which the premises of the theorem are satis�ed. If uPi swaps towards
her ancestor of level i− 2, the ui's cost decreases by

di−2
|Ti−1|

+
di−1
|Ti|
− di−2 + 1

|Ti|
≤ di−2 + 1− di−1

|Ti|
+

di−1
|Ti|
− di−2 + 1

|Ti|
= 0.

13



Hence, for uPi it is not pro�table to swap towards her ancestor of level i− 2.

Lemma 16 (Condition 2). Consider a tree T and a leaf-to-root path P in T . Let i ≥ j + 3 and

uPi and uPj+2 two nodes such that uPj+2 is a proper ancestor of uPi . Furthermore, assume that:

1. |TPj+2| ≥ 2|TPi |;

2. dPj ≥ dPj+1 + 1;

3. it is not pro�table for uPi to swap towards its ancestor of level j + 1;

4. it is not pro�table for uPj+2 to swap towards its ancestor of level j.

Then, it is not pro�table for uPi to swap towards her ancestor of level j.

Proof. Let A =
∑i−1

`=j+2
d`
|T`+1| . Since for u

P
i it is not pro�table to swap towards her ancestor of

level j+1, we have that A+
dj+1

|Tj+2| ≤
dj+1+1
|Ti| . Similarly, since for uPj+2 it is not pro�table to swap

towards her ancestor of level j we have that dj+1

|Tj+2| +
dj
|Tj+1| ≤

dj+1
|Tj+2| , i.e.,

dj
|Tj+1| ≤

dj+1−dj+1

|Tj+2| . Let

T ′ be the tree obtained after the swap. Therefore,

costT (ui)−
∑
k<j

dk
|Tk+1|

= A+
dj+1

|Tj+2|
+

dj
|Tj+1|

≤ dj+1 + 1

|Ti|
+

dj + 1− dj+1

|Tj+2|

≤ dj+1 + 1

|Ti|
+

dj + 1− dj+1

2|Ti|
=

2dj+1 + 2 + dj + 1− dj+1

2|Ti|

=
dj+1 + dj + 3

2|Ti|
≤ 2dj + 2

2|Ti|
=

dj + 1

|Ti|

= costT ′(ui)−
∑
k<j

dk
|Tk+1|

.

Hence, for uPi it is not pro�table to swap towards her ancestor of level j.

The next four conditions (Condition 3, Condition 4, Condition 5, and Condition 6) rule out the
case in which an agent vi swaps her edge towards some internal node uj , with uj being neither a
proper ancestor of vi, nor a sibling of vi. All the four conditions capture trees with some speci�c
structure; furthermore, Condition 6 is suitable tailored for balanced trees T .

Lemma 17 (Condition 3). Let vPv
i ∈ Pv and uPu

j ∈ Pu be two nodes from two distinct leaf-to-

root paths Pv, Pu in T such that uPu
j−1, the child of uPu

j , is not in the same branch of vPv
i . If for

vPv
i it is not pro�table to swap towards uPu

j−1 and |TPv
i | ≥

dPu
j−1−d

Pu
j

dPu
j

|TPu
j |, then for vPv

i it is not

pro�table to swap towards uPu
j .

Proof. Let k be the level of the intersection of two paths Pv and Pu. Let

A =


j−2∑̀
=k

dPu
`

|TPu
`+1|+|T

Pv
i |

if i ≥ k + 2;

dk−1
|Tk+1|+|TPv

i |
+

j−2∑
`=k+1

dPu
`

|TPu
`+1|+|T

Pv
i |

otherwise (i.e., i = k + 1).

Since for vPv
i it is not pro�table to swap towards uPu

j−1, we have that the cost incurred by vPu
i in

T is at most A+
dj−1+1
|T v

i |
.
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From |TPv
i | ≥

dPu
j−1−d

Pu
j

dPu
j

|TPu
j | we derive

(
dPu
j−1 − dPu

j

)(
|TPu
j |+ |T

Pv
i |
)
≤ dPu

j−1 · |T
Pv
i |, i.e.,

dPu
j−1

|TPv
i |
≤

dPu
j−1

|TPu
j |+ |T

Pv
i |

+
dPu
j

|TPv
i |

.

As a consequence, the cost incurred by vi in T is at most

A+
dPu
j−1 + 1

|TPv
i |

= A+
dPu
j−1

|TPv
i |

+
1

|TPv
i |
≤ A+

dPu
j−1

|TPu
j |+ |T

Pv
i |

+
dPu
j

|TPv
i |

+
1

|TPv
i |

= A+
dPu
j−1

|TPu
j |+ |T

Pv
i |

+
dPu
j + 1

|TPv
i |

.

Hence, for vPv
i it is not pro�table to swap towards uPu

j .

Lemma 18 (Condition 4). Let vPv
i ∈ Pv and uPu

j ∈ Pu be two nodes from two distinct leaf-to-

root paths Pv, Pu in T such that uPu
j−1, the child of uPu

j , is not in the same branch of vPv
i . If for

vPv
i it is not pro�table to swap towards uPu

j and |TPv
i | ≤

dPu
j−1−d

Pu
j

dPu
j

|TPu
j |, then for vPv

i it is not

pro�table to swap towards uPu
j−1.

Proof. Let vPv
k = uPu

k be the least common ancestor of vPv
i and uPu

j . Let

A =


j−2∑̀
=k

dPu
`

|TPu
`+1|+|T

Pv
i |

if i ≥ k + 2;

dk−1
|TPu

k+1|+|T
Pv
i |

+
j−2∑
`=k+1

dPu
`

|TPu
`+1|+|T

Pv
i |

otherwise (i.e., i = k + 1).

Since for vPv
i it is not pro�table to swap towards uPu

j , we have that the cost incurred by vPv
i in

T is at most

A+
dj−1

|TPu
j |+ |T

Pv
i |

+
dPu
j + 1

|TPv
i |

.

From |TPv
i | ≤

dj−1−dj
dj
|TPu
j | we derive

(
dPu
j−1 − dPu

j

)(
|TPu
j |+ |T

Pv
i |
)
≥ dPu

j−1|T
Pu
i |, i.e.,

dPu
j−1

|TPv
i |
≥

dPu
j−1

|TPu
j |+ |T

Pv
i |

+
dj

|TPv
i |

.

As a consequence, the cost incurred by vPv
i in T is at most

A+
dPu
j−1

|TPu
j |+ |T

Pv
i |

+
dPu
j + 1

|TPv
i |

= A+
dPu
j−1

|TPu
j |+ |T

Pv
i |

+
dPu
j

|TPv
i |

+
1

|TPv
i |
≤ A+

dPu
j−1

|TPv
i |

+
1

|TPv
i |
≤ A+

dPu
j−1 + 1

|TPv
i |

.

Hence, for vPv
i it is not pro�table to swap towards uPu

j−1.

Lemma 19 (Condition 5). Let T be a balanced tree of height h such that dj ≤ 2dj+1 + 1 for

every j < h. Let vi and ui be two sibling nodes. Then, it is not pro�table for vi to swap towards

ui.

Proof. Follows directly from Lemma 7.

The next corollary, which holds only for some balanced trees, is implied by Lemma 17 and
Lemma 18.
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Corollary 20. Let T be a balanced tree of height h such that di+1 < di ≤ 2di+1 for every

i ≤ h− 3. Let vi and ui−1 be such that ui−1 is not an ancestor of vi in T . Let k be the distance

from the root to the least common ancestor of vi and ui−1. If it is not pro�table for vi to swap

towards ui−1, then it is not pro�table for vi to swap towards uj for every j > k with dj > 0.

Proof. We divide the proof into two complementary cases, according to whether j ≥ i or not.
In the former case, for every j ≥ i, we have that

|Ti| =
2dj − dj

dj
|Ti| ≥

2dj − dj
dj

|Tj | ≥
dj−1 − dj

dj
|Tj |.

Therefore, thanks to Lemma 17, it is not pro�table for vi to swap towards uj for every j ≥ i. In
the latter case, for every k + 1 < j ≤ i− 1, we have that

|Ti| <
1

di−1
|Ti−1| ≤

dj−1 − dj
dj

|Tj |.

