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Abstract We study the algorithmic applications of a natural discretization
for the hard-sphere model and the Widom–Rowlinson model in a region
of d-dimensional Euclidean space V ⊂ Rd. These continuous models
are frequently used in statistical physics to describe mixtures of one or
multiple particle types subjected to hard-core interactions. For each type,
particles are distributed according to a Poisson point process with a type-
specific activity parameter, called fugacity. The Gibbs distribution over
all possible system states is characterized by the mixture of these point
processes conditioned that no two particles are closer than some type-
dependent distance threshold. A key part in better understanding the
Gibbs distribution is its normalizing constant, called partition function.
Our main algorithmic result is the first deterministic approximation
algorithm for the partition function of the hard-sphere model and the
Widom–Rowlinson model in box-shaped regions of Euclidean space. Our
algorithms have quasi-polynomial running time in the volume of the region
ν(V) if the fugacity is below a certain threshold. For the d-dimensional
hard-sphere model with particles of unit volume, this threshold is e/2d. As
the number of dimensions d increases, this bound asymptotically matches
the best known results for randomized approximation of the hard-sphere
partition function. We prove similar bounds for the Widom–Rowlinson
model. To the best of our knowledge, this is the first rigorous algorithmic
result for this model.

Keywords: partition function · hard-sphere model · Widom–Rowlinson
model · deterministic and randomized approximation · sampling

1 Introduction

Statistical physics models complex systems of interacting particles as probability
distributions. The main goal is to explain the macroscopic properties of such a
spin system when it is only described by the microscopic interactions among its
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particles. Two classical models in this area are the hard-sphere model, central
in the analysis of thermodynamics of liquids and liquid mixtures [11,3], and
the Widom–Rowlinson model, which explains the evaporation of liquids [25].
These models have in common that each of their states consists of a finite set of
points in a bounded region V ⊂ Rd of d-dimensional Euclidean space, distributed
according to a Poisson point process of some intensity λ ∈ R≥1. The parameter λ
is usually called fugacity. The points correspond to centers of spherical particles
of some radius r ∈ R≥0 that are constrained by hard-core interactions, i.e., two
particles are not allowed to occupy the same space. The probability distribution
characterizing the valid states of a model is called its Gibbs distribution. A
key part in better understanding this distribution is its normalizing factor: the
partition function of the model, which is formally defined as a weighted integral
over all valid configurations of the system.

Computing this partition function and sampling from the Gibbs distri-
bution are the two main algorithmic tasks that are related to such models.
These computational problems have been studied extensively for several decades
[16,15,13,10,8,17], resulting in a variety of new techniques, such as the Monte
Carlo method [16]. Whereas initially the focus was on the sampling problem,
recently rigorous results on computing the partition function appeared more
often [8,17,7]. Since computing such partition functions is notoriously difficult
[23], they are typically approximated. Specifically, the goal is to determine the
fugacity regime such that there is a relative ε-approximation algorithm for the
partition function that runs efficiently in the volume of the considered region
ν(V) and ε−1. State-of-the-art results in that regard are usually achieved by
randomized algorithms [8,17,7]. For example for the hard-sphere model, the
best known bound is λ < e/((1 − 1/8d+1)2dν(B(r))), where r is the radius of
a single particle and ν(B(r)) is the volume of a ball of radius r. The result
was obtained by Michelen and Perkins [17] using a Markov chain Monte Carlo
approach, which is inherently probabilistic. Significantly less is known in the
setting of deterministic approximation. The question of efficient deterministic
approximation in a discrete computational model is especially elusive due to the
fact that the space of possible point configurations of the model is continuous.
It is even unclear how to obtain an exponential time brute-force algorithm for
approximating the partition function. This raises the question if an efficient
deterministic approximation exists for a comparable parameter regime.

