
Approximating Optimization Problems using EAs on Scale-Free
Networks

Ankit Chauhan
Hasso Plattner Institute

Potsdam, Germany 14482
ankit.chauhan@hpi.de

Tobias Friedrich
Hasso Plattner Institute

Potsdam, Germany 14482
tobias.friedrich@hpi.de

Francesco Quinzan
Hasso Plattner Institute

Potsdam, Germany 14482
francesco.quinzan@hpi.de

ABSTRACT
It has been experimentally observed that real-world networks
follow certain topological properties, such as small-world,
power-law etc. To study these networks, many random graph
models, such as Preferential Attachment, have been proposed.

In this paper, we consider the deterministic properties
which capture power-law degree distribution and degeneracy.
Networks with these properties are known as scale-free net-
works in the literature. Many interesting problems remain
NP-hard on scale-free networks. We study the relationship
between scale-free properties and the approximation-ratio of
some commonly used evolutionary algorithms.

For the Vertex Cover, we observe experimentally that the
(1+1) EA always gives the better result than a greedy local
search, even when it runs for only O(n log(n)) steps. We
give the construction of a scale-free network in which a multi-
objective algorithm and a greedy algorithm obtain optimal
solutions, while the (1+1) EA obtains the worst possible
solution with constant probability.

We prove that for the Dominating Set, Vertex Cover, Con-
nected Dominating Set and Independent Set, the (1+1) EA
obtains constant-factor approximation in expected run time
O(n log(n)) and O(n4) respectively. Whereas, GSEMO gives
even better approximation than (1+1) EA in expected run
time O(n3) for Dominating Set, Vertex Cover and Connected
Dominating Set on such networks.
ACM Reference format:
Ankit Chauhan, Tobias Friedrich, and Francesco Quinzan. 2017.
Approximating Optimization Problems using EAs on Scale-Free
Networks. In Proceedings of GECCO ’17, Berlin, Germany, July
15-19, 2017, 8 pages.
DOI: http://dx.doi.org/10.1145/3071178.3071257

1 INTRODUCTION
Evolutionary Algorithms (EAs) are bio-inspired randomized
optimization techniques and have been shown to be very suc-
cessful when applied to combinatorial optimization problems.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-4920-8/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3071178.3071257

The success of EAs to solve such problems have attracted lots
of attention and there has been extensive research in recent
years to understand the behavior of these algorithms. In early
research, the main concern was to analyze the run time of
EAs like the (1+1) EA for artificial pseudo-boolean functions
[7, 12] as well as for some combinatorial optimization prob-
lems [10, 18, 19]. Most of the results considered the exact
optimization of the function, however many combinatorial
optimization problems are NP-hard. This means one cannot
hope for an exact solution in polynomial time unless P=NP.
Thus, the goal of EAs are to obtain a good approximation
of an optimal solution within a certain amount of time in-
stead of finding a exact optimal solution. In previous years,
some progress has been made for worst-case approximation
analysis of the EAs for the combinatorial problems that can
be achieved in a polynomial number of steps in expectation
[9, 15, 28]. However, for real-world instances, the solution
quality heavily depends on the underlying structural proper-
ties. Consider the example of the traveling salesman problem.
If the graph instance follows the triangle inequality than
the TSP has 3

2 -approximate. On the other hand, TSP for
the general graphs cannot be approximate within constant
factor unless P=NP [27]. This means that on considering
the topological properties of the instances in the algorithms
can obtain a good quality solution for those problems which
are even NP-hard to approximate. In practice, interesting
optimization problems deal with real-world network instances.
Therefore, much effort has been made to identify properties
of real-world networks to bridge the gap between theory and
practice. A wide range of real-world networks, like Internet
topologies, the web, power grids, protein-protein interaction
graphs, social networks and many other networks high clus-
tering coefficient, small diameter, almost power-law degree
distribution and so on [1, 8, 14, 16, 20, 24, 26]. Thus, con-
sidering these properties in the analysis of algorithms gives a
better understanding about the behavior of the algorithm on
real-world networks.

Recently, Cohen et al. [6] consider stability properties of
real-world instances and show that simple local search works
well for clustering problems on such instances. In this work,
we follow the same line of research. Instead of considering
stability properties, we consider networks with power-law
degree distribution, that is, scale-free networks. A power-
law degree distribution means that the number of vertices
of degree k in the network is proportional to k−β , where
β > 1 is the power-law exponent, a constant inherent to the
network. Real-world networks, however, usually exhibit slight

235

GECCO ’17, July 15-19, 2017, Berlin, Germany Ankit Chauhan, Tobias Friedrich, and Francesco Quinzan

Problem PLB-graphs General graphs

run time ratio run time ratio

MVC O(n logn) Θ(1) O(n logn) O(n)
MDS O(n logn) Θ(1) O(n logn) O(n)
CDS O(n logn) Θ(1) O(n logn) O(n)
MIS O(n4) Θ(1) O(n4) ∆+1

2
Table 1: Comparison of the approximation ratios achieved by
(1+1) EA on networks with PLB-U property and power-law
exponent β > 2 and on general graphs. While on general
graphs, (1+1) EA takes polynomial many steps in expecta-
tion to achieve polynomial-approximation, (1+1) EA achieve
constant-approximation on networks with PLB-U property
and power-law exponent β > 2 within expected polynomial
many steps.

