
Evolutionary Diversity Optimisation in Constructing Satisfying
Assignments

Adel Nikfarjam
Optimisation and Logistics

the School of Computer and Mathematical Science
The University of Adelaide

Adelaide, Australia

Ralf Rothenberger
Chair for Algorithm Engineering

Hasso Plattner Institute
University of Potsdam
Potsdom, Germany

Frank Neumann
Optimisation and Logistics

School of Computer and Mathematical Science
The University of Adelaide

Adelaide, Australia

Tobias Friedrich
Chair for Algorithm Engineering

Hasso Plattner Institute
University of Potsdam
Potsdom, Germany

ABSTRACT
Computing diverse solutions for a given problem, in particular
evolutionary diversity optimisation (EDO), is a hot research topic
in the evolutionary computation community. This paper studies the
Boolean satis�ability problem (SAT) in the context of EDO. SAT is
of great importance in computer science and di�ers from the other
problems studied in EDO literature, such as KP and TSP. SAT is
heavily constrained, and the conventional evolutionary operators
are ine�cient in generating SAT solutions. Our approach avails of
the following characteristics of SAT: 1) the possibility of adding
more constraints (clauses) to the problem to forbid solutions or to �x
variables, and 2) powerful solvers in the literature, such as minisat.
We utilise such a solver to construct a diverse set of solutions.

Moreover, maximising diversity provides us with invaluable
information about the solution space of a given SAT problem, such
as how large the feasible region is. In this study, we introduce
evolutionary algorithms (EAs) employing a well-known SAT solver
to maximise diversity among a set of SAT solutions explicitly. The
experimental investigations indicate the introduced algorithms’
capability to maximise diversity among the SAT solutions.

CCS CONCEPTS
• Theory of computation! Evolutionary algorithms.

KEYWORDS
SAT, Evolutionary Diversity Optimisation

ACM Reference Format:
Adel Nikfarjam, Ralf Rothenberger, Frank Neumann, and Tobias Friedrich.
2023. Evolutionary Diversity Optimisation in Constructing Satisfying As-
signments. In Genetic and Evolutionary Computation Conference (GECCO

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590517

’23), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3583131.3590517

1 INTRODUCTION
Combining the principle of EAs and diversity mechanisms has
received increasing attention in the evolutionary computation com-
munity. Diversity is widely believed to be essential for survival
in dynamic environments. In recent years, the bene�ts of having
access to diverse solutions have been discussed in several studies
such as Neumann et al. [26], Nikfarjam et al. [27]. We can cate-
gorise the advantage into three main groups: 1) Robustness against
dynamic changes and imperfect modeling, 2) critical information
about the solution space, and 3) increasing decision-makers’ ability
to consider and choose between diverse alternatives.

1.1 Related Studies
Traditionally, diversity is seen as a means to avoid premature con-
vergence or explore niches in �tness landscapes of optimisation
problems. Niching is a technique that usually divides the population
into sub-populations. This enables the algorithms to explore and
cover a broader range of solution space. Li et al. [20] provides a
comprehensive review of niching methods. Two other paradigms,
Quality Diversity (QD) and EDO, have recently evolved.

QD aims to compute a diverse set of high-quality solutions that
di�ers in terms of some pre-de�ned behavioural characteristics.
In fact, QD sees diversity in exploring best-performing solutions
in a behavioural space. QD has been mostly studied in robotics
[2, 34, 38], and game designs [15, 16, 36]. Recently, some studies
applied QD’s principles to combinatorial optimisation problems
[7, 29, 33].

EDO is another concept recently developed around the idea
of diversity. In contrast to the other paradigms, EDO explicitly
maximises the structural diversity of solutions, often subject to a
constraint on the solutions’ quality. The concept has been de�ned
in [37], which studied an optimisation problem in continuous do-
mains. Afterwards, EDO has been adapted to generating benchmark
instances for TSP and a diverse set of images respecting di�erent
aesthetics [1, 19]. These studies were followed up by works on
the use of star-discrepancy, and multi-objective indicators [25, 26].



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Nikfarjam, et al.

Bossek et al. [4] studied the performance of sophisticated mutations
at generating a diverse set of benchmark instances for TSP.

Recently, the focus of the literature shifted from generating in-
stances to computing solutions for combinatorial optimisation prob-
lems. There are several problems studied in that regard, such as the
traveling salesperson problem (TSP) [11, 28], the knapsack prob-
lem (KP) [5], the quadratic assignment problem [12], the minimum
spanning tree problem [6], the traveling thief problem [32], the
optimisation of monotone Sub-modular Functions [24], and the
patient scheduling problem [30]. In most of the mentioned papers,
it has been assumed that we already know the optimal solution. The
case of unknown optimal solutions has been studied in [23, 27, 31]
by using co-evolutionary techniques or by dividing the population
into two subpopulations.

This paper studies the SAT problem in the context of EDO. SAT
is a classical problem in mathematical logic and computer science.
The goal of the problem is to determine if there is an assignment to
Boolean variables such that a given Boolean formula evaluates to
true. The decision variant of SAT is one of the most well-known
and well-studied NP-complete problems [9]. One can �nd many
applications for SAT, such as software veri�cation and constraint
solving. Davis et al. [10] is one of the earliest studies carried out
in SAT and introduced a method to compute a satisfying assign-
ment. Several e�cient approaches have been developed for SAT
in recent years, like Con�ict-Driven Clause-Learning (CDCL) [35]
and the Variable State Independent Decaying Sum (VSIDS) branch-
ing heuristic [21]. One very versatile solver incorporating those
heuristics is minisat [14]. Minisat has been widely adopted and
used as the benchmark solver in the literature. To the best of our
knowledge, Nadel [22] is the only study focusing on the diversity of
SAT solutions. They studied D������:S��, the problem of �nding a
given number of diverse solutions to an SAT problem, by adapting
the variable ordering strategy. However, there can be found another
paradigm in the SAT literature, called uniform solution sampling.
They aim to compute di�erent solutions without taking diversity
into account directly. UniGen2 [8] and QuickSampler [13] can be
cited here.

