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ABSTRACT

In the house allocation problemwith lower and upper quotas, we are

given a set of applicants and a set of projects. Each applicant has a

strictly ordered preference list over the projects she finds acceptable,

while the projects are equipped with a lower and an upper quota.

A feasible matching assigns the applicants to the projects in such a

way that a project is either matched to no applicant or to a number

of applicants between its lower and upper quota.

In this model we study two classic optimality concepts: Pareto

optimality and popularity.We show that finding a popular matching

is hard even if the maximum lower quota is 2 and that finding a

perfect Pareto optimal matching, verifying Pareto optimality, and

verifying popularity are all NP-complete even if the maximum

lower quota is 3. We complement the last three negative results

by showing that the problems become polynomial-time solvable

when the maximum lower quota is 2, thereby answering two open

questions of Cechlárová and Fleiner [16]. Finally, we also study the

parameterized complexity of all four mentioned problems.
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1 INTRODUCTION

Many university courses involve team-based project work. In such

courses, a set of projects is offered, and each student submits a

list of projects she finds acceptable. Ideally, the student also ranks

these projects in order of her preference. Naturally, the number

of students ideally assigned to a specific project strongly depends

on the project itself. The lecturer responsible for the project thus

might restrict the number of students to an interval. Projects that

did not awake sufficient interest in the students are then dropped,

while the other projects start with a number of assigned students

that falls into the prescribed interval. Such quota constraints also

arise in various other contexts involving the centralized forma-

tion of groups, including organizing team-based leisure activities,

opening facilities to serve a community, and coordinating rides

within car-sharing systems. In these and similar applications, the

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,

2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

goal is to fulfill some optimality condition under the assumption

that the number of participants for each open activity is within the

prescribed limits of the activity.

1.1 Problem Formulation and Solution Concepts

The mathematical formulation of this problem is known as the

house allocation problem with lower and upper quotas. In a house

allocation instance, we are given a two-sidedmarket, where one side

𝐴 represents applicants, while the other side 𝑃 represents projects.

Each applicant has a strictly ordered preference list of the projects

she finds acceptable. Furthermore, each project 𝑝 ∈ 𝑃 has a lower

quota ℓ𝑝 and an upper quota 𝑢𝑝 .

In a feasible matching, a project is either open or closed. The

central feasibility requirement is that the number of applicants

assigned to an open project must lie between its lower and upper

quota, whilst a closed project has no assigned applicant. Each ap-

plicant is assigned to at most one project. We define the optimality

of a matching with respect to the satisfaction level of the agents. In

this paper, we study two well-known notions from the broad topic

of matchings under preferences: Pareto optimality and popularity.

A matching 𝑀 is Pareto optimal if there is no matching 𝑀 ′
, in

which no applicant is matched to a project she considers worse,

while at least one applicant is matched to a project she considers

better than her project in 𝑀 . A matching 𝑀 is popular if there is

no matching𝑀 ′
that would win a head-to-head election against𝑀 ,

where each applicant casts a vote based on her preferences on her

assigned project in𝑀 and in𝑀 ′
.

1.2 Related Work

Arulselvan et al. [2] derived several complexity results for the max-

imum weight many-to-one matching problem with project closures

and lower and upper quotas, i.e., a project is either open and both

the lower quota and upper quota are fulfilled or the project is closed.

However, their model excludes agent preferences. In Table 1 we dis-

play a structured overview of existing work in the field of matchings

under preferences with lower and upper quotas.

Stable matchings. In the classic hospitals residents problem [26,

30], the underlying model is a bipartite many-to-one matching

problem involving preferences on both sides, and the goal is to

find a stable matching, which is a matching where no hospital-

resident pair could improve their situation by being assigned to

each other. This model has been combined with lower and upper

quotas in several papers. Hamada et al. [31] considered a version

where hospitals cannot be closed and presented a polynomial-time

algorithm to find a stable solution, while Mnich and Schlotter [35]



Stability Pareto optimality Popularity

1-sided, no project closures open [28] open

1-sided, project closures [11] [16, 20, 32, 36], our paper our paper

2-sided, no project closures [31, 35] [39] [33, 37]

2-sided, project closures [8, 11] open open

Table 1: Overviewof the existing literature in themost related

settings. The four models differ in how many of the two

sides are equipped with preferences, and in the possibility of

project closures. Note that stability is defined for one-sided

preferences such that hospitals do not differentiate between

applicants, but aim to fill their quota.

studied the fixed parameter tractability of finding an approximately

stable solution in no-instances identified by Hamada et al. [31].

The model of Biró et al. [8] permitted hospital closures, and was

shown to lead to NP-hardness. Very recently, the setting of Biró et

al. [8] was further investigated by Boehmer and Heeger [11], who

conducted a parameterized study in the original hospitals residents

setting, and also in the house allocation setting, where hospitals

only have a preference for filling their quota, but do not mind which

applicant is assigned to them. They also answered an open question

of [8] by showing that a stable matching in the hospitals residents

problemwith lower quota at most 2 can be found in polynomial time.

For a further overview on matchings with quotas and constraints

we refer the reader to a recent survey by Aziz et al. [3].

Pareto optimal matchings. Pareto optimality is one of the most

studied concepts in coalition formation and hedonic games [4, 7,

13, 23], and it has also been defined in the context of various match-

ing markets [6, 9, 14, 15]. As shown by Abraham et al. [1], in the

one-to-one house allocation model, a maximum size Pareto optimal

matching can be found in polynomial time. Pareto optimality of

matchings with lower and upper quotas on projects was studied in

four papers. Motivated by a school choice application with regional

constraints, Goto et al. [28] analyzed the case of so-called hierarchi-

cal lower quotas that must be obeyed. Monte and Tumennasan [36]

considered the case of project closures with complete lists, while

the model of Kamiyama [32] allowed incomplete lists as well. In

all three works, it was shown that a Pareto optimal matching can

always be found using a variant of the famous serial dictatorship

algorithm. Cechlárová and Fleiner [16] extended this algorithm

to the case when an applicant can be assigned to more than one

project. They also showed for the many-to-one case with lower and

upper quotas that it is NP-hard to compute a maximum size Pareto

optimal matching if the maximum lower quota is at least 4, further-

more that it isNP-complete to verify if a matching is Pareto optimal

if the maximum lower quota is at least 3. This led the authors to

ask whether both of these problems stay intractable if no lower

quota exceeds 2. Finally, Darmann et al. [20] study the simplified

group activity selection problem as a variant case of the house allo-

cation with lower quotas model, in which agents have non-strict

preference lists and a void activity they can be assigned to. In their

model, Darmann et al. [20] study the computational complexity of

computing (among others) core stable, envy-free, or Pareto optimal

matchings. In this paper, we show that both problems are indeed

polynomial-time solvable if the maximum lower quota is 2, while

𝑙max ≤ 2 𝑙max ≤ 3 𝑃open

pop-ha
𝑈
𝐿

NP-c. Thm. 3 coNP-h. Thm. 1

NP-h. Cor. 3

perpo-ha
𝑈
𝐿

P Cor. 1

NP-c. Thm. 1

popv-ha
𝑈
𝐿 P Thm. 7

pov-ha
𝑈
𝐿

NP-c. [16]

Table 2: Overview of our results in classic complexity. The

four problems studied are finding a popular matching, find-

ing a perfect Pareto optimal matching, verifying popularity,

and verifying Pareto optimality. The columns 𝑙max ≤ 2 and

𝑙max ≤ 3 indicate the cases where the maximum lower quota

of any project is 2 or 3, respectively. The column 𝑃open indi-

cates the complexity of deciding whether there is matching

of our desired type that opens exactly the projects in 𝑃open.

finding a maximum size Pareto optimal matching is NP-complete

if the maximum lower quota is 3. Regarding two-sided instances,

Sanchez-Anguix et al. [39] conducted experiments to derive an

approximate Pareto optimal solution with workload balance as an

additional requirement.