Therefore, thanks to Lemma 18, it is not pro�table for vi to swap towards uj−1.

The next corollary, similar to Corollary 20 allows us to capture the case of extremal balanced
trees that are stable.

Corollary 21. Let T be a balanced tree of height h such that di+1 < di ≤ 2di+1 + 1 for every

i ≤ h− 3. Let vi and ui−1 be such that ui−1 is not an ancestor of vi in T . Let k be the distance

from the root to the least common ancestor of vi and ui−1. If it is not pro�table for vi to swap

towards ui−1 and it is not pro�table for vi to swap towards ui, then it is not pro�table for vi to
swap towards uj for every j > k with dj > 0.

Proof. In case j ≥ i+ 1, we have that

|Ti| > dj−1|Tj | >
dj−1 − dj

dj
|Tj |.

Therefore, thanks to Lemma 17, it is not pro�table for vi to swap towards uj for every j ≥ i+ 1.
From the other hand, for every k + 1 < j ≤ i− 1, we have that

|Ti| ≤ (dj−1 − dj)|Ti| <
dj−1 − dj

dj
|Tj |.

Therefore, thanks to Lemma 18, it is not pro�table for vi to swap towards uj−1.

Lemma 22 (Condition 6). Let T be a balanced tree of height h such that dh−1 = 1, dh−2 = 2,
dh−3 = 4, and dj+1 ≤ dj ≤ 2dj+1 + 1 for every j ≤ h− 4. Let vi and ui−1 be such that ui−1 is

not an ancestor of vi in T . Then, it is not pro�table for vi to swap towards ui−1.

Proof. Let k be the distance from the root with respect to the least common ancestor of vi and
ui−1. We have to prove that

di−1
|Ti|

+
i−2∑
`=k

d`
|T`+1|

≤ di−1 + 1

|Ti|
+

i−2∑
`=k

d`
|T`+1|+ |Ti|

, i.e.,
i−2∑
`=k

d`|Ti|2

|T`+1|(|T`+1|+ |Ti|)
≤ 1.

We prove the last inequality by showing that d`|Ti|2
|T`+1|(|T`+1|+|Ti|) ≤

1
2i−1−` for every ` ≤ i− 2. The

proof is by induction on `. We prove the base case ` = i− 2 �rst. The proof is by cases.
When i = h, we have that di−1 = 1, |Ti| = 1, di−2 = 2, and |Ti−1| = 2; as a consequence
di−2|Ti|2

|Ti−1|(|Ti−1|+|Ti|) = 2
2(2+1) <

1
2 and the claim follows.
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When i = h − 1, we have that di−1 = 2, |Ti| = 2, di−2 = 4, and |Ti−1| = 5; therefore,
di−2|Ti|2

|Ti−1|(|Ti−1|+|Ti|) = 4·22
5(5+2) <

1
2 , and the claim follows.

When i ≤ h− 2, we have that di−1 ≥ 4; as a consequence, using also the facts that |Ti−1| >
di−1|Ti| and di−2 ≤ 2di−1 + 1, we have that di−2|Ti|2

|Ti−1|(|Ti−1|+|Ti|) <
(2di−1+1)|Ti|2

di−1|Ti|(di−1+1)|Ti| <
2(di−1+1)
4(di−1+1) ≤

1
2 ,

and the claim follows.
To prove the inductive case, it is enough to show that dj−1

|Tj |(|Tj |+|Ti|) ≤
dj

2|Tj+1|(|Tj+1|+|Ti|) for

every j ≤ i− 2. Indeed, if by induction we assume d`|Ti|2
|T`+1|(|T`+1+|Ti|) ≤

1
2i−1−` , then

d`−1|Ti|2
|T`|(|T`|+|Ti|) ≤

d`|Ti|2
2|T`+1|(|T`+1|+|Ti|) ≤

1
2i−1−(`−1) , thus completing the proof.

We prove dj−1

|Tj |(|Tj |+|Ti|) ≤
dj

2|Tj+1|(|Tj+1|+|Ti|) by showing that 2dj−1|Tj+1|(|Tj+1| + |Ti|) ≤
dj |Tj |(|Tj |+ |Ti|). We claim that the last inequality holds under the assumption that

5|Tj+1|(|Tj+1|+ |Ti|) ≤ |Tj |(|Tj |+ |Ti|).

Indeed, if we assume 5|Tj+1|(|Tj+1| + |Ti|) ≤ |Tj |(|Tj | + |Ti|), since dj ≥ 2 and dj−1 ≤ 2dj + 1,
and using the fact that |Tj | > dj |Tj+1|, we obtain

2dj−1|Tj+1|(|Tj+1|+ |Ti|) ≤ 2(2dj + 1)|Tj+1|(|Tj+1|+ |Ti|)
≤ 5dj |Tj+1|(|Tj+1|+ |Ti|) ≤ dj |Tj |(|Tj |+ |Ti|).

So, it remains to prove that |Tj |(|Tj |+ |Ti|) ≥ 5|Tj+1|(|Tj+1|+ |Ti|). The proof is by cases. For
the case in which j − 1 ≤ h − 4, we have that |Tj | ≥ 4|Tj+1| and therefore, |Tj |(|Tj | + |Ti|) ≥
5|Tj+1|(|Tj+1| + |Ti|). For the case in which j − 1 = h − 3, i.e., j = h − 2, we have that i = h,
|Th| = 1, |Th−1| = 2, and |Th−2| = 5; as a consequence |Tj |(|Tj | + |Ti|) = 5(5 + 1) = 30 =
5 · 2(2 + 1) = 5|Tj+1|(|Tj+1|+ |Ti|). The claim follows.

The following lemma allows us to show that also extremal balanced trees, i.e., balanced trees in
which the in-degree of each vertex is set to the maximum possible value, is stable.

Lemma 23. Let T be a balanced tree of height h such that dh−1 = 1, dh−2 = 2, dh−3 = 4, and
dj−1 ≤ dj ≤ 2dj+1 + 1 for every j ≤ h− 4. Let vi and ui be two distinct nodes such that vi and
ui are not siblings. Then, it is not pro�table for vi to swap towards ui.

Proof. Let k be the distance from the root with respect to the least common ancestor of vi and
ui. We have to prove that

i−1∑
`=k

d`
|T`+1|

≤ di + 1

|Ti|
+

i−1∑
`=k

d`
|T`+1|+ |Ti|

, i.e.,
i−2∑
`=k

d`|Ti|2

|T`+1|(|T`+1|+ |Ti|)
≤ 2di + 2− di−1

2
.

When di−1 = 2di we have that 2di + 2 − di−1 = 1 and therefore, in this case, we have to show

that
∑i−2

`=k
d`|Ti|2

|T`+1|(|T`+1|+|Ti|) ≤ 1. We observe that such a proof has already been provided in
Lemma 22. Furthermore, we have that di−1 = 2di when i = h− 1, h− 2. Therefore, it remains
to prove the claim when i ≤ h− 3 and di−1 = 2di + 1.

When i ≤ h− 3 and di−1 ≤ 2di + 1, we have that 2di + 2− di−1 ≥ 1. Therefore, to complete

the proof for the case i ≤ h− 3, it is enough to show that
∑i−2

`=k
d`|Ti|2

|T`+1|(|T`+1|+|Ti|) ≤
1
2 . We prove

that such an inequality holds by showing that d`|Ti|2
|T`+1|(|T`+1|+|Ti|) ≤

1
2i−` for every ` ≤ i − 2. The

proof is by induction on `.
We prove the base case ` = i− 2 �rst. Since i ≤ h− 3 and di−1 ≥ 9, using also the facts that

|Ti−1| > di−1|Ti| and di−2 ≤ 2di−1 + 1, we have that

di−2|Ti|2

|Ti−1|(|Ti−1|+ |Ti|)
≤ (2di−1 + 1)|Ti|2

di−1|Ti|(di−1 + 1)|Ti|
=

2di−1 + 1

di−1(di−1 + 1)
≤ 1

4
.
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To prove the inductive case, it is enough to show that dj−1

|Tj |(|Tj |+|Ti|) ≤
dj

2|Tj+1|(|Tj+1|+|Ti|) for every

j ≤ i− 2. Indeed, if by induction we assume d`|Ti|2
|T`+1|(|T`+1|+|Ti|) ≤

1
2i−` , then

d`−1|Ti|2

|T`|(|T`|+ |Ti|)
≤ d`|Ti|2

2|T`+1|(|T`+1|+ |Ti|)
≤ 1

2i−(`−1)
,

thus completing the proof. We observe that dj−1

|Tj |(|Tj |+|Ti|) ≤
dj

2|Tj+1|(|Tj+1|+|Ti|) has already been
proved in Lemma 22. The claim follows.