1.2 Our Contribution
Several characteristics distinguish SAT from other problems stud-
ied in the EDO literature. For instance, the other problems contain
either no or few constraints, such as the KP and the TSP. SAT,
however, is a highly constrained problem, making it extremely dif-
�cult to generate a feasible solution with conventional operators
and algorithms in the literature of EDO. In other �elds such as
constrained programming, researchers often forbid some variables
or elements of a given problem to construct a diverse set of solu-
tions. This paper makes a bridge between this approach and EDO.
Instead of using conventional operators, which are ine�cient in
SAT, we introduce evolutionary algorithms (EAs) and operators
that iteratively modify the original SAT problem by adding clauses.
We use a time-e�cient solver, such as minisat, to construct new
solutions and utilise EDO approaches to maximise the diversity
of the solutions. We de�ne two entropy-based diversity measures
to quantify the diversity of SAT assignments. The �rst measure
treats all variables equally, while the other takes the frequency of

variables in clauses into account. We also conduct a comprehensive
experimental investigation, the goal of which is twofold: First, to
evaluate the algorithms’ performance in constructing diverse as-
signments. And second, to study the correlation among diversity,
solution space, and the number of clauses. For this purpose, we use
an SAT generator to construct instances with particular character-
istics. Then, we observe how the changes in these characteristics
a�ect the diversity of solutions and algorithms’ performances. For
example, The introduced mutation outperforms the crossover in
the power law SAT instances, while it is the opposite in the uniform
instances.

The remainder of the paper is structured as follows: We �rst
de�ne SAT and diversity in Section 2. The diversity algorithms are
introduced in Section 3. The Comprehensive experimental investi-
gation is presented in Section 4. Finally, we �nish with concluding
remarks.

2 SAT AND DIVERSITY
The Boolean Satis�ability Problem (SAT) consists of determining
the existence of an assignment (also called model, interpretation,
or solution) satisfying a Boolean formula. A Boolean formula is
several literals combined by logical connectives, AND (^), and OR
(_), and a literal is a Boolean variable or a negation of a variable (¬).
A formula that is formed by the conjunction of a number of clauses
(a disjunction of literals) is in conjunctive normal form (CNF). A
formula in CNF is satis�able if there is at least one assignment
of the variables such that the formula evaluates to true. In other
words, a given CNF formula � is true if an assignment G satis�es
all clauses in �; otherwise, � is false. This paper aims to compute
a diverse set of assignments for a given formula. For this purpose,
we require a measure to quantify the diversity of assignments.

2.1 Diversity
We utilise an entropy-based measure of diversity. First, we de�ne
some notations. Let - denote the set of Boolean variables, G =
(G1, · · · , G=) the assignment, and % a set of assignments, where
|- | = =, |% | = `, < is number of the clauses. Also, let 5 (G8 ) be
the number of assignments in % , where G8 = )AD4 . Then, we can
calculate the contribution of each variable to diversity as

⌘(G8 ) =
(

0 if 5 (G8 ) = 0 and
�
⇣
5 (G8 )
`

⌘
· ln

⇣
5 (G8 )
`

⌘
if 5 (G8 ) > 0.

In line with EDO literature [28, 30], the entropy of % can be
calculated by summation of the variables’ contributions:

�1 (%) =
’
G8 2-

⌘(G8 )

Nevertheless, some variables appear in clauses more frequently
than others. Such variables are likely to be more challenging to
diversify, and often play a more important role in the problem. It
would be intriguing to give more frequent variables more weight in
the entropy calculation such that we �rst increase such variables’
chance to be diverse and second the measure shows the diversity
based on the frequency. Therefore, we de�ne the second measure
as follows:

�2 (%) =
’
G8 2-

A (G8 ) · ⌘(G8 ),



Evolutionary Diversity Optimisation in Constructing Satisfying Assignments GECCO ’23, July 15–19, 2023, Lisbon, Portugal

where A (G8 ) is the number of occurrences of G8 in the formula. It
is bene�cial to know the maximum diversity for the measures. It
can be used as an upperbound to evaluate a diversity of a set of
solutions. We can calculate the optimal 5 (G) from 3⌘ (G )

35 (G ) = 0; Thus,
the contribution of a variable is at maximum when:

5 (G) = ` · 4�1

Let denote the optimal 5 (G) by 5 ⇤. Since there is no limitations
on the number of true variables in % , �1 and �2 are maximum
when {5 (G) = 5 ⇤ |8G 2 - }. Then, we can calculate�<0G

1 and�<0G
2

form :

�<0G
1 = = · 5 ⇤

�<0G
2 = ⇠ · 5 ⇤

where ⇠ is the number of the literals in �.

3 DIVERSITY ALGORITHMS
In this paper, we compute a diverse set of assignments for a given
SAT problem using the well-known SAT solver minisat. A basic
approach to compute % for an SAT problem is to forbid the current
assignment by adding a clause to the formula and using the solver
to generate another one. For constructing the clause, we can easily
make a disjunction of the literals where each literal is the �ipped
associated variable in the assignment. This method only sometimes
leads to a diverse set of assignments. Algorithm 1 outlines the steps
required for this approach.

Algorithm 1 The basic algorithm

1: while |% | < ` do
2: Solve the SAT problem by the solver.
3: if A satisfying assignment G was found then
4: Add G to % .
5: Add a clause forbidding G to �.
6: else
7: Break.