Our contributions We propose a deterministic approximation algorithm for the
hard-sphere model and the Widom–Rowlinson model on box-shaped regions
V ⊂ Rd of Euclidean space. Our algorithms have quasi-polynomial running
time for a fugacity regime that is comparable with the best known bounds for
randomized approximations. Specifically, our approach applies to the hard-sphere
model for λ < e/(2dν(B(r))). Note that, as the number of dimensions d increases,
this becomes equivalent to the best known randomized result. For the Widom–
Rowlinson model with q ∈ N≥1 particle types, each with radius bounded by some
r ∈ R, our algorithm applies if the fugacity of each particle type is bounded by
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λ < e/((q − 1)2dν(B(r))). To the best of our knowledge, this is the first rigorous
computational result for approximating the partition function of the continuous
Widom–Rowlinson model.

We obtain our results by viewing the hard-sphere model and the Widom–
Rowlinson model under a common framework, which we call hard-constraint point
processes. We then study a natural method to discretize such hard-constraint point
processes. More precisely, we give sufficient conditions such that the partition
function of a hard-constraint point process is closely approximated by the partition
function of a discrete hard-core model on a geometric graph, based on a finite
point set X ⊂ V. This generalizes our previous discretization methods for hard-
sphere models in box-shaped regions [8]. If X is of size polynomial in the volume
ν(V), our results follow immediately from known approximation algorithms for
the discrete hard-core model. For box-shaped regions V ∈ [0, ℓ)d, we give a
suitable point set X ⊂ V of size O

(
ν(V)

2), which greatly improves previously
known super-exponential bounds [8]. We further argue that this bound is tight.

If we allow for randomization, we can use the same discretization scheme to
give a fully polynomial randomized approximation for the partition functions of
the hard-sphere model and the Widom–Rowlinson model for the same parameter
regime to which our deterministic results apply. For the hard-sphere model, this
simplifies the algorithm given in [8] and, regarding the Widom–Rowlinson model,
this is the first fully polynomial approximation result in this regime. Assuming a
continuous model of computation, we further show that our discretization can
be used to obtain an approximate sampler for both models in the same fugacity
regime.

1.1 Hard-constraint point processes

As discussed earlier, the hard-sphere model and the Widom–Rowlinson model
have in common that they are characterized by a point process with hard-core
interactions in a region V. To remove redundancy, we define a more general
class of models that includes both of the above. We refer to this class as hard-
constraint point processes. Once we establish our results for this class of models, the
corresponding statements for the hard-sphere model and the Widom–Rowlinson
model follow immediately.

Let V ⊂ Rd be bounded and measurable, and let q ∈ N≥1. The model
represents the distribution of particles of q types, labeled by elements in [q] :=
[1, q] ∩N, on V. Particles of the same types are assumed to be indistinguishable.
Let λ : [q] → R≥0 be a function that equips each particle type with a fugacity. For
each particle type i ∈ [q], we assume that the positions of particles are distributed
according to a (labeled) Poisson point process of intensity λ(i) on V. To add the
constraints to the model, let R ∈ Rq×q

≥0 be a symmetric q × q matrix, called the
interaction matrix. We condition the mixture of point processes by rejecting all
configurations that contain particles at positions x1, x2 ∈ V with corresponding
particle types τ1, τ2 ∈ [q] with distance d(x1, x2) < R(τ1, τ2). That is, the entries
of R determine the minimum distance that particles of the respective types can
have. Especially note that R(τ1, τ2) = 0 means that the particle types τ1, τ2 ∈ [q]
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are not subjected to any pairwise constraints. Thus, if all entries of R are set
to 0, we obtain a simple mixture of Poisson point processes.

For any instance (V, R, λ) of a hard-constraint point process, the above
characterizes a Gibbs distribution as follows. For all k ∈ N and all type assignments
τ : [k] → [q], let D

(R)
τ :

(
Rd

)k → {0, 1} be the function that indicates for a tuple
of particles positions x = (xi)i∈[k] ∈

(
Rd

)k whether it forms a valid configuration,
assuming that for each i ∈ [k], the particle at xi is of type τ(i). Formally,

D(R)
τ (x) =

∏
i,j∈[k] : i<j

1{d(xi, xj) ≥ R(τ(i), τ(j))},

noting that D
(R)
τ (x) = 1 for the case that k = 0. For each tuple (x, τ) as above,

the Gibbs distribution of (V, R, λ) is defined via the probability density

µ(V,R,λ)(x, τ) =

1
k!