The next three lemmas, the �rst of which holds only for non-extremal balanced trees, rule out
the case in which vi swaps her edge towards a leaf.

Lemma 24. Let T be a balanced tree of height h such that dh−1 = 1, dh−2 = 2, dh−3 = 4, and
dj+1 ≤ dj ≤ 2dj+1 for every j ≤ h − 4. Then, for every i ≤ h − 2, it is not pro�table for vi to
swap towards uh.

Proof. Clearly, we only need to consider the case in which uh is not a descendant of vi. Let k
be the least common ancestor of vi and uh−2, and denote by A + 3

|Ti| the cost incurred by vi
when vi swaps towards uh−2 (A may be equal to 0). Since by Lemma 19 and Lemma 24, it is
not pro�table for vi to swap towards uh−2, the cost of vi in T is at most A+ 3

|Ti| . Furthermore,

since |Ti| ≥ 5, we have that 3
|Ti| ≤

2
|Ti|+2 + 1

|Ti|+1 + 1
|Ti| . Therefore, the cost incurred by vi in T

is at most A + 2
|Ti|+2 + 1

|Ti|+1 + 1
|Ti| . But this is exactly the cost incurred by vi if she swapped

her edge towards uh. The claim follows.

Lemma 25. Let T be a balanced tree of height h such that dh−1 = 1, dh−2 = 2, dh−3 = 4, and
dj+1 ≤ dj ≤ 2dj+1 + 1 for every j ≤ h− 4. Let vh and uh be two distinct leaves of T . Then, it
is not pro�table for vh to swap towards uh.

Proof. Let k be the distance from the root with respect to the least common ancestor of uh and
vh. We have to prove that

h−1∑
`=k

d`
|T`+1|

≤ 1 +

h−1∑
`=k

d`
|T`+1|+ 1

, i.e.,
h−1∑
`=k

d`
|T`+1|(|T`+1|+ 1)

≤ 1.

We prove the last inequality by showing that (a)
h−1∑
`=h−4

d`
|T`+1|(|T`+1|+1) ≤

76
77 and (b)

d`
|T`+1|(|T`+1|+1) ≤

1
77·2h−4+` for every ` ≤ h− 5. We prove (a) �rst. Using all the hypothesis, we have that

h−1∑
`=h−4

d`
|T`+1|(|T`+1|+ 1)

=
1

2
+

1

3
+

2

15
+

dh−4
462

≤ 29

30
+

9

462
<

76

77
.

We now prove (b). The proof is by induction on `. For the base case ` = h− 5, we have that

dh−5
|Th−4|(|Th−4|+ 1)

≤ 2dh−4
|Th−4|2

<
2dh−4

|Th−3|2d2
h−4

=
2

212 · 4
=

1

882
<

1

144
,

and the claim follows.
To prove the inductive case, it is enough to show that dj−1

|Tj |(|Tj |+1) ≤
dj

2|Tj+1|(|Tj+1|+1) for every

j ≤ h− 5. Indeed, if by induction we assume d`
|T`+1|(|T`+1|+1) ≤

1
77·2h−4−` , then

d`−1
|T`|(|T`|+ 1)

≤ d`
2|T`+1|(|T`+1|+ 1)

≤ 1

77 · 2h−4−(`−1)
,
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thus completing the proof. We prove dj−1

|Tj |(|Tj |+1) ≤
dj

2|Tj+1|(|Tj+1|+1) by showing that 2dj−1 ·
|Tj+1|(|Tj+1|+ 1) ≤ dj |Tj |(|Tj |+ 1). Since dj , |Tj+1| ≥ 4 and |Tj | > 4|Tj+1|, we have that

2dj−1|Tj+1|(|Tj+1|+1) ≤ 2(2dj+1)|Tj+1|(|Tj+1|+1) ≤ 5dj |Tj+1|(|Tj+1|+1) ≤ dj |Tj |(|Tj |+1).

Lemma 26. Let T be a balanced tree of height h such that dh−1 = 1, dh−2 = 2, dh−3 = 4, and
dj+1 ≤ dj ≤ 2dj+1 + 1 for every j ≤ h − 4. Let vh−1 and uh be two nodes of T such that uh is

not a child of vh−1. Then, it is not pro�table for vh−1 to swap towards uh.

Proof. Let k be the distance from the root with respect to the least common ancestor of uh and
vh−1. We have to prove that

h−2∑
`=k

d`
|T`+1|

≤ 1

2
+

1

3
+
h−2∑
`=k

d`
|T`+1|+ 2

, i.e.,
h−2∑
`=k

2d`
|T`+1|(|T`+1|+ 2)

≤ 5

6
.

We prove the last inequality by showing that (a)
h−2∑
`=h−4

d`
|T`+1|(|T`+1|+2) ≤

19
24 and (b)

d`
|T`+1|(|T`+1|+2) ≤

1
24·2h−4+` for every ` ≤ h− 5.1 We prove (a) �rst. Using all the hypothesis, we have that

h−2∑
`=h−4

2d`
|T`+1|(|T`+1|+ 2)

=
2 · 2

2(2 + 2)
+

2 · 4
5(5 + 2)

+
2dh−4

21(21 + 2)
≤ 1

2
+

8

35
+

18

483
<

19

24
.

We now prove (b). The proof is by induction on `. For the base case ` = h− 5, we have that

2dh−5
|Th−4|(|Th−4|+ 1)

≤ 4dh−4
|Th−4|2

<
4dh−4

|Th−3|2d2
h−4

=
4

212 · 4
=

1

441
<

1

24 · 2
,

and the claim follows.
To prove the inductive case, it is enough to show that dj−1

|Tj |(|Tj |+2) ≤
dj

2|Tj+1|(|Tj+1|+2) for every

j ≤ h− 5. Indeed, if by induction we assume 2d`
|T`+1|(|T`+1|+2) ≤

1
24·2h−4−` , then

2d`−1
|T`|(|T`|+ 2)

≤ 2d`
2|T`+1|(|T`+1|+ 2)

≤ 1

24 · 2h−4−(`−1)
,

thus completing the proof. We prove dj−1

|Tj |(|Tj |+2) ≤
dj

2|Tj+1|(|Tj+1|+2) by showing that 2dj−1|Tj+1| ·
(|Tj+1|+ 2) ≤ dj |Tj |(|Tj |+ 2). Since dj , |Tj+1| ≥ 4 and |Tj | > 4|Tj+1|, we have that

2dj−1|Tj+1|(|Tj+1|+2) ≤ 2(2dj+1)|Tj+1|(|Tj+1|+2) ≤ 5dj |Tj+1|(|Tj+1|+2) ≤ dj |Tj |(|Tj |+2).

Theorem 27. The balanced tree T with degree sequence (0, 1, 2, 4, dh−4, . . . , d0), where dj+1 <
dj ≤ 2dj+1 + 1 for every j ≤ h− 4, is stable.

Proof. Let vi be a �xed node in T . We prove that vi is playing her best response in T . The
proof is by cases.

In the �rst case, we prove that it is no pro�table for vi to swap her edge towards any leaf
of T . Clearly, we only need to consider leaves that are not descendants of vi. Lemma 25 covers
the case i = h. Lemma 26 covers the case i = h− 1. Lemma 24 covers the case i ≤ h− 2.

In the second case, we prove that it is not pro�table for vi to swap her edge towards any
internal node of T . Clearly, we only need to consider internal nodes that are not descendants of
vi. We divide the proof into three cases.