EDO is another method to compute a diverse set of assignments.
We can �x some variables to true or false and then use the solver
(minisat) to determine a satisfying assignment with those �xed
variables. Afterwards, we can employ EDO approaches to maximise
diversity. Here, the question is how to choose the �xed variables. In
line with most EDO algorithms in the literature, we can randomly
select one of the current solutions and, by standard bit �ip mutation,
�ip some of the variable assignments and �x them. In contrast
to the standard bit-�ip mutation, where the rest of the variables
remain unchanged, the solver determines the value for the other
variables. Algorithm 2 describes this approach. First, we �nd the
�rst satisfying assignment for � by minisat and add it to % . Then,
we select a solution in % uniformly at random and choose and �ip
some variables by the bit-�ip mutation. After adding clauses to �
that �x the selected variables, we solve � by minisat. If a satisfying
assignment is found, we add it to % ; Then, if |% | > `, we remove
an assignment G with the least contribution to the diversity of % .
Finally, we remove the clauses �xing the variables from �. We
repeat these steps until a termination criterion is met.

Algorithm 2 The bit-�ip evolutionary algorithm
1: Solve the SAT problem by the solver, and add G to % .
2: while A termination criterion is met do
3: Select an assignment G from % uniformly at random.
4: Select and �ip each variable independently with probability

1
= .

5: Add clauses �xing the selected variables to �
6: Solve � and determine un�xed variables by the solver.
7: if A satisfying assignment G was found then
8: if |% | > ` then
9: Add G to % .
10: Remove one individual G from % , where G =

argmaxG2% � (% \ {G}).
11: Remove the clauses that �xing the variables from �.

Algorithm 3 The EDO algorithm

1: while |% | < ` do
2: Randomly �x ; variables (determine ~).
3: Add the clauses that �x the variables in ~ to � and solve it

by the solver.
4: if A satisfying assignment G was found then
5: Add G to % and ~ to . .
6: Remove the clauses �xing the variables from �.
7: while A termination criterion is met do
8: Randomly select one (two) parent(s) ~8 (~ 9 ) from . .
9: Generate a new solution ~> by mutation or crossover + mu-

tation.
10: Add clauses that �x the variables in ~> to � and solve the

SAT problem.
11: if A satisfying assignment G is found then
12: Add G to % and ~> to . .
13: Remove one individual G from % , where G =

argmaxG2% � (% \ {G}), and the corresponding solution ~
from . .

14: Remove the clauses �xing the variables from �.

6 2 9
T F T

6 2 9 5
T F T F

6 9
T T

8 2 9
F F T

6 2 9
T F T

6 2 9
T F T

Adding a new Variable 

Remove a variable

Changing a variable

(a) Mutation

6 2 9 5
T F T F

7 3
T F

7 2 5
T F F

7 2 5
T F F

Independently select each 
variable and its values from the 

parents.  

Remove the empty cells. Add empty cells to the parent 
with less variables to have an 

equal size.

(b) Crossover

Figure 1: The representation of solution ~, the mutation, and
the crossover in the EDO algorithm 3.



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Nikfarjam, et al.

Since minisat is an exact algorithm, we can map from the �xed
variables to the actual assignments. Thus, we can save the �xed
variables and operate (crossover, mutation) on them. So, we have a
solution~ consisting of a string~0 = (~01, · · · ,~0; ) showing the index
of �xed variables and a Boolean string ~00 showing their values.
Let . be a set of solutions ~, where |. | = `. Note that from each
~8 2 . we can map to G8 2 % , by �xing variables in ~8 and solving
the problem by the solver.

Algorithm 3 sketches the steps required in this approach. The
algorithm consists of two stages, the initialisation and the evolu-
tionary stage. In initialisation, we randomly generate a variable ~,
where |~ | = ; . We solve q after adding clauses to it. If a satisfying
assignment G is found, we add G to % , and ~ to . . Afterwards, we
remove the clauses �xing the variables from �. we continue these
steps until |% | = `.

Having constructed an initial population, we move to the evolu-
tionary stage. We �rst select a solution ~ (or two solutions in case
of crossover) from . and generate an o�spring ~> by mutation (or
�rst crossover, then mutation). After adding clauses �xing variables
in ~> to �, we solve it by the solver. If a satisfying assignment G
is found, we add G to % and ~ to . ; then remove a G from % and
the corresponding ~ from . that has the least contribution to the
diversity of % . In last step, we remove the clauses �xing the vari-
ables from �. We repeat these steps in the evolutionary stage until
a termination criterion is met.

We now describe the operators, the mutation and the crossover.
For the mutation, we take one of the following three actions uni-
formly at random: 1) Fix another variable (add a new variable to
~), 2) un�x a variable (remove a variable from ~), or 3) switch a
�xed variable with an un�xed variable, all uniformly at random.
The steps are depicted in Figure1a. Turning to the crossover, we
add empty cells to the parent with fewer �xed variables to make
the sizes equal. Then, we select each variable randomly from the
parents with probability 1/2. Figure1b illustrates the steps required
by the crossover.

4 EXPERIMENTAL INVESTIGATION
This section empirically studies and compares the introduced al-
gorithms. We examine two variations of Algorithm 3: One solely
employs mutation as the operator, while the other �rst generates
an o�spring by crossover and then uses mutation on the o�spring.
To examine the algorithms, we use the SAT generator [3] to gener-
ate two sets of CNF formulas. The SAT generator is also used for
experimental investigations in [17, 18]. In the �rst set, the variables
appear in clauses based on a power law distribution. The following
parameters were used in generating the �rst set: = = 100, : = 3,
V = 2.75, and< = {210, 220, · · · , 380}, where : and V are the num-
ber of literals in a clause and the power law exponent, respectively.
In the second set, the variables appear in the clauses based on the
uniform distribution. The parameters for the set are: = = 100, : = 3,
and < = {270, 280, · · · , 440}. We set ` = 20 and consider 2000
iterations as the termination criterion for the EAs. Instead of 30
independent runs on one formula, we generate 30 formulas for
each con�guration and run the algorithms once on each formula.
This helps us to comprehend more about SAT instances having the
same characteristics. In algorithm 3, ; should be set with taking

number of clauses into account; a higher number of clauses, a lower
; . Based on preliminary investigation, We set ; = 10 for the lowest
number of clauses in each set and gradually decrease it to 4 for the
greatest number of clauses. Note that we made sure all formulas
were satis�able (� = CAD4).