deviation from the power-laws. To allow this deviation Brach
et al. [3] identify the deterministic properties for real-world
networks that capture the degree distribution of many real-
world networks. They define buckets containing vertices of
degrees

[
2i, 2i+1).If the number of vertices in each bucket is

at most as high as for a power-law degree sequence, a network
is said to be power-law bounded. We denote this property
by PLB-U. Brach et al. also define PLB neighborhoods. A
network has PLB neighborhoods if the degree distribution
of degrees of neighbor of each vertices in the network also
obey the power-law. In other words, for every vertex of
the degree k this property gives an upper-bound on the
number of neighbors of the degree at least k. We denote
this property by PLB-N. The PLB-N property is closely
related to the degeneracy of the graphs. We say a graph
is d-degenerate if every subgraph has vertex of degree at
most d. Degeneracy of the network is d upper-bounded by
the maximum value of PLB-N among all buckets. Brach et al.
exploit these properties and prove that algorithms for page
rank, maximum clique counting triangle etc. run faster on
power-law bounded networks than the known worst case lower
bound for the graph. Furthermore, Chauhan et al. [5] show
that a simple greedy algorithm obtain a Θ(1)-approximation
for Minimum Dominating Set (MDS), Minimum Connected
Dominating Set (CDS), Minimum Vertex Cover (MVC), and
Maximum independent Set (MIS). On the contrary, a simple
greedy algorithm achieves Ω(ln(∆))-approximation for the
MDS, CDS and ∆-approximation for MIS on general graphs
where ∆ is the maximum degree of the graph [25, 27]. The
PLB-U property alone captures a much broader class of graph
hence Chauhan et al. define PLB-L, which gives lower-bound
for the number of vertices in each bucket to restrict networks
to real-world networks. Chauhan et al. show that even if the
network have all three properties, PLB-(U,L,N) computing
MDS, MVC and MIS is APX-Hard. A formal definition of
all three properties can be found in section 2.

We look at different instances of networks with
PLB-(U,L,N) properties with power-law exponent β > 2,

Problem PLB-graphs General graphs

run time ratio run time ratio

MVC O(n3) Θ(1) O(n3 logn) O(logn)
MDS O(n3) Θ(1) O(n3 logn) O(logn)
CDS O(n3) Θ(1) O(n3 logn) O(logn)

Table 2: Comparison of the approximation ratios achieved
by GSEMO on networks with PLB properties and power-law
exponent β > 2 and on general graphs. While on general
graphs, GSEMO takes polynomial many fitness evaluation in
expectation to achieves logarithmic-approximation, GSEMO
achieve constant-approximation on networks with PLB prop-
erties and power-law exponent β > 2 within polynomial many
fitness evaluation in expectation.

and experimentally observed that the (1+1) EA always finds
a better solution for MVC than the degree-based greedy algo-
rithm on the different instances with these properties. This
observation raises a serious question: does the (1+1) EA
always give a better solution than greedy on the networks
with PLB-(U,L,N)?

We theoretically analyze EAs for well-known NP-hard prob-
lems: MDS, MVC, MIS and CDS. The MVC has been studied
extensively [21, 22], Friedrich et al. [9] presented a instance of
bipartite graph in which (1+1) EA can obtain arbitrary bad
approximation in expected polynomial time. To overcome
this, Friedrich et al. provide a multi-objective approach for
MVC and prove that the GSEMO can obtain an optimal solu-
tion in the expected polynomial time for that instance. Also,
by using GSEMO they prove the approximation of O(logn)
for a more general problem, minimum set cover. Bäck and
Khuri [2] give a single objective EA for MIS and claim its
superiority by experimental observations. Peng [23] analyzes
the (1+1) EA for the maximum independent set, and proves
that the (1+1) EA obtains a ∆+1

2 -approximation within ex-
pected runtime of O(n4). We analyze the (1+1) EA for all
four above-mentioned problems. We prove that for MDS,
MVC and CDS the (1+1) EA gives O(1)-approximation
within the expected runtime O(n logn). Contrary to the
experiments results, we give a worst case example of network
with PLB-(U,L,N) properties where (1+1) EA can obtain
the worst possible solution with O(1)-probability and the
greedy algorithm obtains the optimal solution. Since the
(1+1) EA can obtain such a bad solution, we analyze the
multi-objective EAs on networks with PLB-(U,L,N). We
study the GSEMO for the MDS, MVC and CDS on the net-
works with PLB-(U,L,N). We prove that the GSEMO gives a
better approximation than the (1+1) EA in expected runtime
of O(n3). Also, as a byproduct of the analysis of GSEMO,
we present an improvement over the result of Chauhan et al.
[5] for the approximation on MDS and CDS. A summary of
these results is given in Table 1 and Table 2.