1We observe that 1
24

= 5
6
− 19

24
.
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We start proving that it is not pro�table for vi to swap her edge towards any of its ancestor
nodes vj , with j ≤ i − 2. The proof is by induction on j. The base case is when j = i − 2. In
Lemma 15, we have proved that it is not pro�table for any node vi to swap her edge towards its
ancestor vi−2 under the condition |Ti−1| ≥ di−2

di−2+1−di−1
|Ti|. We prove that this condition holds

for every i. First of all, we observe that di−2 + 1− di−1 ≥ di−1 + 1 + 1− di−1 = 2. Therefore,

|Ti−1| > di−1|Ti| ≥
di−2

2
|Ti| ≥

di−2
di−2 + 1− di−1

|Ti|.

Hence, it is not pro�table for vi to swap towards its ancestor vi−2. We prove the inductive
case j ≤ i − 2, i.e., i ≥ j + 3. We observe that conditions (1-4) of Lemma 16 are all satis�ed.
Therefore, it is not pro�table for vi to swap towards its ancestor vj .

Let ui be a sibling of vi in T and let uj , with i ≤ j < h be any descendant of ui in T (uj may
also be equal to ui). We prove by induction on j that it is not pro�table for vi to swap towards
uj . The base case j = i has already been proved in Lemma 19. For the inductive case i < j,

we simply have to prove that the condition |Ti| ≥ dj−1−dj
dj
|Tj | of Lemma 18 is satis�ed. Such a

condition holds; indeed, since dj ≥ 1 and dj−1 ≤ 2dj , we have that

|Ti| ≥ di|Ti+1| ≥ dj−1|Tj | ≥
dj−1 − dj

dj
|Tj+1|.

Let ui−1 be a node of T that is not an ancestor of vi in T , and let k be the least common
ancestor of vi and ui−1. By Lemma 22, it is not pro�table for vi to swap towards ui−1. Further-
more, if ui is a child of ui−1, then, by Lemma 23, it is not pro�table for vi to swap towards ui−1.
Finally, since all the conditions of Corollary 20 and Corollary 21 are satis�ed, we have that it is
not pro�table for vi to swap towards uj for every j > k.

The claim follows.

From Theorem 27 we derive the following corollary.

Corollary 28. The TCG with n agents admits a NE for in�nitely many values of n ∈ N.

By Corollary 28, we observe that NE exists for all n that admit an existence of a balanced tree.
Intuitively, a minor modi�cation of a balanced tree, e.g., removing a subset of leaf nodes, keep
the tree stable. Moreover, for n ≥ 19 we have found several non-isomorphic equilibrium trees
in each case. The number of non-isomorphic equilibria grows with n, which indicates that for
growing n also the number of possibilities how to combine suitable equilibrium trees into larger
equilibrium trees grows. Therefore, we conjecture the existence of stable trees for all values of
n except for n = 16 and n = 18. We believe that this conjecture can be proven by a dynamic
programming approach that exploits the di�erent possibilities of how equilibrium sub-trees can
be combined into larger equilibrium trees.

Conjecture 1. For any n ∈ N, with n 6= 16 and n 6= 18 a pure NE exists in the TCG.

4 Quality of Equilibrium Trees

In this section we provide results on the quality of stable networks. In particular, we prove a
constant upper bound on the PoA and give lower bounds on the PoA and PoS. Furthermore, we
prove an upper bound on the PoS for certain balanced trees. We �rst observe that any network
in which at least one node has in-degree 2 is not a social optimum. Hence, a Hamilton path is
the social optimum.

Theorem 29. Any Hamiltonian path having the root r as one endnode is a social optimum.
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Proof. Since any agent buys exactly one edge and any edge (u, v) has cost of at least 1, since
indegT (v) ≥ 1 because of the edge itself, the social cost, i.e., the overall sum of the costs incurred
by all the agents, of any solution is at least n. Any Hamiltonian path having the root r as one
endnode is a network whose social cost is exactly equal to n since every edge has cost of exactly
1. As a consequence, such a Hamiltonian path is a social optimum. Any other network in which
at least one node has in-degree 2 is not a social optimum as the cost of such a network is at
least n + 2 since the cost of two edges is at least 2 and the cost of the other n − 2 edges is at
least 1.

4.1 Price of Anarchy

In every network T for all v ∈ V , indegT (v) ≤ n, since there are exactly n edges. Hence, the
cost of an agent is upper bounded by n and the star graph yields a trivial upper bound of n for
the PoA. However, we prove next a constant upper bound on the PoA.

Theorem 30. The PoA is at most 8.62.

Proof. Consider a stable network T = (V,E). By Theorem 29, the social optimum is a path of
cost n. Hence, it is enough to show that in T the maximum cost of an agent is upper bounded
by a constant. We clearly have that the cost incurred by a non-leaf agent is strictly smaller than
the cost incurred by any of its descendants. Therefore, the maximum costs is achieved by a leaf
agent.

Consider two leafs u and v in T such that u pays the maximum cost. Let Pv be the node-to-
root path starting from the parent of v. Since T is stable, costT (u) < 1+1/2+

∑
(i,j)∈Pv

indeg(j)
|T (i)| =

1/2 + costT (v). Therefore, we only have to show that there exists a leaf agent v with a constant
cost value.

We now prove that such a leaf agent always exists. By Corollary 9, each node of in-degree d
has at least d − 1 children of in-degree at least d(d − 1)/2e. Consider a root-to-leaf path P =
(r = v0, . . . , vh = v) where each next hop goes always towards the smallest appended subtree
where the root has an in-degree of at least half of the node's in-degree minus one, i.e., for any
vi ∈ P , vi+1 = argmin{|T (w)| : (w, vi) ∈ E and indeg(w) ≥ (indeg(vi)− 1)/2}. Then for every
0 ≤ i ≤ h− 1, |T (vi)| ≥ (indeg(vi)− 1)|T (vi+1)|+ 2.

Denote by |tk| the size of the minimum stable tree with a root of in-degree k. Then by
Corollary 9 and Lemma 6 it holds that

|t0| ≥ 1, |t1| ≥ 2, tk ≥ (k − 1) · |td(k−1)/2e|+ 2. (3)

We show via induction that for any k ≥ 11, |tk| ≥ (2k + 1)k2. Indeed, it holds that |tk+1| ≥
k · |tdk/2e| + 2 > (k + 1)k3/22 ≥ (2(k + 1) + 1)(k + 1)2, where the last inequality holds for all
k ≥ 11.

The overall cost incurred by the leaf v is at most the costs incurred by v for all edges
(vi, vi−1) ∈ P where in-degree of vi−1 is less than the cost incurred by v for all other edges in P
plus 2.

By Lemma 4, each leaf-to-root path has at most three nodes of in-degree 1, which implies
that v pays at most p1 := 11

6 for all edges ending in a node with in-degree equals 1.
By Lemma 4, the in-degrees of the nodes in the leaf-to-root path P strictly increase with at

least every second hop. This implies that for i ≤ h − 4 − (11 − 1) · 2 = h − 24 it is guaranteed
that indeg(vi) ≥ 11. Hence, starting from the �rst node having in-degree at least 11 in P , agent
v pays

p2 :=
h−24∑
i=1

indeg(vi−1)

|T (vi)|
≤

h−24∑
i=1

2indeg(vi) + 1

|tindeg(vi)|
≤

h−24∑
i=1

1

(indeg(vi))2
≤ 2

∞∑
i=11

1

i2
< 2

(
ζ(2)−

10∑
i=1

1

i2

)
,
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where ζ(s) is the Riemann zeta function. Hence, p2 < 0.2.
Finally, we need to evaluate the cost of the path P for all nodes vi with the in-degree

2 ≤ indeg(vi) ≤ 10. Since for every 0 ≤ i ≤ h− 1, |T (vi)| ≥ (indeg(vi)− 1)|T (vi+1)|+ 2, each
edge (vi, vi+1) in the path P costs at most

2indeg(vi) + 1

|T (vi)|
≤ 2indeg(vi) + 1

(indeg(vi)− 1)|T (vi+1)|
=

2

|T (vi+1)|
+

3

(indeg(vi)− 1)|T (vi+1)|
.

