
920 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Efficient Embedding of Scale-Free Graphs
in the Hyperbolic Plane

Thomas Bläsius, Tobias Friedrich , Anton Krohmer , and Sören Laue

Abstract— Hyperbolic geometry appears to be intrinsic in
many large real networks. We construct and implement a new
maximum likelihood estimation algorithm that embeds scale-free
graphs in the hyperbolic space. All previous approaches of similar
embedding algorithms require at least a quadratic runtime. Our
algorithm achieves quasi-linear runtime, which makes it the first
algorithm that can embed networks with hundreds of thousands
of nodes in less than one hour. We demonstrate the performance
of our algorithm on artificial and real networks. In all typical
metrics, such as log-likelihood and greedy routing, our algorithm
discovers embeddings that are very close to the ground truth.

Index Terms— Applications, inference, network geometry.

I. INTRODUCTION

THE study and analysis of complex real-world networks is
a rapidly growing field. There are a number of commonly

observed properties of complex networks, such as a power
law degree distribution, large clustering coefficient, and small
average distances. During the last decade, dozens of models for
such scale-free networks have been proposed. The most popu-
lar model is the preferential attachment model by Barabási
and Albert [2]. The inhomogeneous random graph model
by van der Hofstad [3] provides the greatest accessibility
for rigorous mathematical analysis. It also generalizes the
models of Chung and Lu [4] and Aiello et al. [5], [6] and
Norros and Reittu [7].

All aforementioned network models observe a power law
degree distribution, small diameter and average distances.
However, all of them naturally also have a small clustering
coefficient, that is, the number of triangles and small cliques
in such artificial networks is magnitudes lower than observed
in real-world networks. The reason is that in the standard
definitions of these network models, the edges are (merely)
independent, which is not true for real-world networks. For
social networks the reason is easy to see. It is more likely
for two persons to be friends if they already have friends in
common than it would be for two random strangers to forge a
connection. There are a number of modifications to the above
models that incorporate this intuition [8]–[10], however, all of

Manuscript received January 27, 2017; revised September 17, 2017 and
January 29, 2018; accepted February 9, 2018; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor M. Andrews. Date of publication
March 12, 2018; date of current version April 16, 2018. The work of
T. Friedrich and S. Laue was supported by the German Science Foundation
under Grant FR-2988 and Grant LA-2971. A preliminary version of this paper
appeared in [1]. (Corresponding author: Anton Krohmer.)

T. Bläsius, T. Friedrich, and A. Krohmer are with the Department of
Algorithm Engineering, Hasso Plattner Institute, 14482 Potsdam, Germany
(e-mail: anton.krohmer@hpi.de).

S. Laue is with the Chair of Theoretical Computer Science II, University
of Jena, 07743 Jena, Germany (e-mail: soeren.laue@uni-jena.de).

Digital Object Identifier 10.1109/TNET.2018.2810186

these fixes introduce other artificial artifacts and cannot explain
why the clustering occurs in the first place.

Hyperbolic Random Graphs

A natural definition of a scale-free network model with all
aforementioned properties emerges when adding an appro-
priate geometry. It is well known that geometric random
graphs with an underlying Euclidean space result in a Poisson
degree distribution [11]. Krioukov et al. [12] took a different
approach by assuming an underlying hyperbolic geometry to
the network. The most prominent feature of a hyperbolic
space is its exponential expansion around a given point, in
contrast to Euclidean space, which expands only polynomially.
Hyperbolic random graphs are obtained by placing all nodes
in the hyperbolic plane, and connecting two nodes whenever
they are at a small (hyperbolic) distance. The desired clus-
tering then naturally emerges as a reflection of the geometric
proximity. This model has been analyzed to have a power
law degree distribution and high clustering [12], [13], to have
a polylogarithmic diameter and ultra-short average distances
of order O(log log n) [14], [15], and to allow fast bootstrap
percolation [16].

Generating Hyperbolic Random Graphs

With most fundamental structural properties of hyperbolic
random graphs settled, the next step is studying algorithms on
the network model. The first algorithmic problem addressed,
efficiently generates such a graph or, equivalently, samples a
graph from the probability distribution defined by hyperbolic
random graphs. The naive generation of a hyperbolic random
graph takes Θ(n2) time [17]. Using a polar quadtree adapted
to hyperbolic space, von Looz et al. [18] achieved a time
complexity of O((n3/2 + m) log n). By a more sophisticated
partitioning of the space, Bringmann et al. [15] obtained
an optimal expected linear runtime for generation, which is
crucial for large-scale experiments.

Embedding Networks Into Hyperbolic Geometry

It is well known in the visualization community that hier-
archical or tree-like structures can be well represented in a
hyperbolic space [19]. This mainly comes from the fact that
the volume of hyperbolic space expands exponentially, com-
pared to polynomial expansion in Euclidean space. Another
application for hyperbolic embeddings arises from the fact that
the hyperbolic geometry appears to be well suited for greedy
routing [20]. Moreover, our experiments in Section VI-D sug-
gest that hyperbolic embeddings can be useful for community

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0076-6308
https://orcid.org/0000-0003-2060-5181

BLÄSIUS et al.: EFFICIENT EMBEDDING OF SCALE-FREE GRAPHS IN THE HYPERBOLIC PLANE 921

detection or link prediction. There are three general approaches
to embed a network in the hyperbolic space:

• A popular way to obtain hyperbolic coordinates for the
nodes of a network is embedding a spanning tree of
the network in hyperbolic space [21]–[23]. As trees can
be embedded perfectly, this is a very efficient way to
map a network and has been used for interactive network
browsers. It allows assigning more display space to the
interesting portions of a network [24], [25]. The result
might reduce visual clutter and help focus, but it ignores
most structural details of the network. Nodes which are
close in graph distance are not necessarily close in hyper-
bolic space. In fact, clusters and most local structures are
not preserved.

• Another approach is determining shortest path dis-
tances and finding an embedding where metric distances
match graph distances. Embedding the all-pair-shortest-
path matrix can be done with the well established
Euclidean data analysis method Multidimensional Scaling
(MDS) [26], which has been translated to hyperbolic
geometry [27]. Due to the quadratic size of the distance
matrix, this approach only works in practice for graphs
with a few hundred nodes [28]. To reduce the runtime,
it is possible to (randomly) select a small subset of the
pairwise distances [29]–[31].

• Our objective is slightly different. Instead of preserving
distances between nodes, we aim at inferring the pop-
ularity (reflected by radial coordinates) and similarity
(reflected by angular coordinates) of all nodes [32]. The
reason why connections between vertices exist can be
twofold. On the one hand, the two vertices may be
similar, which holds e. g. for close friends in social
networks or for geographically close autonomous sys-
tems (AS) in the Internet graph. On the other hand,
a connection may be present due to the popularity of one
end vertex. For instance, many people follow Lady Gaga
on Twitter but most are arguably not very similar to her.
Embedded shortest path distances lose this information.
Our goal is to recover these details using the most likely
embedding assuming a hyperbolic nature of the graph in
the first place. For this, we use the random network model
of Krioukov et al. [12].

Maximum Likelihood Estimation Embedding of Graphs in
Hyperbolic Space

We focus on the last-mentioned approach of maximum
likelihood estimation (MLE) algorithms, i.e., we want to
find the node coordinates in the network by maximizing the
probability that the network is produced by some underlying
hyperbolic model. Boguñá et al. [20] were the first to find
such an embedding for the Internet graph (m = 58 416
connections between n = 23 752 autonomous systems) in the
hyperbolic space. It is impressive that greedy navigation along
these hyperbolic coordinates is almost maximally efficient.
On average, such greedy paths are just 10% longer than the
shortest paths found in the network. However, the described
method to discover the hyperbolic coordinates “require[s]
significant manual intervention [...] to lead to any reason-
able results in a reasonable amount of compute time” [33].

A general algorithm for embedding a network in a hyperbolic
space was later presented by Papadopoulos et al. [33]. Their
HyperMap algorithm is an approximate maximum likelihood
estimation (MLE) algorithm. They demonstrate their algorithm
on synthetic networks with n = 5 000 nodes and m =
20 000 edges and a subset of the aforementioned Internet
graph with n = 8 220 nodes. The asymptotic runtime was
improved in a subsequent paper from O(n3) to O(n2) [34].
Papadopoulos et al. [33], [34] present no runtime measure-
ments, but their HyperMap code on our machine requires more
than 1.5 hours for a graph of size 2 000 (cf. Section VI-C).

