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Abstract. Local search is the most basic strategy in optimization set-
tings when no specific problem knowledge is employed. While this strat-
egy finds good solutions for certain optimization problems, it generally
suffers from getting stuck in local optima. This stagnation can be avoided
if local search is modified. Depending on the optimization landscape, dif-
ferent modifications vary in their success.
We discuss several features of optimization landscapes and give analyses
as examples for how they affect the performance of modifications of local
search. We consider modifying random local search by restarting it and by
considering larger search radii. The landscape features we analyze include
the number of local optima, the distance between different optima, as well
as the local landscape around a local optimum. For each feature, we show
which modifications of local search handle them well and which do not.

Keywords: local search · theory · run time analysis

1 Introduction

For optimizing a given objective function, the following strategy is widely used.
Start with any, possibly randomly generated, solution. Check neighboring solu-
tions, where just a few defining properties of the solution are altered, for having
better quality. Whenever you find a better solution, let it replace the previous
solution and continue from there. This is the general concept of local search.

Basic local search already finds good solutions for a variety of problems [1, 15,
16, 25] by hillclimbing, i.e., going up the gradient until a peak in objective value
is found. This simple greedy behavior can be very beneficial, e.g., in settings
where no additional knowledge about the problem to be optimized is available,
so-called black box optimization. The main drawback is when local search gets
stuck in a local optimum where all nearby solutions do not have better quality
than the local optimum, while the quality of solutions in other parts of the
search space is significantly better. Overcoming the issue of local optima is a
long-standing and frequently addressed problem.
⋆ Corresponding author
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One common way to escape local optima is to introduce randomness into how
many local changes are performed when modifying a single solution. Prominent
examples of this strategy are evolutionary algorithms (EAs [24]), which typically
allow to modify solutions to vast extents, larger modifications commonly having
a lower probability of occurring. Although this approach potentially allows to es-
cape local optima, it also has some drawbacks. As an example, if better solutions
require larger modifications to the current solution, the probability of making
such a change may be very small [5]. Moreover, defining a mechanism that al-
lows to change solutions in a manner such that each solution can be produced
(a global operator) requires greater knowledge of the search space, e.g., when
defining the probabilities for each possible change. In contrast, local changes are
usually well understood and easy to implement.

In this article, we study random local search (RLS), a very basic local-search
variant that maintains a single solution. In an iterative manner, it modifies this
solution only slightly, i.e., locally. If the new solution is at least as good as the
current, the current solution is updated to the new one, otherwise not. It is clear
that RLS ceases improving the maintained solution once a search point is found
whose direct neighbors have strictly worse objective-function value.

In order to overcome local optima, we consider two simple, different modifi-
cations to RLS: restarts and larger search radii. Restarts modify the way that
the maintained solution is selected by always accepting the new solution when a
restart is triggered. In addition, the distribution from which the new solution is
drawn may be changed. Larger search radii modify the way that a new solution
is created by considering solutions that are not direct neighbors of the current
solution. This can be done by considering a local operator (i.e., creating solutions
in a certain distance) or a global operator (i.e., creating any solution).

We study RLS and its modifications on various functions (see Figure 1),
containing different types of local optima. Our goal is to understand how the
modifications of RLS cope with these local optima. We are particularly interested
in an overview of which different characteristics of the optimization landscape
favor which modifications and which not.

We aim to raise awareness about the usefulness of modifications to RLS in
various settings. To this end, our analyzes do not aim for depth (i.e., giving a
narrow but sophisticated analysis of a single setting), as is frequent in theory
research, but instead for breadth. We note that we consider a local optimum to
be points in the search space such that all directly neighboring points are worse
in objective-function value. Allowing for neighboring points to have equal values
results in plateaus and in completely different discussions. For recent results on
plateaus, we refer the interested reader to the literature [2, 4].

Contributions. Our results concern four landscape characteristics. We give
an intuitive description as well as key insights for each characteristic below.

(1) Section 3: A basin of attraction of a local optimum x is the part of
the landscape from where local search can find the local optimum x.