Popular matchings. Popularity as an optimality principle has

been on the rise recently [18, 25, 29] in the matchings under pref-

erences literature. On instances with two-sided preferences, Brandl

and Kavitha [12] and Gopal et al. [27] studied popularity for many-

to-many and many-to-one matching problems with upper quotas

only. For the model introduced in the latter paper, the complexity

of deciding whether a popular matching exists is still open. Krish-

napriya et al. [33] and Nasre and Nimbhorkar [37] investigated

popular matchings in the hospital residents problem with lower

and upper quotas, but without the option to close hospitals. They

proved that whenever a feasible matching exists, a popular match-

ing has to exist as well. In the house allocation setting, even with

weights and upper quotas, the problem of computing a popular

matching is tractable as shown by Sng and Manlove [40].

1.3 Our Contribution and Techniques

We provide an analysis of both Pareto optimal and popular match-

ings in the setting of the house allocation problem with lower and

upper quotas, and project closure, and derive tractability results for

both classic and parameterized complexity. Due to space restric-

tions, we only sketch the main idea of most proofs in the body of

the paper, and provide the full proof in the appendix.

Table 2 displays a comprehensive overview of our results for

classic complexity. We answer both open questions of Cechlárová

and Fleiner [16] and show that a Pareto optimal matching can be

verified and a perfect Pareto optimal matching can be found in

polynomial time if the maximum lower quota is 2. Further, these

results also apply to the work of Darmann et al. [20] thus also

showing that a maximum size Pareto optimal matching (or group

activity selection in their notation) can be found if the maximum

lower quota is 2, improving on their result for maximum lower

quota 1 and answering one of their open questions. Our positive

parameterized results also apply to their problem of computing or

verifying Pareto optimal assignments. Further, our work initiates



𝑛 𝑚 𝑚𝑞𝑢𝑜𝑡𝑎 𝑚𝑜𝑝𝑒𝑛 𝑚
closed

pop-ha
𝑈
𝐿

W[1]-h. Thm. 4 FPT Thm. 5 ?

coNP-h. Thm. 10

W[1]-h. Thm. 11
perpo-ha

𝑈
𝐿

FPT Cor. 2 FPT Thm. 8popv-ha
𝑈
𝐿 W[1]-h. Thm. 9

pov-ha
𝑈
𝐿

Table 3: Overview of our parameterized results. The columns

are the parameters we use in the respective cases. The first

parameter 𝑛 is the number of applicants,𝑚 is the number of

projects, and𝑚quota is the number of projects with a lower

quota greater than 1. The parameter𝑚open asks for a match-

ing that opens exactly𝑚open projects, while𝑚
closed

asks for

a matching closing exactly𝑚
closed

projects.

the study of the popular house allocation problemwith lower quotas

by showing that even if the maximum lower quota is 2 it is NP-hard

to find a popular matching. However, we also present a polynomial

time algorithm to verify if a given matching is popular if no lower

quota exceeds 2, while the same problem is shown to be NP-hard

for maximum lower quota 3. We then reduce all three problems to

the maximum weight matching problem of Arulselvan et al. [2],

for which we firstly observe a simple reduction to the general

factor problem introduced by Dudycz and Paluch [21], and secondly

design a faster algorithm for our special cases by combining results

from [21] and gadget techniques established by Cornuéjols [17].

We then identify tractable sub-cases via the power of param-

eterized complexity, as demonstrated by Table 3. Here we again

use the connection to maximum weight matchings and show how

to use a treewidth-based algorithm of Arulselvan et al. [2] to get

fixed parameter tractability when parameterized by the number of

applicants. Further we give a flow-based algorithm to prove fixed

parameter tractability when parameterized by𝑚quota, the number

of projects with a lower quota greater than 1. Since these two algo-

rithms are for the maximum weight matching problem, they also

apply to a recently introduced model in the area of multi-robot task

allocation by Aziz et al. [5]. Finally, by a reduction to the parametric

integer programming problem [22], we also show that the problem

of finding a popular matching is fixed parameter tractable when

parameterized by the number of projects.

2 PRELIMINARIES

In this section we formally introduce our notation and the problems

we consider.

We are given a set 𝐴 of 𝑛 applicants, a set 𝑃 of𝑚 projects, and

a bipartite graph 𝐺 = (𝐴 ¤∪𝑃, 𝐸), with 𝐴 and 𝑃 being the two sides

of the bipartition. The degree deg𝑣 of a vertex 𝑣 ∈ 𝐴 ∪ 𝑃 equals the

number of vertices 𝑣 is adjacent to in𝐺 and the neighborhood 𝑁𝑣 is

the set of these adjacent vertices. We define Δ𝐴 to be the maximum

degree of any vertex in 𝐴 and Δ𝑃 to be the maximum degree of

any vertex in 𝑃 . In our model, each project 𝑝 ∈ 𝑃 is equipped with

a lower quota ℓ𝑝 ∈ N and an upper quota 𝑢𝑝 ∈ N. We refer to the

maximum lower quota among all projects as ℓmax and the maximum

upper quota as 𝑢max.

A matching 𝑀 ⊆ 𝐸 is a set of edges so that each applicant 𝑎 ∈ 𝐴

is incident to at most one edge in 𝑀 , while each project 𝑝 ∈ 𝑃 is

either incident to no edge in𝑀 or its degree in the graph (𝐴 ¤∪𝑃,𝑀)
is at least ℓ𝑝 and at most 𝑢𝑝 . If applicant 𝑎 is assigned to project

𝑝 in 𝑀 , then we write 𝑀 (𝑎) = 𝑝 and 𝑎 ∈ 𝑀 (𝑝). A matching 𝑀

assigns each applicant 𝑎 a project in 𝑁𝑎 or 𝑎 itself. The notation

𝑀 (𝑎) = 𝑎 serves convenience and it expresses that the applicant 𝑎 is

unmatched. Conversely, the quota requirement for the projects can

be expressed as ℓ𝑝 ≤ |𝑀 (𝑝) | ≤ 𝑢𝑝 or |𝑀 (𝑝) | = 0 for each project

𝑝 ∈ 𝑃 . We call a project 𝑝 ∈ 𝑃 with |𝑀 (𝑝) | = 0 closed and a project

𝑝 with ℓ𝑝 ≤ |𝑀 (𝑝) | ≤ 𝑢𝑝 open. A matching𝑀 is perfect if𝑀 (𝑎) ≠ 𝑎

for all 𝑎 ∈ 𝐴, i.e., all applicants are matched to a project in𝑀 .

