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Abstract
We introduce the balanced crown decomposition that captures the structure imposed on graphs by
their connected induced subgraphs of a given size. Such subgraphs are a popular modeling tool in
various application areas, where the non-local nature of the connectivity condition usually results
in very challenging algorithmic tasks. The balanced crown decomposition is a combination of a
crown decomposition and a balanced partition which makes it applicable to graph editing as well as
graph packing and partitioning problems. We illustrate this by deriving improved approximation
algorithms and kernelization for a variety of such problems.

In particular, through this structure, we obtain the first constant-factor approximation for the
Balanced Connected Partition (BCP) problem, where the task is to partition a vertex-weighted
graph into k connected components of approximately equal weight. We derive a 3-approximation
for the two most commonly used objectives of maximizing the weight of the lightest component or
minimizing the weight of the heaviest component.
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1 Introduction

Connected subgraphs are one of the most natural structures to encode aspects of a practical
task, modeled as a graph problem. On the one side, such subgraphs represent structures
we seek to discover, such as territories for postal delivery and similar districting problems
(see e.g. the survey [24]). From another perspective, the structures of interest could be
operations that scatter a graph into small connected components; a structure e.g. used to
model vulnerability in network security (see e.g. the survey [2]). Partitioning a graph into
connected components of a given size is also used as a model for task allocation to robots [45].
From an algorithmic perspective, connectivity is a non-local requirement which makes it
particularly challenging. We introduce a graph structure that can be used to design efficient
algorithms for a broad class of problems involving connected subgraphs of a given size.
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One useful structure to derive information about connected subgraphs is a connected
partition, defined as follows. Given a graph G = (V, E), a connected partition of G is a
partition V1, . . . , Vk of V such that the graph induced by the vertex set Vi is connected
for each 1 ≤ i ≤ k, where k ∈ N is the size of the partition. Often, we are not interested
in just any connected partition but in those that have the additional property of being
balanced. Informally speaking, a connected partition is considered balanced if the sets Vi

have approximately equal cardinality. There are several measures to assess the quality of a
balanced connected partition (BCP for short), with the two most commonly used objectives
being to maximize min1≤i≤k |Vi| or to minimize max1≤i≤k |Vi|, as first introduced for trees
in [32] and [27], respectively. Despite extensive studies on these problems for the past 40
years, see e.g. [7, 32, 34, 37, 39, 40, 41] the best known approximation ratio for the Min-Max
objective depends on the number of sets k [11]. For the Max-Min objective not even such a
result is known; only for the cases with k restricted to 2 or 3, there exist approximations
with ratio 4

3 [12] and 5
3 [8], respectively. Deriving an approximation with a ratio independent

of k seems to require a new strategy.
Helpful structures for both of the objectives Max-Min and Min-Max, as a sort of com-

promise, are BCP’s such that λl ≤ |Vi| ≤ λr for some fixed bounds λl, λr. We call this
compromise structure [λl, λr]-CVP (connected vertex partition), and it is one ingredient of
balanced crown decomposition, the main structural object that we present. In the case that
no [λl, λr]-CVP exists for a graph, we can learn something about its structure. In particular,
our balanced crown decomposition theorem (Theorem 7) shows that for any k, λ > 0, the
non-existence of a [λ, 3λ− 3]-CVP implies the existence of a vertex set H ⊆ V of cardinality
at most k that disconnects at least one component of size less than λ from G. Such sets H

are in a sense the dual of balanced connected partitions.
Small subsets of vertices that disconnect a graph are usually called vertex separators, and

they are one of the most powerful tools for designing efficient graph algorithms. In a sense,
they are the base requirement of successful divide-and-conquer strategies for graph problems.
This generality and their wide applicability has made the study of separators a rich and
active research field, see e.g. the book by Rosenberg and Heath [33], or the line of research
initialized by the seminal paper of Lipton and Tarjan [29] on separators in planar graphs.
Numerous different types of separator structures emerged over the past couple of decades.
In the context of connectivity problems, the separator structures of particular interest are
crown decompositions; a classical tool to derive kernelizations in the field of parameterized
complexity. We refer to chapter 4 of the book on kernelization [19] for more details on crown
decompositions and their applications.

Crown decomposition was introduced as a generalization of Hall’s Theorem in [13]. More
precisely, a crown decomposition of a graph G = (V, E) is a partition of V into three sets H

(head), C (crown) and R (royal body), such that H separates C from R, C is an independent
set in G, and there exists a matching of size |H| among the edges E ∩ (H × C). Notice that
the set H is the separator set, and the property of C being an independent set can be seen as
H splitting connected components of size 1 from the graph. The condition of the matching
from H into C models a trade-off between the size of the separator and the amount of small
sets that are separated. Different versions of crown decompositions have been introduced in
the literature, adjusting the structure to specific application scenarios.

The structure of particular interest to us is the q-Weighted Crown Decomposition in-
troduced by Xiao [42]. Here, the crown C is no longer an independent set, but has the
restriction that each connected component in it has size at most q (generalizing the notion
of independent set for q = 1); and there exist an assignment of connected components of
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the crown to the head such that each vertex in the head is assigned at least q vertices. This
assignment generalizes the notion of matching in the original crown decomposition. Such a
weighted crown decomposition can be derived using the Expansion Lemma as stated in [18,
Chapter 5.3], and its generalization to the Weighted Expansion Lemma as given in slightly
different forms in [26] and [42]. The expansions derived by these lemmas can be thought
of as bipartite analogues of the crown decomposition. Formally, given a bipartite graph
G = (A, B, E), a q-(Weighted) Expansion is given by sets H ⊆ A and C ⊆ B such that the
neighborhood of C is contained in H and an assignment f : C → H such that the number
(resp. weight, in the vertex-weighted case) of vertices assigned to each vertex in H is at least q

(resp. q −W + 1 where W is the largest weight). Both Kumar and Lokshtanov [26] and
Xiao [42] use their respective Weighted Expansion Lemma to derive kernels for Component
Order Connectivity, a version of the editing problem that we also consider in a more
general form under the name W -Weight Separator.

To create our new structure balanced crown decomposition, we combine balanced connected
partitions and crown decompositions to derive a tool that has the advantages of both of the
individual structures. Essentially, it is a weighted crown decomposition with the additional
property that the body has a balanced connected partition. Also, note that we allow a more
generalized version of weighted crown decomposition than Xiao [42], by considering weighted
vertices. Formally, we consider vertex-weighted graphs G = (V, E, w) with integer-weights
w : V → N. For simplicity we use w(V ′) =

∑
v∈V ′ w(v) for the weight of a subset V ′ ⊆ V .

We show that balanced crown decompositions have applications for various kinds of
problems involving connectivity constraints. Specifically we discuss for the three types editing,
packing and partitioning the following problems on input G = (V, E, w) and k, W ∈ N:

Max-Min (Min-Max) BCP: Decide if there exists a connected partition V1, . . . , Vk of V

such that w(Vi) ≥W (resp. w(Vi) ≤W ) for each i ∈ [k]; usually stated as optimization
problem to maximize/minimize W .

W -weight Separator: Decide if there exists a set S ⊆ V with |S| ≤ k whose removal
from G yields a graph with each connected component having weight less than W .

W -weight Packing: Decide if there exist k pairwise disjoint sets V1, . . . , Vk ⊆ V with
w(Vi) ≥W , such that the graph induced by Vi is connected, for each i ∈ [k].

We remark that the problems W -weight Separator and W -weight Packing have
been studied mostly on the unweighted versions, also known as Component Order
Connectivity and Tr-Packing, respectively.

For all results of this paper, we consider the RAM model of computation with word size
O(log(|V |+ maxv∈V w(v))). All our algorithms are polynomial w.r.t. the encoding of input.

1.1 Our Contribution
Our major contributions can be summarized as follows:

1. Balanced Crown Decomposition (BCD): The main contribution of our paper is a
new crown decomposition tailored for problems with connectivity constraints. Our novel
addition over previous crown decompositions is that we also give a partition of the body
into connected parts of roughly similar size. More precisely, we divide the graph into
C, H, and R such that C, H, R is a weighted-crown decomposition and also a [λ, 3λ]-CVP
is given for R. Definition 6 gives the formal definition of BCD, and Theorem 7 gives our
main result about computing BCD. We believe that apart from the applications used in
this paper, BCD will find applications for other problems with connectivity constraints.
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2. Balanced Expansion: We also give a novel variation of the expansion lemma, which is
an important constituent of our algorithm for BCD. Given a bipartite graph G = (A, B, E),
we give an expansion with H ⊆ A, C ⊆ B, with the addition that the expansion f while
being a weighted q-expansion from C to H, now also maps B\C to neighbors in A\H such
that only a bounded weight is assigned to each vertex in A\H. See Definition 1 for a more
formal definition and Theorem 2 for our result on computing balanced expansion. Apart
from its usage here to compute BCD, the balanced expansion could be of independent
interest, given the significance of the Expansion Lemma in parameterized complexity.

3. Approximation algorithms for BCP: Using BCD, we give 3-approximation algorithms
for both Max-Min and Min-Max BCP. These are the first constant approximations for
both problems in polynomial time for a general k. Recall that despite numerous efforts in
the past 40 years, only a k/2-approximation for Min-Max BCP [11], and constant-factor
approximations for the particular cases of k = 2, 3 for Max-Min BCP [12, 8] were known.

4. Improved Kernels for W-weight separator and packing: BCD directly gives a
3kW -kernel for both of the problems improving over the previous best polynomial time
kernels of size 9kW [42] and O(kW 3) [9]. Especially, we get the same improvements for
the unweighted versions Component Order Connectivity and Tr-Packing.

5. Faster algorithms for Expansion: Our algorithm for Balanced Expansion, also gives
an alternative flow-based method for computing the standard (weighted) expansion. Our
algorithm can compute a (weighted) expansion in O(|V ||E|) surpassing the previous best
runtimes of O(|V |1.5|E|) and O(|E||V |1.5W 2.5) [19, Chapter 5.3] (here W is the largest
weight) for unweighted and weighted expansion, respectively. In particular, for weighted
expansion, our runtime does not depend on the weights and is the first algorithm that
runs in time polynomial w.r.t. the length of the input-encoding. The improvement in
runtime may turn out to be useful to speed up kernelizations for other problems.

1.2 Related work
Both variants of BCP were first introduced for trees, where Max-Min BCP and Min-Max
BCP are introduced in [32] and [27], respectively. For this restriction to trees, a linear
time algorithm was provided for both variants in [21]. For both variants of BCP, a ∆T -
approximation is given in [3] where ∆T is the maximal degree of an arbitrary spanning tree
of the input graph; for Max-Min BCP the result holds only when the input is restricted
to weights with maxv∈V w(v) ≤ w(G)

∆k . Also, although not explicitly stated, a (1 + ln (k))-
approximation in O

(
nk

)
time for Min-Max BCPk follows from the results in [10]. With

respect to lower bounds, it is known that there exists no approximation for Max-Min BCP
with a ratio below 6/5, unless P ̸= NP [7]. For the unweighted case, i.e. w ≡ 1, the best
known result for Min-Max BCP is the k

2 -approximation for every k ≥ 3 given in [11].
Balanced connected partitions are also studied for particular cases of k, denoted BCPk.

The restriction BCP2, i.e. balanced connected bipartition, is already be NP-hard [5]. On the
positive side, a 4

3 -approximation for Max-Min BCP2 is given in [12], and in [11] this result is
used to derive a 5

4 -approximation for Min-Max BCP2. For tripartition, approximations for
Max-Min BCP3 and Min-Max BCP3 with ratios 5

3 and 3
2 , respectively, are given in [8].

BCP in unit-weighted k-connected graphs can be seen as a special case of the Győri-
Lovász Theorem (independently given by Győri [22] and Lovász [30]). It states that for any
k-connected graph G = (V, E) and integers n1, . . . , nk with n1 + · · ·+ nk = |V |, there exists
a connected partition V1, . . . , Vk of V with |Vi| = ni for all i ∈ [k]. Moreover, it is possible
to fix vertices v1, . . . , vk and request vi ∈ Vi for all i ∈ [k]. The Győri-Lovász Theorem is
extended to weighted directed graphs in [10] and Győri’s original proof is generalized to
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weighted undirected graphs in [6]. Polynomial algorithms to also compute such connected
partitions are only known for the particular cases k = 2, 3, 4 [34, 37, 23] and all k ≥ 5 are
still open. A restricted case of BCP where the partitions are allowed to differ only by a size
of one, has been studied from the FPT viewpoint [16].

W -weight Separator occurs in the literature under different names. The unweighted
version is studied under the names p-Size Separator [42] or ℓ-Component Order Connectivity
(COC) [15, 26]; where p, ℓ = W −1 translate this to our definition of W -weight Separator
with unit weights. In [15] a weighted version of COC denoted by Weighted Component Order
Connectivity (wCOC) is introduced. This problem differs from our W -weight Separator
by searching for a set S with w(S) ≤ k instead of |S| ≤ k.

Note that W -weight Separator with W = 2 and unit weights yields the classical
problem Vertex Cover. This in particular shows that W (alone) is not a suitable
parameter from the FPT viewpoint. Further, W -weight Separator is W[1]-hard for
parameter k, even when restricted to split graphs [15]. These lower bounds lead to studying
parameterization by W + k. Stated with ℓ = W − 1, a kernel of size 9kℓ is given in [42].
Also [26] derives a kernel of size 2kℓ in time O

(
|V |ℓ

)
. Both of these results are for unit

weights. An O
(
kℓ(k + ℓ)2)

weight kernel for the related problem w-COC is given in [15].
For W = 3 and unit weights, W -weight Separator corresponds to Vertex Cover

P3 or 3-path Vertex Cover (see e.g. [36] and [4]), first studied by Yannakakis [44] under
the name Dissociation Number. The best known kernel for this problem is of size 5k

and given in [43]. W -weight Packing with unit weights is equivalent to Tr-Packing with
r = W + 1, where Tr is a tree with at least r edges, as defined in [9]; note that any connected
component with at least W vertices has at least r − 1 edges, and any tree with r − 1 edges
has exactly W vertices. The best known kernel for this problem is of size O

(
kW 3)

by [9].
W -weight Packing is also studied for particular values of W . The case W = 2 with

unit weights is equivalent to the Maximum Matching problem; note that a matching of size
k can be derived from a solution V1, . . . , Vk for 2-weight Packing by choosing arbitrarily
any edge in a set Vi with |Vi| > 2. In a similar way, the particular case of W = 3 is a problem
studied under the names P2-packing or Packing 3-Vertex Paths (see e.g [38] and [25]).
A 5k kernel for this problem is given in [28].

