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Abstract

The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 mil-

lion deaths worldwide. The development of completely new drugs for such a novel disease

is a challenging, time intensive process. Despite researchers around the world working on

this task, no effective treatments have been developed yet. This emphasizes the importance

of drug repurposing, where treatments are found among existing drugs that are meant for

different diseases. A common approach to this is based on knowledge graphs, that con-

dense relationships between entities like drugs, diseases and genes. Graph neural net-

works (GNNs) can then be used for the task at hand by predicting links in such knowledge

graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently developed the

DR-COVID model. We further extend their work using additional output interpretation strate-

gies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32

of which are currently being tested in COVID-19-related clinical trials. Moreover, we present

an alternative application for the model, the generation of additional candidates based on a

given pre-selection of drug candidates using collaborative filtering. In addition, we improved

the implementation of the DR-COVID model by significantly shortening the inference and

pre-processing time by exploiting data-parallelism. As drug repurposing is a task that

requires high computation and memory resources, we further accelerate the post-process-

ing phase using a new emerging hardware—we propose a new approach to leverage the

use of high-capacity Non-Volatile Memory for aggregate drug ranking.

1 Introduction

With the novel coronavirus, a global pandemic with serious socio-economic implications for

most parts of our daily lives is active [1]. The limited ability to take precautions for an unsus-

pected event like this and the rapid spread make finding an effective treatment as necessary as

difficult, since the disease-specific knowledge is limited at the beginning and human lives are

lost every day. Known and approved drugs happen to be well-studied, thus, they pose a good

starting point for swift development of treatments, and an emerging tactic in fighting the
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pandemic [2]. DrugBank, an extensive database compiling information about drugs approved

by the US Food and Drug Administration as well as experimental drugs, contained more than

2300 approved drugs and over 4500 experimental drugs as of 2018; both with a strong upward

trend [3]. This emphasizes the need for computer aided development of treatments.

Drug repurposing with knowledge graphs, as first described by [4], is the current state-of-

the-art approach for finding possible treatments for novel diseases among known drugs using

machine learning. Applying drug repurposing allows for a better way to maneuver through the

pandemic. It can lead to better treatments for patients infected with one of the COVID-19

strains and a better understanding of the characteristics of the individual strains. Today, we

approach the problem of drug repurposing using machine learning, focusing on deep learning

methods. The idea of predicting unknown links between entities in a knowledge graph is tradi-

tionally known as Collaborative Filtering, as described by [5]. In this work we expand on the

concept of graph embeddings, which map a fixed-size feature vectors to graph nodes and rela-

tions. A state-of-the-art technique for the creation of such embeddings based on deep neural

networks (DNNs) is TRANSE [6].

Knowledge graph embeddings are already utilized to solve different tasks related to drug

discovery, e.g., they are used to predict potential drug targets for diseases to reduce cost and

increase speed in the drug development process in general [7]. Regarding the specific applica-

tion of drug repurposing relying on edge prediction in a knowledge graph of biomedical data

(see Section 2), [8] present a novel classification approach to this problem by implementing

and merging various different ideas and techniques into one ensemble classifier. At its core,

they deploy a DNN with an encoder-decoder structure. The encoder mechanism of it, which is

based on the Decagon graph neural network by [9], was initially proposed for the prediction of

side effects of concurrent drug use.

Our Contribution

In this paper we extend the work done by Doshi and Chepuri [10]. Specifically we continue

our work in Drug Repurposing [11, 12]. We offer the following contributions to the complex

networks community analyzing medicine networks:

1. We introduce novel aggregation strategies to improve the post-prediction step of [10].

With these new aggragation strategies, we are able to obtain 50% more on the number of

predicted drugs in the top-100 that were or are in clinical trials.

2. We re-implement the model described by [10] and improve it by allowing flexible neigh-

borhood capture sizes. We also improve the implementation by [12] by improving training

speed, inference time, readability and by reducing pre-processing time from 30 minutes to

2 minutes by leveraging matrix operations. We further extend the implementation to sup-

port Self-Label-Enhancement.