236

Approximating Optimization Problems using EAs on Scale-Free Networks GECCO ’17, July 15-19, 2017, Berlin, Germany

Algorithm 1 (µ+ 1) EA
1: choose population Pµ ⊆ {0, 1} u.a.r. of size µ
2: while convergence criterion not met do
3: choose parent x ⊆ Pµ u.a.r.
4: create offspring y by flipping bits of x w.p. 1

n
5: discard weakest element in Pµ ∪ {y}
6: return fittest element in Pµ

Algorithm 2 GSEMO
1: choose x ∈ {0, 1}n uniformly at random
2: add x to Pareto front P
3: while convergence criterion not met do
4: Choose x ∈ P uniformly at random
5: create y by flipping bits of x with probability 1

n
6: if y is not dominated by any point in P then
7: add y to P
8: delete all solutions in P dominated by y.
9: return P

2 PRELIMINARIES
In this section, we introduce the algorithms considered in
this paper, and define the basic definitions that are used later
in the proofs. We consider undirected graphs G = (V,E)
without loops, where V is the set of vertices and E is the
set of edges in the graph with n := |V |. Throughout the
paper we use deg(v) to denote the degree of the vertex v ∈
V , ∆ for maximum degree of the graph and OPT for the
optimal solution set. For a S ⊆ V we then define vol(S) =∑
i∈S deg(i).

2.1 Algorithms
The (µ+ 1) EA is a randomized algorithm inspired by the
process of natural selection (cf. Algorithm 1). After an
initial population of size µ is chosen uniformly at random
(u.a.r), the (µ + 1) EA chooses a parent x from Pµ u.a.r.
An offspring y is then generated, by flipping all bits of x
independently with probability 1/n. The fitness is then com-
puted for all elements of Pµ ∪ {x}, and the weakest one is
discarded. The (1+1) EA is an instance of the (µ+ 1) EA,
with µ = 1. The (1+1) EA is one of the simplest instances
of a single-objective evolutionary algorithm.
The GSEMO algorithm is a multi-objective evolutionary
strategy (cf. Algorithm 2). As in the case of the (1+1) EA,
this heuristic chooses an initial solution u.a.r. from the ob-
jective space, and stores it in the Pareto front. An element
x is then chosen u.a.r. from the Pareto front P , and a new
solution y is then computed from x by flipping each bit in-
dependently with probability (w.p.) 1/n. If y is not strongly
dominated by any other solution in the Pareto front, the y is
saved as a new solution, and all elements which are strongly
dominated by y are discarded.
Local search algorithms are iterative improvement algorithms
(cf. Algorithm 3). Again, the first step is to choose a so-
lution u.a.r. Then, a second solution is chosen u.a.r. in a

Algorithm 3 Local Search Algorithm
1: choose x ∈ {0, 1}n u.a.r.
2: while (termination condition not satisfied) do
3: choose y in a neighbourhood of x u.a.r.
4: if f(y) > f(x) then
5: x← y

6: return x

Algorithm 4 Greedy Algorithm for vertex cover on G = (V,E)
1: S ← ∅
2: while not all edges are covered do
3: add vertex s ∈ V \ S with highest degree to S
4: return S

neighborhood of x. Again, the two solutions are compared
and the best one is stored in memory. The last algorithm
we take into account for the analysis is a deterministic one
(cf. Algorithm 4). This algorithm is specifically designed to
find a minimum vertex cover of an input graph. It iteratively
adds nodes, which have highest degree to the cover, until
all edges are covered. For the randomized algorithms the
run time is always counted in terms of the number of fitness
evaluations, and for the deterministic processes the run time
is given in the number of steps.

2.2 Technical definitions
Particularly important for the analysis is the power-law dis-
tribution hypothesis. We formally frame this concept, by
giving some related definitions (cf. Brach et. al. [3] and
Chauhan et. al. [5]). Many of these concepts have been
informally introduced in the introduction.

Definition 2.1. A graph G is power law upper-bounded
(PLB-U) for some parameters 1 < β = O(1) and t ≥ 0, and
universal constant c1 > 0 if for every integer d ≥ 0, the
number of vertices v, such that deg(v) ∈

[
2d, 2d+1) is at

most

c1n(t+ 1)β−1
2d+1−1∑
i=2d

(i+ t)−β .

Definition 2.2. A graph G is power law lower-bounded
(PLB-L) for some parameters 1 < β = O(1) , t ≥ 0 and
universal constant c2 > 0 if for every integer blog dminc ≤
d ≤ blog ∆c, the number of vertices v, such that deg(v) ∈[
2d, 2d+1) is at least

c2n(t+ 1)β−1
2d+1−1∑
i=2d

(i+ t)−β .

We also consider the definition of PLB neighbourhood,
given below. Again, we follow the work of Brach et. al. [3].

Definition 2.3. A graph G has PLB neighborhoods
(PLB-N) if for every vertex v of degree k, the num-
ber of neighbors of v of degree at least k is at most

237

GECCO ’17, July 15-19, 2017, Berlin, Germany Ankit Chauhan, Tobias Friedrich, and Francesco Quinzan

c3 max
(

logn, (t+ 1)β−2k
∑n−1
i=k i(i+ t)−β

)
where c3 > 0

is constant and 1 < β = O(1) , t ≥ 0 are parameters.

We conclude with a definition that describes how the
solution of an optimization problem is approximated.