Each applicant 𝑎 ∈ 𝐴 has a strict order ≻𝑎 over 𝑁𝑎 ∪ {𝑎}, which
we call the preference list of 𝑎. For each 𝑎 ∈ 𝐴 and 𝑝 ∈ 𝑁𝑎 we

assume that 𝑝 ≻𝑎 𝑎, which translates into applicant 𝑎 listing only

the projects that are acceptable to her, in other words, they are

more preferable to her than staying unmatched. If the applicant is

clear from the context, we simply write ≻ for her preference list.

We now introduce our two optimality concepts based on ap-

plicants’ preferences. Given a matching 𝑀 , we say that match-

ing 𝑀 ′
dominates 𝑀 if there is no 𝑎 ∈ 𝐴 with 𝑀 (𝑎) ≻𝑎

𝑀 ′(𝑎) and there is an 𝑎 ∈ 𝐴 with 𝑀 ′(𝑎) ≻𝑎 𝑀 (𝑎). We

call matching 𝑀 Pareto optimal if there is no matching that

dominates 𝑀 . We call matching 𝑀 ′
more popular than match-

ing𝑀 if |{𝑎 ∈ 𝐴 | 𝑀 ′(𝑎) ≻𝑎 𝑀 (𝑎)}| > |{𝑎 ∈ 𝐴 | 𝑀 (𝑎) ≻𝑎 𝑀 ′(𝑎)}|.
Matching𝑀 is popular if there is no other matching that is more

popular than𝑀 .

We are now ready to define the four problems we tackle in this

paper. The first one of these is the popular matching problem.

Popular house allocation with lower and upper qotas

(pop-ha
𝑈
𝐿
)

Input: Graph 𝐺 = (𝐴 ¤∪𝑃, 𝐸), preferences (≻𝑎)𝑎∈𝐴 , and
quotas ℓ,𝑢 : 𝑃 → N.

Question: Does 𝐺 have a popular matching?

As an example of this problem, we introduce a small gadget instance

we also use in a later proof, representing an instance of the famous

Condorcet cycle.

Observation 1. Consider the instance I of pop-ha
𝑈
𝐿
with three

applicants 𝑎1, 𝑎2, 𝑎3 and three projects 𝑝1, 𝑝2, 𝑝3, each with a lower

and upper quota of 3, such that the preference list of 𝑎1 is 𝑝1 ≻𝑎1
𝑝2 ≻𝑎1 𝑝3, the preference list of 𝑎2 is 𝑝2 ≻𝑎2 𝑝3 ≻𝑎2 𝑝1 and the

preference list of 𝑎3 is 𝑝3 ≻𝑎3 𝑝1 ≻𝑎3 𝑝2, i.e., the preference lists are
just cyclically shifted between the applicants. This instance does not

admit a popular matching.

Proof. Any non-perfect matching has to be empty in this in-

stance due to the lower quota of 3 on each project. Thus, matching

all three applicants to any of the projects would lead to a matching

that is preferred by all three applicants. Therefore, we only need to

consider the three perfect matchings

• 𝑀1 with𝑀1 (𝑝1) = {𝑎1, 𝑎2, 𝑎3},
• 𝑀2 with𝑀2 (𝑝2) = {𝑎1, 𝑎2, 𝑎3},
• 𝑀3 with𝑀3 (𝑝3) = {𝑎1, 𝑎2, 𝑎3}.

Then the following statements hold.

• The applicants 𝑎2 and 𝑎3 prefer𝑀3 to𝑀1, while 𝑎1 prefers

𝑀1 to𝑀3, making𝑀3 more popular than𝑀1.

• The applicants 𝑎1 and 𝑎2 prefer𝑀2 to𝑀3, while 𝑎3 prefers

𝑀3 to𝑀2, making𝑀2 more popular than𝑀3.

• The applicants 𝑎1 and 𝑎3 prefer𝑀1 to𝑀2, while 𝑎2 prefers

𝑀2 to𝑀1, making𝑀1 more popular than𝑀2.



Thus, this instance admits no popular matching. □

Besides this we also study the complexity of verifying whether

a given matching is popular.

Popularity verification in house allocation with lower

and upper qotas (popv-ha
𝑈
𝐿
)

Input: Graph 𝐺 = (𝐴 ¤∪𝑃, 𝐸), preferences (≻𝑎)𝑎∈𝐴 , quotas
ℓ,𝑢 : 𝑃 → N, and matching𝑀 .

Question: Does 𝐺 have a matching𝑀 ′
that is more popular

than𝑀?

Thirdly we study the problem of finding a Pareto optimal matching

covering all applicants. We remind the reader that (non-perfect)

Pareto optimal matchings can be found in polynomial time using a

variant of the serial dictatorship method [16, 32, 36].

Perfect Pareto optimal house allocation with lower and

upper qotas (perpo-ha
𝑈
𝐿
)

Input: Graph 𝐺 = (𝐴 ¤∪𝑃, 𝐸), preferences (≻𝑎)𝑎∈𝐴 , and
quotas ℓ,𝑢 : 𝑃 → N.

Question: Does 𝐺 have a Pareto optimal matching that

matches all applicants in 𝐴?

Finally we also study the verification version of Pareto optimality.

Pareto optimality verification in house allocation with

lower and upper qotas (pov-ha
𝑈
𝐿
)

Input: Graph 𝐺 = (𝐴 ¤∪𝑃, 𝐸), preferences (≻𝑎)𝑎∈𝐴 , quotas
ℓ,𝑢 : 𝑃 → N, and matching𝑀 .

Question: Does 𝐺 have a matching𝑀 ′
that dominates𝑀?

3 CONNECTION TOWEIGHTED MATCHINGS

Before diving into the main theorems of our paper, we present two

auxiliary lemmas, allowing us to reduce our problems popv-ha
𝑈
𝐿
,

perpo-ha
𝑈
𝐿
, and pov-ha

𝑈
𝐿
to the following weighted many-to-one

matching problem, defined by Arulselvan et al. [2].

Weighted bipartite matching with lower and upper qo-

tas (w-ha
𝑈
𝐿
)

Input: Graph 𝐺 = (𝐴 ¤∪𝑃, 𝐸) with quotas ℓ,𝑢 : 𝑃 → N,
weight function𝑤 : 𝐸 → R, and a bound𝑊 ∈ R.

Question: Is there a matching𝑀 with

∑
𝑒∈𝑀 𝑤 (𝑒) ≥𝑊 ?

First, we give a reduction from perpo-ha
𝑈
𝐿
to w-ha

𝑈
𝐿
.