3. We explore the additional application of finding drug candidates similar to a manually pre-

selected candidate using collaborative filtering on the same model output. We show that

many drugs that are in clinical trial can be found by detecting the drugs that are the most

similar (e.g. using cosine-distance on the embedding of the drugs) to a given known drug

(or a subset of drugs) which is or was in clinical trials.

We also contribute to the way drug repurposing is computed. Drug repurposing is a task

that requires large computational and memory resources. The emerging hardware of Intel

Optane Persistent Memory Modules (Optane-PM) communicates via the memory bus, miti-

gating bottlenecks such as PCI-express lane availability, using the same interface as DRAM.
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While there are other Persistent Memory technologies, Optane-PM being the most mature

product on the market is based on 3D-XPoint (3DXP) technology and operates at a cache-line

granularity with a latency of around 300ns [13], which is more than an order of magnitude

faster than the current state of the art NVMe SSDs, but approximately three times slower than

DRAM. Additionally, it has high capacity which is 8x larger than the available DRAM—a sin-

gle DIMM of Optane-PM can reach 512GB. We note that it is practically necessary to use

Optane-PM as the scale of the problem increases [14, 15].

To the best of our knowledge, in this paper, we show for the first time an application of the

emerging Optane-PM for the task of Drug Repurposing. We generate a large dataset for the

Drug Repurposing problem by extending (both vertically and horizontally) the dataset we

have and evaluate two simple aggregation strategies which are implemented and processed on

the Optane-PM. We obtain fast and promising results for the use of Optane-PM to process

large datasets in the context of Drug Repurposing.

2 Dataset

Our work relies on the Drug Repurposing Knowledge Graph (DRKG) by [16], which compiles

data from different biomedical databases. It contains 97, 238 entities belonging to 13 entity

types and 5, 874, 261 triplets belonging to 107 edge types. We restrict ourselves to 98 edge

types between 4 entity types, namely gene, compound, anatomy and disease, which leaves us

with a knowledge graph with 69, 036 entities and 4, 885, 854 edges. In particular, it contains

drugs and substances as compound entities, as well as different COVID-19 variants as disease
entities. There are 8,070 drug entities and 33 different COVID-19 entities. The edge types

include e.g. compound-treats-disease edges, which is the kind of edge our model predicts.

One part of DRKG are the precomputed TRANSE embeddings trained using dgl-ke by

[17]. To train our model to predict whether a given edge in some compound-treats-disease rela-

tion exists, we have to create suitable training data. To provide our model with both positive

and negative samples for training, for each positive edge we sample 30 non-edges in the data-

set, which results in a ratio similar to DR-COVID. This process tries to account for the imbal-

ance of edges and non-edges in the ground truth. The set of edges included in the dataset is

not complete, however, it is quite certain to be correct. Consequently, the positive edges are

given a higher weight in the loss calculation, and the higher number of negative edges (which

are not certain to be truly negative) are given a lower weight. To prevent too much imbalance

in the individual minibatches, we use a weighted random batch sampler that over-samples the

positive samples yielding an expected ratio of 1 : 1.5 of positive to negative samples in each

batch.

3 Model architecture

A Graph Neural Network (GNN) is a message passing framework where vertex embeddings

are passed along edges of a graph. A single GNN layer traditionally performs a single round of

message passing where messages are transformed via an edge function, are collected together

into a single message via an aggregator function, and finally are used to produce new messages

using a vertex function. We refer the reader to [9, 18, 19] for a more in-depth description.