(∏
i∈[k] λ(τ(i))

)
D

(R)
τ (x)

Z(V, R, λ)
,

where the normalizing constant Z(V, R, λ) is called the partition function:

Z(V, R, λ) = 1 +
∑

k∈N≥1

1

k!

∑
τ : [k]→[q]

∏
i∈[k]

λ(τ(i))

∫
Vk

D(R)
τ (x) dνd×k,

with νd×k denoting the product of k Lebesgue measures, each on Rd. We proceed
by showing how the hard-sphere model and the Widom–Rowlinson model are
recovered from this framework.

Hard-sphere model: The hard-sphere model describes the distribution of particles
of a single type subjected to hard-core interactions. It is parameterized by a
radius r ∈ R≥0 and a single fugacity λ ∈ R≥0. Informally speaking, it is a
simple Poisson point process of intensity λ, conditioned on no two points being
closer than 2r (i.e., when placing balls of radius r at each of the points, they
must be non-overlapping). This is equivalent to a hard-constraint point process
(V, RHS, λ) with q = 1 particle types, where we abuse notation and treat λ as a
constant function, and set RHS to be a 1× 1 matrix containing only the entry 2r.

Widom–Rowlinson model: We consider the most general version of the Widom–
Rowlinson model, although we might impose certain restrictions for some of our
algorithmic results. The Widom–Rowlinson model describes the interaction of
particles of q ∈ N≥1 types, each equipped with a radius ri ∈ R≥0 and a fugacity
λi ∈ R≥0 for i ∈ [q]. Informally speaking, the resulting distribution is a mixture
of q Poisson point processes, each with its own intensity λi, with the condition
that particles of the same type can be arbitrarily close to each other, but particles
of different types i, j ∈ [q] need to have a distance of at least ri + rj (i.e., when
placing a ball of radius ri at each point of type i ∈ [q], balls of different types
must be non-overlapping). This is equivalent to a hard-constraint point process
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(V, RWR, λ) with q particle types, where we set λ(i) = λi for all i ∈ [q], and, for
all i, j ∈ [q],

RWR(i, j) =

{
0 if i = j,
ri + rj otherwise.

1.2 Reduction to a discrete hard-core model

We investigate a natural discretization to turn a (continuous) hard-constraint
point process into a (discrete) hard-core model. For an undirected graph G =
(V,E) and a function λ : V → R≥0, the (multivariate) hard-core model is defined
by the tuple (G,λ). Let I(G) denote the independent sets of G. We associate
the hard-core model (G,λ) with a distribution µ

(G,λ)
HC on I(G) that assigns each

independent set I ∈ I(G) a probability proportional to
∏

v∈I λ(v), and we call
µ
(G,λ)
HC the Gibbs distribution of (G,λ). Its normalizing constant ZHC(G,λ) is

called the partition function of (G,λ). Formally, this is

ZHC(G,λ) =
∑

I∈I(G)

∏
v∈I

λ(v) and, for I ∈ I(G), we have µ
(G,λ)
HC (I) =

∏
v∈I λ(v)

ZHC(G,λ)
.

Our main goal is to reduce the problem of approximating the partition function
of a hard-constraint point process to approximating the partition function of a
suitable hard-core model. The advantage of this approach is that computational
properties of hard-core models were extensively studied by the computer science
community. In the uniform case (i.e., λ is constant), celebrated results include
the deterministic approximation of ZHC(G,λ) in time |V |O(ln(∆)) [24] and the
randomized approximation of ZHC(G,λ) in time Õ

(
|V |2

)
[1,22] for all graphs G

of maximum degree ∆ and all λ below the tree threshold λc(∆) = (∆−1)∆−1

(∆−2)∆
. For

general graphs, approximation above this threshold is NP-hard [21,9].
We proceed by describing how we map a hard-constraint point process to a

hard-core model. Given an instance of a hard-constraint point process (V, R, λ)
with q ∈ N≥1 particle types and a finite non-empty set of points X ⊂ V,
we construct a simple undirected graph GX = (VX , EX) as follows. For each
point in X and each type, we have a vertex in VX . Two distinct vertices are
connected by an edge if and only if no two particles of the corresponding types are
allowed to occupy the respective positions in a valid configuration. Consequently,
independent sets of the graph correspond to valid particle configurations. We aim
to “simulate” the original continuous model by a hard-core model on that graph.