Key insight: Restarts are beneficial and better than larger search radii if
the basin of attraction of the global optimum is large.
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(a) The function Two-
Max from Section 3.

(b) The function f4 as a
special case of fd, defined
in Section 6.

Jumpd

Cliffd

(c) The two fitness func-
tions defined in Section 4.

ShiftedJumpd

ShiftedCliffd

(d) Jump and Cliff with
shifted valleys (Section 5).

Fig. 1: Most of the fitness functions that we analyze in Sections 3 to 6.

(2) Section 4: Between a local optimum and the global optimum is a valley
of worse objective-function values that needs to be crossed. Depending on the
values within the valley, this is a deceptive valley (leading back to the local
optimum) or it provides guiding information.

Key insight: Restarts are very beneficial for exploiting guiding information.
However, they fail in the case of deception, where larger search radii prove useful
and comparable to global operators.

(3) Section 5: The difficulty in crossing valleys depends on whether on the
other side of the valley there is a single or multiple targets to transition to.

Key insight: Both modifications of RLS are unaffected by the number of
targets. In contrast, a global operator improves the performance drastically.

(4) Section 6: An algorithm might encounter iterated local optima, i.e.,
it has to cross multiple, consecutive valleys to find the global optimum.

Key insight: The structure of each local optimum is essential. Warm restarts
may help majorly if the local structure has guiding information (i.e., is well
suited) but fail in case of deceptive information. When using larger search radii,
the performance is unaffected by the shape of the valley. It is far slower in case
of guiding information but better in case of deception.

Paper outline. In Section 2, we give the details of all algorithms considered,
followed by the technical sections considering the four mentioned landscape char-
acteristics in turn. Last, we provide a discussion and conclusions in Section 7,
where we go into more detail about the general learnings from the analyzes.



4 T. Friedrich et al.

Algorithm 1: The framework for trajectory-based heuristics, requiring
the potentially parametrized subroutines mutate and select as well
as a fitness function f .
1 x(0) ← individual drawn uniformly at random from {0, 1}n;
2 for t ∈ N do
3 y ← mutate(x(t));
4 x(t+1) ← selectf (x

(t), y);

2 Definitions and Algorithms

We let N denote the set of all natural numbers, including 0, and let R denote
the set of all reals. For all a, b ∈ R, let [a..b] := [a, b]∩N denote the set of natural
numbers from at least a to at most b. Further, for all a ∈ R, let [a] := [1..a].

We consider the maximization of pseudo-Boolean functions of dimension n ∈
N≥1, that is, functions {0, 1}n→ R. Throughout this article, let n always denote
the dimension of the objective function under consideration. All asymptotics
(that is, big-Oh notation) are with respect to this n.

We call a pseudo-Boolean function f a fitness function, and we refer to bit
strings as individuals. For each x ∈ {0, 1}n, let |x|1 denote the number of 1s in x,
and let |x|0 denote its number of 0s. Further, for each i ∈ [n], let xi denote the
bit at position i in x. We say that we flip bit i when we refer to the value 1−xi.
We call f(x) the fitness of x. For x, y ∈ {0, 1}n, we call dH(x, y) := |{i ∈ [n] |
xi ̸= yi}| the Hamming distance of x and y. Last, for all i ∈ [n], we call the set
of all individuals with distance i to x the i-neighborhood of x.

Given an algorithm A and a fitness function f , we call the number of fitness
function evaluations (number of calls to f) that A performs until is finds a global
maximum of f for the first time the run time of A.