Improvements to HyperMap have been suggested. For
instance, Wang et al. [35] use a community detection algo-
rithm for the coarse layout of the nodes and an MLE to find
precise positions. Alanis-Lobato et al. [36] take a different
approach by embedding the graph using its Laplacian and
combine it with HyperMap for improved performance [37].
Both these methods, however, still require a running time
of Ω(n2).

Our New Hyperbolic Embedder

We design and implement a new algorithm for com-
puting hyperbolic MLE embeddings of massive networks
(Section V). Our code is available online.1 Compared to pre-
vious approaches that need Ω(n2) runtime, our algorithm runs
in quasilinear runtime. To this end, we developed several new
techniques. First, we use an analytical approach to compute
the expected angles between pairs of high-degree nodes based
on their number of common neighbors. In contrast to [34], this
approach does not rely on expensive numerical computations,
making it fast in practice. The resulting angle distance matrix
is then fed to a spring embedder that finds good positions
for high-degree nodes in linear time. For small degree nodes,
we substantially improve runtime by using the geometric data
structure of Bringmann et al. [15] that allows traversing nodes
of close proximity in expected amortized constant time.

This enables us to embed significantly larger graphs than
before. For instance, in under one hour we computed on
commodity hardware a hyperbolic embedding of the Amazon
product recommendation network that has over 300 000 nodes.
To evaluate the quality of our embedding, we conduct large-
scale experiments on 6 250 generated graphs and compare
our embedding with the ground truth data (Section VI).
We observe that in typical metrics like Log-likelihood and
greedy routing, our algorithm achieves embeddings that are
competitive with the original.

Furthermore, we investigate the performance of two clas-
sical methods of embedding graphs in the Euclidean space,
namely spring embedders and maximum variance unfolding,
when applied to the hyperbolic space (Sections III and IV).
We find that both of them can work under some strong
assumptions but generally fail to translate to large real-world
graphs. Though there are some fundamental difficulties with
spring embedders in the hyperbolic plane, a spring embedder
will prove useful as a subroutine in our main algorithm in
Section VI.

1https://hpi.de/friedrich/research/hyperbolic

922 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

II. PRELIMINARIES

In this section, we briefly introduce the hyperbolic random
graph model. We keep the definitions concise and refer the
reader to previous work for a more intuitive introduction,
see e.g. [12], [13]. We use the native representation of the
hyperbolic space [12] of curvature −1, where points are
identified by radial coordinates (r, ϕ). The first coordinate
describes the hyperbolic distance from the origin, and two
points x, y have hyperbolic distance

dist(x, y) := cosh−1(cosh(rx) cosh(ry)
− sinh(rx) sinh(ry) cos(ϕx − ϕy)). (1)

The hyperbolic random graph model formally defines a
probability distribution over the set of all graphs of size n.
A graph G on n vertices is sampled from this distribution as
follows. Consider a disk DR of radius R = 2 log n+C in the
hyperbolic space, where C is a parameter adjusting the average
degree of the resulting graph. Each vertex v is randomly
equipped with hyperbolic coordinates (rv, ϕv) sampled from
the probability density function f(r, ϕ) = α sinh(αr)

2π(cosh(αR)−1) ,
where α is a parameter adjusting the power law exponent
β = 2α+1 of the resulting network. Then, every two vertices
u, v are connected with a probability p depending on their
distance:

puv := p(dist(u, v)) =
(
1 + e

1
2T (dist(u,v)−R)

)−1

(2)

where T is a parameter regulating the importance of the
underlying geometry. When T → 0, we obtain the so-called
step model, where an edge {u, v} is present if and only if
dist(u, v) � R. For T > 0, we obtain the binomial model,
where long-range edges are possible (but unlikely). Typically,
one assumes 0 � T < 1. This yields a random graph
depending on 4 parameters: n, R (or C), α, and T . Following
standard graph notation, we write Γ(v) for the set of neighbors
of v, and we use δ to refer to the average degree of G.

Further, given a graph G = (V, E) and any mapping from
nodes to hyperbolic coordinates {ri, ϕi}n

i=1, we judge the
quality of this embedding using the Log-likelihood

L({ri, ϕi}n
i=1 | G) :=

∑
{u,v}∈E

log(p(dist(u, v)))

+
∑

{u,v}�∈E

log(1 − p(dist(u, v))),

where the hyperbolic distances dist are taken with respect to
the coordinates {ri, ϕi}n

i=1. Observe that exp(L({ri, ϕi}n
i=1 |

G)) is exactly the probability to generate graph G with the
hyperbolic random graph model, conditioned on node i having
position {ri, ϕi} for all i.

To determine the quality of a specific node v, we write

L(v) :=
∑

u∈Γ(v)

log(p(dist(u, v)))

+
∑

u�∈Γ(v)

log(1 − p(dist(u, v))), (3)

so that we have L({ri, ϕi}n
i=1 | G) = 1

2

∑
v∈V L(v).

Our goal is to devise an algorithm which, given only
the network structure (i. e., a list of edges) of a generated

hyperbolic random graph, can output hyperbolic coordinates
close to the original embedding. As an additional requirement,
we would like that the algorithm is robust to noise, that is,
it works reasonably well even if the supplied graph was not
hyperbolic.

Before presenting our algorithm, we revisit two popular
embedding techniques in the Euclidean plane and investigate
their performance when applied to the hyperbolic setting.

III. SPRING EMBEDDER

A heavily used technique to embed graphs in the Euclid-
ean plane is the force-directed method (also called spring
embedder) [38], which works roughly as follows. For every
edge, one assumes an attractive force pulling its end vertices
toward each other, and for every pair of vertices one assumes a
repulsive force pushing them apart. The algorithm starts with
some initial drawing (e.g., by choosing random positions) and
computes for each vertex the total force acting on it. Then, all
vertices are moved by a small step according to these forces.
This is iterated until a stable configuration is reached.

In a drawing generated by a spring embedder, edges are
usually short and non-adjacent vertices are usually far away
from each other. Moreover, the repulsive forces lead to a
somewhat uniform distribution of the vertices in the available
space. Note that these are exactly the properties we wish to
obtain for our embeddings in the hyperbolic plane. It thus
seems natural to adapt spring embedders to the hyperbolic
geometry, which actually has been done before by Kobourov
and Wampler [39]. In the following, we discuss why a
straightforward implementation of a spring embedder in the
hyperbolic plane does not work in our setting. In Section III-B
we present several adaptations that lead to good results, at least
for smaller graphs.

A. Difficulties in the Hyperbolic Plane

To understand the difficulties in the hyperbolic plane, first
consider the following artificial situation in the Euclidean
plane. Assume v is a vertex only connected to u; and assume
the current drawing is stable except that v is far away from u.
Now when v moves towards u, it also approaches other
vertices it is not connected to, which then push v back towards
the direction it came from. This is not a problem, however,
as there are usually only a few vertices close enough to v for
their force to be noticeable. Moreover, vertices on the opposite
side of v support the movement towards u.

In the hyperbolic plane, an analogous situation works out
differently. The geodesic line between v and u contains points
with smaller radial coordinate, such that v first moves almost
directly towards the origin. In turn, the distance to all other
nodes decreases, which immediately pushes v back to a
position with a larger radius. Thus, even bad embeddings are
stable.

Judging from the pictures presented by Kobourov and
Wampler [39], it seems that they did not encounter these issues
in their spring embedder. This can be explained by the fact that
the radii they use are all rather small, which can be deduced
from the presented drawings by observing that the vertices are
very well separated from the boundary of the Poincaré disk
(which is only true for very small radii). However, for such

BLÄSIUS et al.: EFFICIENT EMBEDDING OF SCALE-FREE GRAPHS IN THE HYPERBOLIC PLANE 923

Fig. 1. First phase of the LP from Section IV. Since nodes are placed in [0, π], half of DR is hidden. (a) Original Points (edges not shown) of a hyperbolic
random graph with T = 0. (b) Embedded nodes using the LP. All parameters except the angular coordinates were given as additional information. The
embedding is almost equivalent to the original. (c) Embedded nodes using the LP with estimated radial coordinates (See Section V-A). The quality of the LP
solution quickly degrades. (d) Embedded nodes using the LP with all other parameters given. The graph was generated using T = 0.5. The embedding is
essentially unusable.

small radii the hyperbolic plane behaves very similar to the
Euclidean plane. We note that using small radii is reasonable
for visualizing small graphs using a fish eye view. However,
as the radii in a hyperbolic random graph grow logarithmically
with an increasing number of vertices, this is not suitable for
our purpose.