2 Balanced Expansion

In this section we introduce a balanced generalization of weighted expansions that we call
balanced expansion. Full proofs of the results in this section are given in Appendix B.

Balanced expansion extends the existing weighted expansion structures and is one of
the ingredients to derive our main BCD structure in the next section. Like the weighted
expansion, it is a structure on bipartite graphs. We write G = (A ∪ B, E, w) for bipartite
vertex-weighted graphs, where w : A ∪ B → N is its weight function. See Figure 1 for an
illustration of this structure.

▶ Definition 1 (balanced expansion). Let G = (A ∪B, E, w) be a bipartite vertex-weighted
graph, where wB

max = maxb∈B w (b). For q ∈ N0, a partition A1 ∪ A2 of A and f : B → A,
the tuple (A1, A2, f, q) is called a balanced expansion if:

1. w (a) + w
(
f−1 (a)

) {
≥ q − wB

max + 1, a ∈ A1

≤ q + wB
max − 1, a ∈ A2

2. f (b) ∈ N (b)
3. N

(
f−1 (A1)

)
⊆ A1
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B A }
A1

}
A2

s t

B A

w(b) q − w(a)

w(b)

Figure 1 Left: Balanced expansion for w(b) = 1 for all b ∈ B, q = 2 and assignment f depicted
with bold edges. Right: Flow network embedding of the graph on the left.

Our main result of this section is the following theorem.

▶ Theorem 2 (balanced expansion). Consider a vertex-weighted bipartite graph G = (A ∪B, E, w)
with no isolates in B, and q ≥ maxb∈B w (b) = wB

max. A balanced expansion (A1, A2, f, q) for
G can be computed in O (|V | |E|) time. Furthermore, if w (A) + w (B) ≥ q|A|, then A1 ≠ ∅.

As intermediate structure we use a fractional version of the balanced expansion where we
partially assign weights from vertices of B to vertices of A encoded as edge weights.

▶ Definition 3 (fractional balanced expansion). Let G = (A ∪B, E, w) be a bipartite vertex-
weighted graph. For q ∈ N0, a partition A1 ∪A2 of A and g : E → N0, the tuple (A1, A2, g, q)
is called fractional balanced expansion if:

1. w (a) +
∑

b∈B g (ab)
{
≥ q, a ∈ A1

≤ q, a ∈ A2
2. ∀b ∈ B :

∑
a∈A g (ab) ≤ w (b) (capacity)

3. N (BU ∪BA1) ⊆ A1 (separator)
where Ba := {b ∈ B | g (ab) > 0} for a ∈ A, BA′ :=

⋃
a∈A′ Ba for A′ ⊆ A and BU :={

b ∈ B |
∑

a∈A g (ab) < w (b)
}

We prove a fractional version of our result first in the following lemma.

▶ Lemma 4 (fractional balanced expansion). Given a vertex-weighted bipartite graph G =
(A ∪B, E, w) with no isolated vertices in B and q ∈ N0, a fractional balanced expansion
(A1, A2, g, q) can be computed in O (|V | |E|). Also, if w (A) + w (B) ≥ q|A|, then A1 ̸= ∅.

Proof Sketch. The main idea is to embed G to a capacitated flow network in a standard
way (see Figure 1). We construct a network H = (A∪B ∪{s, t} ,

−→
E , c). To obtain H from G,

add source s and sink t, and arcs −→E with a capacity function c : −→E → N defined as follows.
For every b ∈ B, add an arc

−→
sb with capacity w (b) and for every a ∈ A, add an arc −→at with

capacity q − w (a). Moreover, transform every edge ab ∈ E to an arc
−→
ba with capacity w (b).

We compute a max flow f : −→E → N and define the saturated vertices A′ ⊆ A as a ∈ A

with f(−→at) = c(−→at). We now gradually build the sets A1 and A2. The vertices of A′ are
potential vertices for A1 while the unsaturated vertices are immediately added to A2. We
define F :=

∑
−→e ∈δ−(t) f(−→e ) as the flow value, where δ−(v) denotes the incoming, and δ+(v)

the outgoing arcs for v ∈ V (G). The final selection of A1 follows by individually increasing
the capacity by one for each −→at for a ∈ A′, and checking whether the flow value increases
by computing a new max flow fa with the increased capacity of −→at. Let Fa be the flow
value when the capacity of −→at is increased by one. If Fa > F , then the vertex is added to
A1, otherwise it is added to A2. The intuition behind this selection can be explained as
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follows: first observe that each b ∈ B that has an edge ba2 to some a2 ∈ A2 is saturated,
i.e.

∑
−→e ∈δ+(b) f(−→e ) = w(b). Otherwise, we could route an additional unit of flow from b to

a2 either in f or in fa2 , giving a contradiction to the fact that a2 ∈ A2. Consequently, every
unsaturated b ∈ B is adjacent only to A1. The second observation is that there are no b ∈ B

with f(
−→
ba1) > 0 and ba2 ∈

−→
E for a1 ∈ A1 and a2 ∈ A2. If such a b exist, we show that we

can route an extra unit of flow from b to a2 either in f or fa2 . The idea is that we could
reroute one unit of flow from

−→
ba1 to

−→
ba2 creating a vacuum for one unit of incoming flow in

a1. Since fa1 routed one unit flow more than f , we could use a similar flow routing as in
fa1 to fill this vacuum, thus contradicting the maximality of either f or fa2 . As a result, all
vertices added to A1 have the desired exclusive neighborhood in B encoded by f . Finally, in
order to derive g we convert the flow arc values of f to edge weights for g. Note that the
required upper bound on the assignment of A2 follows from the capacities of the arcs from A

to t, and the required lower bound on the assignment of A1 follows from the vertices in A1
being saturated. Regarding running time, we remark that it is sufficient to find one max-flow
f at the beginning and then computing each fa with only one augmenting flow step. ◀

Proof Sketch of Theorem 2. Once we have the fractional balanced expansion g, our first
step is modifying the edge weights g such that the edge-weighted graph G′ := (V, {ab ∈
E|g(a, b) > 0}, g) becomes a forest, without changing the sum

∑
b∈N(a) g(a, b) for any a ∈ A

and at the same time ensuring that
∑

a∈N(b) g(a, b) ≤ w(b) for all b ∈ B. This is possible
through a standard cycle canceling process. Now consider the trees in this forest. The trees
intersecting A1 are disjoint from the trees intersecting A2 due to the separation property of
the balanced fractional expansion. For a tree T intersecting A1, we allocate each b ∈ V (T )∩B

completely to its parent in T . This way, any a ∈ V (T ) ∩ A1 loses at most the assignment
from its parent and hence its assignment decreases by at most wB

max − 1 as required. Now
consider a tree T intersecting A2. If a b ∈ V (T ) ∩B is a leaf of T its assignment has to be
non-fractional, so it can be completely assigned to its parent a and deleted from the tree.
This way, all leafs can be assumed to be from A2. We then allocate each b ∈ V (T ) ∩B to
one of its children, and thus to every a ∈ V (T ) ∩A2 at most the assignment from its parent
is added, and hence the assignment increases by at most wB

max − 1 as required. ◀

Before moving to BCD, we formally state the aforementioned implication of the results in
this section on the runtime of computing (non-balanced) expansions.

▶ Lemma 5 (Weighted Expansion Lemma). Let G = (A ∪B, E) be a bipartite graph without
isolated vertices in B, w : B → {1, . . . , W}, and q ∈ N0. A q-weighted expansion (f, H, C) in
G can be computed in time O (|A ∪B| |E|). Furthermore, if w (B) ≥ q|A| then H ̸= ∅.

3 Balanced Crown Decomposition

In this section we introduce our combination of balanced connected partition and crown
decomposition that we call balanced crown decomposition, formally defined as follows (see
also Figure 2 for an illustration).

▶ Definition 6. A λ-balanced crown decomposition (λ-BCD) of a vertex-weighted graph
G = (V, E, w) is a tuple (C, H,R, f), where {H, C, R} is a partition of V , the set R is a
partition of R, and f : CC(C)→ H where CC(C) is the set of connected components of G[C],
such that:
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1. there are no edges from C to R

2. w(Q) < λ for each Q ∈ CC(C)
3. f(Q) ∈ N(Q) for each Q ∈ CC(C)
4. w(h) + w(f−1(h)) ≥ λ for each h ∈ H


(weighted crown dec.)

5. G[R′] is connected and λ ≤ w(R′) ≤ 3λ− 3 for each R′ ∈ R.

Our novel contribution is condition 5, that gives a balanced connected partition of the body.
Without this condition, the structure is same as the weighted crown decomposition [42].
Observe that if there is a connected component of weight less than λ in G, then there is no
λ-balanced crown decomposition for G. In the applications of BCD, such small components
in the input are usually removed through some form of preprocessing.

We point out that the ratio 3 between the upper and lower bound in condition 5 of BCD
is not arbitrary, but the best possible, since we want to ensure the existence of this structure
in case all connected components have weight at least λ. A simple tight example is a triangle
with each vertex having a weight of λ− 1; here, C = H = ∅ is the only possibility and hence
R = {V } is the only possible partition of R = V .

R
H

C

< λ

λ ≤ ≤ 3λ− 3

Figure 2 λ-balanced crown decomposition.

The main structural result of the paper is the following.

▶ Theorem 7 (Balanced Crown Decomposition Theorem). Let G = (V, E, w) be a vertex-
weighted graph and λ ∈ N, such that each connected component in G has weight at least λ. A
λ-balanced crown decomposition (C, H,R, f) of G can be computed in O

(
k2 |V | |E|

)
time,

where k = |H|+ |R| ≤ min {w(G)/λ, |V |}.

The proof of this result is very technical and we therefore here only give a very high-
level overview of the ideas. For a full proof, see Appendix C. Observe that the condition
|H| + |R| ≤ min {w(G)/λ, |V |} holds, since

{
{h} ∪ f−1(h) : h ∈ H

}
∪ R is a partition of

the vertices with each part having weight at least λ. This bound is also used to track our
progress in our BCD algorithm. We maintain a set H that can be thought of as a potential
head (not necessarily a separator), a set of connected components of weight smaller than λ

(some of them assigned to vertices in H by a partial assignment f) which can be thought of
as a potential crown, and a remaining body that is packed according to condition 5.

To easily talk about condition 5 in the following, we say U is a connected packing in
V ′ ⊆ V , if for every U ∈ U we have U ⊆ V ′, U induces a connected subgraph in G and⋂

U∈U U = ∅. We say U is an [a, b]-connected packing of V ′ if w(U) ∈ [a, b] for every U ∈ U
and that U is maximal if the remaining graph does not have a connected component of weight
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at least a. Recall that we say U is a CVP or [a, b]-CVP of V ′ if additionally
⋃

U∈U U = V ′

holds, and observe that condition 5 asks for a [λ, 3λ− 3]-CVP of the body R.

Proof Sketch of Theorem 7. Let G = (V, E, w) be a vertex-weighted graph and λ ∈ N such
that each connected component of G has weight at least λ. We reduce G by deleting all
vertices of weight more than λ and all connected components of size smaller than λ that occur
after this deletion. Suppose we have a λ-BCD for the reduced graph, then a λ-BCD of G

can be built by adding the deleted heavy vertices to the head, the deleted small components
to the crown and assigning (by the function f in the definition of λ-BCD) each of these
components arbitrarily to a heavy vertex it is adjacent to. Thus, we can assume that every
vertex has weight at most λ. See Figure 3 for an illustration of the structures arising below.

We start with a maximal [λ, 2λ]-connected packing of G which is obtained greedily (slight
deviation from the main proof to provide better intuition). Let R = {R1, R2, · · · } be this
packing, C be the vertices not in the packing, and let CC(C) = {C1, C2, · · · } be the connected
components of G[C]. Note that by the maximality of the packing, w(Ci) < λ for all i. Think
of R as the current body and C as the current crown, and the head is empty in the beginning.
Note that at this point we do not ensure that there are no edges between crown and body.
If C is empty then we already have a λ-BCD (with empty crown and head). Also, if we
can somehow assign each Ci to some adjacent Ri such that each Ri is assigned weight at
most 3λ (including its own weight), then we have also built a λ-BCD (with empty crown and
head). Assuming neither of these cases hold, there has to exist an Ri such that its weight
plus the weight of the neighborhood in the crown part is at least 3λ; recall that we assumed
that all connected components of G have weight at least λ, so each Cj is connected to at
least one component in R. We call the subgraph induced by Ri together with all Cj that are
connected to it the effective neighborhood of Ri, and its weight the effective weight of Ri.

In case we have not found a λ-BCD yet, we pick an Ri with effective weight at least 3λ and
use the following fact derived from the famous results of Tarjan [35, 17]: for any connected
graph of total weight at least 3λ and largest vertex weight at most λ, we can efficiently
either find a partition of it into two connected subgraphs of weight at least λ each, or find a
cut-vertex that cuts the graph into components each of weight less than λ. If the effective
neighborhood is divided into two, we take each of the two parts into the body and remove
Ri, thus increasing the body size by one. In the other case, that is, if we find a cut-vertex c,
then we add c to the head and the components of Ri \ {c} (each having weight less than λ)
to the crown CC(C). We assign with a partial function f : CC(C) → H some of these
components that we just added to CC(C) to c such that c is assigned a total weight of at
least 3λ (including weight of c). The reason for assigning 3λ when we only require λ by the
definition of BCD, will become clear in the following. The new components added to the
crown could have edges to the old components there and hence can merge with these. If
at any point it happens that there is a component of weight at least λ in the crown, then
we immediately add it to the body. This could cause some head vertex to loose some of its
assignment, but since it had 3λ assigned to it, an assignment of at least λ remains. This is
because we ensure that the part we move to the body can have weight at most 2λ, as we
move it immediately as the weight is at least λ, and each addition is by steps of less than λ.

We repeat this process of picking an effective neighborhood of an Ri and dividing or
cutting it. We point out that when we calculate effective neighborhoods and weights, we
do not consider the crown parts that are already assigned by f . This process continues
until the effective weights of all sets Ri are less than 3λ. We claim that the reason why we
have not arrived at a λ-BCD yet could only be that there are crown parts that do not have
edges to the body (we call them private components) and not assigned by f , while there are



10 Balanced Crown Decomposition for Connectivity Constraints

also crown parts that have edges to the body (non-private components) and assigned by f .
Note that if there are no unassigned private components, we can merge all unassigned crown
parts with some set in the body and create a [λ, 3λ]-CVP given by the Ri’s and the sets
{v} ∪ f−1(v). Note that since the effective weights were lighter than 3λ, the body parts after
the merging are lighter than 3λ. Also, if f does not assign any non-private components, we
can assign unassigned private components to arbitrary neighbors in H, and merge unassigned
non-private components to body obtaining a λ-BCD.