2.1 Algorithms

We consider modifications to RLS. All of these algorithms follow the framework
of a trajectory-based heuristic for optimizing a fitness function f (Algorithm 1).
Each such heuristic evolves iteratively a trajectory (x(t))t∈N of individuals (the
current individuals). The initial individual (x(0)) is drawn uniformly at random
from the search space {0, 1}n. For all t ∈ N, the individual x(t+1) is determined
via two, potentially parametrized, subroutines: mutate and select. The sub-
routine mutate : {0, 1}n → {0, 1}n gets x(t) as input (the parent) and returns a
modified copy of x(t), denoted by y (the offspring). We call this process muta-
tion, and we say that x(t) is mutated. After mutation, utilizing f , the subroutine
select : ({0, 1}n)2 → {0, 1}n selects either x(t) or y as a starting point for the
next iteration, and the result is assigned to x(t+1). We refer to this process as
selection. We allow mutation and selection to take into account additional infor-
mation, such as the number of iterations since the last improvement was found.
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RLS employs elitist selection, i.e., if the fitness of the offspring is at least
that of the parent, the offspring is selected. During mutation, RLS flips exactly
one bit in its parent, which it chooses uniformly at random. Since this approach
leads RLS to getting stuck in local optima where the 1-neighborhood is strictly
worse, we consider the following modifications of RLS, each of which adjusts
selection and/or mutation: restarts and larger search radii.

Restarts. This approach refers to changing selection after a certain amount
of non-improving iterations such that it always accepts the offspring. In addition,
a restart strategy may change how the offspring is generated (i.e., mutation).
There are two straightforward ways that we consider: (1) create an individual
sampled uniformly at random, that is, start a new run of RLS (cold restart),
or (2) create offspring normally but always accept it (warm restart). We refer
to RLS with cold restarts as cr-RLS and to the variant with warm restart as
wr-RLS. Both variants have a parameter R ∈ R>0. If there are more than n lnR
non-improving iterations, the restart is initiated. The parameter R bounds the
probability of failing to find the possible improvement. The probability of not
finding an improvement in such a situation is at most 1/R [22, Lemma 2].

Larger search radii. This approach refers to employing mutations that
search beyond the 1-neighborhood. One modification following this pattern is
variable neighborhood search (VNS [10]), for which many different versions exist.
We consider the one displayed in Algorithm 2, which creates offspring with in-
creasing distance from the current individual, exploiting each neighborhood fully
before going to the next. Each neighborhood is explored randomly, stopping at
the first improvement, and each individual in the neighborhood is created at
most once. This guarantees to explore all neighborhoods eventually. However, as
the neighborhood sizes grow exponentially until distance n/2 to the parent, it
takes a considerable amount of time to get to larger distances.

Adding global mutations. Last, we further add a global mutation to RLS
in order to see how much the previous algorithms are hampered by relying on lo-
cal mutations. Since global mutation serves the same purpose as VNS, we remove
the VNS modification. The resulting algorithm is effectively an evolutionary al-
gorithm that uses a local search as mutation. This algorithm is called the (1+1)
memetic algorithm ((1+1) MA [17]; Algorithm 4). After creating its offspring by
flipping each of the n bits independently with probability 1/n, it then aims at
improving it via the first-improvement local search (FILS; Algorithm 3). FILS
creates a random permutation π over [n] and flips each bit of its input in the
order they appear in π, keeping those and only those flips that improve the
individual. Note that FILS flips bits in potentially improved individuals.

3 Basins of Attraction

A basin of attraction [11] is, intuitively, the area of the search space around a
local optimum x such that a local-search algorithm ends up in x (in this sense,
the local optimum “attracts” the search points in the basin). Note that some
search points might lead to different local optima depending on the random
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Algorithm 2: VNS maximizing fitness function f .
1 x(0) ← individual drawn uniformly at random from {0, 1}n;
2 s← 1;
3 for t ∈ N do
4 y ← x(t);
5 Γ ← the ordered s-neighborhood of x(t), where the order is chosen

uniformly at random;
6 for i ∈ [|Γ |] do
7 y ← Γ (i);
8 if f(y) > f(x(t)) then break the loop iterating over i;

9 if f(y) > f(x(t)) then
10 x(t+1) ← y;
11 s← 1;
12 else
13 x(t+1) ← x(t);
14 s← min{s+ 1, n};

Algorithm 3: First-Improvement Local Search (FILS) of an individ-
ual x, maximizing fitness function f .
1 π ← permutation over [n] chosen uniformly at random;
2 for i ∈ [n] do
3 y ← copy of x with bit π(i) flipped;
4 if f(y) > f(x) then x← y;

5 return x;

choices of the local-search algorithm (in which case they would be counted to all
reachable local optima with the probability to reach the local optimum).