By applying the inequality (3) and since the in-degrees of the nodes in P increase at most with

every second level, it holds that the total cost of the subpath is at most p3 := 2
9∑
i=2

2
ti

+ 2
t1

+ 2
t10

+

10∑
i=2

(
3

(i−1)ti−1
+ 3

(i−1)ti

)
< 3.12 + 2.975 < 6.01. Therefore, the total cost of the path P payed

by an agent v is strictly less than p1 + p2 + p3 < 8.12. This implies that the PoA is at most
8.62.

We now prove a lower bound to the PoA using the extremal stable balanced trees of Theorem 27.
(See Figure ??.) For the rest of this section, let Th denote the extremal balanced tree of height
h ≥ 1 and degree sequence dh = 0, dh−1 = 1, dh−2 = 2 (if h ≥ 2), dh−3 = 4 (if h ≥ 3), and
di = 2di+1 + 1 for every i ≤ h− 4. We will denote by sch and nh the social cost and the number
of nodes (root included) of Th.

Theorem 31. The PoA is at least 2.4317.

Proof. From Theorem 29, we know that the social cost of a social optimum is equal to n. We
prove the claimed lower bound by showing that, for every h ≥ 7, the social cost of Th is at least
2.4317(nh − 1). By Theorem 27, we have that Th is stable for every h.

First, we compute the exact values of sc7 and n7. Since |Ti−1| = di−1|Ti| + 1 and |T7| = 1,
we have that |T6| = 2, |T5| = 5, |T4| = 21, |T3| = 190, |T2| = 3611, |T1| = 140830, and
|T0| = 11125571. Hence, n7 = 11125571. Since sc0 = 0 and sci−1 = dh−i+1si + d2

h−i+1, we have
that sc1 = 1, sc2 = 6, sc3 = 40, sc4 = 441, sc5 = 8740, sc6 = 342381, and sc7 = 27054340.
Therefore,

sc7 = 27054340 > 2.4317 · 11125570 = 2.4317(n7 − 1).

Next, we prove that sch > 2.4317(nh−1) for every h ≥ 8. Let z be the number of nodes of Th that
are at distance h− 7 from the root r. It holds that z is equal to the number of trees T7 that are
contained in Th. Furthermore, the overall sum of the number of nodes of Th that are at distance
of at most h− 7 from r is upper bounded by 2z. This implies that sch ≥ sc7 · z = 27054340 · z,
while nh ≤ n7 · z + 2z = 11125571 · z + 2z = 11125573 · z. Therefore,

sch ≥ 27054340 · z > 2.4317 · 11125573 · z ≥ 2.4317 · nh > 2.4317(nh − 1).

This completes the proof.

Next, we prove an upper bound to the average agent's cost in Th and provide an interesting
conjecture. We de�ne ah := sch/(nh − 1) as the average agent's cost in Th.

Lemma 32. For every h ≥ 1, ah ≤ 2.4318.
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Proof. From the proof of Theorem 31 we have that

a1 =1/(2− 1) = 1

a2 =6/(5− 1) = 1.5

a3 =40/(21− 1) = 2

a4 =441/(190− 1) ≤ 2.34

a5 =8740/(3611− 1) ≤ 2.43

a6 =342381/140830 ≤ 2.4312

a7 =27054340/(11125571− 1) ≤ 2.43173.

We now prove by induction that ah+1 ≤ ah + 0.00005 · 1
2h−7 = ah + 1

20,000·2h−6 for every h ≥ 7.
Thus, showing that ah ≤ 2.4318 for every h. Since d0 ≤ 3d1 and nh > d1nh−1, we have that

ah+1 ≤
sch+1

nh+1 − 1
=

d0sch + d2
0

d0nh + 1− 1
=
sch + d0
nh

≤ ah +
d0
nh

< ah +
3d1

d1nh−1
≤ ah +

3

nh−1
.

We now complete the proof by showing via induction on h that 3
nh−1

≤ 1
20000·2h−6 for every h ≥ 7.

For the base case h = 7, n6 = 140830 and therefore, 3
140830 ≤

1
20000·2 . Now, if we assume that

3
nh−1

≤ 1
20000·2h−6 , since nh > d1nh−1 and d1 ≥ 2, we have that

3

nh
<

3

d1nh−1
≤ 1

d1 · 20000 · 2h−6
<

1

20000 · 2h+1−6 .

This completes the proof.

4.2 Price of Stability

We now turn our focus to the PoS and prove a lower bound.

Theorem 33. The PoS is at least 7
5 − ε, for ε ∈ Θ(1/n).

Proof. We know that the social cost of a tree T is the sum of squared in-degrees of all nodes
including the root. Consider the following procedure: for each node v in T which has in-degree
larger than 2, swap one of its children u to a node v′ of in-degree 1 or 0 closest to the root
such that it does not disconnect the tree. The resulting tree T ′ has all nodes of in-degree
at most 2, and social cost SC(T ′) ≤ SC(T ). Indeed, each step changes the social cost by
(indeg(v)− 1)2 − indeg(v)2 + (indeg(v′) + 1)2 − indeg(v′)2 = 2indeg(v′)− 2indeg(v) + 2 < 0,
since indeg(v′) ≤ 1, i.e., the social costs decrease. Let h be the height of the maximal subtree
in T ′ such that all its nodes are of degree 2. We can assume that T ′ is as much balanced as
possible, i.e., there are no nodes with the same in-degree which di�er by more than one level
since otherwise we can swap nodes of the higher level to the nodes of the lower level such the
number of nodes of each in-degree remains the same.

The number of nodes with in-degree equals 2 in T ′ is
h−1∑
i=0

2i + k2, where k ≥ 0 is the number

of nodes with in-degree equals 2 at distance h+1 from the root. Denote k1 and k0 as the number
of nodes with in-degree equals 1 and leaf nodes, respectively, in T ′. The procedure above does
not create new nodes of in-degree equals 1 or leaf nodes in a tree. Also, by Lemma 4, any
sequence of nodes with in-degree equals 1 starting from a leaf node in T ′ contains at most 4
nodes. It implies that k1 ≤ 3k0 ≤ 3 · 2h. Since the social cost of the optimal network is equal to
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the number of nodes, cf. the proof of Theorem 30, the PoS is lower bounded by

PoS ≥ SC(T ′)

n
=

22 ·
(
h−1∑
i=0

2i + k2

)
+ k1

h−1∑
i=0

2i + k2 + k1 + k0

≥
22 ·

h−1∑
i=0

2i + k1

h−1∑
i=0

2i + k1 + k0

≥
22
(
2h − 1

)
+ k1

2h − 1 + k1 + k0
≥ 2h+2 + k1 − 4

2h − 1 + k1 + 2h
≥ 2h+2 + 3 · 2h − 4

2h+1 + 3 · 2h − 1
>

7

5
− ε,

where ε ∈ Θ(2−h) = Θ(n−1).

Next, we investigate the PoS in certain balanced trees and prove an upper bound which is strictly
better than the upper bound on the PoA.

Theorem 34. For all n ∈ N such that there is a balanced tree T of size n with the in-degree

sequence (0, 1, 2, 4, dh−4, . . . , d0), where di ≤ 2di+1 + 1 for i ≤ h− 4, the PoS is at most 2.83.

Proof. For those values n such that there exist a balanced tree T of size n with the in-degree
sequence (0, 1, 2, 4, dh−4, . . . , d0), where di ≤ 2di+1 + 1 for i ≤ h − 4, we can provide an upper
bound for the PoS, which is strictly better than the upper bound for the PoA. Clearly, for all
other values of n where there exist an equilibrium, the PoS is at most the PoA value, which is
at most 8.62.

Consider a balanced tree BTh(d0) rooted at a node of in-degree equal to d0 of height h. Its

social cost SC(BTh(d0)) =
h−1∑
i=0

(
d2
i ·

i−1∏
j=0

dj

)
= SC(BTh−1(d1)) ·d0 +d2

0 , while the social cost of

the corresponding OPT, i.e., a path graph P , is SC(P ) = |Th(d0)| =
h−1∑
i=0

di = |BTh−1(d1)|·d0+d0.