We modify the assignment f to switch non-private with private components in the best
way possible. For this we use the balanced expansion Theorem 2. We build the bipartite
graph where the set A are the head vertices, and the set B are the private crown components
each contracted into a single vertex. Theorem 2 with expansion parameter 2λ then gives
us sets A′ ⊆ A and B′ ⊆ B and an assignment f ′ such that w({a′} ∪ f ′−1(a′)) ≥ λ for all
a′ ∈ A′ and w({a} ∪ f ′−1(a)) ≤ 3λ for all a ∈ A \A′, and the crown components in B′ are
completely assigned to A′ and do not have neighbors in A \A′. Note that since B was the
set of private components, the components B′ do not have neighbors in the body either.
Now augment f ′ by assigning to A \A′ also enough non-private components such that they
have an assignment of at least 3λ each. This is possible since each vertex in A \A′ has an
assignment of 3λ by f which did not use any components from B′ (as there are no edges
from B′ to A \A′). Note that this augmentation of f ′ needs to be done carefully since the
private components could be assigned by the balanced expansion differently than by f .

By f ′ all private components are now assigned to the head, but there could still be
non-private ones assigned as well. But now, if the effective weight of each Ri is at most 3λ,
we can add the unassigned crown parts to sets in R, and thus create a λ-BCD: A′ with its
assignment by f ′ are head and crown, and R plus the sets {a} ∪ f ′−1(a) with a ∈ A \A′ are
a [λ, 3λ]-CVP of the body. Thus, if we are not successful, there exists an Ri with effective
weight more than 3λ and we continue by dividing or cutting it. Note that we can proceed
with f ′ replacing f although some head vertices (from what was A′ in the balanced expansion)
might only have weight λ assigned to them (and not 3λ), because the crown parts assigned
to them are private and hence do not interfere with the further process.

To analyse the run time, we estimate how often we divide or cut a set Ri; note that each
such step can be performed in O(|V ||E|). Throughout our algorithm, the value |H|+ |R|
is non-decreasing, and upper bounded by k. Every time we divide some Ri, we increase
|H|+ |R|, hence this happens at most k times. Every time we cut some Ri we increase |H|
by one. Since |H| is also upper bounded by k, and we are careful not to decrease |H| with
the balancing step in-between cut steps, we arrive at a total of at most k2 divide or cut steps.

One pitfall here is that after applying the balanced expansion one might be tempted
to just take A′ and its assignment via f ′ into head and crown respectively, delete it, and
start over on the rest of the graph. The problem with this is that we are not guaranteed
to find a non-empty set A′ (since the private components might not have weight at least
λ|A|). The way we augment f ′, we ensure that we retain the preliminary crown, head and
body structure, and with this especially the value |H|, and can split up another Ri to either
increase |H| or |H| + |R|. Further, the reason why we cannot use the standard weighted
expansion lemma here is that we would need a lower bound of at least λ|A| on the weight of
B for this. We cannot ensure that the private components of the crown alone have a weight
of at least λ|A|, since we also used the non-private components for the assignment f .

One detail that we did not mention so far is that it is not possible to assign exactly 3λ

to each head vertex. Since the step size we can guarantee is only λ, we might have to
assign (4λ− 1) in order to get a value of at least 3λ. Recall that we assign a collection of
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components of weight less than λ. Without further work, this only yields an upper bound of
4λ instead of 3λ for the packing of the body, worsening the quality of our structure (we for
example would only get a 4- instead of a 3-approximation for the BCP problems). For this
improvement from 4 to 3, we maintain a “last component” as a special assignment. (This is
called g′-assignment in the full proof). The details of how we make use of this special second
assignment is rather technical, and to some extent complicates the proof. If one is satisfied
with a bound of 4λ for the body, this complication is not necessary.

Another technical detail we skipped is that in the assignment f we maintain, the crown
parts we map may not be whole sets in CC(C) (connected components induced by crown
vertices). They are connected, but can be subgraphs of some Ci ∈ CC(C). We call such
subgraphs sub-components. Different sub-components of some Ci can be assigned to different
heads. Also, for a Ci some of its sub-components can be assigned while others are not. For
our structure to converge to a λ-BCD, sub-components have to be classified as private or
non-private based on the set CC(C) they are a part of, so it can happen that a sub-component
is non-private but has no edge to the body. Whenever we make the move from crown to body,
we therefore have to do a merging of some sub-components such that for each Ci ∈ CC(C)
either all its sub-components are assigned to the head or none of them are. ◀

R1

R2

R

≥ λ

H
CC(C)

< λ

private components

Figure 3 Illustration of a possible intermediate stage in the proof of Theorem 7. Colors represent
the partial assignment f , e.g., the two blue-colored sub-components are assigned to the blue vertex
in H. Thick lines are edges that go from the sets of the body to their effective neighborhoods.

4 Applications of Balanced Crown Decomposition

In this section we present some applications of the balanced crown decomposition. The full
proofs of the results of this section are given in Appendix D.

For the problems W -weight Separator and W -weight Packing we immediately
get the following theorems by reducing an instance (G, k, W ) by first finding a W -BCD
(C, H,R, f) of G, and then applying the standard crown reduction rule that removes the
head H and crown C from G. We emphasize that the balanced connected partition of the
body is crucial to obtain the kernel sizes. These are the first kernels for vertex-weighted
graphs, while also improving the state-of-the-art results for the unweighted cases.

▶ Theorem 8. W -weight Separator admits a kernel of weight 3k (W − 1). Furthermore,
such a kernel can be computed in time O

(
k2|V | |E|

)
.
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▶ Theorem 9. W -weight Packing admits a kernel of weight 3k (W − 1). Furthermore,
such a kernel can be computed in time O

(
k2|V | |E|

)
.

For the optimization variant of the W -weight Packing problem, i.e. maximizing the
size of packing, the fact that the partition R is a solution also gives a 3-approximation; to
the best of our knowledge, the first approximation result for the problem.

▶ Theorem 10. A 3-approximation for the optimization problem of W -weight Packing
can be computed in O

(
k∗2|V | |E|

)
, where k∗ denotes the optimum value.

To better sketch the ideas for our results for the BCP problems, we denote by I-CVPk for
an interval I, a CVP with k parts where each part has a weight in I. We derive the following
result for Max-Min BCP, which is the first constant approximation for this problem.

▶ Theorem 11. A 3-approximation for the Max-Min BCP problem can be computed in
O

(
log (X∗) k2|V | |E|

)
, where X∗ denotes the optimal value.

Proof Sketch. Let (G, k) be an instance of Max-Min BCP. For any value X, using BCD,
we show how to either obtain an [X/3,∞)-CVPk, or report that X > X∗. Once we have
this procedure in hand, a binary search can be used to obtain an [X∗/3,∞)-CVPk.

We first obtain a λ-BCD (C, H,R, f) of G with λ = ⌈X/3⌉. If |H|+ |R| ≥ k, we output
a [X/3,∞)-CVPk given by the body and the assignment to head vertices (if this gives more
than k sets, arbitrarily merge some until there are only k). If |H|+ |R| < k, then we report
that X > X∗. To see that this is correct, assume towards contradiction that X ≤ X∗, and
consider an optimal solution S∗ = {S∗

1 , . . . , S∗
k}. Then in the λ-BCD we computed, we know

that w(R) < X for every R ∈ R and w(C ′) < X for every C ′ ∈ CC(C). Observe that then
no C ′ ∈ CC(C) or a subset of it can be a set in S∗, since w(S∗

i ) ≥ X∗ ≥ X for every S∗
i ∈ S.

From the separator properties of H and that the fact that each S∗
i ∈ S is connected, we

obtain that any set in S∗ containing vertices from C also has to contain at least one vertex
from H. Thus, we can derive that the cardinality of S∗

H = {S∗
i ∈ S∗|S∗

i ∩ (C ∪H) ̸= ∅}
is at most |H|. Also, |S∗ \ S∗

H | ≤ w(V (R))/X∗ ≤ w(V (R))/X ≤ |R|. Thus it follows that
|S∗| ≤ |H|+ |R| < k, a contradiction. ◀

The last problem that we consider as application of the balanced crown decomposition is
the Min-Max BCP problem, where we also provide the first constant approximation result.

▶ Theorem 12. A 3-approximation for the Min-Max BCP problem can be computed in time
O

(
log (X∗) |V | |E|

(
log log X∗ log (|V |wmax) + k2))

, where X∗ denotes the optimum value
and wmax = maxv∈V w(v) the maximum weight of a vertex.

Proof Sketch. Achieving this requires several technical steps after having a balanced crown
decomposition in hand, including a second use of the balanced expansion. Let (G, k) be
an instance of Min-Max BCP and let S∗ = {S∗

1 , . . . , S∗
k} be an optimal solution. Let

(C, H,R, f) be a λ-BCD of G. Similar to the Max-Min case we try to make a comparison
between S∗ and the vertex decomposition C, H and V (R). The main issue is that, in contrast
to the Max-Min case, an optimal solution can (and sometimes has to) build more than |H|
sets from the vertices in H ∪ C. With the connectivity constraints, this means that some
components in G[C] are in fact a set in the optimal partition. Hence, when computing an
approximate solution from a balanced crown decomposition, we have to also choose some
components from G[C] to be sets, while others are combined with some vertex in H. In order
to make the decision of where to place the components in G[C], we use a min-cost flow on a
network that models the options for components in G[C] to either be sets or be combined
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with some vertex in H. A partial embedding of {S∗
i ∈ S∗|S∗

i ∩ (C ∪H) ̸= ∅} to this cost-flow
network allows a comparison with the resulting partition of C ∪H. The balanced weight
properties of R then yield a comparison with the whole set S∗. With the additional use of a
min cost-flow network, our balanced crown structure can be used to estimate the optimal
objective value and again enables a binary search for an approximate solution. ◀
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A Preliminaries

By N0 and N we denote the natural numbers with and without zero, respectively. We also
use [k] to denote the set {1, . . . , k}. A partial function from A to B is a function g : A′ → B

where A′ ⊆ A and denote such a partial function by g : A′ 7→ B and A′ is the domain of g.
We often use a function g that assigns vertex-sets to vertices, i.e. g : 2V 7→ V . If g(C) = v

for some vertex-set C and vertex v, then we call C g-assigned to v. We also define the
g-weight of v as wf [v] := w(v) + w(g−1(v)). We say that C ∈ 2V is g-assigned if C is in the
domain of g and g-unassigned otherwise. We define the g-neighborhood of any vertex v as
Ng[v] := {v} ∪ g−1(v).

Graph theory terminology

All the graphs that we refer to in this paper are simple and finite. Consider a graph
G = (V, E). For any subgraph H of G, we use V (H) and E(H) to denote the vertices and
edges of H respectively. We denote an edge e = {u, v} ∈ E by uv and the neighborhood of a
vertex v ∈ V in G by NG (v) = {u ∈ V | uv ∈ E}. We may omit the subscript G when the
graph is clear from context. Similarly we denote the neighborhood of a vertex set V ′ ⊆ V

in G by NG (V ′), that is
⋃

v∈V ′ NG (v) \ V ′. Moreover, for a subset A ⊆ V we denote the
neighborhood of a vertex v inside A by NA(v), that is NG(v) ∩A, and we denote by NA(B)
the neighborhood of a vertex set B ⊆ V inside A.

We denote a vertex-weighted graph as G = (V, E, w) where w is a function assigning
integer weights to vertices w : V → N, and V and E are vertex and edge sets. We denote
by wmin and by wmax, minv∈V w (v) and maxv∈V w (v) respectively. For any V ′ ⊆ V , we use
w(V ′) to denote the sum of weights of vertices in V ′. For a subgraph H of G we use w (H)
to denote w(V (H)), and refer to it as weight of the subgraph H. For a rooted tree T and a
vertex x of T , we use T (x) to denote the rooted subtree of T rooted at x.

For V ′ ⊆ V we denote by G[V ′] the graph induced by V ′, i.e. G[V ′] = (V ′, E′) with
E′ = E∩(V ′×V ′). For vertex-weighted graphs, induced subgraph inherits the vertex-weights.
For V ′ ⊆ V we also use G− V ′ to denote G[V \ V ′]. Similarly, if V ′ is a singleton {v} we
write G− v. With connected component of G, we denote an inclusion maximal vertex set
V ′ ⊂ V such that G[V ′] is connected. For any V ′ ⊆ V , we denote by CC(V ′), the set of
connected components of G[V ′]. A vertex set S ⊂ V whose removal separates G into more
than one connected component is called a separator of G. If S = {v}, then we call v a
separator vertex.
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In the course of this paper we also use directed graphs in the form of networks. We denote
a network H by

(
V,
−→
E , c

)
, where V is its vertex set, −→E the set of arcs, and c : −→E → N its

capacity function. We denote an arc from vertex u to vertex v in a network by −→uv, and denote
by δ+ (v), δ− (v), out- and in-coming arcs of vertex v. The key characteristic of a network is
that its vertex set contains the vertices s, t, referred to as source and sink, respectively. The
source vertex is characterized by having only out-coming edges, while the sink vertex only
has in-coming arcs. A flow is denoted by Y , i.e. Y =

{
y−→e ∈ N0 | −→e ∈

−→
E

}
, where −→E are the

arcs in the corresponding network.

Structural notions

Let U = {U1, . . . , Ur} be such that each Ui ⊆ V . We call U a connected packing of V if each
G[Ui] is connected, and the sets in U are pairwise disjoint. A connected packing U is called
connected vertex partition (CVP) of V , if U is also a partition of V . For any U ′ ⊆ U , we
define V (U ′) :=

⋃
U ′∈U ′ U ′, and the weight w (U ′) := w (V (U ′)). Let I be an interval. If U

is a CVP and w (Ui) ∈ I for all i ∈ [r], then we say that U is a I-connected vertex partition
(I-CVP) of V . If U is a connected-packing and w (Ui) ∈ I for all i ∈ [r], then we say that
U is a I-connected packing of V . For a vertex v ∈ V and connected packing U , let NU (v)
denote the set of all U ∈ U such that v ∈ N(U). Similarly, for a vertex set S, let NU (S)
denote the set of all U ∈ U such that S ∩N(C) ̸= ∅.

Parameterized terminology

We use the standard terminology for parameterized complexity, see e.g. [14, 19] for details.
A parameterized problem P is a decision problem equipped with a parameter, i.e. instances
of P are given as pairs (I, k) where k is the parameter. Such a parameterized problem is
fixed-parameter tractable if it can be solved in time f(k) · |I|c for any instance (I, k) of P ,
where f is a computable function and c is a constant.