Formally, we get the following construction:

– For each point x ∈ X and each type i ∈ [q], we construct a vertex v
(i)
x .

Furthermore, for each i ∈ [q], we set V
(i)
X =

{
v
(i)
x

∣∣ x ∈ X
}
, and we define

VX =
⋃

i∈[q] V
(i)
X .
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– For each i, j ∈ [q] and x, y ∈ X, we connect v
(i)
x , v

(j)
y ∈ VX with an edge in

EX if
¬(x = y and i = j) and d(x, y) < R(i, j),

where the condition ¬(x = y and i = j) prevents self-loops.

Additionally, we define a function λX : VX → R≥0 such that, for all i ∈ [q] and
all x ∈ X, λX

(
v
(i)
x

)
= ν(V)

|X| λ(i). Note that for all i ∈ [q] and all x, y ∈ X, this

means that λX

(
v
(i)
x

)
= λX

(
v
(i)
y

)
, and we sometimes abuse notation and write

λX(i) instead. We call (GX , λX) the hard-core representation of (V, R, λ) based
on X. Our goal is to find conditions, such that the hard-core partition function
ZHC(GX , λX) closely approximates the partition function of the original point
process Z(V, R, λ).

We restrict to what we call canonical discretization for box-shaped regions
V = [0, ℓ)d with ℓ ∈ R>0. Formally, the canonical point set is parameterized by
a resolution ρ ∈ R>0. Let Gn = [0, n)d ∩Nd be a d-dimensional positive integer
grid. For all box-shaped regions V = [0, ℓ)d, ℓ ∈ R>0, we call ρ ∈ R>0 a feasible
resolution if and only if ℓρ ∈ N. Given a feasible resolution ρ ∈ R>0, we define
the canonical point set for resolution ρ as

Xρ =
1

ρ
Gℓρ =

{(
x(1), . . . , x(d)

)
∈ V

∣∣∣∣ ∀i ∈ [d]∃m ∈ N : x(i) =
m

ρ

}
.

Our main technical result is that the partition function of the hard-core
representation based on a point set X ⊂ V closely approximates the partition
function of the respective hard-constraint point process.

Theorem 1. Let (V, R, λ) be a hard-constraint point process with q ∈ N≥1 particle
types and V = [0, ℓ)d for some ℓ ∈ R>0. For all εD ∈ (0, 1] there exists ρεD ∈
Θ
(
ε
−1/d
D ν(V)

1/d
)

such that for all feasible resolutions ρ ≥ ρεD we have

e−εDZ(V, R, λ) ≤ ZHC

(
GXρ , λXρ

)
≤ eεDZ(V, R, λ).

Since Theorem 1 is at the core of our algorithmic results, we briefly overview
its proof. Given our point set Xρ, we define an allocation function Φ : V →
Xρ that maps each point y = (y(1), . . . , y(d)) ∈ V to the closest point x =(
x(1), . . . , x(d)

)
∈ Xρ such that x(i) ≤ y(i) for all dimensions i ∈ [d]. The main

idea is to compare the contribution of points in Φ−1(x) to the partition function
Z(V, R, λ) with the contribution of the vertex of GXρ

that corresponds to x to
ZHC

(
GXρ

, λXρ

)
. This comparison needs to consider two types of errors between

the two partition functions, which we bound. The first one is due to the Poisson
point process of the continuous model potentially generating more than one
point in Φ−1(x), for some x ∈ Xρ, which cannot be represented as part of the
hard-core partition function. To bound this error, we reduce the continuous
model to an intermediate multiset version of the hard-core model, where valid
configurations are allowed to contain multiple copies of the same vertex. Then,
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we bound the difference between the partition function of the multiset hard-
core model and ZHC