B. Fixing the Spring Embedder

We circumvent the above described problems by treating
the two components of a coordinate (i.e., the radius and angle)
more or less independently. More precisely, let u and v be two
vertices. Assume without loss of generality that 0 � ϕu <
ϕv � π, that is, increasing ϕu moves u towards v. We define
the forces Fu

ϕ (v) and Fu
r (v) acting on the angle and on the

radius, respectively, as

Fu
ϕ (v) =

{
1 − p(dist(u, v)) if {u, v} ∈ E,

−p(dist(u, v)) otherwise,

and

Fu
r (v) =

{
−(1 − p(dist(u, v))) if {u, v} ∈ E,

p(dist(u, v)) otherwise.

Recall that p(dist(u, v)) denotes the probability that u and
v with hyperbolic distance dist(u, v) are adjacent. The total
forces Fu

ϕ and Fu
r for the vertex u are defined as

Fu
ϕ =

∑
v∈V \{u}

Fu
ϕ (v), and Fu

r =
∑

v∈V \{u}
Fu

r (v).

After these forces are computed for each vertex u ∈ V , it is
moved from (ru, ϕu) to (ru + crF

u
r , ϕu + cϕFu

ϕ). The values
for cϕ and cr are chosen such that maxu∈V {cϕFu

ϕ} = ϕmax

and maxu∈V {crF
u
r } = rmax holds for the parameters ϕmax

and rmax, which basically ensures that no angle and no radius
is changed by more than ϕmax and rmax, respectively.

Note that Fu
ϕ (v) is positive if u and v are adjacent and thus

Fu
ϕ (v) contributes to decreasing the angle between u and v

(as we assumed 0 � ϕu < ϕv � π), which coincides with
the desired behaviour. On the other hand Fu

r (v) is always
negative if u and v are connected and positive otherwise.
This can have the counter-intuitive effect that v contributes to
moving u towards the origin although u and v are connected
and v is farther away from the origin than u, which increases
the difference between their radii. However, unless u and v
have almost the same angle, this actually moves u closer to v
(with respect to hyperbolic distance) and thus has the desired
effect.

Before we discuss the choices for the parameters ϕmax and
rmax, we want to point out some potential issues (and how to
fix them). First note that edge probability p(d(u, v)) depends
on the radius R and on the parameter T , both of which we
estimate as described in Section V-A. Note that for T → 0
(or for constant T with increasing R), the edge probability
converges to the step function, that is, p(d(u, v)) → 1 if
d(u, v) � R and p(d(u, v)) → 0 otherwise. This has two
undesirable effects. First, if u and v are only just close enough
(in case they are adjacent) or only just sufficiently far apart
(in case they are not connected), then there are no forces that

924 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 2. Fitness landscape plot of a node v for different values of T . The x-axis shows candidate angular positions for node v, the y-Axis shows the
Log-likelihood L(v) at that angle. (a) T = 0.001. (b) T = 0.1. (c) T = 1. (d) T = 10.

work towards keeping this situation like this. Second, vertices
that are way too close (but not adjacent) or way too far apart
(but adjacent) have roughly the same influence as vertices
that are only slightly too close or slightly too far apart. Both
effects are especially problematic in the early stages of the
algorithm. To resolve this issue, we start with the rather large
value T = 0.3 R in the first iteration and decrease it linearly.
More precisely, in the ith iteration out of I iterations in total,
we set T = 0.3 R × max{0.05, (1 − i/I)}. We note that
using a linear dependency on R is reasonable as this leads to
roughly the same shape of the function p(xR) for x ∈ [0, 2]
independent of R.

As a second potential issue, note that handling the angle
independently from the radius leads to huge jumps in terms of
hyperbolic distance for vertices with large radius (unless ϕmax

is unreasonably small). Such large jumps are usually undesir-
able in the Euclidean plane (and do not occur without a large
change to at least one coordinate). In the hyperbolic plane, we
however allow these large jumps since prohibiting them them
leads to exactly the problems described in Section III-A.

For the final issue, which also leads us to the parameters
ϕmax and rmax, first consider a vertex u moving through
the Euclidean plane towards its desired location. If there is
another non-adjacent vertex v on its way, then getting close
to v leads to potentially large repulsive forces. However, u
usually does not get stuck because of these forces as u and v
can get around each other by a slight movement in opposite
directions orthogonally to the actual movement of u. In the
hyperbolic plane, two vertices with the same angle are close to
each other no matter what their radius is. Thus, while changing

the angle of u to get it to its desired value, u necessarily comes
close to every other vertex whose angle is between ϕu and the
position u aims for. Thus, the algorithm is much more likely
to get stuck in a local minimum than a spring embedder in
the Euclidean plane.

We use two strategies to circumvent this issue. The first is
to simply allow rather large changes to the coordinates (i.e.,
use large values for ϕmax and rmax), which makes it possible
to jump out of local minima. To make sure that the algorithm
still converges to a stable position, we decrease ϕmax and
rmax for later iterations. More precisely, we use ϕmax = π
and rmax = R in the first iteration and decrease both values
linearly down to 0.

The second strategy is to simulate some kind of velocity. In
the above example, this can help u to get past v as the repulsive
force of v may slow u down instead of actually pushing it
back to where it came from. A simple way to achieve such
a notion of velocity is as follows. Assume Fu

ϕ is the force
acting on u in iteration i. Then in iteration i + 1, we compute
the new force as before and add cFu

ϕ to it, where c is 1 in the
first iteration and decreases linearly down to 0.2 in the last
iteration.

To conclude this section, we have seen that there are several
reasons why spring embedders work less well in the hyperbolic
plane than in the Euclidean plane. We suggested potential
solutions for these problems and we see in Section VI that
our spring embedder actually performs reasonably well at least
on small to medium sized instances. Moreover, we see in
Section V-B how techniques described above can be reused
to embed the core of a larger graph.

BLÄSIUS et al.: EFFICIENT EMBEDDING OF SCALE-FREE GRAPHS IN THE HYPERBOLIC PLANE 925

Fig. 3. Original angular coordinates vs. embedded angular coordinates for a generated hyperbolic random graph with T = 0.7. (a) Our algorithm sets
T = 0.1 for any input and is able to reconstruct the original ordering of nodes fairly well. (b) Choosing T = 0.7 and scanning the whole range [0, 2π) for
the best Log-likelihood of a node results in a much worse embedding.

IV. MAXIMUM VARIANCE UNFOLDING

Another popular method for embedding graphs into the
Euclidean plane is maximum variance unfolding (MVU) [40].
This is essentially a semidefinite program whose objective
function spreads out nodes while using constraints to keep
neighbors close together. In the one-dimensional case it is
equivalent to an LP.

The use-case in the hyperbolic geometry is similar: Nodes
shall have distance < R if they have an edge, and distance
� R otherwise. It is possible to encode this into the following
LP:

max.
n∑

j=1

ϕj

s.t. ϕi − ϕj � θ(ri, rj), i, j = 1, . . . , n, if {i, j} ∈ E

ϕj − ϕi � θ(ri, rj), i, j = 1, . . . , n, if {i, j} ∈ E

0 � ϕi � pi i = 1, . . . , n

ϕv = 0, for some starting node v

where θ(ri, rj) is the maximal angular distance such that two
nodes with radii ri, rj are still connected. Formally,

θ(ri, rj) = arccos
(

cosh(ri) cosh(rj) − cosh(R)
sinh(ri) sinh(rj)

)
. (4)

The LP has a caveat: it is only able to spread nodes on the
half circle [0, π]. For larger angular coordinates, the hyperbolic
distances start decreasing again, which is not encodable in the
LP. This problem, however, can be remedied by using a small
trick. First, embed all nodes on a half-circle with an arbitrary
starting node v. Then, pick the node u in the embedding with
angular coordinate closest to π

2 ; and embed the graph again
using u as the starting node. This yields all nodes that belong
in the lower half of DR: If w has an angular distance of at
least π

2 from u in the second embedding, we set ϕw = ϕw +π
in the first embedding.