Of particular interest here are kernelizations - a formalization of preprocessing. A
kernelization for a parameterized problem is an algorithm that maps any instance (I, k) of P

in polynomial time in |I| to an instance (I ′, k′) of P such that:

(I ′, k′) is a yes-instance if and only if (I, k) is a yes-instance,
|I ′| ≤ g(k) and
k′ ≤ g′(k),

for some computable functions g, g′. The instance (I ′, k′) is called kernel and g(k) is the
kernel size. In case such a kernelization exists we say problem P admits a kernel of size g(k).
It is known that a parameterized problem is fixed-parameter tractable if and only if it admits
a kernel for some function g.

We consider parameterization by combined parameters, which formally means that our
problems have instances of the form (I, k1, k2) and we consider them as parameterized
problem with parameter k = k1 + k2.

B Balanced Expansion

In this section we introduce a balanced generalization of weighted expansions we call balanced
expansion. It is one of the ingredients to derive our main BCD structure in the next section.
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With G = (A ∪B, E, w), we denote bipartite vertex-weighted graphs, where A and B are
independent sets in G and w : A ∪ B → N. Note that the weight bounds in our following
structure depend on the maximum weight in B, denoted by wB

max = maxb∈B w (b).

▶ Definition 1 (balanced expansion). Let G = (A ∪B, E, w) be a bipartite vertex-weighted
graph, where wB

max = maxb∈B w (b). For q ∈ N0, a partition A1 ∪ A2 of A and f : B → A,
the tuple (A1, A2, f, q) is called a balanced expansion if:

1. w (a) + w
(
f−1 (a)

) {
≥ q − wB

max + 1, a ∈ A1

≤ q + wB
max − 1, a ∈ A2

2. f (b) ∈ N (b)
3. N

(
f−1 (A1)

)
⊆ A1

An illustration of a balanced expansion is given in Figure 4. One can observe that
this structure is a combination of a weighted q-expansion with a balanced partition of the
remaining graph. In the first step to compute this, we compute a fractional version of this
structure. Both the balanced expansion and its fractional version are substructures that we
will employ later to find our balanced crown decomposition. Also, Lemma 5 for efficiently
computing a weighted expansion is a direct consequence of our routine to efficiently compute
a balanced expansion, the proof can be found at the end of this section.

As fractional version of the balanced expansion, we formally consider the following
structure.

▶ Definition 3 (fractional balanced expansion). Let G = (A ∪B, E, w) be a bipartite vertex-
weighted graph. For q ∈ N0, a partition A1 ∪A2 of A and g : E → N0, the tuple (A1, A2, g, q)
is called fractional balanced expansion if:

1. w (a) +
∑

b∈B g (ab)
{
≥ q, a ∈ A1

≤ q, a ∈ A2

2. ∀b ∈ B :
∑

a∈A g (ab) ≤ w (b) (capacity)
3. N (BU ∪BA1) ⊆ A1 (separator)

where Ba := {b ∈ B | g (ab) > 0} for a ∈ A, BA′ :=
⋃

a∈A′ Ba for A′ ⊆ A and BU :={
b ∈ B |

∑
a∈A g (ab) < w (b)

}
Note that such a fractional balanced expansion (A1, A2, g, q) is indeed a fractional version:

The function g can be interpreted as a fractional assignment from b ∈ B to a ∈ N (b),
and what we are ultimately aiming for in the non-fractional version is that g is indeed an
assignment, i.e. g (ab) > 0 for some a ∈ A and b ∈ B implies g (ab) = w (b) and g (a′b) = 0
for all a′ ∈ A \ {a}.

Note that isolated vertices in B would imply that the assignment f in the definition of
a balanced expansion cannot be a total function. Further, such vertices may have a large
weight without any merit for finding an fractional balanced expansion where A1 ̸= ∅. We
therefore restrict our further study to graphs without isolates in B; note that for the usual
applications that exploit structures like fractional balanced expansion, isolated vertices are
removed in some form of preprocessing. For such graphs without isolates in B we take
advantage of the structure of maximal flows to derive the following result.

▶ Lemma 4 (fractional balanced expansion). Given a vertex-weighted bipartite graph G =
(A ∪B, E, w) with no isolated vertices in B and q ∈ N0, a fractional balanced expansion
(A1, A2, g, q) can be computed in O (|V | |E|). Also, if w (A) + w (B) ≥ q|A|, then A1 ̸= ∅.
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B A }
A1

}
A2

s t

B A

w(b) q − w(a)

w(b)

Figure 4 Left: Balanced expansion for w(b) = 1 for all b ∈ B, q = 2 and assignment f depicted
with bold edges. Right: Flow network construction in Lemma 4.

Proof. Let Ã be the set of vertices in A with weight at least q and let B̃ ⊆ B be the isolated
vertices in G− Ã, i.e. N

(
B̃

)
⊆ Ã. We add Ã to A1 and for each b ∈ B̃, pick an arbitrary

a ∈ N (b) ⊆ Ã and set g (ab) = w (b). We obtain w (a) +
∑

b∈B g (ab) ≥ q for all a ∈ Ã and
G−

(
Ã ∪ B̃

)
has no isolated vertex b ∈ B \ B̃. Since we end up in the same situation after

removing Ã and B̃, we may assume that maxa∈A w (a) < q and we have no isolated vertex
in b ∈ B, i.e. to simplify the notation we assume A = A \ Ã and B = B \ B̃. Note that, if
w

(
A \ Ã

)
+ w

(
B \ B̃

)
< q|A|, then Ã ̸= ∅ and thus A1 ̸= ∅.

We construct a network H =
(

A ∪B ∪ {s, t} ,
−→
E , c

)
through the following procedure.

In order to obtain H from G, add the vertices s, t, s as source and t as sink, and arcs −→E
with a capacity function c : −→E → N defined as follows. Connect every b ∈ B through an arc−→
sb with capacity w (b) and connect every a ∈ A through an arc −→at with capacity q − w (a).
Note, that q−w (a) > 0 by maxa∈A w (a) < q. Moreover, transform every edge ab ∈ E to an
arc
−→
ba with capacity w (b) (see Figure 4). Now, we use the max-flow algorithm for integral

capacities by Orlin [31] running in O (|V | |E|) to send a maximum flow from s to t. Let
Y =

{
y−→e ∈ N0 | −→e ∈

−→
E

}
be the resulting maximum flow and Y ∗ :=

∑
a∈A f

(−→
at

)
be the

total flow which is sent from s to t.
We set g (ab) = y−→

ba
for all

−→
ba ∈

−→
E . The capacities c

(−→
ba

)
= w (b) for all b ∈ B and the

flow conservation ensure that
∑

a∈A g (ab) ≤ w (b) for every b ∈ B.
Recall the notation Ba := {b ∈ B | g (ab) > 0} for every a ∈ A, BA′ :=

⋃
a∈A′ Ba for

a subset A′ ⊆ A and BU :=
{

b ∈ B |
∑

a∈A g (ab) < w (b)
}

from Definition 3. If y−→
at

=
c

(−→
at

)
for all a ∈ A, then we set A1 = A and A2 = ∅. In this case, it follows that

w (a) +
∑

b∈B g (ab) = w (a) + c
(−→

at
)

= w (a) + q − w (a) = q for all a ∈ A1, which
satisfies the lower bound constraint given for the vertices in A1. Since A2 = ∅, we obtain
BU ∪ BA1 = B. Therefore, N (BU ∪BA1) = N (B) ⊆ A = A1. Thus, (A1, A2 = ∅, g, q)
satisfies the conditions of a fractional balanced expansion. Also, in this case we have A1 ̸= ∅.

If y−→
sb

= c
(−→

sb
)

= w (b) for all b ∈ B and there exists an a ∈ A with y−→
at

< c
(−→

at
)

, then
we set A2 = A and A1 = ∅. The flow conservation guarantees that every vertex b ∈ B is sat-
urated, i.e. BU = ∅. Since A1 = ∅, we obtain BA1 = ∅ and thus, N (BU ∪BA1) = ∅ = A1
satisfying the separator condition. Moreover, we satisfy the upper bound constraint for all
vertices in A2. That is, w (a) +

∑
b∈B g (ab) ≤ w (a) + c

(−→
at

)
= w (a) + q − w (a) = q for

all a ∈ A2. Thus, (A1 = ∅, A2, g, q) satisfies the conditions of a fractional balanced expan-
sion. Furthermore, in this case it follows that w (A) + w (B) <

∑
a∈A

(
w (a) + c

(−→
at

))
=∑

a∈A (w (a) + q − w (a)) =
∑

a∈A q = q|A|, satisfying the second part of the lemma.
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It only remains to consider the case where there exists an a ∈ A with y−→
at

< c
(−→

at
)

and

also a b ∈ B with y−→
sb

< c
(−→

sb
)

. Let A′ be the set of saturated vertices in A, i.e., y−→
at

= c
(−→

at
)

for all a ∈ A′. Set A1 = ∅ and A2 = A \A′. We use the following procedure to add vertices
of A′ either to A1 or to A2. First, observe that from the flow conservation for all a ∈ A′ we
obtain w (a)+

∑
b∈B g (ab) = w (a)+c

(−→
a1t

)
= w (a)+q−w (a1) = q. Thus, the lower/upper

bound condition on a vertex of A′ are satisfied regardless of whether we place it in A1 or A2.
To decide where to place a vertex a ∈ A′, we use properties of our computed maximum

flow on H. For more details regarding the properties of maximal flows we refer to the
well-known Ford-Fulkerson-Algorithm [20]. We construct an unweighted residual network
R =

(
V,
−→
E r

)
resulting from Y as follows. Denote the residual flow by r (−→e ) := c (−→e )− y−→e

for all −→e ∈ −→E . We introduce arcs in the reverse direction and set r (←−e ) = y−→e for all −→e ∈ −→E .
Now, we construct the residual graph R by introducing an arc −→e for every strictly positive
r (−→e ). (Note that usually the arising residual weights are also assigned to the arcs in R

for the classical definition of a residual graph, but we do not need them for the following
steps.) By the definition of the residual network, we know that if there exists an s-t path
in R, called usually augmenting path, then the flow in Y can be altered to a flow of value
Y ∗ + 1 without violating any capacity constraint. Thus, by the optimality of Y ∗ we obtain
that no s-t path exists in R. Moreover, we point out that y−→

at
= c

(−→
at

)
for all a ∈ A′ which

leads to −→at /∈
−→
E r for those arcs. For each a ∈ A′, we consider the network Ra derived from

R by adding an arc −→at. Now we add a to A1 if an s-t path exists in Ra, otherwise we add a

to A2. Constructing the residual graph and checking whether an s-t path exists in each Ra

for every a ∈ A′ can be realized in time O (|A′| |E|).
It remains to show that A1 is the desired separator. Consider any a ∈ A′. If there exists

an s-t path in Ra, then this path has to use the added arc −→at; recall that R did not contain
such a path. Looking at the original network H, such an s-t path in Ra means that if we
increase the capacity c

(−→
at

)
in the network H by one, then we may increase the flow from

Y ∗ to Y ∗ + 1. For simplicity, denote by Na the network derived from H by increasing the
capacity c

(−→
at

)
by one, and denote by Ya this maximum flow from s to t in Na and by

and Y ∗
a its value. Moreover, we denote the flow in Ya trough an arc −→e by ya−→e . Note that

ya−→
at

= c
(−→

at
)

+ 1 and objective value Y ∗
a = Y ∗ + 1 if a ∈ A1, and Ya = Y with Y ∗

a = Y ∗ if
a ∈ A2.

We first prove that N (A2) ∩ BA1 = ∅. Suppose there exists an edge a2b in G, where
a2 ∈ A2 and b ∈ BA1 . By definition of BA1 , there exists an a1 ∈ A1 with y−→

ba1
> 0 and by the

definition of A1 we have Y ∗
a1

= Y ∗ + 1 with ya1−→
a1t

= c
(−→

a1t
)

+ 1. We claim that there exists a

max flow Ya1 in Na1 such that ya1−→
ba1

> 0. The flow value ya1−→
ba1

is smaller than y−→
ba1

only if
−→
a1b

is in the augmenting s-t path P for Y in Na1 . However, once we have reached a1 in a path
in Ra1 we can extend this path with the arc −→a1t to obtain an augmenting path. Thus, we
can find a max flow Ya1 in Na1 that does not use

−→
a1b in Ra1 to improve the original flow Y

in Na1 and this ensures ya1−→
ba1
≥ y−→

ba1
> 0. Now, we distinguish the two cases: a2 /∈ A′ ∩A2 or

a2 ∈ A′ ∩A2.

a2 /∈ A′ ∩ A2: In this case we have y−→
a2t

< c
(−→

a2t
)

and ya1−→
a2t

< c
(−→

a2t
)

, because the flow

increases by one in Ya1 and only at the arc −→a1t for the arcs in
{−→

at | a ∈ δ− (t)
}

(recall
that Y was a maximum flow in H, so an augmenting path for Na1 has to use the only
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new capacity on the arc −→a1t). So, by ya1−→
ba1

> 0 and ya1−→
a2t

< c
(−→

a2t
)

we may reduce the flow

ya1−→
ba1

by one and could send one unit flow via the path
−→
sb,
−→
ba2,
−→
a2t without decreasing Y ∗

a1
.

Note, ya1−→
ba1

= c
(−→

ba1

)
+ 1 and after the new just mentioned routing operation we obtain

ya1−→
ba1

= c
(−→

ba1

)
. This yields a flow of value Y ∗

a1
that satisfies the capacity constraints in

the original network H, which contradicts the optimality of Y ∗, because Y ∗
a1

> Y ∗.
a2 ∈ A′ ∩ A2: In this case we have y−→

a2t
= c

(−→
a2t

)
. Since there is no s-t-path in Ra,

increasing the capacity by one at −→a2t does not allow for a better flow, i.e. Y ∗
a2

= Y ∗ is a
maximum flow in Na. Again, we use the same argument, that we may reduce the flow
ya1−→

ba1
by one and could send one unit of flow via the path

−→
sb,
−→
ba2,
−→
a2t without decreasing

Y ∗
a1

. As result, if the capacity −→a2t is increased by one, we may find a maximal flow Y ∗ + 1
from s to t in Na which contradicts the optimality of Y ∗

a2
.

In both cases we show that b ∈ BA1 cannot be in the neighborhood of an a2 ∈ A2. Thus, we
obtain N (A2) ∩BA1 = ∅ and therefore N (BA1) ⊆ A1.

For the separator property of A1, we also need to show that N (BU ) ⊆ A1. Recall that
BU =

{
b ∈ B |

∑
a∈A g (ab) < w (b)

}
are the unsaturated vertices in B. Thus, for every

b ∈ BU we have
∑

a∈A y−→
ba

< c
(−→

ba
)

= w (b). Suppose there exists an arc with
−→
ba2 for

a2 ∈ A2 and b ∈ BU . If y−→
a2t

< c
(−→

a2t
)

, then it is easy to see that we can improve Y ∗,

which would be a contradiction to the maximality of Y . If y−→
a2t

= c
(−→

a2t
)

, then a2 ∈ A′.