(
GXρ

, λXρ

)
. The second error type is caused by the fact

that Φ potentially allocates configurations that are valid for the hard-constraint
point process to configurations that are invalid for the hard-core model and
vice versa. This happens because, e.g., two points x1, x2 ∈ V of type τ1, τ2,
respectively, with d(x1, x2) ≥ R(τ1, τ2) get mapped to Φ(x1), Φ(x2) ∈ X with
d(Φ(x1), Φ(x2)) < R(τ1, τ2). The choice of ρεD ensures that each point x ∈ V
is allocated to a point Φ(x) ∈ Xρ with distance d(x, Φ(x)) ≤ εD. This allows
us to bound this error by the difference of two partition functions with slightly
different values in their exclusion matrices R. In Euclidean space, we can express
this as a difference between partition functions with the original exclusion matrix
R but on differently scaled versions of the regions (1 ± α)V for some small α.
Note that (1 − α)V ⊆ V ⊆ (1 + α)V and using basic properties of Z(V, R, λ),
such as monotonicity and log-subadditivity in V, finally allows us to rewrite that
error multiplicatively in Z(V, R, λ), which concludes the proof of Theorem 1.

For the case of the hard-sphere model on box-shaped regions, the same
discretization scheme was used before to obtain a randomized approximation
algorithm [8]. The main difference between the proof of Theorem 1 and discretiza-
tion result given in [8] is that we bound the discretization error by translating
it to the difference of partition functions of hard-constraint point processes on
scaled regions (1 ± α)V. In contrast to that, the bound in [8] was derived by
considering the error based on pairs of particles, leading to a bound on the
required number of vertices that is super-exponential in ν(V). To deal with this
exponential graph size, the previous algorithm needs to utilize the succinct repre-
sentation and structural information of the produced graph, which was highly
specific to the hard-sphere model. Since our refined bound yields much smaller
graphs, we are able to use the results on the hard-core model as out-of-the-box
algorithms. Besides the aforementioned algorithmic simplifications, our result
extends the applicability to other hard-constraint point processes including the
Widom–Rowlinson model. Furthermore, it allows for the first efficient determinis-
tic approximation for the partition functions of both models in a fugacity regime
that is comparable with the best known randomized results.

1.3 Approximation algorithms via canonical discretization

We show how Theorem 1 is used to obtain approximations for the partition
functions of the hard-sphere model and the Widom–Rowlinson model. To this
end, we develop our result in the setting of general hard-constraint point processes
and obtain the model-specific results as corollaries.

We first study the case where the considered hard-constraint point process only
contains a single particle type (e.g., the hard-sphere model) or where all particle
types have the same fugacity (e.g., the Widom–Rowlinson model with uniform
fugacities). In this case, the hard-core representation is a uniform hard-core model,
i.e., there is a constant λ such that, for each vertex v, it holds that λ(v) = λ. A
selection of algorithmic results are applicable in this setting if the hard-core model
in question is below the tree threshold. We obtain our algorithms by bounding the
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maximum degree of GX and using the known approximation algorithms for the
hard-core model. Namely, using the deterministic approximation algorithm for the
hard-core partition function introduced by Weitz [24], we obtain a deterministic
approximation of the partition functions of hard-constraint point processes with
running time quasi-polynomial in the volume of V . Furthermore, we obtain
fully polynomial randomized approximations in the same parameter regime using
a Markov chain Monte Carlo algorithm, for which polynomial running time was
recently proven in a sequence of papers [2,5,6,4,1].

In order to formally state our algorithmic results for the class of hard-constraint
point processes, we introduce the volume exclusion matrix B ∈ Rq×q

≥0 of a hard-
constraint point process (V, R, λ) with q ∈ N≥1 particles types. For all i, j ∈ [q],
we set B(i, j) = ν(B(R(i, j))), where B(r) denotes a d-dimensional ball of radius r.
Intuitively, the entry B(i, j) gives an upper bound on the volume of the region
around a particle of type i ∈ [q] in which no particle of type j ∈ [q] can be placed.