This simple method works surprisingly well on generated
hyperbolic random graphs that are drawn from the step model,
when given all global parameters and radial coordinates (see
Figures 1a and 1b). It is, however, extremely volatile to
the quality of the estimated parameters. In addition, it fails
completely when used on a real graph or even a graph

generated by the binomial model (see Figures 1c and 1d).
The reason is that the LP has a constraint for each edge in
the graph. If there is just one long-range edge, the MVU can
no longer unfold the graph and all nodes are mapped to an
extremely small range of angular coordinates. This behavior
persists even after adding different error terms for edges and
we were not able to make this approach work on noisy data.

V. THE EMBEDDER

Our embedding algorithm is inspired by the Metropolis-
Hastings Algorithm from [20]. Algorithm 1 contains a bird’s
eye view of all steps. Detailed descriptions of the individual
steps follow in the next sections.

Algorithm 1 Fast Embedding Algorithm

Input: Undirected connected Graph G = (V, E)
Output: Hyperbolic coordinates (ri, ϕi)n̂

i=1 (n̂ = |V |)
1: Estimate global parameters n, R, α, T
2: Estimate radial coordinates ri � See Sec. V-A
3: for all nodes v ∈ V do
4: Place v in layer Li if deg(v) ∈ [2i, 2i+1 − 1]
5: Embed all nodes in layers � log n

2 � See Sec. V-B
6: for i = log n

2 − 1 . . . 0 do � See Sec. V-C, V-D
7: for log n times do
8: for all v ∈ ⋃j�i Lj do
9: Embed v by optimizing its Log-likelihood

The algorithm proceeds in three phases. First, it estimates
all parameters that are computationally easy to guess. This
includes the radial coordinates of all nodes, see Section V-A.
This step can be done in linear time.

In the second phase, nodes are grouped into layers by their
degree, and then embedded layer by layer. For bootstrapping,
high-degree nodes (inner layers) are embedded by considering
their common neighbors. Producing a good initial ordering of
nodes in inner layers is crucial for the success of the algorithm
since low-degree nodes in subsequent layers are typically
placed close to their neighbors in previously embedded layers.
This step is described in Section V-B. As the size of the
subgraph embedded in this step is significantly sublinear,

926 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 4. Fitness landscape of a node v and the coordinates at which the efficient
algorithm samples the fitness. Red points indicate the sampled angles.

we can spend more time in this step and still obtain a linear
runtime.

In the third phase, the algorithm embeds the rest of the graph
layer-wise. To embed a layer Li, we iterate over all nodes
v ∈ Li. In each iteration, O(log n) angular coordinates for v
are sampled; and v is moved to the position with the best Log-
likelihood, see Sections V-C and V-D. This is repeated log n
times per layer (and there are only O(log n) layers). While this
step is similar to HyperMap [20], [33], [34], we improve upon
their algorithm by achieving an amortized polylogarithmic
runtime per node as compared to their linear runtime. Thus,
our overall algorithm thus runs in O(n · polylog(n)).

A. Parameter Estimation
To bootstrap the embedding algorithm, the global graph

parameters have to be known: The original number of nodes
n, the radius R of the disk DR, the parameter α adjusting the
power law exponent, and the parameter T adjusting the clus-
tering. These values are required, for instance, for evaluating
the probability that two nodes are connected (see (2)) which in
turn is needed to produce the Log-likelihood. In the following,
we give some brief explanations on how each parameter is
guessed.

Estimating n: Algorithm 1 expects a connected graph as
input, since disconnected components can be placed anywhere
in the graph as there is no adjacency information.

Hyperbolic random graphs, however, are typically discon-
nected. For power law exponents 2 < β < 3, their giant
component is of size Θ(n) < n [41], [42]; and for β � 3 the
graphs break up into components of order o(n). Unfortunately,
the leading constant of the size of the giant component is
unknown. Further, a numerical estimation is hard to make
since it is governed by a non-linear system of equations
together with other parameters [20].

We have found experimentally that the majority of nodes
missing from the giant component are of degree 0. Surpris-
ingly, the most effective and robust method for estimating the
number of these nodes was by simply extrapolating from the
number of 1- and 2-degree nodes. Let n̂ · f(k) be the number
of nodes of degree k, where n̂ is the total number of nodes
in the input graph. Then, we estimate n simply by setting
n := n̂(1 + max{0, 2f(1)− f(2)}).

Estimating α: The parameter α adjusts the power law
exponent β of the hyperbolic random graph via the functional

Fig. 5. Exemplary fitness landscape for a node v with 3 neighbors. Both
methods for computing the fitness landscape exhibit no visible difference in
the plot.

behavior β = 2α + 1 [12], [13]. The established way to
estimate β is the algorithm by Clauset et al. [43]. Clauset
et al. do not report an asymptotic runtime for their algorithm,
but it appears to be superlinear. The practical runtime of
freely available reference implementations, however, is domi-
nated by our actual embedding algorithm. Moreover, Clauset
et al. [43] also suggest an alternative algorithm, which is
slightly less precise and runs in linear time. Preliminary exper-
iments showed that the linear time method was actually very
accurate, leading to no noticeable differences in the resulting
embeddings. Thus, as the different methods do not show
significant differences in quality or practical runtime, we opted
for the freely available reference implementation in our
experiments.

Estimating T : Recall that this parameter adjusts the impor-
tance of the underlying geometric structure. It has recently
been observed, however, that T does not have a big influ-
ence on the quality of the embedding [33]. For small T ,
the fitness landscapes look virtually the same up to rescaling
(see Figures 2a and 2b). In these cases, the attractive forces
of neighbors dominate and the fitness is high close to their
neighbors. We found that setting T to a small fixed value like
0.1 produces good results.

Increasing T emphasizes non-neighbors. The algorithm then
places nodes in an area where there are few non-neighbors,
while essentially disregarding the information from neighbors
(see Figure 2d). Even though there is a short intermediate
transition of the fitness landscape as can be seen in Figure 2c,
our experiments suggested that setting T to a small value—
even if the graph was generated using a large T —produced
cleaner embeddings. For instance, Figure 3 contains the orig-
inal vs. embedded angle of two embeddings where one has
been computed using the original value of T = 0.7 and the
other with T = 0.1. The algorithm performs better when using
T = 0.1, even though the original T that has been used to
generate the graph was large.

Estimating R and ri: We estimate these values using the
above determined parameters. Good analytical estimates have
been derived in previous work [20]:

R = 2 log
(

4n2α2T

|E| · sin(πT)(2α − 1)2

)
,

ri = min
{

R, 2 log
(

2 nαT

deg(i) · sin(πT)(α − 1
2)

)}
.

BLÄSIUS et al.: EFFICIENT EMBEDDING OF SCALE-FREE GRAPHS IN THE HYPERBOLIC PLANE 927

Fig. 6. The plots correspond to embeddings with average squared deviation ΔϕG = 0.44 (left) and ΔϕG = 0.01 (right). For each vertex v the plot
contains one point with x-coordinate ϕv (angle of v in the original embedding) and y-coordinate �ϕv (angle in the computed embedding). The embedding is
considered good if the plot resembles the identity function f(x) = x up to cyclic shift and rotation.

B. Embedding the Core

Laying out large-degree nodes (also called the core of the
graph) is critical for the overall performance of the embedding.
We consider all nodes v with radial coordinates rv < R/2 to
be in the core, of which there are Θ(n1−α) with probability
1−O(1

n) [44]. If these nodes have roughly the same circular
ordering (in terms of their angular coordinates) in both the
embedding and the generated graph, the remaining algorithm
yields excellent embeddings. On the other hand, if the core
was embedded poorly, the remaining steps cannot salvage this.
We therefore put considerable care into embedding the core
correctly.

HyperMap [34] uses the number of common neighbors of
large degree nodes to infer their relative angles: For two nodes
u, v they determine cuv = |Γ(u) ∩ Γ(v)| and numerically
compute the angle ϕ(cuv, ru, rv) that maximizes the likeli-
hood that the nodes u, v have cuv common neighbors. This
approach is robust since the number of common neighbors of
large degree nodes is tightly concentrated around its expected
value. Determining the likelihood numerically, however, is a
computationally expensive operation.

To overcome this, we analytically derive an approximate
expression for the relative angle of two nodes up to constant
factors. Using this, we present a spring embedder that embeds
the core based on the estimated pair-wise angle differences.

Estimating the Angle-Differences: To estimate the relative
angle between two nodes, we use their inferred radial coordi-
nates and the number of their common neighbors. We perform
this computation in the step model. We have experimentally
found, however, that our results hold up well in the binomial
model.