Consequently, Y ∗
a2

= Y ∗ and ya2−→
a2t

= c
(−→

a2t
)

by the assigning of the vertices in A′ to A1 or

A2. By definition, the capacity of −→a2t in Na2 is c
(−→

a2t
)

+ 1 and there is an arc
−→
ba2, where∑

a∈A y−→
ba

< c
(−→

ba
)

. Hence we may improve Y ∗
a2

by sending one unit of flow via the path
−→
sb,
−→
ba2,
−→
a2t without violating any capacity constraint in Na which is a contradiction to the

optimality of Y ∗
a2

. As result, N (A2) ∩BU = ∅ and therefore, N (BU ) ⊆ A1.
Finally, we have N (BA1) ⊆ A1 and N (BU ) ⊆ A1. Hence, N (BU ∪BA1) ⊆ A1. As

result, (A1, A2, g, q) is a fractional balanced expansion.
Regarding the second part of the Lemma for the investigated last case we point out that

no b ∈ B is isolated. That is, if there exists a b ∈ B with y−→
sb

< c
(−→

sb
)

, then N (b) ⊆ A′.

Otherwise, it would be a contradiction to the optimality Y ∗, since y−→
at

< c
(−→

at
)

for all

a ∈ A \ A′. Thus, in the case of y−→
sb

< c
(−→

sb
)

for a vertex b ∈ B there exists at least one
a ∈ A′ such that there exist an s-t path in Ra and consequently, we obtain A1 ̸= ∅. If
w (A) + w (B) ≥ q|A| =

∑
a∈A

(
w (a) + c

(−→
at

))
and Y does not satisfy y−→

at
= c

(−→
at

)
=

q − w (a) for all a ∈ A, then there has to exist a b ∈ B with y−→
sb

< c
(−→

sb
)

and therefore, we

obtain A1 ̸= ∅. Note, that y−→
at

= c
(−→

at
)

for all a ∈ A leads to A1 = A, which we explained
above as one of the extremal cases.

Lastly, we analyze the running time. Constructing H and computing the max-flow Y in
this network can be done in O (|V | |E|). Defining g requires time in O (|A| |B|) ⊆ O (|V | |E|).
As already argued above, the possible improvement of the flow Y in Na for all a ∈ A′ together
can be checked in time O (|A′| |E|). In total, we obtain a running time in O (|V | |E|). ◀

Equipped with this procedure to efficiently compute a fractional balanced expansion, we
now round the function g to a proper assignment f from B to A. The following rounding
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procedure to derive a balanced expansion from a fractional balanced expansion uses the
well-known technique of cycle canceling, as used e.g. in [26]. While the lower bound for the
weight of the vertices assigned to A1 is more or less straight forward, the upper bound for
the weight of the vertices assigned to A2 requires a different, more careful assigning strategy.

▶ Theorem 2 (balanced expansion). Consider a vertex-weighted bipartite graph G = (A ∪B, E, w)
with no isolates in B, and q ≥ maxb∈B w (b) = wB

max. A balanced expansion (A1, A2, f, q) for
G can be computed in O (|V | |E|) time. Furthermore, if w (A) + w (B) ≥ q|A|, then A1 ̸= ∅.

Proof. Recall the definitions Ba = {b ∈ B | g (ab) > 0} for a ∈ A and BAi
=

⋃
a∈Ai

Ba for
i = 1, 2. Since (A1, A2, g, q) is a fractional balanced expansion we obtain

∑
a∈A g (ab) = 0

for each b ∈ B \ (BA1 ∪BA2). Thus, these vertices are part of the unsaturated vertices
BU =

{
b ∈ B|

∑
a∈A g (ab) < w (b)

}
and are connected to vertices in A1. At first, we set

f (b) = a for an arbitrary b ∈ N (a) for each b ∈ B \ (BA1 ∪BA2). The vertices in A1 have
no upper bound condition. Thus, by this procedure we do not violate any of the desired
conditions. To simplify the notation we set B = BA1 ∪BA2 . Note, that for the original set
B the vertices B \ (BA1 ∪BA2) are already assigned in a way that can not yield problems
with f being a balanced expansion.

To determine the further assignments, we first construct an edge-weighted bipartite graph
G′ = (A ∪B, E′) resulting from g, where E′ consists of the edges ab ∈ E with g (ab) > 0,
so G′ is a subgraph of G. We set wab = g (ab) as edge weight for every ab ∈ E′. From the
fractional balanced expansion (A1, A2, g, q) we obtain the properties

∑
a∈N(b) wab ≤ w (b)

for every b ∈ B, w (a) +
∑

b∈N(a) wab ≥ q for all a ∈ A1 and w (a) +
∑

b∈N(a) wab ≤ q for all
a ∈ A2.

The next step is to modify the graph G′ and the edge weights wab until G′ becomes
acyclic without changing the size of the sum w (a) +

∑
b∈N(a) wab for every a ∈ A in G′ and

maintaining
∑

a∈N(b) wab ≤ w (b) for every b ∈ B.

B

A1 A2

7
25

3

B

A1 A2

5
03

9

Figure 5 Example of one iteration of the cycle canceling procedure.

Suppose there exists a cycle C ⊆ G′. We pick an edge ab ∈ E (C) with minimum weight
minab∈E(C) wab = x. We remove C from G′ as follows. First, we reduce the weight of edge
ab by x. Then, traversing the cycle C from b in direction of its neighbor that is not a, we
alternate between increasing and decreasing the weight of the visited edge by x until we reach
a. In the end we obtain at least one zero weight edge, namely ab, and we remove all edges of
weight zero from G′. An example of such a cycle canceling step is given in Figure 5. Since
G′ is bipartite, the number of edges in the cycle is even. Thus, we will maintain the weight
w (a) +

∑
b∈N(a) wab for all a ∈ A during this process. Furthermore, we transfer weight on

an edge incident to a b ∈ B to another edge, which in turn is also incident to this vertex b.
As result, the condition

∑
a∈N(b) wab ≤ w (b) for all b ∈ B is still satisfied. We repeat this

process until G′ becomes a forest.
The next step is to determine f : B → A via the individual trees in the resulting forest.

For this purpose we root every tree of the forest by a vertex a ∈ A. We know that A1
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separates BA1 ∪BU from BA2 ∪A2 in G and that vertices in A1 do not have edges to BA2

in G′, because E (G′) consists only of edges ab ∈ E with g (ab) > 0 (which by definition puts
b ∈ BA1 if a ∈ A1). Since we only delete edges in the cycle canceling process, this fact does
not change. Therefore, the vertices of A1 and A2 cannot be in the same tree.

We now define f for the vertices in trees containing vertices from A1 stepwise as follows.
Let T be a tree in the resulting acyclic graph that is rooted at an ar ∈ A1. We have
w (a)+

∑
b∈N(a) wab ≥ q for every a ∈ A1 in the tree. Since G′ is a bipartite graph, every child

of a ∈ A1 is in b ∈ B and vice versa. We assign f (b) = a for every child vertex b ∈ B to its
father a ∈ A1 in T . Thus, for ar we obtain w (ar)+w

(
f−1 (ar)

)
≥ w (ar)+

∑
b∈N(ar) wab ≥ q.

For all other vertices a ∈ A1 that are in the tree, we only lose its father vertex b. Since
all weights are integer, it follows that wab ≤ wB

max − 1 for all weights wab of those edges;
note that q ≥ wB

max and b in this case has at least two neighbors in T . As result, we obtain
w (a) + w

(
f−1 (a)

)
≥ w (a) +

∑
b∈N(a) wab −

(
wB

max − 1
)

= q −
(
wB

max − 1
)
.

Now, we construct the assignment f for vertices in trees containing vertices from A2.
Let T be a tree in the resulting acyclic graph that is rooted at an ar ∈ A2. Moreover, let
D ⊂ V (T ) be the leaves, D′ = D∩B and A′ ⊆ A the corresponding father vertices of b ∈ D′.
At first, we assign every leaf b ∈ D′ to its corresponding father a ∈ A′ in T , so f (b) = a, and
then remove those leaves from T . From the properties of the fractional balanced expansion
(A1, A2, g, q) we know that every vertex b ∈ BA2 is saturated, i.e.

∑
a∈N(b) wab = w (b).

Thus, for every leaf b ∈ D′ we obtain wab = w (b), where a is the father vertex of b. For
this partial definition of f we observe the following. If a ∈ A′ is not the root of T , then
w (a) + w

(
f−1 (a)

)
= w (a) +

∑
b∈f−1(a) w (b) ≤ w (a) +

∑
b∈N(a) wab−1 ≤ q−1. In the case

a ∈ A′ is the root we obtain w (a) + w
(
f−1 (a)

)
≤ q. After this first round of assignments,

every leaf is in the vertex set A2. We continue assigning every father vertex b to an arbitrary
child vertex a. This way, we add at most one vertex b for every A2 \ {ar} in the tree T ,
which has a father vertex in T . As result, we obtain w (a) + w

(
f−1 (a)

)
≤ q + wB

max − 1 for
every a ∈ A2 in the tree T .

Overall, we assign every b ∈ B to an a ∈ A via an existing edge in the corresponding
tree. Since we only removed edges to obtain the forest from G′ and E (G′) ⊆ E (G), the
assignment of every b ∈ B satisfies f (b) ∈ N (b) in G.

Finally, we analyze the running time. The cycle canceling process is applied at most |E|
times and that each step can executed in time O (|V |) in the following way. We compute a
spanning forest T in G′, which can be done in time O (|E|) by breadth first search. Then, for
each e ∈ E (G′)\E (T ), we add e to T and check if this yields a cycle in T . If this produces a
cycle, we cancel it by the process described above and delete the arising zero edges from both
E (G′) and E (T ). This searching for and deleting can be done in O (|E (T ) |) = O (|V (T ) |)
for each cycle. Since there are at most |E| edges in E (G′) \ E (T ), this process can be
performed in time O (|V | |E|) in total. ◀

Before moving to finding a balanced crown decomposition in a general graph in the
next section, we formally state the aforementioned implications of the results in this section
on (non-balanced) expansions. A weighted q-expansion as defined in [19] (Chapter 5.3) on
G = (A∪B, E, w) is a function f : C → H where H ⊆ A and C ⊆ B, such that f (b) ∈ N (b)
for each b ∈ C and w

(
f−1 (a)

)
≥ q −W + 1 for each a ∈ H, where W is the largest vertex

weight in B.

▶ Lemma 5 (Weighted Expansion Lemma). Let G = (A ∪B, E) be a bipartite graph without
isolated vertices in B, w : B → {1, . . . , W}, and q ∈ N0. A q-weighted expansion (f, H, C) in
G can be computed in time O (|A ∪B| |E|). Furthermore, if w (B) ≥ q|A| then H ̸= ∅.
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Proof. First of all, we define a weight function w′ on A ∪ B by w′ (b) = w (b) for b ∈ B

and by setting w′ (a) = 1 for all a ∈ A. This way, we arrive at a vertex-weighted bipartite
graph G′ = (A ∪B, E, w′) without isolated vertices in B as considered in Lemma 4 and
Theorem 2. Observe that with this setting on the vertices in A, the condition w (B) ≥ q|A|
yields w′ (A) + w′ (B) ≥ (q + 1) |A|, hence we can compute for q′ = q + 1 by Lemma 4 a
fractional balanced expansion (A1, A2, g, q′) for G′ with A1 ̸= ∅.

To apply Theorem 2, we need the restriction q′ ≥ maxb∈B w (b) = wB
max, where wB

max = W

here. However, if this property is not satisfied, it follows that q′ ≤W − 1, hence q = q′− 1 ≤
W − 2, which turns the requirement of the q-expansion to w

(
f−1 (a)

)
≥ −1. Hence if

q′ ≤W − 1, by choosing H = A and C = B any arbitrary function that maps f (b) ∈ N (b)
(note that B contains no isolates) gives the claimed q-expansion (with N (C) ⊆ H trivially
satisfied). Such an arbitrary function can be computed in O (|V |).

If q ≥ maxb∈B w (b) = wB
max, we can use Theorem 2 to compute in time O (|V | |E|) an

assignment function f such that (A1, A2, f, q′) is an balanced expansion for G′. In particular,
with H := A1 and C := f−1 (A1), this function restricted to C gives the desired q-expansion
with N (C) ⊆ H, since:

for each a ∈ H = A1 condition 1 of a balanced expansion gives w′ (a) + w′ (
f−1 (a)

)
≥

q′ − wB
max + 1 which translates to w

(
f−1 (a)

)
≥ q − wB

max + 1 by the definition of q′ and
w′,
condition 2 of a balanced expansion yields f (b) ∈ N (b),
condition 3 of a balanced expansion yields N

(
f−1 (A1)

)
⊆ A1, i.e. N (C) ⊆ H.

The claimed running time follows by Lemma 4 and Theorem 2. ◀

C Balanced Crown Decomposition

This section is devoted to proving Theorem 7. Before giving the detailed steps to prove this
theorem, we give a few definitions followed by a slightly informal road-map that explains the
structure of the main algorithm.