Lemma 1. For each perpo-ha
𝑈
𝐿
instance I, there is a w-

ha
𝑈
𝐿

instance I ′
on the same graph, such that each maximum weight

matching in I ′
corresponds to a Pareto optimal matching in I, with

a maximum number of matched applicants. The instance I ′
can be

computed in polynomial time from I.

Proof. Given any 𝑎 ∈ 𝐴 with preference list 𝑝1 ≻𝑎 · · · ≻𝑎 𝑝𝑘 ,

we define the weight of the edge between 𝑎 and any 𝑝𝑖 for 𝑖 =

1, . . . , 𝑘 to be (𝑘 − 𝑖) +𝑚𝑛. Let𝑀 be a maximum weight matching

in this new instance. First𝑀 has to be a maximum matching, since

any larger matching would lead to a vertex being matched that

was previously unmatched and thus increasing the weight of the

matching by at least𝑚𝑛 − (𝑛 − 1)𝑚 > 0. Furthermore the matching

has to be Pareto optimal, since any matching dominating it would

obviously lead to a matching of larger weight. □

Lemma 1 shows that in order to check if a perfect Pareto optimal

matching exists in I, it is sufficient to find a maximum weight

matching in I ′
and check if it is perfect. However, Lemma 1 does

not hold in the reverse direction: not all perfect Pareto optimal

matchings of I translate into a maximum weight matching in I ′
.

For popv-ha
𝑈
𝐿

and pov-ha
𝑈
𝐿
, we show similar statements as first

observed by Biró et al. [10] for one-to-one popular matchings. Our

results state that a matching is popular / Pareto optimal if and only

if it is a maximum weight matching in a certain weighted graph.

Lemma 2. For each popv-ha
𝑈
𝐿

/pov-ha
𝑈
𝐿

instance I with matching

𝑀 there is a w-ha
𝑈
𝐿
instance I ′

on the same graph, such that a

matching is more popular than𝑀 / dominates𝑀 in I if and only if it

has a larger weight than𝑀 in I ′
. The instance I ′

can be computed

in polynomial time from I.

Proof sketch. As a sketch, we show the construction for the

popv-ha
𝑈
𝐿
case. The exact calculations and the pov-ha

𝑈
𝐿
case are

in the appendix. We start by defining a modified vote function. For

applicant 𝑎 and projects 𝑝1, 𝑝2 ∈ 𝑁𝑎 let

vote𝑎 (𝑝1, 𝑝2) =


2, if 𝑝1 ≻𝑎 𝑝2,

1, if 𝑝1 = 𝑝2,

0, if 𝑝2 ≻𝑎 𝑝1.

Note that based on the definition of popularity, matching 𝑀 ′

is more popular than matching 𝑀 if |{𝑎 ∈ 𝐴 | 𝑀 ′(𝑎) ≻𝑎
𝑀 (𝑎)}| > |{𝑎 ∈ 𝐴 | 𝑀 (𝑎) ≻𝑎 𝑀 ′(𝑎)}|, which is equivalent to∑
𝑎 ∈ 𝐴 vote𝑎 (𝑀 ′(𝑎), 𝑀 (𝑎)) > 𝑛. Further, let 𝑈 (𝑀) B {𝑎 ∈ 𝐴 |

𝑀 (𝑎) = 𝑎} be the set of applicants left unmatched by𝑀 .

For our weighted matching instance I ′
we now take the same

graph as in the popv-ha
𝑈
𝐿
instance I, and introduce the weight

function 𝑤 : 𝐸 → {0, 1, 2} such that for any 𝑎 ∈ 𝐴 \ 𝑈 (𝑀) and
project 𝑝 ∈ 𝑁𝑎 we set𝑤 ({𝑎, 𝑝}) = vote𝑎 (𝑝,𝑀 (𝑎)), further for any
𝑎 ∈ 𝑈 (𝑀) and project 𝑝 ∈ 𝑁𝑎 we set 𝑤 ({𝑎, 𝑝}) = 1. We claim

that a matching 𝑀 ′
is more popular than 𝑀 in I if and only if

𝑤 (𝑀 ′) > 𝑛 − |𝑈 (𝑀) | in I ′
. Since the weight of𝑀 in I ′

is exactly

𝑛 − |𝑈 (𝑀) |, this is sufficient to show. The intuition behind this is

how agents contribute to𝑤 (𝑀) and𝑤 (𝑀 ′).
• each 𝑎 ∈ 𝐴 with𝑀 ′(𝑎) ≻𝑎 𝑀 (𝑎) adds 1 to𝑤 (𝑀 ′) −𝑤 (𝑀)
• each 𝑎 ∈ 𝐴 with𝑀 (𝑎) ≻𝑎 𝑀 ′(𝑎) subtracts 1 from𝑤 (𝑀 ′) −
𝑤 (𝑀)

• each 𝑎 ∈ 𝐴 with 𝑀 ′(𝑎) = 𝑀 (𝑎) contributes the same to

𝑤 (𝑀) and𝑤 (𝑀)
Thus𝑤 (𝑀 ′) > 𝑤 (𝑀) is achieved if and only if𝑀 ′

is more popular

than𝑀 . □

4 CONSTANT LOWER QUOTAS

In this section, we show that all four of our problems become

intractable when the maximum lower quota is 3 and the maximum

degree is constant. Furthermore, pop-ha
𝑈
𝐿
is NP-complete even if

the maximum lower quota is 2. We contrast this result by showing

that the other three problems become polynomial-time solvable if

the maximum lower quota is 2.

4.1 Lower Quota 3

We begin by showing that all our problems are hard for maximum

lower quota 3 by modifying a reduction from exact cover by 3-sets



by Cechlárová and Fleiner [16, Theorem 6] for their NP-hardness

proof of pov-ha
𝑈
𝐿
.

Exact Cover by 3-Sets (x3c)

Input: Set 𝑋 = {𝑥1, . . . , 𝑥3𝑚} and set-system T =

{𝑇1, . . . ,𝑇𝑛} ⊆ 2
𝑋
such that |𝑇𝑖 | = 3 for all 𝑖 ∈ [𝑛].

Question: Is there a subset 𝑇 ′ ⊆ T such that 𝑇 ′
is a partition

of 𝑋?

Theorem 1. The problems popv-ha
𝑈
𝐿
and perpo-ha

𝑈
𝐿
are NP-

complete, while pop-ha
𝑈
𝐿
is coNP-hard when 𝑙max = 3 = 𝑢max.

4.2 Lower Quota 2

Next, we complement the results of Section 4.1 and show that all

problems except for pop-ha
𝑈
𝐿
become polynomial-time solvable,

while pop-ha
𝑈
𝐿
remains NP-complete for lower quota 2. For the

former result, we use the general factor problem and a recent result

from the world of factor theory.

general factor problem

Input: Graph 𝐺 = (𝑉 , 𝐸) with edge weights 𝑤 : 𝐸 → R and

demands 𝐵𝑣 ⊆ {0, . . . , |𝑉 |} for each 𝑣 ∈ 𝑉 .