4.1 Comparison of algorithms employing �1 as
the �tness

In this section, we compare the diversity of SAT assignments ob-
tained by the presented algorithms using �1 as the �tness func-
tion. Table 1 summarises the algorithms’ results in the �rst set of
instances (formulas). As expected, the basic algorithm results in
assignments with poor diversity; the �1 values range between 1.71
and 10.01. If we normalise these values, the range is from 5% to
27%. The interesting information is that the increase in the clause-
variable ratio <

= has no meaningful impact on the basic algorithm’s
result. The expectation is that an increase in

�<
=

�
reduces the feasi-

ble region which leads to a decrease in the diversity of assignments;
we can observe the trend in the results of the other algorithms.

As Table 1 shows, the bit-�ip brings about considerably more
diverse assignments than the basic algorithm. The observation can
be con�rmed by the Kruskal-Wallis statistical test at a 5% signi�-
cance level and with Bonferroni correction. The mean of diversity
ranges from 44% to 82%. Although there are also �uctuations in the
bit-�ip algorithm’s results, we can observe a general decrease in
diversity by an increase in

�<
=

�
, especially when< is larger than

290. However, if we only consider the �rst half of the table, it is
exactly the other way around; there is a slight increase in diversity
obtained. One plausible reason is that the minisat solver is an ex-
act algorithm, and bit-�ip mutation does not impose as signi�cant
changes as required. On the other hand, an increase in

�<
=

�
makes

even minor changes signi�cantly impact the assignments. In fact,
the feasible regain and the maximum achievable diversity decrease
in instances with medium values of

�<
=

�
compared to small ones,

but the bit-�ip algorithm performs better in these instances.
Table 1 indicates the superiority of EDO algorithms in construct-

ing diverse sets of SAT assignments. Both algorithm variants yield
decent results and statistically outperform the basic and the bit-�ip
algorithms in all instances. Here, we can observe a more static
downward trend in diversity with increasing <

= . It results in sets
with more than 90% diversity (normalised �1) for instances with
<
=  3. For example, the mean of diversity is 96% in cases where
< = 210. Interestingly, the variant using only mutation results in
slightly higher diversity. Although, it is not statistically signi�cant.

Table 2 draws a similar comparison between the algorithms
on the set of uniform formulas. Almost all our observations in
Table 1 are still valid. Table 2 shows that: 1) Algorithm 1 results in
solutions with poor diversity ranging from 6% to 29%. Nevertheless,
the diversity obtained in the uniform instances is higher compared
to the power law formulas. 2) Bit-�ip performs better than the
basic algorithm but worse than the EDO variants. The average
�1 obtained by the bit-�ip algorithms ranges from 0.31 to 0.86. 3)
We can observe a descending trend in diversity for increasing <

= ,
especially in the EDO algorithms’ results.

The most interesting part of the table is comparing the two EDO
variants. In contrast to the power law instances, the variant using



Evolutionary Diversity Optimisation in Constructing Satisfying Assignments GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 1: The diversity obtained from the algorithms using �1 as the �tness function in 30 independent runs. Stat shows the
results of Kruskal-Wallis statistical test at a 5% signi�cance level with Bonferroni correction. In row Stat, the notation -+

means the median of the measure (�1) is better than the one for variant - , - � means it is worse, and - ⇤ indicates no signi�cant
di�erence.

Basic 1 Bit-�ip 2 EDO 3 Mutation EDO 3 Crossover+Mutation

m �1 �2 Stat (1) �1 �2 Stat (2) �1 �2 Stat (3) �1 �2 Stat (4)

210 0.055 0.016 2�3�4� 0.753 0.839 1+3�4� 0.962 0.959 1+2+4⇤ 0.953 0.955 1+2+3⇤

220 0.052 0.011 2�3�4� 0.721 0.818 1+3�4� 0.945 0.938 1+2+4⇤ 0.932 0.933 1+2+3⇤

230 0.055 0.019 2�3�4� 0.738 0.823 1+3�4� 0.937 0.932 1+2+4⇤ 0.925 0.925 1+2+3⇤

240 0.046 0.007 2�3�4� 0.731 0.808 1+3�4� 0.933 0.927 1+2+4⇤ 0.921 0.924 1+2+3⇤

250 0.171 0.135 2�3�4� 0.774 0.851 1+3�4� 0.928 0.918 1+2+4⇤ 0.911 0.915 1+2+3⇤

260 0.114 0.075 2�3�4� 0.765 0.832 1+3�4� 0.925 0.909 1+2+4⇤ 0.914 0.904 1+2+3⇤

270 0.089 0.061 2�3�4� 0.757 0.823 1+3�4� 0.911 0.893 1+2+4⇤ 0.896 0.886 1+2+3⇤

280 0.172 0.143 2�3�4� 0.76 0.828 1+3�4� 0.907 0.897 1+2+4⇤ 0.886 0.885 1+2+3⇤

290 0.14 0.083 2�3�4� 0.826 0.842 1+3�4� 0.912 0.878 1+2+4+ 0.9 0.874 1+2+3�

300 0.272 0.235 2�3�4� 0.825 0.825 1+3�4� 0.902 0.856 1+2+4⇤ 0.895 0.857 1+2+3⇤

310 0.191 0.156 2�3�4� 0.776 0.777 1+3�4⇤ 0.862 0.814 1+2+4⇤ 0.844 0.806 1+2⇤3⇤

320 0.099 0.051 2�3�4� 0.478 0.424 1+3�4⇤ 0.611 0.489 1+2+4⇤ 0.591 0.478 1+2⇤3⇤

330 0.169 0.135 2�3�4� 0.544 0.503 1+3�4⇤ 0.666 0.56 1+2+4⇤ 0.643 0.547 1+2⇤3⇤

340 0.182 0.129 2�3�4� 0.627 0.562 1+3�4� 0.73 0.611 1+2+4⇤ 0.717 0.603 1+2+3⇤

350 0.157 0.113 2�3�4� 0.534 0.496 1+3�4⇤ 0.61 0.532 1+2+4⇤ 0.605 0.531 1+2⇤3⇤

360 0.089 0.047 2�3�4� 0.531 0.501 1+3�4⇤ 0.606 0.537 1+2+4⇤ 0.6 0.535 1+2⇤3⇤

370 0.156 0.11 2�3�4� 0.425 0.339 1+3�4� 0.535 0.394 1+2+4⇤ 0.529 0.392 1+2+3⇤

380 0.161 0.121 2�3�4� 0.437 0.344 1+3�4⇤ 0.498 0.375 1+2+4⇤ 0.491 0.372 1+2⇤3⇤

Table 2: The diversity obtained from the algorithms using �1 as the �tness function. The variables appear in clauses based on a
uniform distribution with = = 100 and : = 3. The notations are in line with Table 1