Let u, v be the two nodes whose (expected number of) com-
mon neighbors we wish to compute. They have radii ru and rv ,
respectively, and a relative angle of Δϕu,v . W. l. o. g., assume
that ru � rv . Consider now a third node w. We compute the
probability that w is connected to both u and v. Under the
assumption that ru + rw � R and rv + rw � R, we know
from [13] that this only holds if

Δϕu,w � 2e
1
2 (R−ru−rw)(1 + Θ(eR−ru−rw)),

and

Δϕv,w � 2e
1
2 (R−rv−rw)(1 + Θ(eR−rv−rw)). (5)

Assume rv+rw � R does not hold. In this case, the distance
between v and w is obviously at most R and thus they are
connected. Moreover, note that in this case the right hand side
of the above formula increases in R and thus the inequality
is satisfied for any angle Δϕv,w if R is sufficiently large.
Thus, under the assumption that R is sufficiently large, we may
use (5).

Observe now that for large enough radii rw, the node w
is not connected to either u or v (unless Δϕu,v � O(1

n)).
On the other hand, when R− rv − rw = Ω(1), w is connected
with constant probability to both u and v. Thus, depending
on the radius rw, there is a “good” fraction of the angular
coordinates [0, 2π) where w will be connected to both nodes,
and a “bad” fraction where it will be connected to only
one or neither of u, v. We call the probability to be connected
to both nodes pg(rw).

As discussed, pg(rw) = 1 ⇔ rw = R−rv±Θ(1). We label
this critical value of rw with r1. On the other hand, pg(rw) = 0
holds when θ(ru, rw) + θ(rv , rw) � Δϕu,v, since then there
is no possible angle for ϕw where it is connected to both
nodes u, v, see (4). The critical value r0 for which this number
becomes positive is when θ(ru, rw)+ θ(rv, rw) = Δϕu,v and
thereby

Δϕu,v = 2e
1
2 (R−ru−r0)(1 ± Θ(eR−ru−r0))

+ 2e
1
2 (R−rv−r0)(1 ± Θ(eR−rv−r0))

= Θ(1) · e 1
2 (R−ru−r0).

Solving for r0, this holds whenever r0 = min{R, R − ru −
2 log(Δϕu,v) ± Θ(1)}.

For values r1 � rw � r0, the regions in which w connects
to u, v both increase as in (5). Thus, the intersection of these
regions increases as pg(rw) ∼ e−rw/2. To determine the
function up to constants, we set

1 = pg(r1) = A · e−r1/2 + B,

and

0 = pg(r0) = A · e−r0/2 + B.

Solving this system of equations, we obtain that pg(rw) =
Θ(1) · (e

1
2 (r1−rw) − e

1
2 (r1−r0)). Thus, we may compute the

probability that an arbitrary node is connected to both u and

928 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 7. Each data point in the box plot represents the value of ΔϕG for a single graph G (y-axis) depending on the average degree a (x-axis). Smaller
values are better. The graphs are grouped by their sizes. (a) Our main algorithm. (b) Our hyperbolic spring embedder.

v using the cumulative distribution function and pg , and we
have

Pr[w ∼ u, v] =
∫ R

0

ρ(r) · pg(r) dr

= Pr[rw � r1]

+
∫ r0

r1

Θ(eα(r−R))(e
1
2 (r1−r) − e

1
2 (r1−r0)) dr

= Θ(1) · eαr0−αR+ 1
2 (r1−r0).

Thus, the expected number of common neighbors of u, v is

cuv = Θ(1) · exp(
R

2
+ (

1
2
− α)ru − 1

2
rv) · Δϕ1−2α

u,v .

To find the angle ϕ(cuv, ru, rv) maximizing the Log-likelihood
in the step model, we observe that the number of common
neighbors of u, v is a binomial random variable. There exists
a set S ⊆ DR in which each node is connected to both u, v
and each node in DR \ S connected to at most one of u, v.
Since the maximum likelihood estimator for binomial random
variables is the number of successes divided by the number
of trials, we obtain the maximum likelihood for Δϕu,v by
rearranging the above equation.

ϕ(cuv, ru, rv) = Θ(1)·c
1

1−2α
uv ·exp(−1

2
ru+(

1
2 − 4α

)(rv−R)).

To obtain actual values for Δϕu,v we first simply omit the
constant factor hidden by Θ(1) in the above expression. Then,
observe that the largest angle should likely be π. To obtain
this, one can simply rescale all values of ϕ(cuv, ru, rv) with
the same constant factor such that the maximum is π. As
this is prone to errors if outliers exist, we instead scale all
angles by the same constant such that their median is π/2.
Angles that are larger than π after this scaling are then set to
π. Preliminary experiments showed that using the logarithm of
the above expression for initially computing Δθ(u, v) (before
the scaling) improved the robustness of our algorithm.

Embedding According to the Estimated Angles: In this
section, we assume that we know the desired angle Δϕu,v

between any pair of vertices u and v in the core. Our goal is
to assign an angle to each vertex that realizes these differences
as well as possible. To this end, we use a 1-dimensional spring

embedder (see Section III for a short introduction to spring
embedders) that works as follows. We start with random initial
angles. Then in each iteration, we consider every pair u, v of
vertices. If the the current angle between u and v is larger
than Δθ(u, v) we get an attractive force, otherwise we get
a repulsive force. W. l. o. g., we assume 0 � ϕu < ϕv � π.
Moreover, let err(u, v) = ϕv −ϕu −ϕ(cuv, ru, rv). The force
Fu(v) acting on u due to v is then given by

Fu(v) =

⎧
⎪⎨
⎪⎩

−err(u, v)2 if err(u, v) � 0,

err(u, v)2 if 0 < err(u, v) � π
2 , and

(π − err(u, v))2 if
π

2
< err(u, v) � π.

To interpret this formula, note that err(u, v) < 0 holds if the
current angle is too small. Thus, Fu(v) is negative (pushing
u away from v) and it increases quadratically in the distance
to the desired angle. Conversely, if the current angle is too
large, we get a repulsive force increasing quadratically in the
distance to the desired angle as long as this distance is at most
π/2. For larger distances, the strength of the force decreases
again, for the following reason. Imagine the extreme case that
u and v have angle π between them but actually want to have
a very small angle. Then it does not matter whether the angle
of u increases or decreases as it comes closer to v. Thus,
we do not really want a very strong force in one of the two
directions, which is the reason why we decrease the strength
of attractive forces when err(u, v) becomes very large.

Similar to Section III, the total force on u is defined as

Fu =
∑

v∈V \u

Fu(v)

and the new angle of u is obtained by setting ϕu = ϕu +cFu.
The value for c is again chosen such that the maximum step
size does not exceed a parameter θmax := maxu∈V {cFu}.

Due to the 1-dimensionality of this spring embedder,
we encounter a similar problem as for the hyperbolic spring
embedder in Section III: to move a vertex u to a specific
position, it necessarily has to pass through all vertices in
between and there is no second dimension that could be used
to get around them. This leads to strong repulsive forces
hindering u in getting to the desired position and we observed

BLÄSIUS et al.: EFFICIENT EMBEDDING OF SCALE-FREE GRAPHS IN THE HYPERBOLIC PLANE 929

Fig. 8. The success ratio of greedy routing (x-axis) depending on the value of T (y-axis) grouped with respect to the number of vertices (colors). (a) Our
main algorithm. (b) Originally generated embeddings.

in our experiments that the algorithm often gets stuck in
a local minimum. As before, we use velocity and a rather
large step size θmax to circumvent this issue. Preliminary
experiments showed that we obtain good results using the
following parameters. We set θmax = 0.55π in the first
iteration, decreasing it linearly down to 0 in the final iteration.
For the velocity assume Fu is the force from iteration i. Then
we add cFu to the force in iteration i + 1 where c is 1 in
the first iteration and linearly decreases down to 0.5 in the
last iteration. Since there are Θ(n1−α) nodes in the core [44],
the total runtime of the spring embedder is O(k · n2−2α),
where k is the number of iterations. Choosing k = O(n2α−1),
we achieve a runtime of O(n).

The performance of this algorithm depends on the randomly
chosen initial angles. To be able to compare core embeddings,
we define a score S as

S =
∑
u∈V

∑
v∈V \u

|Fu(v)|.