Task: Find a subgraph 𝐻 of maximum weight such that

deg𝐻 (𝑣) ∈ 𝐵𝑣 , for each 𝑣 ∈ 𝑉 , where deg𝐻 (𝑣) is the
degree of the vertex 𝑣 in 𝐻 .

In a recent paper by Dudycz and Paluch [21], a pseudo-polynomial

algorithm was given for the restricted case where the maximum

gap, i.e., the maximum number of missing adjacent values in any

degree list 𝐵𝑣 , is at most 1.

Proposition 4.1 (Dudycz and Paluch [21]). If there is no 𝑣 ∈ 𝑉

and 𝑝 ≥ 2 such that 𝑘 ∈ 𝐵𝑣 , 𝑘 + 1, . . . , 𝑘 + 𝑝 ∉ 𝐵𝑣 and 𝑘 + 𝑝 + 1 ∈ 𝐵𝑣 ,

then the general factor problem can be solved in O(𝑊 |𝐸 | |𝑉 |6)
time, where𝑊 is the maximum edge weight.

This theorem leads to the following corollary.

Corollary 1. Given a w-ha
𝑈
𝐿
instance with 𝑙max = 2, a maximum

weight matching can be computed in polynomial time if the highest

edge weight is polynomial in the size of the graph.

Proof. This immediately follows by setting 𝐵𝑎 = {0, 1} for each
applicant 𝑎 ∈ 𝐴 and 𝐵𝑝 = {0, ℓ𝑝 , . . . , 𝑢𝑝 } 1

for each project 𝑝 ∈ 𝑃 .

Since ℓ𝑝 ≤ 2, the gaps are of size at most 1. □

We further show how to combine the methods of Cornuéjols

[17] and Dudycz and Paluch [21] to design a faster algorithm for

our special case, which is also easier to implement by giving a

Turing reduction to the maximum weight matching problem in

graphs without quotas. This reduction is achieved by constructing

gadgets similar to the one designed by Cornuéjols [17] and by

exploiting a key lemma of Dudycz and Paluch [21] on the existence

of augmenting paths and the structure of larger weight matchings.

Theorem 2. popv-ha
𝑈
𝐿

and pov-ha
𝑈
𝐿

can be solved in O(|𝑉 |3 |𝐸 |)
time, while perpo-ha

𝑈
𝐿

can be solved in O(|𝑉 |3 |𝐸 |2) time if 𝑙max = 2.

1
Note that in the paper of Cechlárová and Fleiner [16], the applicants technically had

capacities as well, which can be easily implemented by setting 𝐵𝑎 = {0, . . . , 𝑐 (𝑎) }
for each applicant 𝑎 with capacity 𝑐 (𝑎) .

Following this, we show that it is NP-complete to determine

whether a popular matching exists if 𝑙max = 2 = 𝑢max. For this we

use a simple graph transformation translating popular matchings

in non-bipartite instances to popular matchings with lower quota 2.

Theorem 3. pop-ha
𝑈
𝐿
is NP-complete even if 𝑙max = 2 = 𝑢max

and Δ𝑃 = 2.

5 PARAMETERIZED COMPLEXITY

In this section, we study the parameterized complexity of our four

problems with regard to five different parameters. These parame-

ters are identical to the ones used by Boehmer and Heeger [11]: 𝑛,

the number of applicants,𝑚, the number of projects,𝑚quota, the

number of projects with a lower quota greater than 1,𝑚
closed

, the

number of closed projects in the matching, and finally,𝑚open, the

number of open projects in the matching. In real life instances—

such as in the bachelor project allocation at Hasso Plattner Institute

[38], where 70 students choose from 15 projects—one would expect

the number of projects being allocated to be small in comparison

to the number of students.Depending on the instance, either𝑚open

or𝑚
closed

would seem like a very suitable candidate for a param-

eterized algorithm. On the other hand, while 𝑛 is often large, our

W[1]-hardness result for this parameter for pop-ha
𝑈
𝐿
eliminates

the possibility of any fixed parameter algorithm for any smaller,

maybe more realistic, sub-parameter of 𝑛. For a brief introduction

to parameterized complexity, we refer to Cygan et al. [19] and

Section ?? in the appendix.

5.1 Parameterization by 𝑛

First we observe the following theorem from Arulselvan et al. [2,

Theorem 4], which was later improved by Marx et al. [34].

Proposition 5.1 (Arulselvan et al. [2]). In an instance I of w-

ha
𝑈
𝐿

such that the underlying graph has a treewidth tw, a maximum

weight matching can be found in FPT time in tw + 𝑢max.

From this proposition, the inequalities tw ≤ min(𝑛,𝑚) and
𝑢max ≤ 𝑛, and our results in Section 3 follows the fixed param-

eter tractability with regard to the parameter 𝑛.

Corollary 2. w-ha
𝑈
𝐿
, popv-ha

𝑈
𝐿
, pov-ha

𝑈
𝐿
, and perpo-ha

𝑈
𝐿
are in

FPT when parameterized by 𝑛.

While this result relies on the machinery of tree decomposi-

tions and treewidth, we further complement this result by showing

that the maximum weight matching admits a kernelization if the

weights are encoded in unary. For this we exploit that if a subset

of applicants could be matched to more than 𝑛 different projects

achieving the same weight, then we can delete at least one of these

projects and not change the maximum weight we can reach.

Observation 2. An instance of w-ha
𝑈
𝐿
with maximum weight𝑊

admits a kernelization with O(2𝑛𝑛2𝑊 ) applicants and projects.

Even though it follows from the above observation that the other

three considered problems become fixed parameter tractable when

parameterized by 𝑛, pop-ha𝑈
𝐿
remains W[1]-hard. We show this

by modifying the proof of Boehmer and Heeger [11, Theorem 2],



who reduce from the classic multicolored independent set prob-

lem to prove that finding a stable matching is W[1]-hard when

parameterized by 𝑛.

Theorem 4. pop-ha
𝑈
𝐿
parameterized by 𝑛 isW[1]-hard.

5.2 Parameterization by𝑚

Next we turn to pop-ha
𝑈
𝐿
and show that it is fixed parameter

tractable when parameterized by the number of projects𝑚. For this,

we reduce pop-ha
𝑈
𝐿

to the parametric integer program problem.

parametric integer program

Input: Matrices 𝐵 ∈ Q𝑛×𝑚,𝐶 ∈ R𝑚×𝑘
, and a vector 𝑑 ∈

R𝑘 .
Question: For any 𝑏 ∈ Z𝑚 , such that𝐶𝑏 ≤ 𝑑 , does there exist

an 𝑥 ∈ Z𝑛 such that 𝐵𝑥 ≤ 𝑏?