Basic 1 Bit-�ip 2 EDO 3 Mutation EDO 3 Crossover+Mutation

m �1 �2 Stat (1) �1 �2 Stat (2) �1 �2 Stat (3) �1 �2 Stat (4)

270 0.295 0.28 2�3�4� 0.859 0.889 1+3�4� 0.942 0.947 1+2+4⇤ 0.94 0.948 1+2+3⇤

280 0.241 0.217 2�3�4� 0.867 0.879 1+3�4� 0.944 0.943 1+2+4⇤ 0.944 0.946 1+2+3⇤

290 0.202 0.186 2�3�4� 0.834 0.848 1+3�4� 0.937 0.938 1+2+4⇤ 0.939 0.941 1+2+3⇤

300 0.183 0.175 2�3�4� 0.877 0.888 1+3�4� 0.943 0.943 1+2+4⇤ 0.946 0.946 1+2+3⇤

310 0.09 0.078 2�3�4� 0.875 0.893 1+3�4� 0.943 0.946 1+2+4⇤ 0.945 0.948 1+2+3⇤

320 0.062 0.051 2�3�4� 0.884 0.894 1+3�4� 0.936 0.939 1+2+4⇤ 0.937 0.94 1+2+3⇤

330 0.157 0.137 2�3�4� 0.885 0.895 1+3�4� 0.927 0.927 1+2+4⇤ 0.932 0.934 1+2+3⇤

340 0.135 0.117 2�3�4� 0.898 0.905 1+3�4� 0.928 0.927 1+2+4⇤ 0.933 0.933 1+2+3⇤

350 0.073 0.062 2�3�4� 0.895 0.903 1+3�4� 0.916 0.918 1+2+4⇤ 0.918 0.92 1+2+3⇤

360 0.08 0.067 2�3�4� 0.866 0.875 1+3�4� 0.893 0.896 1+2+4⇤ 0.898 0.903 1+2+3⇤

370 0.084 0.07 2�3�4� 0.851 0.862 1+3�4� 0.884 0.886 1+2+4⇤ 0.891 0.895 1+2+3⇤

380 0.058 0.042 2�3�4� 0.846 0.855 1+3�4� 0.876 0.879 1+2+4⇤ 0.877 0.88 1+2+3⇤

390 0.178 0.178 2�3�4� 0.822 0.822 1+3⇤4� 0.832 0.829 1+2⇤4⇤ 0.835 0.832 1+2+3⇤

400 0.226 0.215 2�3�4� 0.637 0.622 1+3�4� 0.648 0.63 1+2+4⇤ 0.647 0.629 1+2+3⇤

410 0.105 0.098 2�3�4� 0.674 0.669 1+3�4� 0.693 0.685 1+2+4⇤ 0.693 0.684 1+2+3⇤

420 0.125 0.118 2�3�4� 0.603 0.592 1+3⇤4� 0.612 0.599 1+2⇤4⇤ 0.613 0.6 1+2+3⇤

430 0.153 0.146 2�3�4� 0.311 0.299 1+3⇤4� 0.326 0.309 1+2⇤4⇤ 0.326 0.309 1+2+3⇤

440 0.059 0.047 2�3�4� 0.352 0.335 1+3�4� 0.366 0.346 1+2+4⇤ 0.366 0.347 1+2+3⇤



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Nikfarjam, et al.

Table 3: The diversity obtained from the algorithms using �2 as the �tness function on the same instances in Table 1. The
Kruskal-Wallis statistical test is conducted on �2. The notations are in line with Table 1

Basic 1 Bit-�ip 2 EDO 3 Mutation EDO 3 Crossover+Mutation

m �2 �1 Stat (1) �2 �1 Stat (2) �2 �1 Stat (3) �2 �1 Stat (4)