It holds that

PoS =
SC(BTh(d0))

|BTh(d0)|
=
SC(BTh−1(d1)) + d0
|BTh−1(d1)|+ 1

<
SC(BTh−1(d1))

|BTh−1(d1)|
+

d0
|BTh−1(d1)|

< . . . <
SC(BT3(dh−3))

|BT3(dh−3)|
+
h−4∑
i=0

di
|BTh−i−1(di+1)|

≤ 2 +
h−4∑
i=0

2di+1 + 1

|BTh−i−1(di+1)|

= 2 +
h−4∑
i=0

2

|BTh−i−2(di+2)|+ 1
+
h−4∑
i=0

1

|BTh−i−1(di+1)|

= 2 +

h−3∑
i=2

3

|BTh−i(di)|
+

1

|BTh−1(d1)|
+

2

|BT2(dh−2)|

= 2.4 +

h−3∑
i=2

3

|BTh−i(di)|
+

1

|BTh−1(d1)|
.

The size of the balanced tree with the root of in-degree d0 of height h is equal to |BTh(d0)| =
h−1∑
i=1

i∏
j=0

dj >
h−1∏
j=0

dj > 2h(h−1)/2. Then |BTh−i(di)| > 2(h−i)(h−i−1)/2 and we get

PoS < 2.4 +
h−3∑
i=2

3

2(h−i)(h−i−1)/2
+

1

|BT3(2)|
< 2.4 + 0.43 + 0.2 = 2.83.
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4.3 Fairness measure

We investigate the Fairness Ratio which considers the cost distribution among the agents. The
FR in the social optimum turns out to be equal to nHn, whereas the FR in stable trees is o(n)
and hence stable trees admit a more fair cost-sharing.

Theorem 35. The Fairness Ratio for OPTn is nHn, where Hn =
n∑
i=1

1
i is the n-th harmonic

number.

Proof. Consider a path P = u0, u1, . . . , un where r = u0, and ui is a node at distance n− i from
the root. Clearly costP (ui+1) ≥ costP (ui) for i ∈ {1, . . . , n − 1}. Hence, for the Fairness Ratio
on the path we need to consider the costs incurred by u0 and un.

FR(P ) =
costP (un)

costP (u1)
=

∑n
i=1

1
i

1/n
= n ·Hn ≤ n(lnn+ 1)

We now turn our focus to the analysis of the class of all stable trees. Based on the lower and
upper bounds for the in-degree of the root, we prove that FR is in o(n).

Theorem 36. The Fairness Ratio for any NE tree is at most

8.62(n− 2) · ln ln(4
√
n/5)

ln(4
√
n/5)

−213 ·

(
1−

2 ln ln(4
√
n/5)

ln(4
√
n/5)

)
·

(
ln(4

√
n/5)

ln ln(4
√
n/5)

)log

(√
ln(4
√

n/5)

ln ln(4
√

n/5)

)
−5.5

,

which is at most 8.62 · (n−2)·ln ln(4
√
n/5)

ln(4
√
n/5)

.

Proof. As shown in the proof of Theorem 30, the cost of any agent in a stable tree is upper
bounded by 8.62. Clearly the minimal cost in a stable tree is paid by a node adjacent to the

root. By Theorem 5, the in-degree of the root d0 is at least
ln(4
√
n/5)

ln ln(4
√
n/5)

, while, by Corollary 9,

the maximum size of a tree adjacent to the root is at most n − (d0 − 2)tmin − 2, where tmin is
the minimum size of the tree rooted at a child of the root of in-degree at least (d0 − 1)/2.

We will evaluate tmin. By Lemma 4, indeg(vi) ≥ 2 for any node vi at distance i from
the root, for i ≤ h − 4. Then by Corollary 9, the size of the subtree T (vi) with the root at

node vi is at least
k−1∑̀
=0

(
x`

`−1∏
j=0

(xj − 1)

)
for k = blog((indeg(vi) + 1)/3)c, where the sequence

{x`}k`=0 such that x` ≥ (x`+1 − 1)/2 and x0 := vi. Then, from the proof of Theorem 10,

|T (vi)| > 2
∑k−3

j=0 (k−j−2) = 2
(k−1)(k−2)

2 . Since indeg(v1) ≥ (d0−1)/2 and thus k > log((d0 + 1)/6),
we have:

tmin > 2
(log((d0+1)/6)−1)(log((d0+1)/6)−2)

2 >
(

2(log(d0+1)−4)
)(log(d0+1)−5)/2

=
(
(d0 + 1) · 2−4

)(log(d0+1)−5)/2

= (d0 + 1)log(d0+1)/2 · (d0 + 1)−5/2 · 2−2(log(d0+1)−5) = (d0 + 1)log(d0+1)/2−5/2−2 · 210

> 210 · dlog(d0)/2−4.50
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Hence, the FR for any stable tree is at most

8.62
(
n− 2− 210(d0 − 2)d

log(
√
d0)−4.5

0

)
d0

=
8.62(n− 2) ln ln(4

√
n/5)

ln(4
√
n/5)

− 8.62

(
1− 2

d0

)
· dlog(

√
d0)−5.5

0

<
8.62(n− 2) · ln ln(4

√
n/5)

ln(4
√
n/5)

− 213 ·

(
1−

2 ln ln(4
√
n/5)

ln(4
√
n/5)

)
·

(
ln(4

√
n/5)

ln ln(4
√
n/5)

)log

(√
ln(4
√

n/5)

ln ln(4
√

n/5)

)
−5.5

<
8.62(n− 2) · ln ln(4

√
n/5)

ln(4
√
n/5)

.

Theorem 37. The Fairness Ratio for a stable tree is at least n · 2−2
√

2 log(n).

Proof. By Theorem 30, the maximum cost incurred by any agent is the cost incurred by a leaf,
while, by Lemma 6, any leaf is a child of a node with in-degree equals 1, and thus, any leaf pays
at least 1.

The minimum cost in a stable tree is incurred by a node which is a child of the root. Hence,
the minimum cost is equal to d0

tmax
, where tmax is the size of the largest subtree rooted at a child

of the root. Clearly, tmax ≥ n
d0
. Thus, d0

tmax
≤ d20

n . As a consequence, we get that FR ≥
n
d20
, which

is at least n

22
√

2 log(n)
by Theorem 10.

Finally, we investigate the class of stable balanced trees and prove a more precise upper bound.

Theorem 38. The Fairness Ratio for a stable balanced tree with the in-degree sequence

(0, 1, 2, 4, dh−4, . . . , d0), where di ≤ 2di+1 + 1 for i ≤ h− 4, is at most
2.4318n·

(
ln ln(4

√
n/5)

)2
(
ln(4
√
n/5)

)2 .

Proof. By Lemma 32, the cost of any agent in a balanced stable tree is at most 2.4318. By

Theorem 5, the in-degree of the root is at least
ln(4
√
n/5)

ln ln(4
√
n/5)

, while the size of a tree adjacent to the

root r is n/indeg(r). Then the FR for any stable balanced tree is at most
2.4318n·

(
ln ln(4

√
n/5)

)2
(
ln(4
√
n/5)

)2 .

5 Extensions for Future Work: The Path Version and Coalitions

A natural extension of our model is to allow for a richer strategy space. Instead of selecting a
single outgoing edge, agents could strategically select a complete path towards the root r. This
version, called the path-TCG, is closer to the fair single-source connection game by Anshelevich
et al. [5, 4]. See Appendix A for a formal de�nition of the path-TCG.

We give some preliminary results relating the equilibria of the TCG to the equilibria of the
path-TCG. Our results indicate that studying the path-TCG, in particular its PoA and PoS, is
a promising next step. We start with showing that also in the path-TCG all equilibria must be
trees.

Lemma 39. Any equilibrium network in the path-TCG is a tree.

Proof. We prove the statement via contradiction. Assume there is an agent a who has two
paths P and P ′ to the root r. If there are more than one such agent, let a be the last agent
in P which also belongs to P ′, thus, the one closest to the root. Without loss of generality, let
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cost(P ) ≤ cost(P ′). Let a′ be an agent who chooses P ′ and let cost′(P ) be the cost of P if a′

picks path P instead of path P ′. It holds that cost′(P ) < cost(P ) since there is an additional
agents who pays for the edges in P . Hence, replacing P ′ by P is an improvement for a′ and
therefore every agent has a unique path to the root r.