A large basin of attraction around a global optimum x∗ is good, as it makes
it more likely for the local search to find x∗. For the same reason, a large basin
of attraction around a local but not global optimum y is bad, as the local search
cannot escape y once it gets to its basin of attraction. Thus, the amount and
shape of basins of attraction drastically influence how well local search performs.

We briefly discuss this property of search spaces by considering the case of
only two local maxima – one being the global maximum. We model this problem
via the function TwoMax : {0, 1}n → R defined in [9], where one local maximum
is the all-0s string 0n, and the other one is the all-1s string 1n, which is also the
unique global maximum.4 Both maxima have a basin of attraction that consists

4 The optimum of all test functions in this paper is given by the all-1 string, which
leads to the observation that the optimum can be found in constant time by just
conjecturing this string. Still theoretical research analyzes such functions, because (a)
we can nonetheless observe the behavior of different algorithms on these functions,
giving insights into the algorithms; and (b) these functions are representatives of



Escaping Local Optima With Local Search 7

Algorithm 4: (1+1) MA maximizing fitness function f .
1 x(0) ← individual drawn uniformly at random from {0, 1}n;
2 for t ∈ N do
3 y ← flip each bit in a copy of x(t) with probability 1

n
;

4 z ← apply FILS to y;
5 if f(z) ≥ f(x(t)) then x(t+1) ← z;
6 else x(t+1) ← x(t);

Table 1: Results for run times on TwoMax for different algorithms. Highlights
show good run times.
Algorithm Run Time
RLS ∞ with prob. at least 0.5 [14]
cr-RLS, R = ω(n) expected O(n log(nR))

wr-RLS, R = ω(n) nΩ(n) with prob. at least (1− o(1))0.5
VNS Ω(2n) with prob. at least 0.5

(1+1) MA nΩ(n) with prob. at least 0.5

of an easy slope toward it, and both basins have the same size. More formally,
for all x ∈ {0, 1}n we define

TwoMax(x) =

{
n+ 1, x = 1n;

max{|x|0, |x|1}, otherwise;

which we aim to maximize; see Figure 1a for a depiction. Note that a slightly
different version of TwoMax, containing both 0n and 1n as global maxima, was
already defined and analyzed in [18, 26].

For this setting we get the following theorem about the performance of various
local search algorithms.

Theorem 1. Regarding run times of RLS, cr-RLS, wr-RLS, VNS, and (1+1) MA
on TwoMax, we get Table 1.

Intuitively, since the basin of 0n in TwoMax consists of half the search space,
RLS gets stuck at a non-global maximum with probability 1/2 (by symmetry);
this was noted by [14]. For wr-RLS, VNS and the (1+1) MA, the same reasoning
applies, with the potential to leave again once stuck at the non-global optimum,
but at a stiff price.

Since both basins of TwoMax are large, a cheap way of escaping 0n is to
restart RLS. Choosing a reasonable restart parameter R, the expected run time
is not only finite but also very efficient.

much wider classes of functions with either isomorphic or at least similar properties,
but for a theoretical analysis we restrict ourselves to the clean case where the rule
“more 1s means closer to the optimum” holds.
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Table 2: Results for run times on Jumpd and Cliffd, where d = O(1), d ≥ 2,
for different algorithms. Highlights show good run times.

Algorithm Run Time on Jumpd Run Time on Cliffd

RLS ∞ with prob. 1− o(1) ∞ with prob. 1− o(1)

cr-RLS expected Ω(2n) expected Ω(2n/nd)

wr-RLS, R = Ω(n) nω(n) expected Θ(n3 logR)

VNS expected Θ(nd) expected Θ(nd)

(1+1) MA expected Θ(nd+1) expected Θ(n3)

Note that the constant 0.5 is essentially due to the basin of the non-global
optimum being a 0.5 portion of the search space. The observation about RLS
getting stuck and cr-RLS being efficient can thus be generalized in dependence
of how large the basin of the global optimum is. We omit this generalization.