In our experiments, we used a traditional encoder-decoder architecture using a two-layer

GNN encoder and a custom decoder. The architecture of our model is illustrated in Fig 1. It

consists of a SIGN [20] architecture encoder, which provides an embedding y 2 R250
for each

node. We apply tanh to the encoder output and forward it into our decoder. Given two nodes

u, v, the decoder takes their encodings yu,yv and assigns a score su,v 2 [0, 1], which measures

the probability for an edge between nodes u and v to exist. The decoder consists of two linear
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layers ℓ1(u) and ℓ2(v) that process the encodings yu and yv via a sigmoid function, that is, σ(yv �
ℓ1(yu) + yu � ℓ2(yv)). The loss of the model is computed using a binary cross entropy loss with

logits with weights set as described in Section 2.

Implementation

The dataset presents itself as a list of triples, each posing source, relation-type and sink of an

edge. This is accompanied by precomputed knowledge graph embeddings. For the preprocess-

ing we first filter out the edges belonging to the part of the knowledge graph we restrict our-

selves to. We then construct a graph with the help of DGL [21]. To compute the neighborhood

embeddings we feed into the model, we first derive an adjacency matrix A 2 {0, 1}n×n from the

reduced graph, from which the edges we try to predict, i.e., compound-treats-disease edges,

have been removed. We then derive the normalized graph Laplacian ~A ¼ D� 1
2AD� 1

2 where Di,i

is the degree of node i. Suppose X 2 Rn�400
is the matrix of graph embeddings for the n nodes,

then the kth neighborhood is defined as ~AkX.

4 Output interpretation

In this section we present different strategies for interpreting the scores that the model outputs

for the application of predicting the top-r most promising drug nodes for a given set of disease

nodes D. Note that this is important as there are multiple COVID-19 diseases. Let n be the

total amount of drug nodes. Predicting all n � |D| edge combinations, our model yields a matrix

of scores S 2 RjDj�n. Note that in our experiments, we have |D| = 33, n = 8070, and r = 100. For

each of the following strategies we first perform a standardization of the scores per disease

using ŝdc ¼
sdc� mðsd�Þ
sðsd�Þ

, where d is the index of a disease in D, c being the index of the drug, μ(sd�)
and σ(sd�) denote the mean and standard deviation over all drugs.

Certain “mild” diseases may be affected by plenty of drugs resulting in those being linked

more likely. The standardization helps to achieve a better comparability across different dis-

eases, allowing us to identify the suited drugs for every disease individually and compare those.

However, this could also give good scores to some drugs in the case of diseases with no “good”

scores in the first place, potentially yielding some less useful proposals.

An aggregation strategy takes our matrix of standardized scores ŝdcð Þ and derives a list of

drugs from it, the top-r of which are our result. We propose the following aggregation strate-

gies. For global score mean, we calculate the means of ŝdcð Þ along axis 0, that is, over all

Fig 1. Model architecture. The architecture of our model as described in Section 3.

https://doi.org/10.1371/journal.pone.0266572.g001
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diseases per drug; then we sort the drugs by their respective scores and select the top-r. For

global score maximum, we find the maxima of ŝdcð Þ along axis 0; then again we sort the drugs

and select the top-r. For union over disease rankings, we calculate top-x drugs per disease

with x as small as possible such that we get at least r unique drugs in the union. We then con-

catenate all those top-x lists together to get a top-r drug list.

Furthermore, in k-means score maximum, grouping similar disease types can be used to

enhance the accuracy of our top-r predictions. We perform such a grouping using the k-

means clustering algorithm. For each cluster, which now represents a group of similar diseases,

we use a mean reduction to calculate the score of a drug and then reduce to the maximum

across these clusters. A sensible number of clusters to create can be chosen by performing a

principal component analysis (PCA) [22] on the standardized scores. This allows us embed-

ding data points from ŝdc into the 2d plane as shown in the pair plot in Fig 2. This visually sug-

gests that 3 clusters among the diseases exist, which can be picked up by a 3-Means clustering.