Definition 2.4. An algorithm is an α-approximation for
problem P if it produces a solution set S with α ≥ |S|

|OPT| if

P is a minimization problem and with α ≥ |OPT|
|S| if P is a

maximization problem.

Useful for the analysis is the following lemma. The lemma
gives the upper-bound on the

∑
i∈S h(deg(S))|S| by using

the highest possible volume in the PLB-U graph. The reader
may find a proof in Chauhan et. al. [5].

Lemma 2.5 (Potential Volume Lemma). Let G be a
graph without loops and with the PLB-U property for some
β > 2, some constant c1 > 0 and some constant t ≥ 0. Let S
be a solution set for which we can define a function g: R+ → R
as continuously differentiable and h(x) := g(x) + C for some
constant C such that

(1) g non-decreasing,
(2) g(2x) ≤ c · g(x) for all x ≥ 2 and some constant

c > 0,
(3) g′(x) ≤ g(x)

x ,

then it holds that
∑

x∈S h(deg(x))
|S| is at most

c

(
1 + β − 1

β − 2
1

1−
(
t+2
t+1
)1−β

)
g

((
c1
β−1
β−2

n
M

· 2β−1 · (t+ 1)β−1
) 1
β−2
)

+ C,

where M(n) ≥ 1 is chosen such that
∑
x∈S deg(x) ≥M .

3 THE MINIMUM DOMINATING SET
In this section we consider two problems commonly found in
combinatorial optimization. Given a graph G = (V,E), we
consider a minimum dominating set (MDS) problem, this
consists of finding a subset S ⊆ V of minimum size such
that for each v ∈ V either v or a node adjacent to v is in
S. Similarly, the minimum vertex cover (MVC) problem
consists of finding a subset S ⊆ V of minimum size such that
each edge e ∈ E is incident to at least one node from S.

3.1 Single-objective optimization
In order to implement the (1+1) EA to obtain a solution
for the MDS and MVC, we first need to give the encoding
of solution and the definition of fitness functions. For each
S ⊆ V , we can use (x1, x2, · · · , xn) ∈ {0, 1}n to represent it,
where n is the number of vertices in the graph G(V,E). We
set bit xi = 1 iff. the vertex vi is in S, otherwise xi = 0. The
fitness function is defined as

F (x) = n2u(x) + |x|1

where u(x) is the number of uncovered nodes, and |x|1 gives
the number of 1s in the current solution. The solution space
can be partitioned into two sets according to the value of
fitness function, as shown below.

S1 = {x ∈ {0, 1}n : x is infeasible and F (x) ≥ n}

S2 = {x ∈ {0, 1}n : x is feasible and F (x) < n}
Because of the weight on u(x), the (1+1) EA first tries to
find a feasible solution than it will minimize accordingly. We
can use the same fitness function for the vertex cover, with
the difference that u(x) returns the number of uncovered
edges, instead of uncovered vertices. The following theorem
holds.

Theorem 3.1. For the PLB-U graphs with parameters
β > 2, t ≥ 0 consider the quantities

aβ,t := 1 + β − 1
β − 2

1

1−
(
t+2
t+1
)1−β

bc1,β,t :=
(
c1
β−1
β−2 · 2

β · (t+ 1)β−1
) 1
β−2 + 1

Then the (1+1) EA find a
(
2 · aβ,t · bc1,β,t

)
-approx dominat-

ing set in expected O(n logn).

Proof. (Phase 1: finding feasible solution) We first ob-
serve that the value of F (x) will never increase during run
time. Suppose that the current solution x belongs to the S1
portion of the objective space, let ` be the number of vertices
that incident on at least one of the uncovered vertices. These
` vertices are such that if all are flipped, then the u(x) goes to
0. Now let Si1 contains all search points with i accepted bits
from these ` bits. The probability that (1+1) EA mutates
the solution such that it changes Si1 to Si+1

1 is given by

pi = l − i
n

(
1− 1

n

)n−1
≥ l − i

ne

Hence, the expected waiting time until a solution with all `
bits is in solution is upper bounded by

∑l
i=1

1
i = O(n log `).

Also, since 1 ≤ l ≤ n hence expected time in which (1+1) EA
produce a feasible solution for dominating set is upper
bounded by O(n logn).
(Phase 2: removing redundant vertices) Let there be p many
vertices which are redundant. By the same argument as in
(Phase 1) they can be done O(n logn) fitness evaluations. Let
A be the solution produced by the (1+1) EA after (Phase 2).
This solution is an α−approximation of OPT. To give the
bound on the approximation ratio α we use Lemma 2.5. Con-
sider a worst case instance where (1+1) EA obtains exactly
α-approximation solution. This means,

|A|
|OPT| = α

Since the solutions produced after (Phase 2) of the (1+1) EA
have no redundant nodes, this means that |A| ≤ n− |OPT|.

n− |OPT|
|OPT| ≥ α

238

Approximating Optimization Problems using EAs on Scale-Free Networks GECCO ’17, July 15-19, 2017, Berlin, Germany

Figure 1: Worst Case graph G for the (1+1) EA with ∆ =
n

1
β−1 + 1 and |V | = N = Θ(n). V1 is the set of red vertices

and V2 is the set of blue vertices. On this graph a greedy
search beats the (1+1) EA.