4 Deceptive Valleys vs. Guiding Information

Given a local optimum, a valley is the area of the search space that has lower
fitness than the local optimum but that has to be crossed to arrive at the global
optimum. We consider crossing two kinds of valleys. Two well-established fitness
functions to model this setting are Jump [8] and Cliff [12], parametrized by d ∈
N, determining the width of the valley. The two functions model two extremes
regarding the shape of the valley: In Jump, the valley contains deceptive fitness
signals, guiding the search back to the local optimum, while in Cliff the fitness
signal points to the global optimum. Formally, for all x ∈ {0, 1}n, let

Jumpd(x) =

{
|x|1 + d, if |x|1 ≤ n− d ∨ |x|1 = n;

|x|0, otherwise;

Cliffd(x) =

{
|x|1, if |x|1 ≤ n− d;

|x|1 − d+ 1/2, otherwise.

Both functions are functions of unitation, i.e., the fitness only depends on the
number of 1s of the evaluated solution (see Figure 1c). Note that there are far
more search points with about n/2 0s than with just a few 0s (where the valley
is), so any local search starts, with high probability, somewhere in the middle
and encounters the valley on the way to the global optimum. As a result, with
high probability, RLS ends up in a local optimum without chance of escaping.
Thus, cold restarts do not lead to successful optimization in polynomial time.

One way to overcome the valley is by finding a local optimum (in distance d
of the global optimum) and then creating the global optimum with a single
mutation. This is what VNS does. Note that, in this case, the exact layout of
the valley is of no importance. This is very different for algorithms which can
explore valleys. The (1+1) MA and wr-RLS both suffer from the presence of
deceptive information, while making good use of guiding information.
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Theorem 2. Regarding run times of RLS, cr-RLS, wr-RLS, VNS, and (1+1) MA
on Jump and Cliff, we get Table 2.

The idea of the proof for the (1+1) MA is as follows. When currently in a
local optimum, with probability Θ(1/n), samples a search point in the valley
just one step closer to the optimum and then, with probability Θ(1/n) runs up
the slope to the global optimum (an otherwise returns to the local optimum).

5 Single Target vs. Multiple Targets

In Section 4, we discuss crossing a valley to reach one specific point. In this
section, we address the question of what changes if there is not just one point
on the other side of the valley, but multiple. To this end, we consider again
two fitness functions; they are variants of Jump and Cliff from Section 4 but
suitably shifted into an area of the search space with more than one point after
the valley. The case of Jump was first considered in [3, 21]. We make the following
formal definitions. Let d ∈ N. For all x ∈ {0, 1}n,

ShiftedJumpd(x) =

{
|x|1 + d, if |x|1 ≤ 3n/4 or |x|1 ≥ 3n/4 + d;

|x|0, otherwise;

ShiftedCliffd(x) =

{
|x|1, if |x|1 ≤ 3n/4;

|x|1 − d+ 1/2, otherwise.

Note that the depictions of the functions in Figure 1d are somewhat misleading:
It looks like there is still only one solution directly after the valley. However,
since the search space is not the integers from 0 to n, but rather all bit strings
{0, 1}n, there are indeed a lot of points on the other side of the valley at a
distance of d to any local optimum: A local optimum has exactly n/4 many 0s,
and flipping any d of those 0s gives a solution on the other side of the valley (i.e.,
a point with a fitness higher than that of the local optimum). Thus, for constant
d, there are indeed Θ(nd) search points just on the other side of the valley.

In Section 4, we show that the VNS and the (1+1) MA behave basically the
same for crossing a deceptive valley: they need to make the jump to the other
side of the valley in one go. In this section, we show a major difference. For
VNS, after finding a local optimum, this algorithm first searches neighborhoods
of distance less than d before finally picking a distance of d for the search. This
implies that a lot of time is wasted searching through unrewarding parts of the
search space. In contrast to this, the global mutation of the (1+1) MA enables
stepping over the valley in one jump of constant probability. This is also the
behavior exhibited by the (1 + 1) EA (see [3]).