The feasibility of a parametric integer program can be decided in

O(𝑓 (𝑛,𝑚)𝑝𝑜𝑙𝑦 ( | |𝐵,𝐶,𝑑 | |∞, 𝑘)) time, as shown by Eisenbrand and

Shmonin [22]. Using this we can now show that pop-ha
𝑈
𝐿

is indeed

in FPT when parameterized by𝑚. We first construct a matrix 𝐶

and vector 𝑑 such that all feasible matchings are represented by

solutions to 𝐶𝑏 ≤ 𝑑 . Then we construct the matrix 𝐵 such that

any solution to 𝐵𝑥 ≤ 𝑏 represents a feasible matching that is more

popular than the matching represented by 𝑏, thus ensuring that

the parametric integer program is feasible if and only if no popular

matching exists. To bound the dimensions of the matrices we use

that we can assign each agent a type based on their preferences, of

which there can be at most O((𝑚 + 1)!).

Theorem 5. pop-ha
𝑈
𝐿
is in FPT when parameterized by𝑚.

Proof sketch. Our goal is to encode the matching instance

in such a way that the resulting parametric integer program

is feasible if and only if no popular matching exists. For this we

choose the matrix 𝐵 and vector 𝑑 so that all possible matchings can

be represented by a vector 𝑏 satisfying 𝐶𝑏 ≤ 𝑑 . Further the matrix

𝐵 should be chosen in such a way that the vector 𝑥 represents a

matching that is more popular than the matching represented by 𝑏.

Notation. Since we parameterize by𝑚, each applicant 𝑎 ∈ 𝐴 can

be uniquely identified by her preference structure over 𝑃 . There

are at most O((𝑚 + 1)!) different preference structures, hence we
can partition 𝐴 into 𝑡 ∈ O((𝑚 + 1)!) types. Let 𝐴1, . . . , 𝐴𝑡 be this

partition such that any two applicants in the same set have iden-

tical preference lists. We refer to the projects that appear in the

preference lists of applicants in 𝐴𝑖 as 𝑁𝑖 . Furthermore we slightly

alter the notation of the previous sections to follow [10] and define

the vote of a vertex as

vote𝑎 (𝑝1, 𝑝2) =


1, if 𝑝1 ≻𝑎 𝑝2,

0, if 𝑝1 = 𝑝2,

−1, if 𝑝2 ≻𝑎 𝑝1.

By the definition of popularity, matching𝑀 ′
is more popular than

𝑀 if and only if

∑
𝑎∈𝐴 vote𝑎 (𝑀 ′(𝑎), 𝑀 (𝑎)) ≥ 1 holds. For easier no-

tation for any type 𝑖 ∈ [𝑡] we define vote𝑖 (𝑝1, 𝑝2) = vote𝑎 (𝑝1, 𝑝2)
where 𝑎 ∈ 𝐴𝑖 is an applicant of type 𝑖 .

Construction of 𝐶 . As noted earlier, our goal is to construct the

linear program represented by 𝐵 and 𝑑 in such a way that every

feasible matching is a solution to this linear program. To reach

this, for each 𝑖 ∈ [𝑡] and 𝑝 ∈ 𝑁𝑖 we create a variable 𝑥
𝑝

𝑖
that

should indicate how many applicants of type 𝐴𝑖 are matched to

project 𝑝 . Moreover we add one variable 𝑥𝑖
𝑖
indicating the number

of unmatched applicants of type 𝑖 . Furthermore for each project

𝑝 ∈ 𝑃 we create a variable 𝑜𝑝 that should indicate whether project 𝑝

is open or closed. This now leads us to the following linear program∑︁
𝑝∈𝑁𝑖∪{𝑖 }

𝑥
𝑝

𝑖
= |𝐴𝑖 |, for each 𝑖 ∈ [𝑡] (1)∑︁

𝑖∈[𝑡 ] : 𝑝∈𝑁𝑖

𝑥
𝑝

𝑖
− 𝑜𝑝𝑢𝑝 ≤0, for each 𝑝 ∈ 𝑃 (2)∑︁

𝑖∈[𝑡 ] : 𝑝∈𝑁𝑖

𝑥
𝑝

𝑖
− 𝑜𝑝 ℓ𝑝 ≥0, for each 𝑝 ∈ 𝑃 (3)

𝑥
𝑝

𝑖
≥0, for each 𝑖 ∈ [𝑡] and 𝑝 ∈ 𝑁𝑖 (4)

𝑜𝑝 ∈ [0, 1], for each 𝑝 ∈ 𝑃 (5)

Here Constraint (1) enforces that all applicants are either matched

or unmatched. With Constraints (2) and (3) we ensure that the

number of applicants matched to an open project is between its

lower and upper quota and the number of applicants matched

to a closed project is 0. Note that each feasible matching is a so-

lution to this ILP. Currently, any solution to this ILP is of the

form (𝑥𝑝1
1
, . . . , 𝑥

𝑝𝑚
𝑡 , 𝑜𝑝1 , . . . , 𝑜𝑝𝑚 ). This, however, is not enough

to fully model the ILP we need for 𝐵. As a first step, for each

variable of the form 𝑥
𝑝

𝑖
we add a second copy. Furthermore we

add 2𝑡 variables 𝑏1, . . . , 𝑏2𝑡 with 𝑏2𝑖 = |𝐴𝑖 | = 𝑏2𝑖+1, then we

add 2𝑚 variables that are forced to be 0, and one variable that

is forced to be −1. After this, each solution 𝑏 is of the form

( |𝐴1 |, |𝐴1 |, . . . , |𝐴𝑡 |, |𝐴𝑡 |, 𝑥𝑝1
1
, 𝑥

𝑝1
1
, . . . , 𝑥

𝑝𝑚
𝑡 , 𝑥

𝑝𝑚
𝑡 ,

𝑜𝑝1 , . . . , 𝑜𝑝𝑚 , 0, . . . , 0︸  ︷︷  ︸
2𝑚 times

,−1).

Construction of 𝐵. We design 𝐵 to ensure that there is a matching

𝑀 ′
that is more popular than the matching 𝑀 induced by 𝑏. For

any type 𝑖 ∈ [𝑡] and projects 𝑝, 𝑝 ′ ∈ 𝑁𝑖 ∪ {𝑖}, we create a variable
𝑥
𝑝→𝑝′

𝑖
that should indicate the number of applicants of type 𝑖 who

were matched to project 𝑝 in 𝑀 and are matched to project 𝑝 ′ in
𝑀 ′

. Furthermore, for each project 𝑝 ∈ 𝑃 , we again create a variable

𝑜 ′𝑝 indicating whether project 𝑝 is open or closed in𝑀 ′
. This now

allows us to construct the final ILP.∑︁
𝑝,𝑝′∈𝑁𝑖∪{𝑖 }

𝑥
𝑝→𝑝′

𝑖
= |𝐴𝑖 |, for each 𝑖 ∈ [𝑡] (6)∑︁

𝑝′∈𝑃∪{𝑖 }
𝑥
𝑝→𝑝′

𝑖
= 𝑥

𝑝

𝑖
, for each 𝑖 ∈ [𝑡] and 𝑝 ∈ 𝑁𝑖 (7)∑︁

𝑖∈[𝑡 ],𝑝∈𝑃
𝑥
𝑝→𝑝′

𝑖
− 𝑜 ′𝑝′𝑢𝑝′ ≤ 0, for each 𝑝 ′ ∈ 𝑃 (8)∑︁

𝑖∈[𝑡 ],𝑝∈𝑃
𝑥
𝑝→𝑝′

𝑖
− 𝑜 ′𝑝′ℓ𝑝′ ≥ 0, for each 𝑝 ′ ∈ 𝑃 (9)∑︁

𝑖∈[𝑡 ]𝑝,𝑝′∈𝑁𝑖∪{𝑖 }
− vote𝑖 (𝑝 ′, 𝑝)𝑥𝑝→𝑝′

𝑖
≤ −1, (10)