Here we give an outline of the algorithm FindBCD for finding a λ-BCD (C∗, H∗,R∗, f∗)
of G. We need to first define some intermediate structures that we construct during the
algorithm. Let H ⊆ V , let C be a connected packing of V \ H, and R be a CVP of
V \ (H ∪ V (C)). Furthermore, let g : C 7→ H be a partial function, i.e. not any C ∈ C is
assigned to some h ∈ H, denoted as ” 7→ ”. We say that (C, H,R, g) is a λ-component
decomposition (λ-CoD) of G if (see Figure 6):

1. w(Q) < λ for all Q ∈ CC(V (C)) (component condition)
2. g(C) ∈ N(C) for every C ∈ g−1 (H) (g-neighbor condition)
3. R is a [λ,∞)-CVP of V \ (H ∪ V (C)) (R-condition)

Let (C, H,R, g) be a λ-CoD. Let Q := CC(V (C)). Note that each C ∈ C is completely
contained in some Q ∈ Q because C is a CVP of C. We call C ∈ C a sub-component (of the
connected-component Q). We denote the set of sub-components of Q by C(Q). Conversely,
the unique connected component Q ∈ Q of which C is a part is denoted by Q(C). Note that
each sub-component C ∈ C has w(C) ≤ w(Q(C)) < λ due to condition (1) in the definition
of λ-CoD. Let Qpriv ⊆ Q (see Figure 6) denote the set of all Q ∈ Q that do not have edges to
V (R), and let Cpriv denote the set of all sub-components C ∈ C with Q(C) ∈ Qpriv. We call
Qpriv, the private components and Cpriv, the private sub-components. Let g′ : H → C ∪ {∅}
be a function. For any h ∈ H, we define its g-weight as wg[h] := w(g−1(h)) and its (g + g′)-
weight as wg+g′ [h] := wg[h] + w (g′(h)). For an vertex v ∈ V we denote by NC(v) the set of
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all C ∈ C such that {v} ∩N(C) ̸= ∅. Similarly, for a vertex set S ⊆ V we denote by NC(S)
the set of all C ∈ C such that S ∩ N(C) ̸= ∅. We say that (C, H,R, g, g′) is a Partially
Balanced λ-CoD (PB-λ-CoD) of G if (C, H,R, g) is a λ-CoD of G and for all h ∈ H:

1. if g′(h) ̸= ∅, then g′(h) ∈ NC(h) \ g−1(h), (g′-neighbor condition)
2. wg[h] ∈ [2λ− 1, 3λ− 3] (g-weight condition)
3. if g−1(h) ⊈ Cpriv, then wg+g′ [h] ≥ 3λ− 2, and ((g + g′)-weight condition)
4. if wg(h) < 2.5(λ− 1), then w(C) ≥ 0.5(λ− 1) for every C ∈ g−1(h) \ Cpriv. (0.5(λ− 1)-

condition)

For an R ∈ R, we define the unassigned neighborhood N ḡ(R) := NC(R) \ g−1(H), the
effective neighborhood N ḡ[R] := R ∪ V (N ḡ(R)) and the effective weight wḡ(R) := w(N ḡ[R]).
For an h ∈ H we define Ng[h] := {h}∪V

(
g−1(h)

)
. Lastly, we say that a PB-λ-CoD (C, H,R,

g, g′) is a Fully Balanced λ-CoD (FB-λ-CoD) if wḡ(R) ≤ 3(λ− 1) for every R ∈ R.

R1

R2

R

≥ λ

H
Q

< λ

Qpriv

Figure 6 A demonstration of a λ-CoD (C, H,R, g). Here, Q is the set of connected components
of G[V (C)]. The further divisions of sets in Q are the sub-components, i.e the elements of C. The
assignment g is represented by the colors, e.g., the two blue-colored sub-components are assigned
to the blue vertex in H. The thick lines are edges that go from R1 and R2 to their unassigned
neighborhoods N ḡ(R1) and N ḡ(R2) respectively. The second and third sets are in Qpriv and all the
sub-components of those two components are in Cpriv.

C.1 Outline of Algorithm FindBCD

Note that the algorithm stated here is slightly informal at times, and is intended as a
road-map to piece together the rigorous technical description that follows.

During the algorithm we always maintain (C∗, H∗, f∗) to be a Weighted Crown Decom-
position (WCD), i.e. it satisfies conditions 1-4 of a λ-BCD (Definition 6). We determine R∗

at the final step of the algorithm. Each step will be described in further detail in the next
sections.

(I) Removing heavy vertices: Let Ĥ be the set of all vertices that have weight at least λ.
Let Q̂ be the set of connected components in CC(V \ Ĥ) that have weight less than λ and
let Ĉ = V (Q̂). We initialize f∗ by f∗-assigning each Q ∈ Q̂ to an arbitrary h ∈ N

Ĥ
(Q).

Note that such an h exists because there are no connected components in G having weight
less than λ. We initialize H∗ := Ĥ, C∗ := Ĉ and R∗ := ∅. Note that the f∗-weight of
each h ∈ Ĥ is at least λ as w(h) ≥ λ. Thus, we have that (C∗, H∗, f∗) is a WCD.
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(II) Initialization: We use G′ to denote the current working graph throughout the algorithm,
and initialize it as G′ := G − (C∗ ∪ H∗). Note that each connected component in G′

weighs at least λ. We always maintain this invariant for G′ during the algorithm. We
maintain a PB-λ-CoD L := (C, H,R, g, g′) of G′, initialized as H := ∅, R := CC(V (G′)),
C := ∅, and g and g′ as the empty function. We define |H∗|+ |H|+ |R| as the outer index
and maintain it to be non-decreasing throughout the algorithm. An outer iteration is the
period during which the outer index remains the same. Similarly, we define |H∗|+ |H|
as the inner index and maintain it to be non-decreasing within an outer iteration. We
say that we get progress whenever the outer index or the inner index increases. It is not
difficult to derive that the outer and inner indices can be at most k (see Lemma 44), from
the properties of PB-λ-CoD.

(III) Divide or Cut-vertex: As long as the PB-λ-CoD (C, H,R, g, g′) is not an FB-λ-CoD,
we pick an R ∈ R such that its effective weight wḡ(R) > 3(λ − 1), and we run what
we call the divide or cut-vertex routine on the effective neighborhood N ḡ[R]. In this
routine, we either find a CVP {R1, R2} of V (N ḡ[R]) such that each of R1 and R2 weighs
at least λ, or we find a vertex h ∈ R ⊆ V (N ḡ[R]) such that all connected components of
G′ [V (N ḡ[R])]− h have weight less than λ.

a. In the former case, i.e. in the case we divide R, we update R to be (R\{R})∪{R1, R2},
thereby increasing the outer index. We update C to be C \ N ḡ(R). Note that
N ḡ(R) ∩ g−1(H) = ∅ and hence the g-weight of each h ∈ H remains the same. But it
is possible that some h ∈ H have now lost their g′(h). So we do a cleanup of H as
follows: For every h ∈ H, we add Ng[h] to R, reset H = ∅, and g and g′ as empty
functions. Note that before the cleanup, we had for each h ∈ H that w(Ng[h]) ≥ 2λ−1
and G[Ng[h]] is connected. Moreover, Ng[h] were disjoint for distinct h and also
disjoint from sets in R. Consequently, after the cleanup we obtain a PB-λ-CoD
(C, H,R, g, g′) of G′ such that the outer index is increased by one.

b. In the latter case, i.e. in the case where we find a cut-vertex h, we remove R from R

and add h to H, thus not changing the outer index and increasing the inner index.
In order to maintain that L is still a PB-λ-CoD, we add CC(R \ {h}) to C. (Recall
that each of these components have weight less than λ as guaranteed by the divide or
cut-vertex routine). Next, we g-assign some sub-components C′ ⊂ C to h and assign
another sub-component C ∈ C \ C′ as g′(h) in such a way that the requirements for
g-weight and (g + g′)-weight in the definition of PB-λ-CoD are satisfied.
One problem that might occur is that now components in CC(V (C)) have weight
greater or equal to λ, which violates that (C, H,R, g, g′) is a PB-λ-CoD. (This can
happen because R may have an edge to some C ∈ C that is not in N ḡ(R), i.e., C has
been already g-assigned to some other vertex in H). In this case, we add part of this
big component in CC(V (C)) as a new set to R (thereby increasing outer index) and
then do cleanup of H. Here we do a more careful cleanup than Step (III)a, crucially
using the weight bounds regarding g, g′ for reconstructing a subgraph for each h ∈ H

with the required weight, to be added to R.

Thus, as long as (C, H,R, g, g′) is not an FB-λ-CoD, we get progress. So, now assume
that (C, H,R, g, g′) is an FB-λ-CoD. For further details and formal description of the
step, see Section C.4.

(IV) Balanced Expansion: Now, we construct an auxiliary bipartite graph B with H and
Qpriv as the two vertex sets. Recall that Qpriv := {Q ∈ CC(V (C)) | N(Q) ⊆ H}. We
put an edge in B from an h ∈ H to Q ∈ Qpriv if and only if there is an edge in G′ from
Q to h. Note that no Q ∈ Qpriv can be an isolated vertex in B because if it is, then Q
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is a connected component of G′ having weight less than λ, but G′ does not have such
connected components. As a result, the bipartite graph B satisfies the precondition of
a balanced expansion 1, which is our novel variation of weighted expansion. Applying
Theorem 2 on B, we find a partition of H into H1 (possibly empty) and H2 (possibly
empty), and a function f : Qpriv → H that maps every Q ∈ Qpriv to a neighbor of it in
the bipartite graph B such that:

a. there are no edges from f−1(H1) to H2 in B.
b. for all h ∈ H1, the f -weight of h is at least λ and
c. for all h ∈ H2, the f -weight of h is at most 3λ− 3.

Let Q1 := f−1(H1) and C1 = V (Q1). Note that Q1 = CC(C1). We update H∗ = H∗∪H1
and C∗ = C∗ ∪ C1 and take f∗ := f for the sets in Q1.
From the definition of Qpriv and properties of H1, H2 and f , we have that C1 does not
have edges to V (G′) \H1 in G, thus ensuring the separator property regarding C1 and
H1 for the desired λ-BCD. By condition (b) above, we obtain that the f -weight of each
vertex h ∈ H1 is at least λ, as required by a λ-BCD.
We also update G′ = G′ − (C1 ∪H1), H = H \H1, and C = C \

⋃
Q∈Q1

C(Q).
We show that after the deletion of (C1 ∪H1), each connected component in G′ weighs at
least λ, thus maintaining the invariant for G′. The sub-components now in C that were
previously g-assigned to some vertex in H1, become g-unassigned now. Note that since
H2 does not have edges to C1, the g-neighborhood of all vertices in H2 remains the same,
and all the g′-assignments remain same. Thus, L is still a PB-λ-CoD of G′ but might
not be an FB-λ-CoD anymore because the effective neighborhoods of some R ∈ R can
increase as previously g-assigned vertices now become g-unassigned. It is also easy to see
that the value of the outer index and the inner index stay unchanged during this step.
For further details and formal proofs, see Section C.5.

(V) Private assignment: We now modify C, g and g′ using f : Qpriv → H such that:
(a)(C, H,R, g, g′) is still a PB-λ-CoD, and crucially, (b) all sub-components in Cpriv are
g-assigned Roughly speaking, the function f from Step (IV) helps us to modify g and g′ in
a way so as to satisfy condition (b) without violating condition (a). Let us say g0, g′

0 are
the g and g′ at the start of the step. The idea is to start with g as the same assignment
as f . We know f satisfies that each Cpriv is f -assigned and the f -weight of any h ∈ H is
at most 3λ− 3. But some of the vertices in H may not satisfy the required lower bound
of 2λ− 1 (and the 0.5(λ− 1) condition) just from the f -weight. So, we fill up this deficit
by using the g-assignment (and g′) while making sure that the f -assigned components
remain g-assigned. Intuitively, we are able to fill up the g-assignment satisfying the
weight conditions because g satisfied those conditions before. Every time some h ∈ H

does not satisfy the conditions, there is a gap in the g-assignment of h compared to its
g0-assignment, so there should have been some sub-component that was assigned in this
gap in g0, so we move that sub-component into the g-assignment of h and fill the gap.
We do not cycle because, once something is moved to its original place in g, then it is
not moved anymore. We need to do this carefully so that no f -assigned components
are pushed out of the g-assignment. For further details and formal description, see
Section C.6.

(VI) Merge unassigned subcomponents: We now modify C, g and g′ such that: (a)(C, H,R,

g, g′) is still a PB-λ-CoD, (b) all sub-components in Cpriv are g-assigned, and additionally,
(c) for each Q ∈ CC(V (C)), either all sub-components of Q are g-assigned, or Q itself is a
single sub-component in C. The condition (c) is ensured by the merging of the unassigned
sub-components, sometimes merging into the assigned components. We need to do this
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carefully so that the weight conditions of the PB-λ-CoD are not violated. For further
details and formal description, see Section C.7.

(VII) Final Step: If L is now not an FB-λ-CoD, then we go to Step (III). Recall that we
showed in Step (III) that we get progress if L is not an FB-λ-CoD. Otherwise, i.e. if L is
an FB-λ-CoD, we push the whole G′ to R∗ as follows, and terminate the algorithm. Let
R = {R1, R2, . . . , Rr}. We define R∗

i := N ḡ[Ri] \
(
R∗

1 ∪R∗
2 ∪ . . . R∗

i−1
)
. We add each R∗

i

to R∗. Also, for each h ∈ H, we add Ng[h] to R∗.
In order to see that we indeed add all of V (G′) to V (R∗) in this step, observe that after
Step (V), we have that each g-unassigned sub-component has an edge to V (R). Note
that the vertex sets in R∗ are pairwise disjoint.
The sets of the created R∗ have weight between λ and 3λ − 3 as required by λ-BCD
because: each R∗

i ⊆ N ḡ[Ri] and w(N ḡ[Ri]) ∈ [λ, 3λ− 3] as L is an FB-λ-CoD; for each
h ∈ H, we have w(Ng[h]) = wg[h] ∈ [2λ− 1, 3λ− 3] by the properties of the PB-λ-CoD.

We now give the detailed formal descriptions and proofs of the steps of this road-map.

C.2 Step I: Removing Heavy Vertices
The algorithm for Step (I) is completely given in the description in Section C.1, so we do not
repeat it here. We prove here the related lemmas that are required for correctness.

▶ Lemma 13. At the end of Step (I) of Algorithm FindBCD, (C∗, H∗, f∗) is a WCD of G.

Proof. At the end of Step (I), we have C∗ = Ĉ, H∗ = Ĥ and that f∗ is the function assigning
each C ∈ Ĉ to some arbitrary h ∈ N

Ĥ
(C). Recall that Ĥ is the set of vertices h ∈ V with

w(h) ≥ λ and Ĉ are the vertices in components of G− Ĥ with weight less than λ. Note that
an h ∈ N

Ĥ
(C) exists because there are no connected components in G having weight less

than λ. It is clear that Ĥ separates Ĉ from the rest of the graph. By definition of Ĥ, every
h ∈ Ĥ has weight at least λ and hence wf∗(h) ≥ λ. By definition, each C ∈ Ĉ has less than
λ weight. Thus (C∗, H∗, f∗) is a WCD of G. ◀

Next, we show that the minimum weight condition on the connected components of G′

holds after step (I).

▶ Lemma 14. After step (I) of algorithm FindBCD, each connected component of G′ =
G− (C∗ ∪H∗) has a weight of at least λ.

Proof. Observe that the components in G′ have weight of at least λ by choice of Ĉ. ◀

C.3 Step II: Initialization
The algorithm for Step (II) is completely given in the description in Section C.1, so we do
not repeat it here. We prove here the following lemma that is required for correctness.

▶ Lemma 15. In the algorithm FindBCD, at the end of Step (II), (C, H,R, g, g′) is a PB-λ-
CoD of G′.