A smaller score then indicates a better embedding. We define
sopt as the score that is obtained when the spring embedder
is initialized with the original coordinates. We then say that a
core embedding is good, if it has a score s � 1.2 · sopt. Each
graph thus has a certain probability that the core embedding
is good, depending on the randomly chosen initial positions.
To further increase the probability of getting a good embed-
ding for the core, we run the spring embedder 5 times with
different initial angles and use the best result, which boosts the
probability of getting a good embedding to 95% for the worst
of over 6 000 randomly generated hyperbolic random graphs
(see Section VI for the experimental setup). This suggests that
the spring embedder is rather robust (i.e., we rarely encounter
initial drawings that lead to bad results).

C. Computing the Log-Likelihood Efficiently

A further key ingredient to achieve a quasilinear run-
time is to improve the runtime of the Log-likelihood
computation L(v). Recall that L(v) was defined as

L(v) :=
∑

u∈Γ(v)

log(puv) +
∑

u�∈Γ(v)

log(1 − puv),

see (3). By a naive implementation, one needs Ω(n) time
to compute the Log-likelihood of a single node and thus at

least Ω(n2) for the whole graph. A more careful inspection,
however, allows for a significant speedup.

First, observe that the total number of edges in a hyperbolic
random graph is of order O(n) in expectation; so the term∑

u∈Γ(v) log(puv) can be computed in amortized constant
time. To speed up the computation of the second summand,
we observe that the term log(1 − puv) is very close to 0
whenever dist(u, v) � R, since

puv = (1 + exp(
1

2T
(dist(u, v) − R)))−1

≈ exp(− 1
2T

(dist(u, v) − R)),

and by a Taylor series for puv → 0 we get

log(1 − puv) = −puv −O(p2
uv)

≈ − exp(− 1
2T

(dist(u, v) − R)).

This implies that non-neighbors that are far away from v
barely contribute to its Log-likelihood. If, on the other hand,
dist(u, v)
 R, we have

puv ≈ 1 − exp(
1

2T
(dist(u, v) − R)) → 1, (6)

and thus

log(1 − puv) ≈ log(1 − (1 − exp(
1

2T
(dist(u, v) − R))))

=
1

2T
(dist(u, v) − R).

Thus, it suffices to take into account non-neighbors with
low distance from u while either ignoring or coarsely approx-
imating the influence of far away non-neighbors on the Log-
likelihood. To this end, we implemented the geometric data
structures introduced by Bringmann et al. [15]. These were
originally used to generate hyperbolic random graphs in linear
time by partitioning the disk DR into suitably sized cells.
To compute the Log-likelihood of a node, one can then
compare it directly with nodes in neighboring cells (that have
a significant influence on the Log-likelihood) while averaging
over all nodes in far away cells. As shown in [15], this runs
in amortized time O(1). We need an extra O(log n) factor
to update the cells whenever a node is moved during the
embedding algorithm.

930 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 9. When the average degree δ is small for the graph generation, most
nodes (shown in red) are not part of the giant. It becomes hard to infer the
original number of nodes based on the few that remain in the giant component.

Figure 5 shows the fitness landscapes of a node v computed
once via the classical exact Ω(n) method, and once using our
amortized O(log n) method. Both methods exhibit no visible
differences in the plot. Moreover, we found that the relative
error made by the fast Log-likelihood computation is � 1.0025
at all coordinates except one, where it was � 1.02.

D. Finding the Optimal Angle

To find a good angular coordinate for a node v, previous
algorithms typically scan the whole range [0, 2π) at resolution
2π
n and evaluate at each angle the Log-likelihood L(v). This

incurs another factor Ω(n) on the overall runtime.
To save on this, we sample only few points around a region

where a node has its maximum likelihood. To determine this
region, we observe that the coarse likelihood landscape for a
node v (for small T) is governed by the position of v’s neigh-
bors. Furthermore, neighbors with large radii have a larger
influence on the fitness landscape, as the hyperbolic distance
to these nodes increases more quickly than to neighbors with
small radial coordinates. Hence, v needs to be placed close to
its embedded low-degree neighbors.

Ignoring non-neighbors for now, we achieve this by com-
puting a weighted average over the angles of all neighbors of
v. Let u1, . . . , uk be the embedded neighbors of v. Then, v’s
angle is computed as follows.

ϕv = arctan

(∑k
i=1 exp(rui) · sin(ϕui)∑k
i=1 exp(rui) · cos(ϕui)

)

To take non-neighbors into consideration, we then randomly
sample O(log(n)) points around this angle and use the one
with the smallest Log-likelihood. Figure 4 shows the fitness
landscape of an exemplary node u, as well as the randomly
sampled angles. As can be seen, the heuristic typically finds
good candidates whose angles are close to the optimal angle.

VI. EXPERIMENTS

To evaluate the embedding quality, we sampled 10
hyperbolic random graphs for every combination of the

Fig. 10. When β → 3, all nodes are pushed away from the center of DR.
The core thus attains a sparse, circular structure, for which the algorithm is
not tailored.

following parameters: α ∈ {0.55, 0.65, 0.75, 0.85, 0.95},
T ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, δ ∈ {2, 4, 8, 16, 32}, n ∈ {500,
2 000, 8 000, 32 000, 128 000}. This results in 6 250 graphs.
For each of these graphs, we computed the following
statistics: Log-likelihood, success ratio of greedy routing
and the average squared deviation in the original angle vs.
estimated angle plot. We present the most insightful statistics
in standard box plot form. A box contains 50% of all data
points closest to the median, which is marked black. The size
of the box is called interquartile range (IQR). Data points
are considered outliers if they have a distance of more than
1.5×IQR to the box. The whiskers depict the closest data
point to the box that is not an outlier.

A. Quality
A popular way to judge the quality of an embedding is

to plot the embedded angular coordinates against the original
generated coordinates. If the result resembles a straight line
(up to a cyclic shift), then the relative ordering of nodes has
been reconstructed well in the embedding. Two examples for
such plots are shown in Figure 6. To allow for comparisons
that scale to a large amount of graphs, we derive the following
quality measure. For a vertex v let Δϕv be the quadratic
difference between ϕv in the original embedding and ϕv in
the computed embedding. For a graph G = (V, E), the value
ΔϕG =

∑
v∈V Δϕv/n then describes the average squared

deviation in G.
The box plot in Figure 7a plots ΔϕG against the average

degree δ; grouped by the size of the graph. In this and
all other plots, we average over all parameters that are not
explicitly grouped by. Observe that ΔϕG is high if the average
degree is small, as the few existing edges are not sufficient to
uniquely determine the single best embedding. Thus, several
embeddings may be equally good. In fact, for small δ, our
algorithm finds an embedding with a Log-likelihood very close
to the Log-likelihood of the original embedding (the mean
values for large graphs with δ = 2 are −2.39 · 105 for the
embedding and −2.19 ·105 for the original, respectively, while
the corresponding values for δ = 16 are −1.78 · 106 and
−1.16 · 106). For an average degree of 8, the mean value

BLÄSIUS et al.: EFFICIENT EMBEDDING OF SCALE-FREE GRAPHS IN THE HYPERBOLIC PLANE 931

Fig. 11. Reevaluation of the experiments for embeddings, where hard cases
δ = 2 and β = 2.9 were discarded, see Section VI-B. This reveals that
the embeddings of non-degenerate instances are of high quality, and most
bad embeddings stem from hard corner cases. (a) Evaluation using all data.
(b) Evaluation excluding degenerate cases.

for ΔϕG of all medium sized (n = 8 000) and large (n =
128 000) graphs is 0.2 and 0.03, respectively. For comparison,
note that the plots in Figure 6 correspond to graphs with
values 0.01 and 0.44. Also note that our algorithm performs
particularly well on large graphs, which was the goal we
aimed for.

For comparison with the spring embedder, see Figure 7b.
As the spring embedder is too slow on larger graphs, we only
ran experiments on graphs up to size n = 8 000. Note that
the quality of the spring embedder decreases for increasing
graph size. In contrast, it performs comparatively well on small
graphs while it is heavily outperformed on the medium sized
graphs. Hence, the spring embedder is a reasonable option for
graphs with up to 1 000 vertices, while our main algorithm is
the better option for larger graphs.