𝑥
𝑝→𝑝′

𝑖
≥ 0, for each 𝑖 ∈ [𝑡] and 𝑝, 𝑝 ′ ∈ 𝑁𝑖 (11)

𝑜 ′𝑝 ∈ [0, 1], for each 𝑝 ∈ 𝑃 (12)



Constraint (6) ensures that each applicant has a new partner in

𝑀 ′
, and Constraint (7) guarantees that each applicant matched to

some 𝑝 in𝑀 now has a new partner. Constraints (8) and (9) enforce

the lower and upper quota constraints, and finally Constraint (10)

ensures that𝑀 ′
is more popular than𝑀 . □

5.3 Parameterization by𝑚quota

While for pop-ha
𝑈
𝐿

we were able to show fixed parameter tractabil-

ity with regard to𝑚, we now improve this parameter for the other

three problems by considering𝑚quota, i.e., the number of projects

with a lower quota greater than 1. In order to solve this problem

we turn to a special subcase of our matching problems defined by

Boehmer and Heeger [11], namely the task of deciding whether,

given a certain set of projects 𝑃open, there is a matching with our

desired property that opens exactly the projects in 𝑃open. We show

that finding a maximum weight matching that opens exactly the

projects in 𝑃open is polynomial-time solvable. First we give an al-

gorithm for simply finding a matching that dominates a given

matching and afterwards we modify this algorithm to find a maxi-

mum weight matching. For this algorithm we utilize the feasible

flow with demands problem, which can easily be reduced to the

well-known maximum flow problem, see for instance Erickson [24].

feasible flow with demands

Input: Directed graph 𝐺 = (𝑉 , 𝐸), capacities 𝐶 : 𝐸 → N,
and demands 𝐷 : 𝐸 → N.

Question: Is there a flow 𝑓 : 𝐸 → N such that 𝐷 (𝑒) ≤ 𝑓 (𝑒) ≤
𝐶 (𝑒) for all 𝑒 ∈ 𝐸?

Theorem 6. Given an instanceI of pov-ha
𝑈
𝐿

with input matching

𝑀 and a set 𝑃open ⊆ 𝑃 , we can decide in polynomial time whether a

matching𝑀 ′
exists that dominates 𝑀 and opens exactly the projects

in the set 𝑃open.

Proof sketch. We construct an instance of feasible flow

with demands to solve the problem, see Figure 1 for an exam-

ple of this construction. The proof of correctness is in the appendix.

First, we assume that some 𝑎 ∈ 𝐴 is given who will be the desig-

nated applicant to receive a better partner in 𝑀 ′
. Now we create

a directed bipartite graph 𝐺𝑎 with vertices 𝐴 ∪ 𝑃open ∪ {𝑝⊥, 𝑠, 𝑡},
where 𝑝⊥ will represent the unmatched applicants. We connect 𝑠 to

all vertices in 𝐴 with demand and capacity of 1 on the edge. Next

we connect 𝑎 to all projects in 𝑃open that 𝑎 prefers to𝑀 (𝑎) and all

applicants in 𝐴 \ {𝑎} get connected to all projects in 𝑃open which

they prefer to𝑀 (𝑎) as well as to𝑀 (𝑎) if𝑀 (𝑎) is in 𝑃open, further

if they are unmatched in 𝑀 , we also connect them to 𝑝⊥. All of
these edges have no demand and a capacity of 1. Finally we connect

every project 𝑝 ∈ 𝑃open to 𝑡 , each with a demand of ℓ𝑝 and with a

capacity of 𝑢𝑝 and we connect 𝑝⊥ to 𝑡 with no demand and infinite

capacity. We solve the feasible flow with demands problem for

all 𝑎 ∈ 𝐴 in𝐺𝑎 and if some 𝑎 ∈ 𝐴 exists for which the demands are

satisfiable, we return the respective induced matching as𝑀 ′
. That

is, if a flow of 1 goes from 𝑎 to 𝑝 , we match 𝑎 to 𝑝 in𝑀 ′
and if a flow

of 1 goes from 𝑎 to 𝑝⊥, we leave 𝑎 unmatched in𝑀 ′
. Otherwise we

return that our matching is Pareto optimal. □

Next we show how to generalize this idea to prove that finding

a maximum weight matching that opens exactly the projects in

𝑃open can be done in polynomial time. For this we need the slightly
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Figure 1: Consider an instance of pov-ha
𝑈
𝐿
with four appli-

cants 𝑎1, . . . , 𝑎4 and four projects 𝑝1, . . . , 𝑝4 with quotas and

preference lists as shown below the graph. If we consider the

matching 𝑀 (𝑎1) = 𝑝1, 𝑀 (𝑎2) = 𝑝4, 𝑀 (𝑎3) = 𝑝4, and 𝑀 (𝑎4) = 𝑎4
with 𝑃open = {𝑝1, 𝑝2, 𝑝3}, the above instance is the feasible
flow with demands instance created in Theorem 6.

more complicated but still polynomial-time solvable max-cost

circulation problem, see Tardos [41].

max-cost circulation

Input: Directed graph 𝐺 = (𝑉 , 𝐸), costs 𝑝 : 𝐸 → R, capacities
𝐶 : 𝐸 → N, and demands 𝐷 : 𝐸 → N.

Task: Find a flow 𝑓 : 𝐸 → N of maximum cost such that

for any 𝑣 ∈ 𝑉 it holds that

∑
(𝑣,𝑤) ∈𝐸 𝑓 ((𝑣,𝑤)) −∑

(𝑤,𝑣) ∈𝐸 𝑓 ((𝑤, 𝑣)) = 0, i.e., all flow gets conserved

and such that for any edge 𝑒 ∈ 𝐸 it holds that 𝐷 (𝑒) ≤
𝑓 (𝑒) ≤ 𝐶 (𝑒).

Theorem 7. Given an instance I of w-ha
𝑈
𝐿
and a set 𝑃open ⊆ 𝑃 ,

we can find in polynomial time a maximum weight matching that

opens exactly the projects in 𝑃open.

Using this theorem, we can calculate maximum weight matchings

in FPT time in𝑚quota. To do so, we use the fact that projects with a

lower quota of at most 1 are always open and then iterate through

all projects with a lower quota of at least 2.

Theorem 8. Given an instance I of w-ha
𝑈
𝐿
, a maximum weight

matching can be computed in O(2𝑚quota𝑝𝑜𝑙𝑦 ( |I|)), where |I | = 𝑛𝑚+
the input size of the weights.