This is the case when every neighbor of the node in the
optimal solution is taken as the solution by the (1+1) EA

α ≤ n− |OPT|
|OPT| ≤

∑
i∈OPT deg(i)
|OPT| (1)

As
∑
x∈OPT deg(x) ≥ n

2 than by taking S = OPT we have
that h(deg(x)) = deg(x), g(x) = h(x), and that M = n

2 .
Since g(x) follows the all three properties of Lemma 2.5 we
get, α ≤ 2 · aβ,t · bc1,β,t

�

We conclude the theorem 3.1 by giving a worst example
for the (1+1) EA. We give a graph G as described below (cf.
Figure 1).

(1) for all j ∈ {2, · · · , log2(∆ − 1)} construct⌈
n
∑2j+1−1
i=2j i−β

⌉
many star graphs where degree of

the center vertex is 2j .
(2) Let ` be the total no. of star graphs, then pick an

arbitrary vertex vi from the star i and add an edge
between vi and center vertex of star (i+ 1) (mod `).
This step ensures that the graph is connected.

We use the lemma below to prove that the graph G has
PLB-(U,L,N) properties (cf. Chauhan et. al. [5]).

Lemma 3.2. Let 1 ≤ a ≤ b/2, for a, b natural numbers,
and let c > 0 be a constant. Then

a−c ≤ c
1−2−c

b−1∑
i=a

i−c−1.

From Lemma 3.2 the following theorem follows.

Theorem 3.3. G is a N vertices graph have PLB-(U,L,N)
properties with parameter β, t = 0, c1 = 2

1−2−β+1 , c2 =
(41−β − 51−β)p and c3 = 1 where N = Θ(n) and p =(

2 · 41−β
(

4
β−2 + 1

β−1

))−1
.

A proof of this theorem can be found in full version [4].
We use this result to prove the following statement.

Theorem 3.4. For the PLB-(U,L,N) graph G (1+1) EA
with probability O(1) obtains worst possible dominating set of

size n−|OPT| within the expected polynomial number of steps.
In particular, the expected time to produce an dominating set
better than n− |OPT| is exponential.

The idea of the proof is to first divide the vertices of G in
two sets, V1 = {v ∈ V | deg(v) > 3}, V2 = {v ∈ V | deg(v) ≤
2}. We then distinguish two phases. First, we investigate the
probability that the (1+1) EA takes V2 as the dominating
set with at least one vertex of |V1| missing in the solution.
Then, we give the lower bound on the probability that all
the vertices of the |V1| will be removed to obtain a local
optima. A formal proof can be found in the full version [4].
The corollary below follows from the theorem 3.1.

Corollary 3.5. For the PLB-U graphs with parameters
β > 2, t ≥ 0 1+1-EA produces

(
2 · aβ,t · bc1,β,t

)
-approx

vertex cover in expected O(n logn) time.

Since a dominating set in the graph G is also a vertex
cover, all hereby presented result generalize to the MVC.

3.2 Multi-objective optimization
We consider GSEMO, which is the multi-objective counter-
part of the (1+1) EA. The fitness function is defined as

F (x) = (u(x), |x|1)

where u(x) is the number of uncovered vertices, and |x|1 the
number of 1s in input string. The following lemma holds.

Lemma 3.6. Given a graph G having a minimum domi-
nating set of size OPT and with nk as the number of non
dominated vertices after taking k nodes in the solution, then
at each step there exists a node v such that after taking node

v in solution there holds nk ≤ n
(

1− 1
|OPT|

)k
.

Proof of Lemma 3.6 can be found in the full version [4].
We use this result to prove the following result.

Theorem 3.7. The expected time until GSEMO has ob-
tained ln 2+ ln

(
aβ,t · bc1,β,t

)
+1-approximation for dominat-

ing set on PLB-U graphs with β > 2, t ≥ 0 is O(n3).

A formal proof can be found in the full version [4].

Corollary 3.8. The expected time of until GSEMO has
obtained the optimal solution on the graph G is O(n3).

Proof. The corollary is a consequence of theorem 3.7 and
the fact that the greedy output V1 as solution of the graph G
which is also a optimal solution. �

Corollary 3.9. The expected time until GSEMO has ob-
tained ln 2+ln

(
aβ,t · bc1,β,t

)
+1-approximation for minimum

vertex cover on PLB-U graphs with β > 2, t ≥ 0 is O(n3).

Again, the hereby presented results can be easily gener-
alised to the MVC.

239

GECCO ’17, July 15-19, 2017, Berlin, Germany Ankit Chauhan, Tobias Friedrich, and Francesco Quinzan

4 THE CONNECTED DOMINATING SET
We consider the following problem. Given a Graph G =
(V,E), a connected dominating set is a minimum connected
subset S ⊆ V , such that for each v ∈ V either v or a neighbor
of v is in S. The connected dominating set problem (CDS)
consists of finding a minimal connected dominating set.