A quality measure previously used for hyperbolic embed-
dings is the success ratio of greedy routing. Figure 8a shows
this ratio for the embeddings generated by our algorithm
depending on the parameter T , grouped by the size of the
graph. Observe that the ratio is close to 100% for small
values of T but drops significantly for larger values. This is
unfortunate, as the clustering coefficients of real-world net-
works are typically not exceedingly high, which corresponds
to fairly large values of T in the model. For the embedding
of the Internet graph [20], T = 0.7 was used. Though this
particular embedding allows greedy routing with success ratio
97%, the ratios of around 80% we obtain for T = 0.7 seem to
reflect the typical behavior of random hyperbolic graphs much
better; see Figure 8b.

Though maximizing the Log-likelihood leads to good suc-
cess ratios, Figure 8b implies that even a perfect maxi-
mum likelihood embedder (one that always discovers the
ground truth) cannot be expected to produce embeddings with
100% success ratio. Conversely, optimizing the embedding for
greedy routing will probably not lead to an embedding that
is close to the original embedding of a hyperbolic random
graph. Hence, we do not see the non-perfect success ratios
our embeddings achieve for large T as a weakness but rather
as a strength, as this matches the behavior of the original
embedding.

Fig. 12. Runtimes for the embedding algorithm. Error bars show the standard
deviation.

B. Further Work
Even though the algorithm produces meaningful embed-

dings overall, we observed that certain parameter combinations
may lead to bad embeddings. In particular, this happens when
(i) T is close to 1, (ii) δ is small or (iii) β is close to 3. Case (i)
poses an inherent problem: If T was chosen large during the
graph generation, random edges become more prevalent while
the geometry plays a background role. Thus, it is natural that
it is hard to embed these graphs meaningfully.

The other cases are less intuitive. In case (ii), the average
degree is small. This leads to the generated graph having a
small giant component. For instance, when δ = 2, β = 2.1
and T = 0.1, a generated graph with 5 000 nodes only has 800
in its giant component (see Figure 9). Since only the giant
is fed to the embedder, this results in a severe reduction of
information. Consequently, the algorithm infers wrong para-
meters R, ri which leads to a significantly different embedding
than the ground truth. Note that when supplied correct values
of R, ri, the algorithm again produces embeddings of high
quality. We are, however, not aware of a robust method that
can infer these parameters in this degenerate case.

In the case (iii) when β → 3, a different problem arises.
Increasing β corresponds to shifting all nodes away from the
center. Consequently, the core has a ring-like shape. Most
high-degree nodes are then only connected to a few other
nodes in the core. This situation results in few common neigh-
bors (see Figure 10). As the core embedder in Section V-B
relies on a dense matrix of common neighbor information,
it fails to produce a good initialization which leads to a
bad embedding. While rings can in principle be embedded
well with classical spring embedders, these fail for dense
cores. Thus, a refined core embedding algorithm that switches
between these methods could improve upon the quality in this
case. We argue, however, that this case is degenerate since
such a ring-like structure most likely does not appear in the
core of real-world graphs.

Figure 11 shows the performance of our algorithm on
non-degenerate cases. On large graphs, our algorithm per-
forms extremely well if the generation parameters are non-
degenerate. This shows a clear road map on how the algorithm
can be improved to achieve even better results overall.

C. Runtime
A key contribution of our algorithm is its significant

improvement on runtime compared to previous approaches.

932 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Fig. 13. The nine largest communities in the amazon product recommendation network. For clarity, only the 893 nodes that belong to a single community
are shown. Nodes belonging to the same community are typically placed nearby, even though the embedding algorithm has no knowledge of the ground truth
communities.

We performed runtime experiments on commodity hard-
ware, i.e., a single 2.7 GHz Core i7 with 8 GB of RAM.
Figure 12 shows the runtimes depending on n. Note that com-
pared to available algorithms these are fairly quick: Graphs
of size 20 000 can be embedded in under two minutes.
We even embedded graphs of size 330 000 in under one hour,
see Section VI-D. For comparison, the reference algorithm
HyperMap [33], [34] needs over 1.5 hours for a graph of
size 2 000.

D. Embedding a Real-World Graph

As a proof of concept, we embed the Amazon product
recommendation network [45]. It has n = 334 863 nodes with
an average degree of 5.53, the degree distribution follows a
power law with exponent β = 3.6 and the average clustering
coefficient is 0.4. The nodes represent products available
on Amazon, and an edge {u, v} is present if product u is
recommended together with product v. Product categories
define ground truth communities in this graph.

The embedding took 50 minutes on a single 2.7 GHz
Core i7. While the number of nodes is too large to visually
inspect the whole graph, we have plotted the nine largest
communities in Figure 13. Most nodes belonging to a single
community are mapped close together. This suggests that the
hyperbolic embedding might be a useful tool in discovering
hidden communities in a large network.

VII. CONCLUSION

We designed and implemented a new algorithm for embed-
ding complex networks into the hyperbolic plane. Connected
nodes are typically placed close by, whereas disconnected
nodes have a large hyperbolic distance. Compared to previous
algorithms, we are the first to achieve a quasilinear runtime.
This enables us to embed significantly larger graphs than
before. Further, as we experimentally validated, our algorithm
produces embeddings close to the ground truth; especially
when either the number of nodes n or the average degree δ
is large. In particular, the average angular error for embedded
nodes becomes as small as 0.03 for n = 128 000 and δ = 8.

Our work was focused on presenting a proof of concept.
As a benchmark, we used generated instances, which has two
advantages. First, generated instances have a ground truth to
which we can compare our embeddings. Second, they are
easy to obtain in large quantities and thus allow for extensive
experiments. The next logical step is to use our algorithm

to embed real-world instances. This is interesting from an
engineering perspective, as good performance on generated
instances does not imply good performance on real-world
instances (although considering random graphs with large T
leads to a certain robustness). To conduct such experiments,
one first needs to define a meaningful quality measure for
embeddings of graphs without a ground truth, which is an
interesting task in itself. Further, it is interesting to see how
the embeddings can be used to learn new information about
the behavior of real-world graphs. Hyperbolic embeddings
were used before to produce efficient greedy routing [20], but
other applications come to mind. For instance, a geographical
representation of nodes opens new possibilities for finding
clusters [46]. In fact, a different embedding algorithm reverses
this idea by first computing clusters in the graph and then
inferring node positions based on the found clusters [35].

A different direction is to use the embedding for visualiza-
tion of massive networks. In fact, the hyperbolic plane was
often used for visualization purposes [21], [23]–[25], [30].
Due to their size, classical methods typically struggle with
finding a visual representation of the network that still conveys
meaningful information. While the currently produced plots
still only work for medium-size graphs before they become too
cluttered, this may be improved by, e.g., (i) hiding “unimpor-
tant” edges as in [20], or (ii) providing a Focus+Context-like
graph browser that allows for changing the coordinate origin
as in [24] and [25]. Such tools magnify different regions of the
graph while still placing the inspected nodes into the general
graph context.

Finally, graph algorithms on hyperbolic random graphs that
require knowledge of the geometrical representation can be
invoked once we obtain the graph embedding. For instance,
it has been shown that on hyperbolic random graphs, structures
such as matchings and independent sets may be found more
efficiently than on general graphs [47].

ACKNOWLEDGEMENTS

The authors thank Papadopoulos et al. [33] for their
code and helpful discussions; C. Kessler and M. Katzmann
(HPI Potsdam) for help with experiments; and K. Schöbel
(FSU Jena) for help on hyperbolic variants of MDS.

REFERENCES

[1] T. Bläsius, T. Friedrich, A. Krohmer, and S. Laue, “Efficient embedding
of scale-free graphs in the hyperbolic plane,” in Proc. 24th Eur. Symp.
Algorithms (ESA), 2016, pp. 16:1–16:18.

BLÄSIUS et al.: EFFICIENT EMBEDDING OF SCALE-FREE GRAPHS IN THE HYPERBOLIC PLANE 933

[2] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[3] R. van der Hofstad. (2016). Random Graphs and Complex Networks.
[Online]. Available: http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf

[4] F. Chung and L. Lu, “Connected components in random graphs with
given expected degree sequences,” Ann. Combinatorics, vol. 6, no. 2,
pp. 125–145, 2002.

[5] W. Aiello, F. Chung, and L. Lu, “A random graph model for power law
graphs,” Experim. Math., vol. 10, no. 1, pp. 53–66, 2001.

[6] W. Aiello, F. Chung, and L. Lu, “A random graph model for mas-
sive graphs,” in Proc. 32nd Symp. Theory Comput. (STOC), 2000,
pp. 171–180.