Then, for union over k-means rankings, we perform the top-x selection on clusters calculated

with the clustering method described above. This not only allows us to use a greater x because

Fig 2. PCA clustering. Pair plot showing the population of COVID-19 diseases in our dataset by their standardized scores

reduced from n dimensions (the number of drugs) to two with the help of a PCA. The colors show the affiliation to a

cluster derived from the application of a 3-Means clustering.

https://doi.org/10.1371/journal.pone.0266572.g002
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we have fewer lists to pick from, but also to get more consistent top picks because of the inter-

nal averages that we apply inside each cluster.

We also do a network based clustering approach where we substitue k-means in the above

strategy with the louvain clustering algorithm [23]. We call these louvain score maximum and

union over louvain rankings. The network clustering is applied by viewing the prediction

matrix as a weighted bipartite graph. Since louvain requires positive weights, we threshold the

weights and give 0 weight to each entry that is negative. This sparsifies the network and helps

to create more network structure. In louvain clustering, the number of clusters are inferred by

the algorithm by assessing the modularity of the network. The purpose of using such a cluster-

ing method is to take advantage of any network structure that is present in the output, that k-

means might not take into account.

For drug clusters mean strategy, we apply a k-means algorithm to the drugs (as opposed to

diseases in above strategies) with the standardized score vectors over the diseases as data-

points. We set the parameter k for k-means to be rather high so that the cluster sizes are on

average much smaller than r. We then rank clusters according to their mean score. We pick

the top clusters until we reach drug size of k. To break the ties within the last picked cluster, we

use the mean score of the individual drugs in the cluster.

Another strategy we apply is the mean with ℓ outliers strategy where for each drug, we take

the mean across the best |D| − ℓ of its score entries. This means we consider that ℓ of the dis-

eases could be outliers for a drug and ignore them.

We also apply three strategies that are based on finding bilciques in the weighted bipartite

graph formed from the prediction matrix. Here, the two bipartitions are naturally the drugs

and diseases. We enumerate over all subsets of the disease-set and for each such subset S of

diseases, we find the value of the maximum biclique induced by S, calculated as follows: for

each drug d, let sum(d, S) denote the sum of weights of edges of d to S; let d1, d2, . . . be the

order of drugs such that sum(di, S) is decreasing; let i be the index for which i � sum(di, S) is

maximized, then the max biclique induced by S is given by ({d1, d2, . . ., di}, S), and its value is

i � sum(di, S) � |S|. Then we pick the subset S� with the largest maximum biclique value, and

rank the drugs on the decreasing order of their sum of weights of edges into S�. Since we need

to enumerate the subset of diseases, it is timewise expensive to do this on the whole disease

set. So, we cluster the diseases into 3 clusters by using 3-Means and then aggregate the ranking

over the clusters, either by picking the maximum or the top-x strategy. Depending on the

aggregation strategy, thus we have two biclique-based strategies, i.e. biclique maximum and

union over biclique rankings. We also do a third simpler biclique-based strategy, where we

do not enumerate over diseases, but calculate the max biclique induced by the whole set D of

diseases. We call this much faster strategy as cumulative max.

5 Collaborative filtering

Suppose we already have pre-selected some candidates for clinical trials. Now we would like to

identify similar candidates that could be interesting. This new application can be approached

using collaborative filtering on our model output. We measure the similarity along the model’s

edge predictions per drug. To precisely define the cosine similarity between two given drugs i,
j, let ŝ�i; ŝ�j be their prediction scores along the disease dimension. Then their similarity is

defined as ŝ�i � ŝ�j. We test this application by ranking the remaining drugs of our dataset by

the cosine similarity to pre-selected candidates. Our pre-selections are sampled randomly

from the clinical trial dataset.
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6 Experimental evaluation

6.1 Methodology

We first train our link prediction model to generate probability scores to a candidate edge

using an encoder-decoder architecture described in Section 3. We implement the model using

PyTorch. We train it using the Adam optimizer [24]. We use 90% of the data for training and

the rest for validation. The training is performed on Google Colab utilizing a Nvidia Tesla T4

and it takes*2 minutes to prepare the graph dataset. We train our model using 25 epochs

with a starting learning rate of 10−5 and a weight decay of 10−2. Each training epoch took us 30

seconds, which is a significant improvement over the 610 seconds of the implementation by

[10] and can be attributed to the exploitation of data parallelism we added.