210 0.016 0.055 2�3�4� 0.849 0.732 1+3�4� 0.965 0.944 1+2+4⇤ 0.957 0.912 1+2+3⇤

220 0.011 0.052 2�3�4� 0.83 0.709 1+3�4� 0.95 0.928 1+2+4⇤ 0.939 0.892 1+2+3⇤

230 0.019 0.055 2�3�4� 0.836 0.719 1+3�4� 0.941 0.911 1+2+4+ 0.932 0.882 1+2+3�

240 0.007 0.046 2�3�4� 0.825 0.706 1+3�4� 0.936 0.896 1+2+4⇤ 0.929 0.874 1+2+3⇤

250 0.135 0.171 2�3�4� 0.859 0.757 1+3�4� 0.927 0.909 1+2+4⇤ 0.918 0.874 1+2+3⇤

260 0.075 0.114 2�3�4� 0.845 0.751 1+3�4� 0.919 0.906 1+2+4⇤ 0.911 0.872 1+2+3⇤

270 0.061 0.089 2�3�4� 0.838 0.737 1+3�4� 0.907 0.89 1+2+4+ 0.895 0.844 1+2+3�

280 0.143 0.172 2�3�4� 0.842 0.74 1+3�4� 0.906 0.877 1+2+4⇤ 0.895 0.84 1+2+3⇤

290 0.083 0.14 2�3�4� 0.861 0.807 1+3�4� 0.895 0.887 1+2+4+ 0.887 0.864 1+2+3�

300 0.235 0.272 2�3�4� 0.835 0.813 1+3�4� 0.865 0.884 1+2+4⇤ 0.865 0.867 1+2+3⇤

310 0.156 0.191 2�3�4� 0.786 0.762 1+3�4⇤ 0.824 0.845 1+2+4⇤ 0.816 0.815 1+2⇤3⇤

320 0.051 0.099 2�3�4� 0.434 0.468 1+3�4⇤ 0.494 0.599 1+2+4⇤ 0.481 0.558 1+2⇤3⇤

330 0.135 0.169 2�3�4� 0.513 0.534 1+3�4⇤ 0.562 0.647 1+2+4⇤ 0.551 0.61 1+2⇤3⇤

340 0.129 0.182 2�3�4� 0.57 0.617 1+3�4⇤ 0.616 0.718 1+2+4⇤ 0.606 0.69 1+2⇤3⇤

350 0.113 0.157 2�3�4� 0.505 0.524 1+3�4⇤ 0.537 0.598 1+2+4⇤ 0.534 0.587 1+2⇤3⇤

360 0.047 0.089 2�3�4� 0.504 0.524 1+3�4⇤ 0.541 0.602 1+2+4⇤ 0.536 0.589 1+2⇤3⇤

370 0.11 0.156 2�3�4� 0.342 0.42 1+3�4� 0.396 0.53 1+2+4⇤ 0.392 0.521 1+2+3⇤

380 0.121 0.161 2�3�4� 0.347 0.432 1+3�4⇤ 0.377 0.494 1+2+4⇤ 0.374 0.484 1+2⇤3⇤

Table 4: The diversity obtained from the algorithms using �2 the �tness on the same instances in Table 2. The notations are in
line with Table 3.

Basic 1 Bit-�ip 2 EDO 3 Mutation EDO 3 Crossover+Mutation

m �2 �1 Stat (1) �2 �1 Stat (2) �2 �1 Stat (3) �2 �1 Stat (4)

270 0.28 0.295 2�3�4� 0.891 0.849 1+3�4� 0.95 0.933 1+2+4⇤ 0.946 0.923 1+2+3⇤

280 0.217 0.241 2�3�4� 0.881 0.863 1+3�4� 0.946 0.937 1+2+4⇤ 0.947 0.934 1+2+3⇤

290 0.186 0.202 2�3�4� 0.849 0.83 1+3�4� 0.939 0.931 1+2+4⇤ 0.942 0.93 1+2+3⇤

300 0.175 0.183 2�3�4� 0.891 0.871 1+3�4� 0.945 0.939 1+2+4⇤ 0.947 0.936 1+2+3⇤

310 0.078 0.09 2�3�4� 0.897 0.874 1+3�4� 0.945 0.933 1+2+4⇤ 0.95 0.937 1+2+3⇤

320 0.051 0.062 2�3�4� 0.895 0.881 1+3�4� 0.938 0.929 1+2+4⇤ 0.94 0.928 1+2+3⇤

330 0.136 0.157 2�3�4� 0.897 0.882 1+3�4� 0.93 0.923 1+2+4⇤ 0.934 0.923 1+2+3⇤

340 0.117 0.135 2�3�4� 0.907 0.895 1+3�4� 0.932 0.927 1+2+4⇤ 0.934 0.925 1+2+3⇤

350 0.062 0.073 2�3�4� 0.904 0.892 1+3�4� 0.919 0.911 1+2+4⇤ 0.922 0.913 1+2+3⇤

360 0.067 0.08 2�3�4� 0.879 0.865 1+3�4� 0.897 0.889 1+2+4⇤ 0.904 0.894 1+2+3⇤

370 0.07 0.084 2�3�4� 0.866 0.851 1+3�4� 0.892 0.882 1+2+4⇤ 0.896 0.884 1+2+3⇤

380 0.042 0.058 2�3�4� 0.858 0.843 1+3�4� 0.878 0.867 1+2+4⇤ 0.881 0.869 1+2+3⇤

390 0.178 0.178 2�3�4� 0.824 0.818 1+3⇤4� 0.832 0.829 1+2⇤4⇤ 0.834 0.83 1+2+3⇤

400 0.214 0.226 2�3�4� 0.623 0.636 1+3�4� 0.631 0.646 1+2+4⇤ 0.631 0.645 1+2+3⇤

410 0.098 0.105 2�3�4� 0.672 0.673 1+3�4� 0.684 0.688 1+2+4⇤ 0.684 0.686 1+2+3⇤

420 0.118 0.125 2�3�4� 0.593 0.601 1+3�4⇤ 0.602 0.611 1+2+4⇤ 0.601 0.61 1+2⇤3⇤

430 0.146 0.153 2�3�4� 0.3 0.311 1+3⇤4� 0.309 0.325 1+2⇤4⇤ 0.309 0.326 1+2+3⇤

440 0.047 0.059 2�3�4� 0.336 0.352 1+3�4� 0.347 0.366 1+2+4⇤ 0.347 0.366 1+2+3⇤



Evolutionary Diversity Optimisation in Constructing Satisfying Assignments GECCO ’23, July 15–19, 2023, Lisbon, Portugal

both crossover and mutation slightly outperforms the other one in
terms of �1. We can get diverse sets of SAT assignments with more
than 90% diversity in terms of �1 with the EDO algorithm in cases
<  360.

4.2 Comparison of algorithms employing �2 as
the �tness

We examine the algorithms’ performance when �2 is incorporated
as the �tness function. The �2 di�ers from �1 in focusing on the
variables with more appearances in �. Table 3 and 4 summarise
the algorithms’ results in the power law and uniform instances,
respectively. Since Algorithm 2 does not use any diversity measures
inside of the algorithm, the results are the same as those of Table 1
and 2. Nevertheless, the other algorithms’ results in Table 3 and 4
are di�erent to those in Table 1 and 2. As expected, the diversity of
assignments slightly increases in terms of�2, while there is a minor
drop in �1 values. The change is plausible since we incorporated
�2 into the algorithms as the �tness function instead of �1.