Our main algorithmic result for general hard-constraint point processes is the
following.

Theorem 2. Let (V, R, λ) be a hard-constraint point process with q ∈ N≥1 particle
types, V = [0, ℓ)d for some ℓ ∈ R>0, and let λ be a constant. Let B be the
corresponding volume exclusion matrix and denote its L1-norm by ∥B∥1. If

λ <
e

∥B∥1
,

then for all εA ∈ (0, 1], there is a quasi-polynomial deterministic εA-approximation
algorithm for Z(V, R, λ) with running time

(ν(V)
εA

)Θ(ln(ν(V)/εA)) and a randomized
εA-approximation algorithm for Z(V, R, λ) with running time Õ

(
ν(V)

4
ε−2
A

)
.

We derive our algorithmic results for the hard-core model and the Widom–
Rowlinson model with uniform fugacities and radii from Theorem 2. For the
hard-sphere model, we obtain the following corollary.

Corollary 1. Let V = [0, ℓ)d for some ℓ ∈ R>0. Further, let r ∈ R>0 and λ ∈ R≥0.
Denote by ZHS(V, r, λ) the hard-sphere partition function on V with particles of
radius r and fugacity λ. If

λ <
e

2dν(B(r))
,

then for all εA ∈ (0, 1], there is a quasi-polynomial deterministic εA-approximation
algorithm for ZHS(V, r, λ) with running time

(ν(V)
εA

)Θ(ln(ν(V)/εA)) and a random-
ized εA-approximation algorithm for ZHS(V, r, λ) with running time Õ

(
ν(V)

4
ε−2
A

)
.

The most relevant point of the above statement is the quasi-polynomial
deterministic approximation algorithm. It is the first deterministic result for a
parameter regime that is comparable with recent randomized approaches and
partially answers an open question of Michelen and Perkins [17].

For the Widom–Rowlinson model, Theorem 2 yields the following approxima-
tion result.
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Corollary 2. Let V = [0, ℓ)d, ℓ ∈ R>0, let and r ∈ R>0 and λ ∈ R≥0. Let
ZWR(V, r, λ) denote the Widom–Rowlinson partition function on V with q ∈ N≥1

particle types, each of radius r and fugacity λ. If

λ <
e

(q − 1)2dν(B(r))
,

then for all εA ∈ (0, 1], there is a quasi-polynomial deterministic εA-approximation
algorithm for ZWR(V, r, λ) with running time

(ν(V)
εA

)Θ(ln(ν(V)/εA)) and a random-
ized εA-approximation algorithm for ZWR(V, r, λ) with running time Õ

(
ν(V)

4
ε−2
A

)
.

To the best of our knowledge, no other efficient approximation algorithm is
known for this parameter regime. In fact, Corollary 2 also applies to the non-
uniform Widom–Rowlinson model when replacing λ and r with the maximum
fugacity and maximum radius among all particle types.

1.4 Sampling via random perturbations

So far, we only discussed approximation results for the partition functions of the
hard-sphere model and the Widom–Rowlinson model, although, in discrete spin
systems, approximation algorithms often go hand in hand with sampling algo-
rithms [14]. Unfortunately, for continuous spin systems, a natural barrier is that
outputting a sample, i.e., a tuple of points that represents a valid configuration,
requires infinite floating-point precision. Thus, assuming a discrete computational
model, as is common in computer science, no (approximate) sampling algorithm
with meaningful error bounds in terms of total-variation distance can be obtained.

Assuming a computational model that performs arithmetic operations of
floating-point values with arbitrary precision and can uniformly sample a random
floating-point number from an interval, we use our discretization GX to recover
an approximate sampler for µ(V,R,λ). In practice, the floating-point precision of
common discrete computational models might be seen as sufficient for applying
our sampling approach.