Using this model, we generate prediction matrices by sorting drugs for each covid strain

using the learned model. We then use aggregation strategies to process the prediction matrix

to determine the final drug rankings. These drug rankings are then compared against drugs

which are being currently tested in clinical trials.

6.2 Link prediction and drug aggregation performance

To test our link prediction model, we compare the top-100 drugs for SARS-CoV2 computed

by our learned model to those predicted utilizing the weights of [10]. While their model’s top-

100 predictions include 22 drugs present in clinical trials, we only reach 15. We suspect the

hand-made adjustments to the dataset utilizing undisclosed data sources are responsible for

this discrepancy, as this is the sole missing part in our implementation. Consequently, we use

their published rankings to measure different aggregation strategies. Fig 3 plots the prediction

matrix and highlights the scores of the drugs in clinical trials. It is easy to observe from the plot

that there is a high correlation between being in clinical trial and having a high score in our

predictions.

To test drug aggregation strategies, we use each strategy to combine rankings of each drug

for each covid type to produce a final top-100 ranking. We then compute the number of inter-

sections with the drugs that are currently the subject of clinical trials related to COVID-19

[25]. This information is available on Kaggle as a list of drug names [26] and contains 250

drugs.

The results of the the different aggregation strategies can be found in Table 1. We see that

our Union over Cluster Rankings with KMeans(k = 3) outperforms the other approaches,

yielding 32 hits. This is intuitive as using PCA on the prediction scores shows that there are

three clusters among the COVID strains. In contrast, DR-COVID’s aggregation method,

Union over Disease Rankings, reaches just 21 hits in our evaluation process. In Table 1, we

also provide ther running times of the aggregation strategies while running them on Google

Colab.

We also compare with another previous drug repurposing work [27], that used an aggrega-

tion of different predicting algorithms to predict a list of top-100 drug candidates for Covid-

19. Their list of top-100 drugs hits only 22 drugs in the clinical trial list compared to 32 of our

best strategy.

In Table 3 in S1 Appendix, we give the list of drug names in clinical trials that are hit in the

top-100 rankings of five of our aggregation strategies. We select the five strategies that are dif-

ferent in approach to each other and give top number of hits as per Table 1. The five strategies

we select are Mean with 2 outliers, Union over k-means cluster Rankings (k = 3), Louvain clus-

ter Score Maximum, Drug clusters mean with KMeans(k = 250), and Union over Biclique

rankings. In Table 4 in S1 Appendix, we give the rankings of drug names in clinical trials for
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Fig 3. Link prediction scores. Parallel coordinates plot showing the standardized scores output by our link prediction model. We highlight the drugs that

are present in clinical trial. The plot shows a high correlation between the scores and being in clinical trial.

https://doi.org/10.1371/journal.pone.0266572.g003

Table 1. Hits of proposed candidates in actual clinical trials.

Aggregation strategy # hits Time(s)

Single Disease (median) 20 0.26

Global Score Maximum 22 0.852

Global Score Mean 30 1.228

Mean with 2 outliers 31 0.376

Union over Disease Rankings (DR-COVID, [10]) 21 1.45

K-Means cluster Score Maximum (k = 8) 18 1.343

K-Means cluster Score Maximum (k = 3) 20 0.561

Union over k-means cluster Rankings (k = 8) 24 1.256

Union over k-means cluster Rankings (k = 3) [12] 32 1.227

Union over Louvain Cluster Rankings 27 1.153

Louvain cluster Score Maximum 29 1.24

Drug clusters mean with KMeans(k = 250) 30 20

Drug clusters mean with KMeans(k = 500) 28 27

Biclique Max 26 1560

Union over Biclique rankings 31 1500

Cumulative Max 26 0.035

https://doi.org/10.1371/journal.pone.0266572.t001
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each of these five strategies (for those in top-100 ranks). In Table 5 in S1 Appendix, we give the

list of all drugs that are not known to us to be in clinical trial but are present in the top-100

rankings of all of the above five strategies. We observe that Cidofovir, the top entry in this

table, i.e. the drug that is not in clinical trial but is best ranked by our strategies, was also inde-

pendently found by another study to be promising for Covid-19, while unfortunately also hav-

ing negative side-effects [27]. The study goes on to suggest alternatives with similar structure

as Cidofovir instead.