Proof. After Step (I) each connected component in G′ weighs at least λ by Lemma 14. The
set R corresponds to these components and hence R-condition is satisfied. The g-neighbor
condition is satisfied as g is the empty function. The component condition is satisfied as
C = ∅. All the 4 conditions in the definition of PB-λ-CoD are satisfied using that H = ∅. ◀
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C.4 Step III: Divide or Cut-vertex
If the PB-λ-CoD L is not an FB-λ-CoD, we first pick an R̂ ∈ R such that wḡ(R̂) ≥ 3λ−2 and
apply the DivideOrCutVertex routine on N ḡ[R̂]. Depending on the output of this routine,
we then run either the Divide or the Cut procedure, both of which modify L. In both cases
we show that L is still a PB-λ-CoD and either the outer index increases or the inner index
increases with outer index remaining same, thereby giving progress.

C.4.1 Divide or Cut-vertex routine
The DivideOrCutVertex routine takes as input a vertex-weighted connected graph G =
(V, E, w) and an integer λ > wmax, and outputs either a [λ,∞)-CVP {V1, V2} of V or a
cut-vertex x such that every connected component of G− {x} has less weight than λ. We
define such a vertex x as λ-cut-vertex.

Our algorithm uses the following theorem for 2-connected graphs provided by Tarjan [17].

▶ Theorem 16 ([17]). Let G = (V, E) be a 2-connected graph and st ∈ E. There is an
ordering f : V → [|V |], such that f(s) = 1, f(t) = |V | and for each v ∈ V \ {s, t} there exist
uv, vw ∈ E, such that f(u) < f(v) < f(w) (rank property). Furthermore, such an ordering
is computable in O(|E|).

From Theorem 16 we deduce a corollary for vertex-weighted 2-connected graphs.

▶ Corollary 17. Let G = (V, E, w) be a vertex-weighted 2-connected graph and let λ > wmax
be an integer. If w(G) > 3(λ− 1), then we find a [λ,∞)-CVP {V1, V2} of V . Furthermore,
this is realizable in O(|E|).

Proof. Take an arbitrary st ∈ E and compute an ordering f : V → [|V |] for the vertices
V such in Theorem 16. Let k be the largest index, such that

∑k−1
i=1 w(f−1(i)) < λ and∑k

i=1 w(f−1(i)) ≥ λ. Set V1 =
⋃k

i=1 f−1(i) and V2 = V \V1. The rank property of f provides
that G[V1] and G[V2] are connected. From w(f−1(k)) < λ and

∑k−1
i=1 w(f−1(i)) < λ we

obtain w(V1) ≤ 2(λ− 1). Thus, w(V )− w(V1) ≥ 3(λ− 1) + 1− 2(λ− 1) = λ and therefore,
w(V2) ≥ λ.

Realizing the ordering in Theorem 16 requires time in O(|E|). To find the desired
partitions, afterwards, requires time in O(|V |). As a result, we need a total running time in
O(|E|). ◀

Finally, the following lemma gives the required DivideOrCutVertex procedure.

▶ Lemma 18. Let G = (V, E, w) be a connected vertex-weighted graph and let λ > wmax be
an integer. If w(G) > 3(λ− 1), then either we find a λ-cut-vertex x ∈ V or a [λ,∞)-CVP
{V1, V2} of V . Furthermore, this is realizable in time O(|V | |E|).

Proof. If G is 2-connected, then by Corollary 17 we obtain the desired vertex sets V1 and V2.
Otherwise, there exists a separator vertex v ∈ V . Let T = {T1, . . . , Tn} be the connected
components with Ti ⊂ V of G − v. Moreover, let T1 := {Ti ∈ T | w(Ti) ≥ λ} and let
T2 := {Ti ∈ T | w(Ti) < λ}. We work through the edge cases first. If |T1| ≥ 2, then we take
two vertex sets V1, V2 of T1 and add the remaining ones V \ (V1 ∪ V2) arbitrarily to V1 or V2
to obtain the desired [λ,∞)-CVP of V . If |T1| = 0, then x = v is the desired λ-cut-vertex.
If |T1| = 1 and w(v) + w (V (T2)) ≥ λ, then we take the only vertex set in T1 as V1 and
V2 = {v} ∪ V (T2). Note, that v is connected to each T ∈ T2. Thus, in all three edge cases
we are done.
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In the remaining case, |T1| = 1 and w(v) + w (V (T2)) < λ, we contract the vertex set
{v} ∪ V (T2) to v and update w(v) to w(v) + w (V (T2)). Since w(v) < λ, the constructed
graph still satisfies wmax < λ. Also, the graph remains connected and the total weight does
not change, so we can restart the procedure with the contracted graph. Note that since
the number of vertices decreases by at least one each iteration, this procedure terminates
successfully.

Finally, we analyze the running time. To simplify this, we assume that one copy of
G can be obtained in O(|E|). We use in each iteration the algorithm of Tarjan [35], that
provides either that the graph is two 2-connected, or a separator vertex v ∈ V . This costs
O (|V |+ |E|). If the graph is 2-connected, then using Corollary 17, the desired [λ,∞)-CVP
can be computed in O (|E|). Otherwise, we consider G− v and check firstly the edge cases.
This runs in time O (|E|), since identifying the connected components is necessary. In case
we need to contract vertices we just delete V (T2) from the graph and update only the weight
of the separator vertex v. Remembering the contracted vertices can be achieved using a
container that we are able to manage in time O(|V |) in each iteration individually as we
have |V | vertices in the graph. Consequently, each iteration runs in time O (|E|) Lastly, if
we do not find the desired [λ,∞)-CVP of V we reduce the vertex set of the graph by at
least one in each iteration. As a result, we obtain a final running time in O (|V | |E|), since
we have at most |V | iterations. ◀

C.4.2 The Divide Case
If DivideOrCutVertex returns a division of N ḡ[R̂] into R1 and R2, we do the procedure
Divide as follows:

1. Update R to be (R \ {R̂}) ∪ {R1, R2}, and C to be C \ Nu(R̂).
2. For every h ∈ H, remove the sub-components in Ng[h] from C and add Ng[h] to R. Set

H = ∅, and g, g′ as empty functions.

▶ Lemma 19. L = (C, H,R, g, g′) is still a PB-λ-CoD after the Divide procedure.

Proof. First of all we prove that (C, H,R, g) satisfies the 3 conditions for λ-CoD:

1. Since we only delete elements (sub-components) from C and do not add anything to C in
Divide, we have that every component in CC(V (C)) still has weight less than λ.

2. Since g is the empty function, it holds trivially that g(C) ∈ NH(C) for every g-assigned
C ∈ C.

3. We have that R is still a CVP of G′ −H − V (C) because any vertex that was removed
from H or V (C) during Divide was added to V (R) in Divide and all the sets added to
V (R) in Divide are pairwise disjoint. In order to see that R is a [λ,∞]-CVP, observe
that each set added to R has weight at least λ. The sets R1 and R2 have weight at least
λ as given by the Divide or Cut-vertex procedure. Each Ng[h] added during Step 2 of
Divide has weight at least λ as the g-weight of each h ∈ H was at least 2λ before the
Divide procedure by property of PB-λ-CoD.

The 4 conditions in the definition of PB-λ-CoD are trivially satisfied as H is empty. ◀

▶ Lemma 20. The outer index increases during Divide.

Proof. Let H0 and R0 be the H and R respectively before the Divide procedure. It is clear
from the Divide procedure that |R| = |H0|+ |R0|+ 1. This is because we replace R̂ ∈ R0
by two sets R1 and R2 in R, all sets in R0 \ {R̂} remain in R, and for each h ∈ H0 a set is
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added to R. Also, observe that H∗ remains unchanged. Thus, the outer index increases by
one. ◀

▶ Lemma 21. Divide runs in O(|V | |E|) time.

Proof. It is easy to see that each step runs in O(|V | |E|) time. ◀

C.4.3 The Cut-vertex Case
In the case where DivideOrCutVertex finds a λ-cut-vertex hc of N ḡ[R̂], we apply the Cut
procedure on L = (C, H,R, g, g′) as follows. Note that hc is in fact in R̂ as otherwise there is
a connected component in G[N ḡ[R̂]]− hc that completely contains R̂ and hence has weight
at least λ.

1. Let C1, . . . , Cp be the connected components of G[N ḡ[R̂]]− {hc} in decreasing order of
weight. Let i be the smallest number such that w(hc) + w(C1 ∪ · · · ∪Ci) ≥ 3λ− 2. (Note
that such an i exists because w(hc) + w(C1 ∪ · · · ∪ Cp) = w(N ḡ[R̂]) ≥ 3λ− 2).

2. Let C1 :=
(
C \ N ḡ(R̂)

)
∪ {C1, . . . , Cp}, R1 := R \ {R̂}, and H1 := H ∪ {hc}.

Let g : C1 7→ H1 be defined as: for all g-assigned C ∈ C, let g1(C) := g(C) (note that all
g-assigned C ∈ C are also in C1 by definition of C1); let g1(Cj) := hc for all j ∈ [i− 1].
Let g′

1 : H1 → C1 be defined as: for all h ∈ H, if g′(h) ∈
(
C \ N ḡ(R̂)

)
∪ {∅} then

let g′
1(h) := g′(h); otherwise, i.e. if g′(h) ∈ N ḡ(R̂) then let g′

1(h) be the Cj such that
g′(h) ⊆ Cj (such a Cj exists by the definitions of N ḡ(R̂) and C1, . . . , Cp); let g′

1(hc) := Ci.
3. If there exists a connected component Q̂ of G[V (C1)] with w(Q̂) ≥ λ, then perform the

CutCleanup procedure given below, otherwise update L← (C1, H1,R1, g1, g′
1).

The CutCleanup procedure is as follows:

1. Find a subset Q′ of Q̂ such that G[Q′] is connected, and w(Q′) ∈ [λ, 2λ− 2] as follows:
let Q(VQ, EQ) be the graph with vertex set VQ := {C ∈ C1 : C ⊆ Q}, and there an edge
between sub-components C and C ′ in EQ exists, if and only if there is an edge between
C and C ′ in G. For any subgraph Q′ of Q, let V (Q′) denote the set of all v ∈ V such
that v is contained in some vertex of Q′, and let w(Q′) := w(V (Q′)). Find a spanning
tree T of Q. As long as T has a leaf C such that w(T − {C}) ≥ λ, update T ← T − {C}.
Let T ′ be the final T when no longer such leaves can be found. Let C′ ⊆ VQ be the set
of vertices of Q that are spanned by T ′. Let Q′ := V (C′). (We show in Lemma 28 that
indeed w(C′) = w(Q′) ∈ [λ, 2λ− 2]).

2. Let C2 := C1 \ C′, R2 := R1 ∪ {Q′}, and H2 := H1.
Let g2 : C2 7→ H2 be defined as: for all g1-assigned C ∈ C2, let g2(C) := g1(C). Let
g′

2 : H2 → C2 be defined as: for all h ∈ H2, if g′
1(h) ∈ C2 then let g′

2(h) := g′
1(h) and

g′
2(h) := ∅ otherwise.

3. If wg2 [h] ≥ λ for all h ∈ H2, then: let Ch := g−1
2 (h) for each h ∈ H2.

Otherwise, i.e., if there is some hd ∈ H2 (d stands for deficiency) such that wg2 [hd] < λ

(we prove in Lemma 30 below that there is at most one such hd), then: let Chd
:=

g−1
2 (hd) ∪ {g′

2(hd)} (we show in Lemma 30 that g′
2(hd) ̸= ∅), and for all h ∈ H2 \ {hd},

let Ch := g−1
2 (h) \ {g′

2(hd)} . Let Rh := {h} ∪ V (Ch) for each h ∈ H2.
4. Let Q3 be the set of connected components of G[V

(
C2 \

(⋃
h∈H2

Ch

))
]. Let C3 :=

{Q ∈ Q3 : w(Q) < λ}, R3 := R2 ∪ {Rh : h ∈ H2} ∪ {Q ∈ Q3 : w(Q) ≥ λ}, H3 := ∅, and
g3, g′

3 be empty functions.
Update L← (C3, H3,R3, g3, g′

3)
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Lemmas 22, 23, 24 and 25 summarize the correctness and running time of this section. We
defer the proofs of Lemmas 22, and 23 to later as we need to prove some auxiliary lemmas
for this.

▶ Lemma 22. If CutCleanup is not called then (C1, H1,R1, g1, g′
1) is a PB-λ-CoD.

▶ Lemma 23. If CutCleanup is called, then (C3, H3,R3, g3, g′
3) is a PB-λ-CoD.

▶ Lemma 24. During Cut, either the outer index increases, or the outer index remains the
same and the inner index increases.

Proof. First of all, notice that H∗ is not modified during Cut. It is clear by construction
that |H1| = |H|+ 1 and |R1| = |R| − 1. So, if CutCleanup is not called then we have that
the outer index remains same and inner index increases during Cut.

So, now consider the case when CutCleanup is called. By construction, we have H2 = H1,
|R2| = |R1|+ 1, and |R3| ≥ |R2|+ |H2|. This implies |R3| ≥ |H1|+ |R1|+ 1. Thus the outer
index increases. ◀

▶ Lemma 25. Cut runs in O(|V | |E|) time.

Proof. It is not difficult to see that each step can be implemented in O(|V | |E|) time. ◀

▶ Lemma 26. C
priv
1 ⊇ Cpriv.

Proof. Suppose there exists a C ∈ Cpriv that is not in C
priv
1 . Since C ∈ Cpriv, C does not

have an edge to R and hence is not in N ḡ(R̂). This implies that C ∈ C1. Let Q1 be the
connected component of G[V (C1)] that contains C, and let Q be the connected component
of G[V (C)] that contains C. Since V (C1) ⊇ V (C), we have that Q1 ⊇ Q. Since C /∈ C

priv
1 ,

we have that Q1 has an edge to some R ∈ R1. But R1 ⊂ R by construction and hence
R ∈ R. Then we know that Q does not have an edge to R as C ∈ Cpriv. This implies Q1 ⊋ Q

and hence Q1 ∩N ḡ[R̂] ̸= ∅. But then N(Q) ∩N ḡ[R̂] ̸= ∅. This implies C /∈ Cpriv, thus a
contradiction. ◀

▶ Lemma 27. 1. (C1, H1,R1, g1) satisfies conditions 2 and 3 of λ-CoD and (C1, H1,R1,

g1, g′
1) satisfies conditions 1, 2, 3, and 4 of PB-λ-CoD.

2. Each C ∈ C1 weighs less than λ (a weak version of component condition of λ-CoD).
3. For all h ∈ H1, if g−1

1 (h) ⊈ Cpriv, then wg1+g′
1 [h] ≥ 3λ − 2 (this is stronger than the

(g + g′)-weight condition for (C1, H1,R1, g1, g′
1) as we have Cpriv and not C

priv
1 in the

statement and Cpriv ⊆ C
priv
1 by Lemma 26).