Now we show that the TCG can be considered as a special case of the path-TCG since all
equilibrium trees of the TCG are equilibria in the path-TCG but not vice versa.

Theorem 40. The set of NE in the path-TCG is a superset of the set of NE in the TCG.

Proof. To prove the claim, we show that any NE in the TCG is a NE in the path-TCG. Then
we provide an example of a NE in the path-TCG that is not in equilibrium for the TCG.

Consider an arbitrary NE TN of the TCG and assume towards a contradiction that there is
an agent a who still has an improvement in TN in the path-TCG. Thus, agent a switches to a
better path P ′. In this case, agent a has to pay at least one edge, say edge e′ = (u, v), of P ′ by
herself. This is true because of Lemma 39. If there is more than one such edge, then let (u, v)
be the edge which is closest to the root r. In that case, switching agent a's edge to v is also an
improvement for agent a in the TCG, since agent a pays indeg(v) for (u, v) in the path-TCG,
whereas in the TCG she will pay at most indeg(v)

|T (a)| ≤ indeg(v) for the new edge (a, v).
To show that there exist NE in the path-TCG which are not in NE for the TCG, consider the

tree shown in Figure 5 (left). Let r be the common sink for all agents. Since agent g can swap
her edge towards h and decrease her costs from 14

9 to 50
33 the depicted tree is not in equilibrium

for the TCG.
To show that the tree in Figure 5 (middle) is indeed in equilibrium in the path-TCG, we will

show that no agent can unilaterally improve her strategy. Due to Lemma 39, when an agent
x switches to another path P ′, x has to pay for at least one edge by herself. Note that due to
symmetry, many agents can be treated equally.

� Agent a has costs of 2
9 . Since any deviation from the current strategy would lead to costs

larger than 1, since agent a needs to pay for at least one edge by herself, no improvement
is possible. The same is true for agent j.

� Agent b has costs of 13
18 . Again, any deviation from the current strategy leads to costs

larger than 1, hence, no improvement is possible. The same holds for agents c, h and k.

� Agent d has costs of 19
18 . Since the current costs are smaller than 2, agent d can only pay

for a single edge with costs 1 by herself. This is only true for an edge to the leaf nodes h,
i, p and q. However, any deviation from the current strategy which contains an edge to a
leaf node has costs larger than 11

6 and hence, no improvement is possible. The same holds
for the agents e, l and m.

� Agent f has costs of 14
9 . Since the current costs are smaller than 2, agent d can only pay

for a single edge with costs 1 by herself. Again, this is only true for an edge to one of the
leaf nodes. Any deviation from the current strategy which contains an edge to a leaf node
has costs larger than 11

6 and hence, no improvement is possible. The same holds for the
agents g, n and o.

� Agent h has costs of 23
9 . Since the current costs are smaller than 3, agent h can only pay

for edges with costs of maximum 2 by herself. Choosing a path over a node with current
degree 1 costs 2. Hence, agent h is not able to pay for another edge by herself. However,
this leads to costs of at least 3

5 and therefore this is not an improving strategy change. In
addition, any deviation from the current strategy which contains an edge to a leaf node
has costs of at least 161

60 and hence, no improvement is possible. The same is true for the
agents i, p and q.
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Figure 5: Left: A path-TCG NE that is not a TCG NE for n = 16. Middle: A path-TCG NE
that is not a TCG NE for n = 18. Right: A TCG NE that is not a strong path-TCG NE.

We showed for the TCG that for n = 16 and n = 18 there exists no stable network. We contrast
this negative result with a NE existence proof for the path-TCG for the corresponding values.
Figure 5 (left and middle) show equilibrium trees for the path-TCG for n = 16 and n = 18,
respectively.

Theorem 41. For n = 16 and n = 18 there exists a stable network for the path-TCG.

Proof. In the proof of Lemma 40 we already showed that there exists an equilibrium for the
path-TCG for n = 18. Hence, it remains to show that there also exists an equilibrium for
n = 16. Consider the tree shown in Figure 5 (left). We will show that no agent can unilaterally
improve her strategy. Due to Lemma 39, when an agent x switches to another path P ′, x has
to pay for at least one edge by herself. Note that due to symmetry, many agents can be treated
equally.

� Agent a has costs of 2
9 . Since any deviation from the current strategy would lead to costs

larger than 1, since agent a needs to pay for at least one edge by herself, no improvement
is possible. The same is true for agents b and c who have costs of 13

18 , agent j who has costs
of 2

7 and agents h and k who have costs of 20
21 .

� Agent d has costs of 19
18 . Since the current costs are smaller than 2, agent d can only pay

for a single edge with costs 1 by herself. This is only true for an edge to the leaf nodes h,
i, n or o. However, any deviation from the current strategy which contains an edge to a
leaf node hast costs larger than 3

2 . Hence, no improvement is possible. The same holds for
agent e.

� Agent f has costs of 14
9 . Since the current costs are smaller than 2, agent f can only pay

for a single edge with costs 1 by herself. This is only true for an edge to the leaf nodes h,
i, n or o. However, any deviation from the current strategy which contains an edge to a
leaf node hast costs larger than 11

6 . Hence, no improvement is possible. The same holds
for agent g.

� Agent h has costs of 23
9 . Since the current costs are smaller than 3, agent h can only pay

for edges with costs of maximum 2 by herself. Choosing a path over a node with current
degree 1 costs 2. Hence, agent h is not able to pay for another edge by herself. However,
this leads to costs of at least 118

45 and therefore this is not an improving strategy change.
In addition, any deviation from the current strategy which contains an edge to a leaf node
hast costs of at least 31

12 and hence, no improvement is possible. The same is true for
agent i.

� Agent l has costs of 61
42 . Since the current costs are smaller than 2, agent l can only pay

for a single edge with costs 1 by herself. This is only true for an edge to the leaf nodes h,
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i, n or o. However, any deviation from the current strategy which contains an edge to a
leaf node hast costs larger than 55

21 . Hence, no improvement is possible. The same holds
for agent m.

� Agent n has costs of 103
42 . Since the current costs are smaller than 3, agent n can only pay

for edges with costs of maximum 2 by herself. Choosing a path over a node with current
degree 1 costs 2. Hence, agent n is not able to pay for another edge by herself. However,
this leads to costs of at least 13

5 and therefore this is not an improving strategy change.
In addition, any deviation from the current strategy which contains an edge to a leaf node
hast costs of at least 55

21 and hence, no improvement is possible. The same is true for
agent o.

Together with Theorem 41 and since any NE in the TCG is a NE in the path-TCG, we go along
with Conjecture 1 and believe that for all values of n stable trees exist for the path-TCG.

Conjecture 2. For any n ∈ N a pure NE exists in the path-TCG.

An agent a in the TCG bene�ts from the fact that if a changes her strategy and switches her
edge towards another node the costs of the new edge is also shared among all of a's ancestors.
It seems natural to consider a strategy change in the TCG as a coalitional strategy change in
the path-TCG by the coalition consisting of agent a and all her ancestors. So NE in the TCG
could be in strong NE [3] for the pathTCG. However, we show that this is not true, see Figure 5
(right).

Theorem 42. There is a NE in the TCG which is not in strong NE for the path-TCG.

Proof. Consider the tree depicted in Figure 5 (right). We have already seen that the tree is in
NE for the TCG, cf. Figure 2. However, it is not in strong NE for the path-TCG, since agents a
and b can form a coalition and jointly change their strategy, such that agent a chooses the path
over node c and agent b over node d. With this agents a and b can both decrease their cost from
8
3 to 109

42 .

6 Conclusion

We have studied a tree formation game to investigate how sel�sh agents self-organize to connect
to a common target in the presence of dynamic edge costs that are sensitive to node degrees.
This mimics settings in which nodes can charge prices for o�ering their routing service and where
these prices are guided by supply and demand, i.e., more popular nodes with higher in-degree
can charge higher prices to make up for their increased internal coordination cost.