We observe that hits are not evenly distributed along the rankings of the aggregation strate-

gies, with more hits towards rank 60 and higher, suggesting we are unlikely to get better results

by predicting more than the top-100 drugs.

6.3 Collaborative filtering performance

In the case of one single pre-selected candidate, for selecting the top-100 drugs ranked by simi-

larity to the pre-selected candidate we get a mean of 18 (min. 0, max. 32) hits. Conducting the

experiment with 15 pre-selected candidates and selecting drugs corresponding to the top-100

of a global ranking of all similarities yields on average 18 (min. 0, max. 37) hits.

7 Accelerating drug repurposing by using NVRAM

In this section we outline a new approach for using the emerging Non-Volatile Memory for

analyzing large datasets for the task of drug repurposing. We believe such technologies can

have a high impact on these big-data tasks. More specifically, we demonstrate the use of Non-

Volatile Memory for aggregate drug prediction. In general, Optane-PM can perform arbitrary

matrix calculations while providing significantly more capacity than ordinary DRAM and

optionally providing persistence. We chose to use Optane-PM to implement the Global Score

Mean and Global Score Maximum aggregation strategies. We chose these strategies for their

decent prediction performance (see Table 1) and because they were easy to implement using

Optane-PM. We note that we did not select strategies which used clustering due to an incom-

patibility between scikit-learn [28, 29] (the package clustering was implemented with) and the

Optane-PM library. We show that by using Optane-PM, we can process datasets faster than

with traditional storage methods such as DRAM + NVMe SSD or memory mapping.

To demonstrate the utility of Optane-PM, we artificially increased the size of the data being

operated on. To do so, we extended our ranking matrix of size 2MB by concatenating entries

both vertically and horizontally. Using this scheme, we created data matrices of sizes 33, 66,

131, and 261GB. This was necessary to show the performance difference between Optane-PM

and other storage methods.

7.1 Interacting with Optane-PM

We use a Python 3 library called PyMM [30] to interface with Optane-PM. PyMM has been

developed as part of the Memory Centric Active Storage (MCAS) system [31]. PyMM provides

a set of abstractions and framework for managing Python variables in locally-attached

Optane-PM. For more details regarding MCAS and PyMM, we direct the reader to [14, 15, 30,

31]. Data that is stored in PyMM is persistent and can be accessed and manipulated in-place,

directly on device, without requiring a copy or transfer to DRAM. Using PyMM, we store our

large data matrices and create aggregate rankings using the two strategies mentioned in Sec-

tion 4.
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7.2 Experiments

We compare Optane-PM against other storage methods. We measure the runtime of using dif-

ferent (simple) aggregation strategies implemented on Optane-PM against their implementa-

tions using DRAM. We augment the prediction matrices using the procedure mentioned in

Section 7 to produce arbitrarily large data. Our experiment compares the following

implementations:

1. PyMM implementation. Prediction matrices are stored on Optane-PM and are processed

on device using the Global Score Mean and Global Score Maximum strategies.

2. DRAM implementation. Prediction matrices are stored entirely on NVMe SSD, and then

transferred and processed in DRAM. We note that this implementation is only possible if

the machine has sufficient DRAM.

3. MMAP_384 implementation. Prediction matrices are stored on NVMe SSD. During pro-

cessing, the required data is loaded from NVMe SSD to DRAM using NumPy’s Memory-

Mapping functionality. In this implementation we have 384GB of DRAM. This configura-

tion allows the entire dataset to be loaded into DRAM, meaning no evictions will occur.