Theorem 3. Regarding run times of RLS, cr-RLS, wr-RLS, VNS, and (1+1) MA
on ShiftedJump and ShiftedCliff, we get Table 3.
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Table 3: Results for run times on ShiftedJumpd and ShiftedCliffd, where
d = O(1), d ≥ 2, for different algorithms. Highlights show good run times.

Algorithm ShiftedJumpd ShiftedCliffd

RLS ∞ with prob. 1− o(1) ∞ with prob. 1− o(1)

cr-RLS expected 2Ω(n) expected Ω(2n
(

n
n/4−1

)−1
)

wr-RLS, R = Ω(n) nω(n) Θ(n log(R))

VNS expected Θ(nd−1) expected Θ(nd−1)
(1+1) MA expected Θ(n) expected Θ(n)

6 Iterated Local Optima

In Section 4, we show that non-elitist algorithms can have a big advantage in
crossing fitness valleys. In this section, we point out one drawback of such al-
gorithms, namely that they can fail and essentially have to restart optimization
from a bad part of the search space. Let us suppose, e.g., that the valley is
crossed successfully with probability p and otherwise a complete reoptimization
has to be made. If only a single valley has to be crossed, this success probabil-
ity gives 1/p attempts and reoptimizations in expectation, which might still be
acceptable. However, the success probability decreases exponentially with the
number of optima to be crossed in approaching the global optimum.

This is modeled by the following fitness functions inspired by combining
the Hurdle fitness function [19] and the Ridge fitness function [20]. Hurdle
consists of multiple Cliff-like structures, leading to a sequence of local optima.
Ridge is a fitness function where the algorithm has a path of “width 1” to climb
to go up to the global optimum. In order to make comparisons with only one
local optimum on a ridge, we also define a version of Cliff on a ridge. For any
d ∈ N (denoting the length of the valley) and for all i ∈ [0..n] and x ∈ {0, 1}n,

fd(i) =


2n, if i = n;

fd(i+ 1) + 2d− 3, if d divides n− i;

fd(i+ 1)− 2, otherwise;

HurdleRidged(x) =

{
n+ fd(|x|1), if x = 1|x|10n−|x|1 ;

|x|0, otherwise.

CliffRidged(x) =


|x|0, if x ̸= 1|x|10n−|x|1 ;

n+ |x|1, if |x|1 ≤ n− d;

n+ |x|1 − d+ 1/2, otherwise.

Note that, for i ∈ [0..n], (see also Figure 1b for a depiction)

fd(i) = 2i− (2d+ 1)|{j ∈ [i..n− 1] | d divides n− i}|.

Most search points in HurdleRidge point to the solution 0n; this is the
starting point of the path to the global optimum 1n. Along this path the fitness
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Table 4: Results for run times on HurdleRidged and CliffRidged, where
d = O(1), d ≥ 2, for different algorithms. Highlights show good run times.

Algorithm HurdleRidged CliffRidged

RLS ∞ with prob. 1− o(1) ∞ with prob. 1− o(1)

cr-RLS expected 2Ω(n) expected 2Ω(n)

wr-RLS, R = Ω(n logn) O(n3 + n2 logR) ∀c : Ω(nc) with prob. 1− o(1)

VNS expected Θ(nd+1) expected Θ(nd)
(1+1) MA expected Θ(n3) expected Θ(n3)

is steadily increasing, but once every d steps it goes down d−1, leading to Θ(n/d)
valleys of width d to be crossed.

For elitist algorithms, optimization proceeds by crossing each of the Θ(n)
many local optima one after the other. In contrast to this result, non-elitist
algorithms have a chance to fail crossing a fitness valley. This is not a big problem
if there is only one valley to be crossed, resulting in an acceptable optimization
time on CliffRidge. But on HurdleRidge there are linearly many valleys to
cross, so even some small failure probability per crossing leads almost surely to
failing to optimize. This happens for warm restarts for HurdleRidged. Note
that this result does not generalize to the (1+1) MA, since it can recover from
a failure when trying to cross a valley by reverting to the best-so-far solution.