One may observe that increasing <
= a�ects the capability of the

introduced algorithms in terms of �2 more than it does in terms of
�1. This is because, in a limited feasible region, the more frequent
variables are more likely to be �xed at true or false. Since those
variables have a higher weight in the diversity calculation, increases
in <

= make it challenging to diversify solutions in terms of �2. For
instance, Table 3 indicates that the �2 values drop from 0.96 to
0.38 for the EDO algorithm using mutation, while the same sets of
solutions result in less severe decreases in �1 values (from 0.94 to
0.5).

Table 3 also indicates that the gap between the results of the EDO
algorithms’ variants is more profoundwhen�2 is used as the �tness
function. The statistical tests also con�rm the di�erence in favour
of the variant employing the mutation in instances where < =
{230, 270, 290}. However, it is the other way around in the uniform
instances; the variant that bene�ts from the crossover performs
slightly better, although the di�erence is statically insigni�cant.
The same observation we had when �1 was incorporated into the
algorithm as the �tness function.

4.3 Investigation on Unsatis�ablity
This subsection studies the correlation between the obtained di-
versity and the number of unsatis�able formulas generated during
the search. The introduced algorithms, as mentioned, modify the
formula � to generate a new assignment in each iteration. Although
� is a true formula, it is likely to make it false via modi�cations
during the search. We consider Algorithm 2 for this purpose since
the algorithm does not have any hyper-parameters a�ecting the
results.

Figure 2 depicts the trajectories of diversity and the false �
generated by Algorithm 2. Note that we normalise the values to plot
them in a �gure. As expected, the algorithm generates the minimum
number of false formulas (false �) when <

= is low. Low values of
<
= often lead to large feasible regions and, consequently, a larger
room to diversify the solutions. In such cases, the modi�cations
of Algorithm 2 are not large enough to cause unsatis�ability for
�. If <

= gets su�ciently large, so does the feasible region get more
limited, a�ecting both the diversity and satis�ability rate. Although

250 300 350
m

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 v
al

ue

The power law SAT instances

H1
False 

300 350 400
m

0

0.2

0.4

0.6

0.8

N
or

m
al

is
ed

 v
al

ue

The uniform SAT instances

250 300 350
m

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 v
al

ue

H2
False 

300 350 400
m

0

0.2

0.4

0.6

0.8

N
or

m
al

is
ed

 v
al

ue

Figure 2: The representative trajectories of the bit-�ip algo-
rithm’s the diversity and the number of false �. In the �rst
row, �1 serves as the �tness function, while it is �2 in the
second row.

a disproportional relationship between diversity and unsatis�ability
is expected, the �gure interestingly depicts a symmetric behaviour.
The trajectories are pretty similar for�1 and�2. The sole di�erence
is the range of �1 and �2 in the power law instances, where �2
starts and �nishes at slightly higher values.

5 CONCLUSION
This study presented evolutionary approaches to construct a di-
verse set of solutions in SAT using the well-known SAT solver,
minisat. We �rst de�ned two measures to quantify the diversity
of solutions. One, which considers and one, which dismisses the
frequency of variable appearances in clauses. Then, we introduced
two EAs, employing the EDO principle to construct a diverse set
of SAT assignments. The EAs iteratively make modi�cations on a
given SAT instance, then solve it with a well-known solver, minisat.
Finally, we conducted a comprehensive experimental investiga-
tion to assess the algorithms’ performance and study the solution
space and unsatis�ability rate. The results indicate the capability
of the introduced algorithm to compute highly diverse sets of SAT
solutions.

For future studies, it is intriguing to study more complicated
EAs, like (` + _)-EAs. Although it is challenging in diversity prob-
lems to select the next generation when _ is larger than one, an
increase in _ can potentially improve the algorithms’ performance.
Another possible extension is to study other related problems, such
as MaxSAT.

ACKNOWLEDGEMENTS
Thisworkwas supported by theAustralian Research Council through
grants DP190103894 and FT200100536.



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Nikfarjam, et al.

REFERENCES
[1] Bradley Alexander, James Kortman, and Aneta Neumann. 2017. Evolution of

artistic image variants through feature based diversity optimisation. In GECCO.
ACM, 171–178.

[2] Maxime Allard, Simón C. Smith, Konstantinos I. Chatzilygeroudis, and Antoine
Cully. 2022. Hierarchical quality-diversity for online damage recovery. In GECCO.
ACM, 58–67.

[3] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. 2009. Towards Industrial-
Like Random SAT Instances. In IJCAI. 387–392.

[4] Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neu-
mann, and Heike Trautmann. 2019. Evolving diverse TSP instances by means of
novel and creative mutation operators. In Proceedings of the 15th ACM/SIGEVO
Conference on Foundations of Genetic Algorithms. 58–71. https://doi.org/10.1145/
3299904.3340307

[5] Jakob Bossek, Aneta Neumann, and Frank Neumann. 2021. Breeding diverse
packings for the knapsack problem by means of diversity-tailored evolutionary
algorithms. In GECCO. ACM, 556–564.

[6] Jakob Bossek and Frank Neumann. 2021. Evolutionary diversity optimization
and the minimum spanning tree problem. In GECCO. ACM, 198–206.

[7] Jakob Bossek and Frank Neumann. 2022. Exploring the feature space of TSP
instances using quality diversity. In GECCO. ACM, 186–194.

[8] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and
Moshe Y. Vardi. 2015. On Parallel Scalable Uniform SAT Witness Generation. In
TACAS (Lecture Notes in Computer Science, Vol. 9035). Springer, 304–319.

[9] Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In
STOC. ACM, 151–158.

[10] Martin Davis, George Logemann, and Donald W. Loveland. 1962. A machine
program for theorem-proving. Commun. ACM 5, 7 (1962), 394–397.