Again, we focus on box-shaped regionsV = [0, ℓ)d with canonical discretization
Xρ for some feasible resolution ρ ∈ R>0. Recall the definition of the allocation
function Φ : V→ Xρ. Our sampling algorithm first samples an independent set I
from the Gibbs distribution of the hard-core model on (GXρ

, λXρ
), using a known

Markov chain method (see, e.g., [2,5,4,1]). Recall that each vertex v
(i)
x of GXρ

corresponds to a point x ∈ Xρ of a particle of type i. Then, for each vertex v
(i)
x

in I, our sampler chooses a position in Φ−1(x) uniformly at random and places a
particle of type i at this position. This way, we obtain the following sampling
analogue of Theorem 2.

Theorem 3. Let (V, R, λ) be a hard-constraint point process with q ∈ N≥1 particle
types, V = [0, ℓ)d for some ℓ ∈ R>0, and let λ be a constant. Let B be the
corresponding volume exclusion matrix and denote its L1-norm by ∥B∥1. If

λ <
e

∥B∥1
,
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then for all εS ∈ (0, 1], there is an εS-approximate sampler for µ(V,R,λ) with
running time Õ

(
ν(V)

2
ε−1
S

)
.

Our sampling procedure does not always result in a valid configuration for the
hard-constraint point process. However, by bounding the total-variation distance
between the two distributions, µ(V,R,λ) and the distribution of our sampler, we
bound the probability of the sampler returning an invalid configuration by some
small constant. In this case, we reject this configuration and repeat the sampling.

1.5 Discussion and future directions

Our algorithmic results are centered around discretizations based on the hard-
core model. For the hard-sphere model, a slightly better fugacity bound has
recently been obtained without discretization by directly applying a Markov
chain Monte Carlo method to the continuous problem, assuming a continuous
model of computation [17]. This raises several questions.

First of all, note that the result by [17] is purely probabilistic. Thus, it
would be interesting to see if the same fugacity bound can also be achieved for
deterministic approximation. An obvious idea is to use more detailed insights
about the properties of the graphs that result from the discretization. The result
of [17] is obtained by studying the potential-weighted connective constant, which
is a generalization of the connective constant on graphs. In the discrete setting,
the connective constant was already used to improve algorithmic results for the
hard-core model on certain graph classes [20]. Therefore, a promising candidate
could be to investigate the connective constant of the resulting graphs. However,
arguments were made that for the canonical discretization of the hard-sphere
model, the connective constant is asymptotically equivalent to the maximum
degree of the graph (see [19] and [8, Section 1.4]). Thus, a more sophisticated
structural property might be required.

Second, it would be interesting to see if a deterministic approximation can
also be obtained by directly working with the continuous model, instead of
discretizing it. One approach could be to approximate the logarithm of the
partition function instead, for example by using the cluster expansion. This has
successfully been done in the setting of discrete models [18,12]. However, in
contrast to the discrete setting, we are not aware of any method to compute
the coefficients of the expansion efficiently, as this again involves evaluating
non-trivial multi-dimensional integrals. The challenge would be to evaluate these
integrals with sufficient accuracy using a discrete deterministic algorithm.

Another interesting algorithmic question is whether the quasi-polynomial
running time of the deterministic approximation algorithm can be improved to a
polynomial. The two techniques yielding deterministic algorithms for the hard-
core model have a running time of nO(log∆) for graphs of maximum degree ∆,
which corresponds in our setting to the quasi-polynomial running time. In the
correlation decay method of Weitz [24], this running time comes from computing
the self-avoiding walk tree of G. In Barvinok’s interpolation method, this comes
from enumerating induced connected subgraphs [18]. Improving the running time



Algorithms for hard-constraint point processes via discretization 11

dependency on the maximum degree ∆ for deterministic algorithms on general
graphs, if possible, seems to require significant conceptual insight. However, one
could hope that the symmetric structure of GX , produced by our discretization,
leads to faster running times for the computational tasks used in any of these
two algorithmic techniques.

Finally, it is worth pointing out that there are several models in statistical
physics that do not fit into the framework we study. In contrast, the Markov chain
Monte Carlo approach in [17] yields a randomized approximating for partition
functions of Gibbs point processes with finite-range repulsive potentials, including
the hard-sphere model as a special case. This approaches is probabilistic, raising
the question of deterministic algorithms for such general models.
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