Therefore, this is a best-case scenario for memory mapping performance.

4. MMAP_64 implementation. This implementation is a more realistic memory mapping

scenario. While this implementation is almost identical to the previous one, the amount of

DRAM has been restricted to 64GB. This means that the memory mapping routine will

need to evict data from DRAM during processing. From a Cloud/infrastructure perspective,

this simulates a low-cost machine memory mapping scenario.

Our experiments were conducted on a Lenovo SR650 2U server equipped with two Intel

Xeon Gold 6248 (2.5GHz) processors supporting 80 CPU hardware threads. The server is also

equipped with 384GB (12x32GB) of DDR4 DRAM and 1.5TB of Optane-PM (12x128GB) as

well as two NVMe SSD disks with 3TB each.

7.3 Scalability results

Our implementation results can be seen in Table 2 and Fig 4. Specifically we note that while

DRAM operates with lower latency than Optane-PM, using DRAM involves expensive copy

operations while Optane-PM(configured persistently) does not. This is why, in our experi-

ments, Optane-PM always outperformed DRAM.

Specifically, our results include the cost of loading data from disk (as needed). The loading

time is non-trivial (see Table 2). One advantage of Optane-PM is that data is persistent and has

no loading time. To measure the cost of compute only, we also tracked the running time after

data was loaded. In this case, using Optane-PM is between two and three times slower than

DRAM, which is expected since the latency of Optane-PM is known to be approximately three

times that of DRAM. We note that the slower latency of Optane-PM is well worth the trade-off

for higher capacity as well as persistence.

Table 2. The time (in seconds) to copy data from NVMe SSD to DRAM as a function of DRAM size.

DRAM load time (sec)

33GB 66GB 131GB 261GB

13.5 26.3 83.6 203.5

https://doi.org/10.1371/journal.pone.0266572.t002
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Surprisingly, the best-case memory mapping implementation performed almost as well as

the Optane-PM implementation. This is an artifact of our drug rank aggregation strategies.

The two strategies we evaluate are single scan operations, which behaves efficiently using

memory mapping. As the memory size increases, we observe performance degradation when

memory exceeds 192GB. This is a result of the dual cpu architecture: DRAM is split between

the two sockets in a Non-Uniform Memory Access (NUMA) architecture. This means that

after 192GB (the maximum amount of DRAM allocated to a single socket), data must cross to

the other socket which induces additional latency.

In a more realistic setting, memory mapping performs the worst. This is due to the eviction

policy and DRAM not being able to store the entire dataset. This can already be seen in the

memory-mapping strategy with 64GB in Fig 4. We note that this is also a best-case realistic

scenario as once evicted, a row will never be needed again by our strategies. For more

advanced strategies, memory mapping will perform significantly worse as multiple passes

(sometimes random access) of the data is required.

In general, we observe that it is advantegous to use Optane-PM when working on tasks

such as drug repurposing. Despite longer latencies than DRAM, our aggregation strategies

benefit from the higher capacity and persistence offered by Optane-PM and avoid classical

limitations of using DRAM such as expensive copy/load operations and NUMA boundaries.

We also observe that Optane-PM is vastly superior to existing solutions such as memory map-

ping when data exeeds DRAM capacities.

Fig 4. Strategy processing times. The total time for processing the two strategies: Global Score Mean and Global Score Maximum one after

another.

https://doi.org/10.1371/journal.pone.0266572.g004
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8 Conclusion

Deep learning can help the development of drugs in the face of a global pandemic. Rather than

looking for promising candidates by hand, one can instead rely on graph neural networks. We

have been able to clarify the evaluation part of DR-COVID [10] and proposed an aggregation

technique yielding better results. Our own implementation improves both training speed as

well as readability. We have also shown that using Optane-PM allows researchers to scale tech-

niques efficiently to large datasets, which benefits the drug repurposing community.
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