Our main �ndings are that our game admits equilibrium trees with intriguing properties like
low height, low maximum degree, almost optimal cost, and a somewhat fair distribution of the
total cost among the agents. The set of equilibrium trees seems to be combinatorially rich, and
characterizing stable trees that are not balanced seems an exciting and challenging problem for
future research. It would also be interesting to study the degree distribution in stable trees and
to evaluate possible connections with power-law degree distributions which are ubiquitous in
real-world networks.

We note in passing that our model can easily be generalized to settings with more than one
target node as long as every possible incident edge may be activated. In this case, several disjoint
trees, one for each target node, will be formed. Things change if target nodes and agent nodes
may be co-located, and exploring this variant might be interesting.

29



Acknowledgment

We thank our anonymous reviewers for their valuable suggestions. This work has been partly
supported by COST Action CA16228 European Network for Game Theory (GAMENET).

References

[1] S. Albers and P. Lenzner. On Approximate Nash Equilibria in Network Design. Internet

Mathematics, 9(4):384�405, 2013.

[2] C. Àlvarez and A. Messegué. On the Price of Anarchy for High-Price Links. In WINE'19,
pages 316�329. Springer, 2019.

[3] N. Andelman, M. Feldman, and Y. Mansour. Strong price of anarchy. Games and Economic

Behavior, 65(2):289�317, 2009.

[4] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden.
The Price of Stability for Network Design with Fair Cost Allocation. SIAM Journal on

Computing, 38(4):1602�1623, 2008.

[5] E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler. Near-Optimal Network Design
with Sel�sh Agents. Theory of Computing, 4(1):77�109, 2008.

[6] V. Bala and S. Goyal. A Noncooperative Model of Network Formation. Econometrica,
68(5):1181�1229, 2000.

[7] D. Bilò and P. Lenzner. On the Tree Conjecture for the Network Creation Game. Theory
of Computing Systems, 64(3):422�443, 2020.

[8] V. Bilò, M. Flammini, and L. Moscardelli. The Price of Stability for Undirected Broadcast
Network Design with Fair Cost Allocation is Constant. Games and Economic Behavior,
2014.

[9] C. G. Bird. On Cost Allocation for a Spanning Tree: A Game Theoretic Approach. Net-

works, 6(4):335�350, 1976.

[10] A. Chauhan, P. Lenzner, A. Melnichenko, and L. Molitor. Sel�sh Network Creation with
Non-uniform Edge Cost. In SAGT'17, pages 160�172. Springer, 2017.

[11] C. Chekuri, J. Chuzhoy, L. Lewin-Eytan, J. Naor, and A. Orda. Non-cooperative Multi-
cast and Facility Location Games. IEEE Journal on Selected Areas in Communications,
25(6):1193�1206, 2007.

[12] A. Claus and D. J. Kleitman. Cost Allocation for a Spanning Tree. Networks, 3(4):289�304,
1973.

[13] E. D. Demaine, M. T. Hajiaghayi, H. Mahini, and M. Zadimoghaddam. The Price of
Anarchy in Network Creation Games. ACM Transactions on Algorithms, 8(2):13, 2012.

[14] S. Ehsani, S. S. Fadaee, M. Fazli, A. Mehrabian, S. S. Sadeghabad, M. A. Safari, and
M. Sagha�an. A Bounded Budget Network Creation Game. ACM Transactions on Algo-

rithms, 11(4):1�25, 2015.

[15] S. Eidenbenz, S. Kumar, and S. Zust. Equilibria in Topology Control Games for Ad hoc
Networks. Mobile Networks and Applications, 11(2):143�159, 2006.

30



[16] B. Esco�er, L. Gourvès, J. Monnot, and S. Moretti. Cost Allocation Protocols for Network
Formation on Connection Situations. In ICST'12, pages 228�234, 2012.

[17] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a Network
Creation Game. PODC'03, pages 347�351. ACM, 2003.

[18] M. Feldman, K. Lai, and L. Zhang. The Proportional-share Allocation Market for Computa-
tional Resources. IEEE Transactions on Parallel and Distributed Systems, 20(8):1075�1088,
2008.

[19] A. Fiat, H. Kaplan, M. Levy, S. Olonetsky, and R. Shabo. On the Price of Stability for
Designing Undirected Networks with Fair Cost Allocations. In ICALP'06, pages 608�618.
Springer, 2006.

[20] L. Gourvès and J. Monnot. Three Sel�sh Spanning Tree Games. In WINE'08, pages 465�
476. Springer, 2008.

[21] D. Granot and G. Huberman. Minimum Cost Spanning Tree Games. Mathematical pro-

gramming, 21(1):1�18, 1981.

[22] D. Granot and G. Huberman. On the Core and Nucleolus of Minimum Cost Spanning Tree
Games. Mathematical programming, 29(3):323�347, 1984.

[23] M. Hoefer. Non-Cooperative Tree Creation. Algorithmica, 53(1):104�131, 2009.

[24] M. Hoefer and P. Krysta. Geometric Network Design with Sel�sh Agents. In COCOON'05,
pages 167�178, 2005.

[25] M. O. Jackson and A. Wolinsky. A Strategic Model of Social and Economic Networks.
Journal of Economic Theory, 71(1):44�74, 1996.

[26] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In STACS'99, pages 404�413.
Springer-Verlag, 1999.

[27] T. L. Magnanti and R. T. Wong. Network Design and Transportation Planning: Models
and Algorithms. Transportation Science, 18(1):1�55, 1984.

[28] A. Mamageishvili, M. Mihalák, and D. Müller. Tree Nash Equilibria in the Network Creation
Game. In WAW'13, pages 118�129. Springer, 2013.

[29] M. Mihalák and J. C. Schlegel. The Price of Anarchy in Network Creation Games is (Mostly)
Constant. SAGT'10, pages 276�287. Springer, 2010.

[30] K. Mittal, E. M. Belding, and S. Suri. A Game-theoretic Analysis of Wireless Access Point
Selection by Mobile Users. Computer Communications, 31(10):2049�2062, 2008.

[31] D. Monderer and L. S. Shapley. Potential Games. Games and Economic Behavior, 14(1):124
� 143, 1996.

[32] H. Moulin and S. Shenker. Strategyproof Sharing of Submodular Costs: Budget Balance
versus E�ciency. Economic Theory, 18(3):511�533, 2001.

31



A Formal De�nition of the Path Version

The path version of the TCG, called path-TCG, is de�ned by a complete directed host-graph

H = (V,E) with n nodes and k target sink pairs (s1, t1), . . . , (sk, tk), where pair (si, ti) models
that a sel�sh agent i wants to connect si ∈ V and ti ∈ V . For this, each agent i strategically
selects a path Pi ⊆ E which connects si and ti. Note that we treat paths simply as sets of edges.
The k-dimensional vector of all chosen paths p = (P1, . . . , Pk) then induces the subgraph G(p)
of H, which is de�ned as follows: G(p) = (V (p), E(p)), where

V (p) =

k⋃
i=1

{
u | ∃(u, v) ∈ Pi

}
and E(p) =

k⋃
i=1

Pi,

that is, the induced subgraph G(p) consists of all edges which are contained in at least one
strategy and the corresponding incident nodes of H. We call G(p) the created network by
strategy vector p.

The cost of agent i depends on the structure of the created network G(p). We assume that
any edge in a strategically chosen path has a price which depends on the in-degree of its ancestor
in G(p) and on the number of other agents using that edge. Let U(u, v) denote the set of users
of edge (u, v) in G(p) which is de�ned as follows: U(u, v) = {i | (u, v) ∈ Pi}. Then, the cost of
agent i in G(p) is

costG(p)(i) :=

{∑
(u,v)∈Pi

indegG(p)(v)

|U(u,v)| , if si and ti are connected,

∞, otherwise.

The cost function can be interpreted as the total cost of all edges in a path chosen by an agent,
where the price of each edge is proportional to a load of its endpoint, i.e., its in-degree, fairly
shared among users of the edge.

The social cost of strategy vector p, SC(G(p)) for short, is simply the sum of the costs of
all agents. That is, SC(G(p)) =

∑k
i=1 costG(p)(i).

We say that strategy vector p is in pure Nash equilibrium if no agent can unilaterally change
her strategy and thereby strictly improve her costs. For a pure Nash equilibrium p we call the
corresponding created network G(p) stable.
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