Using the lemmas in Section 3 this now implies that popv-ha
𝑈
𝐿
,

perpo-ha
𝑈
𝐿
, and pov-ha

𝑈
𝐿
are all fixed parameter tractable when

parameterized by𝑚quota.



5.4 Parameterization by𝑚open

The next parameter we investigate is𝑚open, the number of projects

that are open in the output matching. We show hardness for all

our problems, by reducing from either x3c or the exact uniqe

hitting set problem.

Theorem 9. Given an instance I of pov-ha
𝑈
𝐿
/popv-ha

𝑈
𝐿
with a

matching𝑀 and a parameter𝑚open, it is bothW[1]-hard to decide
whether there is a matching that dominates / is more popular than𝑀

and opens exactly𝑚open projects. This remains true even if𝑀 opens

exactly 1 project.

This approach also generalizes to pop-ha
𝑈
𝐿

and perpo-ha
𝑈
𝐿

with

the difference that here it is even hard to decide whether there is a

desired matching with only one open project.

Theorem 10. Given an instance I of pop-ha
𝑈
𝐿
/perpo-ha

𝑈
𝐿
, it

is coNP-hard to decide whether there is a popular / perfect Pareto

optimal matching that opens exactly 1 project.

As a corollary of our previous proof, we obtain that given a

set 𝑃open ⊆ 𝑃 , it is coNP-hard to determine whether a perfect

Pareto optimal matching or a popular matching opening exactly

the projects in 𝑃open exists.

Corollary 3. Deciding whether there exists a popular matching /

perfect Pareto optimal matching that opens exactly the projects in a

given subset 𝑃open ⊆ 𝑃 is coNP-hard, even if |𝑃open | = 1.
2

5.5 Parameterization by𝑚closed

As our final parameter we turn to𝑚
closed

, the number of closed

projects in our desired matching and show that all four problems

become W[1]-hard when parameterized by𝑚
closed

. For these re-

sults, we reduce from the classic problems multicolored inde-

pendent set and multicolored cliqe. We present the result for

pov-ha
𝑈
𝐿
here, while the other three results are in the appendix.

Theorem 11. Given an instance I of perpo-ha
𝑈
𝐿
, pov-ha

𝑈
𝐿
, pop-

ha
𝑈
𝐿
, or popv-ha

𝑈
𝐿
and parameter𝑚

closed
, it is W[1]-hard to decide

whether a matching of our desired type exists that closes exactly

𝑚
closed

projects.

Proof. To show the hardness of pov-ha
𝑈
𝐿
we reduce from

the multicolored clique problem. For this we are given a graph

𝐺 = (𝑉 , 𝐸) with a partition into color classes 𝑉1, . . . ,𝑉𝑘 and our

goal is to find a clique adhering to this partition. For simpler no-

tation we assume that the graph induced by each color class is

an independent set. This allows us to use clique and multicolored

clique interchangeably and we can ensure that edges are always

between two different colors in our construction.

Construction. First as our projects we include

• for each 𝑣 ∈ 𝑉 , a vertex project 𝑝𝑣 with lower and upper

quota 𝑘 − 1;

• for each edge 𝑒 ∈ 𝐸, an edge project 𝑝𝑒 with lower and upper

quota 2;

2
Note that this is not a contradiction to Theorem 7, since given an instance of perpo-

ha
𝑈
𝐿
, a maximum weight matching opening only projects in 𝑃open does not need to

correspond to a perfect Pareto optimal matching and vice versa.

• for each color 𝑐 ∈ [𝑘], a color project 𝑝𝑐 with lower and upper
quota 𝑘 − 1.

Our applicants will be the following.

• For each color 𝑐 ∈ [𝑘] and vertex 𝑣 ∈ 𝑉𝑐 , we add 𝑘 − 1 vertex

applicants 𝑎1𝑣, . . . , 𝑎
𝑘−1
𝑣 , each with preference list 𝑝𝑐 ≻ 𝑝𝑣 .

• For each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸, we include two edge applicants,

𝑎𝑢𝑒 with preference list 𝑝𝑢 ≻ 𝑝𝑒 and 𝑎
𝑣
𝑒 with list 𝑝𝑣 ≻ 𝑝𝑒 .

Our matching𝑀 now matches all vertex applicants to their corre-

sponding vertex project, i.e., it matches all applicants in {𝑎1𝑣, . . . , 𝑎𝑘𝑣 }
to 𝑝𝑣 , and it matches all edge applicants to their edge project. Finally

we set𝑚
closed

B
(𝑘
2

)
⇒. Let us assume we have a clique𝐶 = {𝑣1, . . . , 𝑣𝑘 } with 𝑣𝑐 ∈ 𝑉𝑐

for 𝑐 ∈ [𝑘]. Then we take the matching𝑀 ′
such that

• For any color 𝑐 ∈ [𝑘] the vertex applicants 𝑎1𝑣𝑐 , . . . , 𝑎
𝑘−1
𝑣𝑐

are

matched to 𝑝𝑐 , thus improving over𝑀 for all of them.

• For any vertex 𝑣 ∈ 𝑉 \𝐶 , i.e., 𝑣 is not in the clique, we match

the vertex applicants 𝑎1𝑣, . . . , 𝑎
𝑘−1
𝑣 are matched to 𝑝𝑣 .

• For any edge 𝑒 = (𝑣,𝑢) such that 𝑣 and𝑢 are in the clique, we

match 𝑎𝑣𝑒 to 𝑝𝑣 and 𝑎
𝑢
𝑒 to 𝑝𝑢 , thus improving their matching.

• For any edge 𝑒 = (𝑣,𝑢) such that at least one of 𝑣 and 𝑢 is

not in the clique, we match 𝑎𝑣𝑒 and 𝑎𝑢𝑒 to 𝑝𝑒 .

The matching𝑀 ′
does not make any applicant worse, adheres to

the lower and upper quotas, due to each vertex in the clique having

exactly 𝑘 − 1 neighbors in the clique and closes exactly the

(𝑘
2

)
projects corresponding to the edges in the clique.

⇐. Assume that we have a matching dominating 𝑀 , which

closes exactly

(𝑘
2

)
projects. It is easy to see that the only way to

close

(𝑘
2

)
projects while simultaneously matching all applicants

is to close

(𝑘
2

)
edge projects, matching the edge applicants to the

corresponding vertex projects and the vertex applicants to the color

projects. This however implies that all vertices corresponding to

promoted vertex projects must have an edge to all the other vertices,

thus forming a multicolored clique.

The corresponding reductions for the three other problems can

be found in the appendix. □

6 OPEN QUESTIONS

There are two major open questions and future research directions

that could be derived from our paper. Firstly, the question whether

pop-ha
𝑈
𝐿
is in FPT when parameterized by 𝑚quota is still open.

Secondly, even after the papers of Arulselvan et al. [2], Dudycz and

Paluch [21], and now our paper it is still open whetherw-ha
𝑈
𝐿

with

maximum lower quota 2 or the general factor problem with gap at

most 1 can be solved in polynomial time, i.e., by eliminating the

linear factor on𝑊 , the largest weight.
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