4.1 Single-objective optimization
We study the optimization process for the CDS with the
(1+1) EA. The fitness function is defined as

F (x) = n2(u(x) + (p(x)− 1)) + |x|1,
where u(x) is the number of uncovered vertices, and p(x) is
the number of connected components in the complete sub-
graph induced by the chosen solution. Again, the goal is to
minimize F (x). It can be observed that the x is a connected
dominating set if and only if u(x) = 0 and p(x) = 1. The
algorithm tends to reach a state s.t. p(x) − 1 + u(x) = 0,
and then it removes unnecessary nodes. Again, the objective
space can be divided into two sets.

S1 = {x ∈ {0, 1}n : x is infeasible and F (x) ≥ n− 2}
S2 = {x ∈ {0, 1}n : x is feasible and F (x) < n− 2}

Theorem 4.1. (1+1) EA obtains
(
2 · aβ,t · bc1,β,t

)
-

approximation connected dominating set in expected
O(n logn) run time.

The argument to prove this theorem is identical to the one
given for Theorem 3.1.

4.2 Multi-objective optimization
To implement the GSEMO we view the fitness F (x) described
above as two objective functions F (x) = (F1(x), F2(x)), with
F1(x) = |x|1 and F2 = u(x) + p(x). Note that there holds
minx{F2(x)} = 1. From this point of view, once a covering
has been found, the algorithm tries to join the dominating
set found at each iteration. In fact, GSEMO tries to add a
vertex which will either dominate the maximum number of
vertices or connect the maximum number of vertices already
in solution. The following Lemma 4.2 holds.

Lemma 4.2. Let G be a connected graph, OPT be the
optimal connected dominating set of the solution and fi the
value of u(x)+p(x) after taking i-many vertices as a solution.
Then there exist a vertex such that

fi ≤ fi−1 −
fi−1
|OPT| + 1

≤ f0

(
1− 1
|OPT|

)i
+
i−1∑
j=1

(
1− 1
|OPT|

)j
A proof of this lemma is given by Guha et. al. [11]. The

following theorem holds.

Theorem 4.3. The expected time until GSEMO has ob-
tained ln 2+ln

(
aβ,t · bc1,β,t

)
+1-approximation for minimum

connected dominating set on PLB-U graphs with β > 2, t ≥ 0
is O(n3).

A proof of this theorem can be found in the full version
[4].

5 MAXIMUM INDEPENDENT SET
For a graph G = (V,E), the maximum independent set (MIS)
is a subset S ⊆ V of maximum size, such that no two different
vertices u, v ∈ S are adjacent.

5.1 Single-objective optimization
To implement the (1+1) EA we use the fitness function used
by Bäck and Khuri [2], which is defined as

F (x) = |x|1 − n2
n∑
i=1

xi

n∑
j=1

xjeij

where eij is 1 if there is an edge (vi, vj). In this case, the
objective of the (1+1) EA is to maximize the F (x). The
first part of the fitness function gives the number of ver-
tices in the solution. It can be observe that the second part
n
∑n
i=1 xi

∑n
j=1 xjeij = 0 if and only if the vertices from

the first part give an independent set. First the (1+1) EA
adds vertices in the solution, in order to obtain a consistent
solution. Then, it will try to remove points to maximize the
fitness. To perform the analysis, we show that (1+1) EA
can simulate the 3-flip neighborhood algorithm for maxi-
mum independent set. Khanna et al. [13] proved that 3-flip
neighborhood produces ∆+1

2 -approx solution for the inde-
pendent set. We first prove that the 3-flip neighborhood is a
constant-approx for the PLB-Graphs.

Lemma 5.1. For the PLB-U graphs with parameters
β > 2, t ≥ 0 a 3-flip neighborhood local search
produces a

(
aβ,t · bc1,β,t

)
-approx independent set, where(

aβ,t · bc1,β,t

)
≥ 1.

A proof of this lemma can be found in the full version [4].
We will use again the fitness partitioning method to prove
the theorem below. By using the Lemma 5.1, we partition
the objective space in three parts.

S1 = {x ∈ {0, 1}n : x is infeasible and F (x) < 0}
S2 = {x ∈ {0, 1}n : x is feasible and

0 ≥ F (x) <
(
aβ,t · bc1,β,t

)
+ 1}

S3 = {x ∈ {0, 1}n : x is feasible solution and

F (x) ≥
(
aβ,t · bc1,β,t

)
+ 1}

The following theorem holds.

Theorem 5.2. For the PLB-U graphs with parameters
β > 2, t ≥ 0 (1+1) EA produces

(
aβ,t · bc1,β,t

)
+ 1-approx

independent set in expected O(n4) time.

Proof. Let there be ` many nodes in the solutions, whose
deletion will make the solution from S1 to S2. By the same
argument as in theorem 3.1, a solution x can be changed into
a feasible one in O(n logn) fitness evaluations.
If we assume that the current solution is in S2, then there

240

Approximating Optimization Problems using EAs on Scale-Free Networks GECCO ’17, July 15-19, 2017, Berlin, Germany

exists a 3-bit flip operation. The probability that the
(1+1) EA performs a 3-bit flip operation is bounded by
1
n3

(
1− 1

n)
)n−3 ≥ 1

en3 . It can be observe that when the
solution x ∈ S2 then 1 ≤ F (x) ≤ n− 1. Thus, there are at
most n 3− bit flips. It takes at most O(n4) on expectation
to perform all valid 3-bit flips. Hence it takes O(n4) to bring
the solution from S2 to S3. �

6 EXPERIMENTS
We experimentally compare the performance of the (1+1) EA
and greedy algorithm on scale-free networks. We consider
both artificially generated graphs and one downloaded from
the Stanford Network Analysis Project (SNAP). We consider
theMinimum Vertex Cover problem. As previously described,
for a given graph G = (V,E), with n nodes, a solution is
stored in memory as a pseudo-boolean array, its length is the
number of vertices of the graph. In all cases, the quality of
the solution is evaluated against the following function

f(x) = n2u(x) + |xi|1 (2)

with u(x) returning the number of uncovered edges. In all
cases we perform non-linear regression to infer asymptotic
trend. The fitting is performed using the nonlinear least-
squares Marquardt-Levenberg algorithm implemented by the
”lm” command of R 3.2.2 GUI 1.66 Mavericks build (6996).
We perform a t-Student Test on the each model, to determine
whether it outperforms “random noise” as a predictor. We
look at the corresponding p-value, and consider the model
valid only for p-value < 0.05. We accept variables such
that the probabilities p|t| of obtaining a corresponding value
outside the confidence interval are p|t| < 0.1−10. Thus all
variables have a very high level of significance. All tests are
preformed on Ubuntu 14.04.4 LTS, and implemented as Unix
command line executable.

In the first set of experiments we compare the (1+1) EA
with the greedy algorithm on artificially generated scale-free
graphs. For a given number of nodes n, we generate a random
graph with power-law distribution exponent α = 2.5. We
then let the (1+1)-EA run for Θ(n log(n)) steps. In all cases,
the (1+1) EA is able to find a covering. We consider 102

runs and we look at the sample mean of the solution size.
We then compare it with the fitness of the solution found
deterministically with the greedy algorithm. The results are
displayed in Figure 2. We clearly see that, for increasing
number of nodes, the (1+1) EA outperforms the greedy
search. In fact, in the case of the (1+1) EA the fitting curve is
Θ(
√
n), while in the case of greedy the best solution has linear

size Θ(n) in the number of nodes. Given the positive results
for the (1+1) EA, we consider the more generic (µ+ 1) EA
and test it with a real social network. We consider the
General Relativity and Quantum Cosmology collaboration
network, from the e-print arXiv (cf. Leskovec et. al. [17]).
It covers scientific collaborations between authors submitted
to General Relativity and Quantum Cosmology category. If
an author i co-authored a paper with author j, the graph
contains a undirected edge from i to j. It consists of 5× 103

Figure 2: Run time for the (1+1) EA and greedy algorithm on
artificially generated scale-free graphs, to find an approxima-
tion of the minimum vertex cover. We let the (1+1) EA run
for Θ(n log(n)) steps, and take the sample mean of 102 runs.
The greedy algorithm stops as soon as covering is generated.
The fitting curves are obtained via non-linear regression, and
the shading is proportional to the sample standard deviation.
We see that the (1+1) EA beats the greedy algorithm on all
graphs.

nodes and 14 × 105 edges. For a given population size µ,
we let the (µ+ 1) EA run for Θ(n log(n)) fitness evaluations.
Since a large population requires more fitness evaluations at
each step, then there is a trade-off between population size
and number of steps. In Figure 3 we display the fitness of the
best solution found, for a given population size. We display
both the size of the covering and the number of uncovered
edges. We see that for increasing µ, more and more edges
are left uncovered, and the covering size decreases. Thus,
with fitness defined as in Equation 2 the (µ + 1) EA does
not yields a significant advantage in comparison with the
(1+1) EA. However, a lighter weight on the u(x) may give a
different optimal µ.

7 CONCLUSION
In this paper, we looked at the approximation ratio and run
time analysis of both single- and multi-objective EAs, for well
known NP on the graphs with deterministic PLB properties,
and the power-law exponent β > 2. In sections 3 and 4 we
analyze the (1+1) EA and GSEMO for the maximum domi-
nating set, maximum vertex cover and connected dominating
set problems. We show that the (1+1) EA and GSEMO
obtain constant-approximation within polynomial run time.
In section 5 we analyze the (1+1) EA for the maximum
independent set problem and show that it obtains constant
approximation ratio within expected polynomial steps.

In section 6 we observe experimentally that the (1+1) EA
always produces better results than the greedy algorithm for

241

GECCO ’17, July 15-19, 2017, Berlin, Germany Ankit Chauhan, Tobias Friedrich, and Francesco Quinzan

Figure 3: Run time for the (µ+1) EA on a real-world network.
We consider a scale-free network from the Stanford Network
Analysis Project (SNAP), which has 5×103 nodes and 14×105

edges. We let (µ + 1) EA run for Θ(n log(n)) fitness evalua-
tions. The dashed curves are obtained via non-linear regres-
sion, and the shading is proportional to the sample standard
deviation. We see that the covering size decreases, and that
the number of uncovered edges increases.

the minimum vertex cover problem. To this end, we give a
worst case instance with the PLB properties, where greedy
algorithm obtain an optimal solution, but the (1+1) EA
gives worst possible solution with constant probability. We
conclude that the EAs for the above-mentioned problems on
the graphs with PLB properties and β > 2, obtain better ap-
proximation than the known worst-case approximation. This
implies that topological properties of real-world instances play
an important role in the performance of EAs. On the other
hand, the worst-case example indicates that just PLB proper-
ties are not enough to always obtain a better results than the
greedy algorithm. Therefore, other properties of real-world
networks may affect the EAs run time.