[11] Anh Viet Do, Jakob Bossek, Aneta Neumann, and Frank Neumann. 2020. Evolving
diverse sets of tours for the travelling salesperson problem. In GECCO. ACM,
681–689.

[12] Anh Viet Do, Mingyu Guo, Aneta Neumann, and Frank Neumann. 2022. Analysis
of Evolutionary Diversity Optimization for Permutation Problems. ACM Trans.
Evol. Learn. Optim. 2, 3 (2022), 11:1–11:27.

[13] Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2018. E�cient
sampling of SAT solutions for testing. In ICSE. ACM, 549–559.

[14] Niklas Eén and Niklas Sörensson. 2003. An Extensible SAT-solver. In SAT (Lecture
Notes in Computer Science, Vol. 2919). Springer, 502–518.

[15] Matthew C. Fontaine, Ruilin Liu, Ahmed Khalifa, Jignesh Modi, Julian Togelius,
Amy K. Hoover, and Stefanos Nikolaidis. 2021. Illuminating Mario Scenes in
the Latent Space of a Generative Adversarial Network. In AAAI. AAAI Press,
5922–5930.

[16] Matthew C. Fontaine, Julian Togelius, Stefanos Nikolaidis, and Amy K. Hoover.
2020. Covariance matrix adaptation for the rapid illumination of behavior space.
In GECCO. ACM, 94–102.

[17] Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, Thomas Sauerwald, and
Andrew M. Sutton. 2017. Bounds on the Satis�ability Threshold for Power Law
Distributed Random SAT. In ESA (LIPIcs, Vol. 87). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 37:1–37:15.

[18] Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, and Andrew M. Sutton.
2017. Phase Transitions for Scale-Free SAT Formulas. In AAAI. AAAI Press,
3893–3899.

[19] Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. 2021. Feature-Based
Diversity Optimization for Problem Instance Classi�cation. Evol. Comput. 29, 1
(2021), 107–128.

[20] Xiaodong Li, Michael G. Epitropakis, Kalyanmoy Deb, and Andries P. Engelbrecht.
2017. Seeking Multiple Solutions: An Updated Survey on Niching Methods and
Their Applications. IEEE Trans. Evol. Comput. 21, 4 (2017), 518–538.

[21] MatthewW. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. 2001. Cha�: Engineering an E�cient SAT Solver. In Proceedings of the
38th Design Automation Conference DAC. ACM, 530–535.

[22] Alexander Nadel. 2011. Generating Diverse Solutions in SAT. In SAT (Lecture
Notes in Computer Science, Vol. 6695). Springer, 287–301.

[23] Aneta Neumann, Denis Antipov, and Frank Neumann. 2022. Coevolutionary
Pareto diversity optimization. In GECCO. ACM, 832–839.

[24] Aneta Neumann, Jakob Bossek, and Frank Neumann. 2021. Diversifying greedy
sampling and evolutionary diversity optimisation for constrained monotone
submodular functions. In GECCO. ACM, 261–269.

[25] Aneta Neumann,Wanru Gao, Carola Doerr, Frank Neumann, andMarkusWagner.
2018. Discrepancy-based evolutionary diversity optimization. In GECCO. ACM,
991–998.

[26] Aneta Neumann, Wanru Gao, Markus Wagner, and Frank Neumann. 2019. Evolu-
tionary diversity optimization using multi-objective indicators. In GECCO. ACM,
837–845.

[27] Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neumann. 2021.
Computing diverse sets of high quality TSP tours by EAX-based evolutionary
diversity optimisation. In FOGA. ACM, 9:1–9:11.

[28] Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neumann. 2021.
Entropy-based evolutionary diversity optimisation for the traveling salesperson
problem. In GECCO. ACM, 600–608.

[29] Adel Nikfarjam, Anh Viet Do, and Frank Neumann. 2022. Analysis of Quality
Diversity Algorithms for the Knapsack Problem. In PPSN (2) (Lecture Notes in
Computer Science, Vol. 13399). Springer, 413–427.

[30] Adel Nikfarjam, Amirhossein Moosavi, Aneta Neumann, and Frank Neumann.
2022. Computing High-Quality Solutions for the Patient Admission Scheduling
Problem Using Evolutionary Diversity Optimisation. In PPSN (1) (Lecture Notes
in Computer Science, Vol. 13398). Springer, 250–264.

[31] Adel Nikfarjam, Aneta Neumann, Jakob Bossek, and Frank Neumann. 2022. Co-
evolutionary Diversity Optimisation for the Traveling Thief Problem. In PPSN (1)
(Lecture Notes in Computer Science, Vol. 13398). Springer, 237–249.

[32] Adel Nikfarjam, Aneta Neumann, and Frank Neumann. 2022. Evolutionary
diversity optimisation for the traveling thief problem. In GECCO. ACM, 749–756.

[33] Adel Nikfarjam, Aneta Neumann, and Frank Neumann. 2022. On the use of
quality diversity algorithms for the traveling thief problem. In GECCO. ACM,
260–268.

[34] Nemanja Rakicevic, Antoine Cully, and Petar Kormushev. 2021. Policy manifold
search: exploring the manifold hypothesis for diversity-based neuroevolution. In
GECCO. ACM, 901–909.

[35] João P. Marques Silva and Karem A. Sakallah. 1999. GRASP: A Search Algorithm
for Propositional Satis�ability. IEEE Trans. Computers 48, 5 (1999), 506–521.

[36] Kirby Steckel and Jacob Schrum. 2021. Illuminating the space of beatable lode
runner levels produced by various generative adversarial networks. In GECCO
Companion. ACM, 111–112.

[37] Tamara Ulrich and Lothar Thiele. 2011. Maximizing population diversity in
single-objective optimization. In GECCO. ACM, 641–648.

[38] Enrico Zardini, Davide Zappetti, Davide Zambrano, Giovanni Iacca, and Dario
Floreano. 2021. Seeking quality diversity in evolutionary co-design ofmorphology
and control of soft tensegrity modular robots. In GECCO. ACM, 189–197.