[7] I. Norros and H. Reittu, “On a conditionally Poissonian graph process,”
Adv. Appl. Probab., vol. 38, no. 1, pp. 59–75, 2006.

[8] A. Vázquez, “Growing network with local rules: Preferential attachment,
clustering hierarchy, and degree correlations,” Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 67, no. 5, p. 056104, 2003.

[9] M. E. J. Newman, “Clustering and preferential attachment in growing
networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 64, no. 2, p. 025102, 2001.

[10] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” J. Amer. Soc. Inf. Sci. Technol., vol. 58, no. 7,
pp. 1019–1031, 2007.

[11] M. D. Penrose, Random Geometric Graphs. London, U.K.: Oxford Univ.
Press, 2003.

[12] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá,
“Hyperbolic geometry of complex networks,” Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 82, no. 3, p. 036106, 2010.

[13] L. Gugelmann, K. Panagiotou, and U. Peter, “Random hyperbolic
graphs: Degree sequence and clustering,” in Proc. 39th Int. Colloq.
Automata, Lang. Programm. (ICALP), 2012, pp. 573–585.

[14] T. Friedrich and A. Krohmer, “On the diameter of hyperbolic ran-
dom graphs,” in Proc. 42nd Int. Colloq. Automata, Lang. Programm.
(ICALP), 2015, pp. 614–625.

[15] K. Bringmann, R. Keusch, and J. Lengler, “Geometric inhomogeneous
random graphs,” ETH Zürich, Zürich, Switzerland, Tech. Rep., 2015.
[Online]. Available: https://arxiv.org/abs/1511.00576v2

[16] C. Koch and J. Lengler, “Bootstrap percolation on geometric inhomo-
geneous random graphs,” in Proc. 43rd Int. Colloq. Automata, Lang.
Programm. (ICALP), 2016, pp. 147:1–147:15.

[17] R. Aldecoa, C. Orsini, and D. Krioukov, “Hyperbolic graph generator,”
Comput. Phys. Commun., vol. 196, pp. 492–496, Nov. 2015.

[18] M. von Looz, H. Meyerhenke, and R. Prutkin, “Generating random
hyperbolic graphs in subquadratic time,” in Proc. 26th Int. Symp.
Algorithms Comput. (ISAAC), 2015, pp. 467–478.

[19] E. Stai, V. Karyotis, and S. Papavassiliou, “A hyperbolic space analytics
framework for big network data and their applications,” IEEE Netw.,
vol. 30, no. 1, pp. 11–17, Jan./Feb. 2016.

[20] M. Boguñá, F. Papadopoulos, and D. Krioukov, “Sustaining the inter-
net with hyperbolic mapping,” Nature Commun., vol. 1, Sep. 2010,
Art. no. 62.

[21] J. A. Walter and H. Ritter, “On interactive visualization of high-
dimensional data using the hyperbolic plane,” in Proc. 8th ACM Intl.
Conf. Knowl. Discovery Data Mining (SIGKDD), 2002, pp. 123–132.

[22] J. A. Walter, “H-MDS: A new approach for interactive visualization with
multidimensional scaling in the hyperbolic space,” Inf. Syst., vol. 29,
no. 4, pp. 273–292, 2004.

[23] T. Munzner, “Exploring large graphs in 3D hyperbolic space,” IEEE
Comput. Graph. Appl., vol. 18, no. 4, pp. 18–23, Jul. 1998.

[24] J. Lamping, R. Rao, and P. Pirolli, “A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies,” in Proc. 13th
ACM Conf. Hum. Factors Comp. Syst. (CHI), 1995, pp. 401–408.

[25] J. Lamping and R. Rao, “The hyperbolic browser: A focus+context
technique for visualizing large hierarchies,” J. Vis. Lang. Comput., vol. 7,
no. 1, pp. 33–55, 1996.

[26] T. F. Cox and M. A. Cox, Multidimensional Scaling. Boca Raton, FL,
USA: CRC Press, 2000.

[27] J. R. Clough and T. S. Evans, “Embedding graphs in lorentzian space-
time,” PLoS ONE, vol. 12, no. 11, p. e0187301, 2016.

[28] D. M. Asta and C. R. Shalizi, “Geometric network compar-
isons,” in Proc. 31st Conf. Uncertainty Artif. Intell. (UAI), 2015,
pp. 102–110.

[29] Y. Shavitt and T. Tankel, “Hyperbolic embedding of Internet graph for
distance estimation and overlay construction,” IEEE/ACM Trans. Netw.,
vol. 16, no. 1, pp. 25–36, Feb. 2008.

[30] K. Verbeek and S. Suri, “Metric embedding, hyperbolic space, and social
networks,” in Proc. 30th Symp. Comput. Geometry (SoCG), 2014, p. 501.

[31] X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao, “Efficient shortest paths on
massive social graphs,” in Proc. 7th Int. Conf. Collaborative Comput.
(CollaborateCom), Oct. 2011, pp. 77–86.

[32] F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, and
D. Krioukov, “Popularity versus similarity in growing networks,”
Nature, vol. 489, no. 7417, pp. 537–540, 2012.

[33] F. Papadopoulos, C. Psomas, and D. Krioukov, “Network mapping by
replaying hyperbolic growth,” IEEE/ACM Trans. Netw., vol. 23, no. 1,
pp. 198–211, Feb. 2015.

[34] F. Papadopoulos, R. Aldecoa, and D. Krioukov, “Network geometry
inference using common neighbors,” Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 92, no. 2, p. 022807, 2015.

[35] Z. Wang, Q. Li, F. Jin, W. Xiong, and Y. Wu, “Hyperbolic mapping of
complex networks based on community information,” Phys. A, Statist.
Mech. Appl., vol. 455, pp. 104–119, Aug. 2016.

[36] G. Alanis-Lobato, P. Mier, and M. A. Andrade-Navarro, “Efficient
embedding of complex networks to hyperbolic space via their Lapla-
cian,” Sci. Rep., vol. 6, Jul. 2016, Art. no. 30108.

[37] G. Alanis-Lobato, P. Mier, and M. A. Andrade-Navarro, “Manifold
learning and maximum likelihood estimation for hyperbolic network
embedding,” Appl. Netw. Sci., vol. 1, Dec. 2016, Art. no. 10.

[38] S. G. Kobourov, “Force-directed drawing algorithms,” in Handbook of
Graph Drawing and Visualization. Boca Raton, FL, USA: CRC Press,
2013, pp. 383–408.

[39] S. G. Kobourov and K. Wampler, “Non-Eeuclidean spring embed-
ders,” IEEE Trans. Vis. Comput. Graph., vol. 11, no. 6, pp. 757–767,
Nov./Dec. 2005.

[40] K. Q. Weinberger and L. K. Saul, “Unsupervised learning of image
manifolds by semidefinite programming,” Int. J. Comput. Vis., vol. 70,
no. 1, pp. 77–90, 2006.

[41] M. Bode, N. Fountoulakis, and T. Müller, “On the giant component
of random hyperbolic graphs,” in Proc. 7th Eur. Conf. Combinatorics,
Graph Theory Appl., 2013, pp. 425–429.

[42] M. Bode, N. Fountoulakis, and T. Müller. (2014). The Probability
That the Hyperbolic Random Graph is Connected. [Online]. Available:
www.math.uu.nl/~Muell001/Papers/BFM.pdf

[43] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distribu-
tions in empirical data,” SIAM Rev., vol. 51, no. 4, pp. 661–703, 2009.

[44] T. Friedrich and A. Krohmer, “Cliques in hyperbolic random graphs,” in
Proc. 34th IEEE Conf. Comput. Commun. (INFOCOM), Apr./May 2015,
pp. 1544–1552.

[45] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213,
2015.

[46] Z. Wang, Q. Li, W. Xiong, F. Jin, and Y. Wu, “Fast community detection
based on sector edge aggregation metric model in hyperbolic space,”
Phys. A, Statist. Mech. Appl., vol. 452, pp. 178–191, Jun. 2016.

[47] T. Bläsius, T. Friedrich, and A. Krohmer, “Hyperbolic random graphs:
Separators and treewidth,” in Proc. 24th Eur. Symp. Algorithms (ESA),
2016, pp. 15:1–15:16.

Thomas Bläsius, photograph and biography not available at the time of
publication.

Tobias Friedrich, photograph and biography not available at the time of
publication.

Anton Krohmer, photograph and biography not available at the time of
publication.

Sören Laue, photograph and biography not available at the time of
publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