We plan to further explore the interplay between topo-
logical properties and the run time analysis of single- and
multi-objective algorithms in the future.

REFERENCES
[1] L. Adamic, O. Buyukkokten, and E. Adar. A social network

caught in the web. First Monday, 8, 2003.
[2] T. Bäck and S. Khuri. An evolutionary heuristic for the maximum

independent set problem. In Proc. of 1st WCCI, pages 531–535,
1994.

[3] P. Brach, M. Cygan, J. Lacki, and P. Sankowski. Algorithmic
complexity of power law networks. In Proc. of 27th SODA, pages
1306–1325, 2016.

[4] A. Chauhan, T. Friedrich, and F. Quinzan. Approximating Op-
timization Problems using EAs on Scale-Free Networks. ArXiv
e-prints, 1704.03664, 2017.

[5] A. Chauhan, T. Friedrich, and R. Rothenberger. Greed is good
for deterministic scale-free networks. In Proc. of 36th FSTTCS,
pages 33:1–33:15, 2016.

[6] V. Cohen-Addad and C. Schwiegelshohn. One Size Fits All :
Effectiveness of Local Search on Structured Data. ArXiv e-prints,
1701.08423, 2017.

[7] S. Droste, T. Jansen, and I. Wegener. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science,
276:51 – 81, 2002.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In Proc. of SIGCOMM,
pages 251–262, 1999.

[9] T. Friedrich, N. Hebbinghaus, F. Neumann, J. He, and C. Witt.
Approximating covering problems by randomized search heuristics
using multi-objective models. In Proc. of GECCO, pages 797–804,
2007.

[10] O. Giel and I. Wegener. Evolutionary algorithms and the maxi-
mum matching problem. In Proc. of 20th STACS, 2003.

[11] S. Guha and S. Khuller. Approximation algorithms for connected
dominating sets. Algorithmica, 20:374–387, 1998.

[12] T. Jansen and I. Wegener. Evolutionary algorithms - how to cope
with plateaus of constant fitness and when to reject strings of the
same fitness. IEEE Transactions on Evolutionary Computation,
5:589–599, 2001.

[13] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic
versus computational views of approximability. SIAM Journal
on Computing, 28:164–191, 1998.

[14] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawl-
ing the web for emerging cyber-communities. Computer Networks,
31:1481–1493, 1999.

[15] X. Lai, Y. Zhou, J. He, and J. Zhang. Performance analysis
of evolutionary algorithms for the minimum label spanning tree
problem. IEEE Transactions on Evolutionary Computation,
18:860–872, 2014.

[16] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:
Densification laws, shrinking diameters and possible explanations.
In Proc. of 11th KDD, pages 177–187, 2005.

[17] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM Transactions on
Knowledge Discovery from Data, 1, 2007.

[18] F. Neumann. Expected runtimes of a simple evolutionary algo-
rithm for the multi-objective minimum spanning tree problem.
European Journal of Operational Research, 181:1620 – 1629,
2007.

[19] F. Neumann and I. Wegener. Randomized local search, evolu-
tionary algorithms, and the minimum spanning tree problem.
Theoretical Computer Science, 378:32–40, 2007.

[20] M. E. J. Newman. The structure and function of complex networks.
SIAM Review, 45:167–256, 2003.

[21] P. S. Oliveto, J. He, and X. Yao. Evolutionary algorithms and
the vertex cover problem. In Proc. of CEC, pages 1870–1877,
2007.

[22] P. S. Oliveto, J. He, and X. Yao. Analysis of population-based
evolutionary algorithms for the vertex cover problem. In Proc.
of CEC, pages 1563–1570, 2008.

[23] X. Peng. Performance analysis of (1+1) EA on the maximum
independent set problem. In Proc. of 1st ICCCS, pages 448–456,
2015.

[24] A. G. Phadke and J. S. Thorp. Computer Relaying for Power
Systems. John Wiley & Sons, Ltd, 2009.

[25] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K. Ko. A greedy ap-
proximation for minimum connected dominating sets. Theoretical
Computer Science, 329:325–330, 2004.

[26] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 393:440–442, 1998.

[27] D. P. Williamson and D. B. Shmoys. The Design of Approxi-
mation Algorithms. Cambridge University Press, New York, NY,
USA, 1st edition, 2011.

[28] C. Witt. Worst-Case and Average-Case Approximations by
Simple Randomized Search Heuristics, pages 44–56. 2005.

242

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Algorithms
	2.2 Technical definitions

	3 The Minimum Dominating Set
	3.1 Single-objective optimization
	3.2 Multi-objective optimization

	4 The Connected Dominating Set
	4.1 Single-objective optimization
	4.2 Multi-objective optimization

	5 Maximum Independent Set
	5.1 Single-objective optimization

	6 Experiments
	7 Conclusion
	References