Theorem 4. Regarding run times of RLS, cr-RLS, wr-RLS, VNS and (1+1) MA
on HurdleRidge and CliffRidge, we get Table 4.

7 Discussion and Conclusion

We have seen many different strategies for overcoming local optima. The first
strategy, applicable to any randomized algorithm, is to just run the algorithm
multiple times (cr-RLS). This leads to a very diverse set of starting points for
local search and can boost the success probability of any algorithm which starts
off with a reasonable success probability. One problem in this area is to decide
when to restart. For RLS, this decision is somewhat easily made, since after about
n log n iterations without improvements, all neighbors have been considered at
least once with high probability, so no further improvement occurs. In practice,
also small improvements might be a sign of stagnation and can be used as a signal
to restart the algorithm. An extreme version of searching with restarts is random
search, where no local optimization is employed. This strategy is popular when
the fitness landscape is extremely rugged (which blocks local optimization) and
different parts of the landscape are very different. Simple grid search optimization
also falls into this category.

In Section 4, we have seen that giving up elitism in favor of being able
to make use of guiding information in the valley might be valuable. Some of
the first algorithms that made use of this idea were the Metropolis algorithm
and Simulated Annealing, which in turn suffer in their ability to climb simple
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gradients; for a theoretical comparison with elitist search heuristics, see [13].
Both the Metropolis Algorithm and Simulated Annealing behave like RLS, but
they accept worse offspring with a certain probability depending on the fitness
difference to the parent. This makes the algorithms sensitive to the fitness values,
in contrast to the non-elitist (and elitist) algorithms considered in this paper
based on restarts (accepting worse moves only rarely). The advantage of rare
(warm) restarts is that other moves can be elitist and thus able to find local
optima. Since there are typically more potential worsening moves than improving
moves, it is vital to reject worsening moves most of the time.

Another strategy for overcoming local optima is to look further than just the
direct neighborhood. This is the idea behind VNS. However, sometimes a lot
of samples are wasted locally before attempting a larger jump as, for example,
(1+1) MA does, see Section 5. This is the principle domain of global search
heuristics, such as the well-studied (1+1) EA. Taking this idea one step further
gives the so-called fast (1 + 1) EA [6], sampling offspring at far distances signif-
icantly more frequently than the (1 + 1) EA, while still sampling search points
at a distance of 1 with constant probability. Another idea is to adjust the search
distance distribution whenever progress stagnates; this idea, so-called stagnation
detection, was analyzed in [7, 21–23]. Note that it is typically fruitful to spend a
lot of time searching the local neighborhood in order to exploit local structure.

The different test functions considered are abstractions of what real-world
optimization problems look like. In particular, they study the different features
in isolation. In Section 6, we discussed a test function where a complex test
function is constructed by iterating the setting of a local optimum. We saw
that in this more complex setting, an algorithm that is successful without this
iterated setting is now unsuccessful. Iterated obstacles are generally no bigger
problem for elitist algorithms than non-iterated obstacles, but non-elitism has to
be applied more carefully. The (1+1) MA provides a hybrid, where non-elitism
is allowed, but the algorithm might revert to the best-so-far search point.

In conclusion, we see that there is no universally best strategy to do so
(which is known for a long time), but properties of the fitness landscape can
inform about what algorithms could be efficient. In this paper, we studied the
connections between the properties of the fitness landscape and the success of
various strategies. In general, since most of the variants do not hamper the
ability of local search to find local optima, it is advisable to use some variant
that can escape local optima. However, the choice of which variant to choose
depends on the fitness landscape of the problem to optimize. Thus, if one has
some knowledge about the optimization problem, that is, one faces a gray-box
and not a black -box scenario, incorporating this knowledge into the choice of
how to escape local optima is a very useful or even crucial step in order to get
best possible results.
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