4. For all h ∈ H1, if wg1(h) < 2.5(λ−1), then w(C) ≥ 0.5(λ−1) for every C ∈ g−1
1 (h)\Cpriv

(this is stronger than the 0.5(λ − 1)-condition for (C1, H1,R1, g1, g′
1) as we have Cpriv

and not Cpriv
1 in the statement and Cpriv ⊆ C

priv
1 by Lemma 26).

Proof. First we prove condition 2 of λ-CoD (g-neighbor condition) for (C1, H1,R1, g1).
Consider any g1-assigned C in C1. If g1(C) = g(C) then the condition is satisfied for C,
by applying condition 2 of λ-CoD for (C, H,R, g). So assume g1(C) ̸= g(C). Then by
construction of g1, we know that C ∈ {C1, . . . ., Ci−1} and g1(C) = hc (see step 1 of Cut).
Also hc ∈ N(Cj) for all j ∈ [p] by construction of hc and Cj . Thus the condition is satisfied.

Now, we prove condition 3 of λ-CoD (R-condition) for (C1, H1,R1, g1). Indeed, it is clear
from the construction that R1 is a [λ,∞)-CVP of G − H1 − V (C1) by using that R is a
[λ,∞)-CVP of G−H − V (C).

Next, we prove the 4 conditions of PB-λ-CoD for (C1, H1,R1, g1, g′
1). Consider h ∈ H =

H1 \{hc}. We have that g−1
1 (h) = g−1(h) and g′

1(h) ⊇ g′(h) from the definitions of g1 and g′
1.
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We now prove the 4 conditions of PB-λ-CoD for (C1, H1,R1, g1, g′
1) for h ∈ H = H1 \ {hc}.

We also prove statements 3 and 4 of the lemma for h ∈ H along the way.

1. g-neighbor condition: Suppose g′
1(h) ̸= ∅. We know that g′

1(h) ⊇ g′(h). We have that
g′(h) has an edge to h using the g′-neighbor condition of (C, H,R, g, g′). Thus g′

1(h) has
an edge to h. We also know that g′

1(h) ∈ C1 by the definition of g′
1. So, g′

1(h) ∈ NC1(h).
Hence it only remains to prove that g′

1(h) /∈ g−1
1 (h). Suppose g′

1(h) ∈ g−1
1 (h). But

g−1
1 (h) = g−1(h) and hence g′

1(h) ∈ g−1(h). This implies that g′
1(h) ∈ C and we get

g′(h) = g′
1(h) by using that g′

1(h) ⊇ g′(h). Thus, g′(h) ∈ g−1(h), a contradiction to the
g′−neighbor condition of (C, H,R, g, g′).

2. g-weight condition: follows from g−1
1 (h) = g−1(h) and the g-weight condition of (C, H,R,

g, g′).
3. (g + g′)-weight condition: we prove the more general statement 3 of the lemma. Suppose

g−1
1 (h) ⊈ Cpriv. Since g−1

1 (h) = g−1(h), we have g−1(h) ⊈ Cpriv. Then by the (g + g′)-
weight condition of (C, H,R, g, g′), it follows that wg+g′ [h] ≥ 3λ − 2. Using g−1

1 (h) =
g−1(h), and g′

1(h) ⊇ g′(h), we get that wg1+g′
1 [h] ≥ 3λ− 2.

4. 0.5(λ − 1) condition: we prove the more general statement 4 of the lemma. Suppose
wg1 [h] < 2.5(λ − 1). Since g−1

1 (h) = g−1(h), we have wg[h] < 2.5(λ − 1). Consider
a C ∈ g−1

1 (h) \ Cpriv. Since g−1
1 (h) = g−1(h), we have C ∈ g−1(h) \ Cpriv. Then

w(C) ≥ 0.5(λ− 1) using the 0.5(λ− 1) condition of (C, H,R, g, g′).

Now, we prove the 4 conditions of PB-λ-CoD for (C, H,R, g, g′) and the statements 3
and 4 for hc. We know that g′

1(hc) = Ci and g−1
1 (hc) = {C1, . . . , Ci−1} (see step 1 of Cut).

1. g′-neighbor condition: From the definitions of C1, . . . , Cp and hc, it is clear that Ci has
an edge to hc and that {C1, . . . , Ci−1} is disjoint from Ci.

2. g-weight condition: By the selection of i in Step 1 of Cut, we have that wg1 [hc] = w(C1) +
· · ·+w(Ci−1) ≤ 3λ−3. Also, wg1 [hc] = w(C1)+ · · ·+w(Ci−1) ≥ (w(C1) + · · ·+ w(Ci))−
w(Ci) ≥ (3λ − 2) − (λ − 1) = 2λ − 1, where we used w(Ci) ≤ λ − 1 as given by the
DivideOrCutVertex procedure.

3. (g + g′)-weight condition and statement 3 of lemma: wg1+g′
1 [hc] = w(C1) + · · ·+ w(Ci) ≥

3λ− 2 by the selection of i.
4. 0.5(λ−1) condition and statement 4 of lemma: If wg1 [hc] < 2.5(λ−1), then by the selection

of i, we have w(Ci) > (3λ− 2)− 2.5(λ− 1) > 0.5(λ− 1). Then, w(C1), . . . , w(Ci−1) >

0.5(λ−1) as C1, . . . , Cp were sorted in decreasing order of weight. Thus, w(C) ≥ 0.5(λ−1)
for each C ∈ g−1

1 (hc).

Finally, we prove statement 2 of the lemma. If C ∈ C then this is clear by the component
condition of (C, H,R, g). So assume C /∈ C. This implies C = Cj for some j ∈ [p] by the
construction of C1. Then we know w(C) < λ from the DivideOrCutVertex procedure. ◀

Proof of Lemma 22: By statement 1 of Lemma 27, it follows that we only need to prove
the component condition. But if the component condition is not fulfilled by (C1, H1,R1,

g1, g′
1) then Step 3 of Cut would call CutCleanup, thus a contradiction. ◀

▶ Lemma 28. w(C′) = w(Q′) ∈ [λ, 2λ− 2]. (See Step 1 of CutCleanup for the definitions
of C′ and Q′).

Proof. We have that w(C′) = w(Q′) = w(T ′) from Step 1 of CutCleanup. T ′ is a tree, thus
connected. So it is sufficient to prove that w(T ′) ∈ [λ, 2λ − 2]. It is clear that w(T ′) ≥ λ

by construction. It only remains to prove that w(T ′) ≤ 2λ − 2. Suppose w(T ′) ≥ 2λ − 1.
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Now, consider any leaf C of T ′. We have w(C) ≥ λ, because otherwise w(T ′ − {C}) ≥ λ, a
contradiction to the construction of T ′. We know that C ∈ C1 as C is a vertex of Q. But
then w(C) < λ by Lemma 27. Thus we have a contradiction. ◀

▶ Lemma 29. For hd as in Step 3 of CutCleanup, we have g−1
1 (hd) ⊈ Cpriv.

Proof. Suppose g−1
1 (hd) ⊆ Cpriv. This means that any connected component of G[V (C)] that

intersects V (g−1
1 (hd)), does not intersect N ḡ(R̂). This implies that V (g−1

1 (hd)) is disjoint
from the component Q̂ in Step 1 of CutCleanup, and hence is also disjoint from Q′. This
implies that g−1

1 (hd) is disjoint from C′. However by the definition of hd, we have that
w

(
g−1

1 (hd) ∩ C′) ≥ λ as w
(
g−1

1 (hd)
)
≥ 2λ− 1, thus a contradiction. ◀

▶ Lemma 30. There exists at most one hd ∈ H2 such that wg2(hd) < λ. Also, for such an
hd, we have g′

2(hd) ̸= ∅, and for all h ∈ H2 \{hd}, we have that w
(
g−1

1 (h) ∩ C′) < 0.5(λ−1).

Proof. Consider any hd ∈ H2 such that wg2(hd) < λ. Since H2 = H1, hd ∈ H1. By
Lemma 27, we get that wg1(hd) ≥ 2λ − 1. Thus, wg1(hd) − wg2(hd) ≥ λ. This implies
that w

(
g−1

1 (hd) ∩ C′) ≥ λ, by the definition of g2. Now, consider a leaf C of the tree T ′

in Step 1 of Cut. We have that C ∈ g−1
1 (hd) because otherwise T ′ − {C} contains all of

g−1
1 (hd) ∩ C′ and hence has a weight of at least λ, a contradiction to the construction of

T ′. Thus g1(C) = hd. Since g1(C) is unique, hd is also unique, proving the first part of the
lemma.

As we showed above, every leaf of T ′ is in g−1(hd). Since T ′ has at least 2 leaves
and w(g−1

1 (hd) ∩ C′) ≥ λ, it follows that T ′ has at least one leaf C in g−1
1 (hd) such that

w
((

g−1
1 (hd) ∩ C′) \ {C}) ≥ 0.5λ. Now, if there is an h ∈ H2 \ {hd} such that g−1

1 (h) ∩ C′ ≥
0.5(λ − 1), then we get that w(T ′ − {C}) ≥ 0.5λ + 0.5(λ − 1) = λ − 0.5. This implies
w(T ′ − {C}) ≥ λ by integrality. But this is a contradiction to the construction of T ′.

It only remains to prove that g′
2(hd) ̸= ∅ in order to conclude the proof of the lemma.

Suppose g′
2(hd) = ∅. This implies g′

1(hd) /∈ C2 = C1 \ C′ by the definition of g′
2. Then either

g′
1(hd) = ∅ or g′

1(hd) ∈ C′.
Case 1. g′

1(hd) = ∅: this implies that g′(hd) = ∅, by definition of g′
1. But then

g−1(hd) ⊆ Cpriv using the g-weight condition and the (g + g′)-weight condition of the
PB-λ-CoD (C, H,R, g, g′). This is a contradiction to Lemma 29.

Case 2. g′
1(hd) ∈ C′: then we have w(C′) ≥ w

(
{g′

1(hd)} ∪
(
g−1

1 (hd) ∩ C′))
. We know that

g′
1(hd) is disjoint from g−1

1 (hd) by the g′-neighbor condition of (C1, H1,R1, g1, g′
1) given by

Lemma 27. Thus we have w(C′) ≥ w (g′
1(hd)) + w(g−1

1 (hd) ∩ C′) = w (g′
1(hd)) + wg1 [hd] −

wg2 [hd] = wg1+g′
1 [hd]− wg2 [hd]. Since wg2 [hd] ≤ λ− 1 and w(C′) ≤ 2λ− 2 (by Lemma 28),

we have that wg1+g′
1 [hd] ≤ 3λ−3. This implies that wg+g′ [hd] ≤ 3λ−3 by the definition of g1

and g′
1. But then g−1

1 (hd) ⊆ Cpriv from the statement 3 of Lemma 27. This is a contradiction
to Lemma 29. ◀

▶ Lemma 31. For all h ∈ H2, w(g′
2(h)) < λ.

Proof. By definition of g′
2, either g′

2(h) = ∅ or g′
2(h) = g′

1(h). In the former case, clearly
w(g′

2(h)) = 0 < λ. In the latter case we have w(g′
2(h)) = w(g′

1(h)) < λ by Lemma 27. ◀

Proof of Lemma 23: First, we prove that (C3, H3,R3, g3) satisfies the 3 conditions in the
definition of λ-CoD:

1. component condition: From the construction of C3, it is clear that all connected compon-
ents in G[V (C3)] have weight less than λ.

2. g-neighbor condition: follows since g3 is the empty function.
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3. R-condition: We need to prove that w(R) ≥ λ for all R ∈ R3. Recall that R3 =
R2 ∪ {Rh : h ∈ H2} ∪ {Q ∈ Q3 : w(Q) ≥ λ}.
Case 1. R ∈ R2: Recall that R2 = R1 ∪ {Q′}.
Case 1.1. R ∈ R1: By R-condition of λ-CoD (C1, H1,R1, g1) given by Lemma 27, we
know that w(R) ≥ λ.
Case 1.2. R = Q′: by Lemma 28, w(Q′) ≥ λ.
Case 2. R = Rh for some h ∈ H2:
Case 2.1. If wg2 [h] ≥ λ for all h ∈ H2: then Rh = Ng2 [h] by construction. Thus,
w(Rh) = wg2 [h] ≥ λ, by assumption of Case 2.1.
Case 2.2. If there is some hd ∈ H2 such that wg2 [hd] < λ :
Case 2.2.1. h = hd: we know that Rhd

= {hd}∪g−1
2 (hd)∪{g′

2(hd)} by the construction of
Rhd

. By the construction of g2 we get that, g−1
2 (hd)∪{g′

2(hd)} =
(
g−1

1 (hd) ∪ {g′
1(hd)}

)
\C′.

This implies that w(Rhd
) ≥ wg1+g′

1 [hd]− w(C′). We have wg1+g′
1 [hd] ≥ 3λ− 2 using the

(g + g′)-weight condition of (C1, H1,R1, g1, g′
1) from Lemma 27 and w(C′) ≤ 2λ− 2 from

Lemma 28. Thus, w(Rhd
) ≥ λ.

Case 2.2.2. h ≠ hd: Recall that in this case Rh = {h} ∪ g−1
2 (h) \ {g′

2(hd)}. Thus,
w(Rh) ≥ wg2 [h] − w(g′

2(hd)) = wg1 [h] − w
(
g−1

1 (h) ∩ C′) − w(g′
2(hd)). Suppose for the

sake of contradiction that w(Rh) ≤ λ− 1. From Lemma 31, we have w(g′
2(hd)) ≤ (λ− 1).

Thus, we have wg1 [h] − w
(
g−1

1 (h) ∩ C′) ≤ 2(λ − 1). From Lemma 30, we have that
w

(
g−1

1 (h) ∩ C′) < 0.5(λ − 1). Thus, we get wg1 [h] < 2.5(λ − 1). Then, by statement
4 of Lemma 27, for each C ∈ g−1

1 (h) \ Cpriv, we have w(C) ≥ 0.5(λ − 1). Since
w

(
g−1

1 (h) ∩ C′) < 0.5(λ− 1), this implies that if C ∈ g−1
1 (h)∩C′, then C ∈ g−1

1 (h)∩C′ ∩
Cpriv. But C′ ∩ Cpriv = ∅ by the constructions of Cpriv and C′. Thus g−1

1 (h) ∩ C′ = ∅.
Plugging this in wg1 [h] − w

(
g−1

1 (h) ∩ C′) ≤ 2(λ − 1), we get that wg1 [h] ≤ 2(λ − 1), a
contradiction to g-weight condition of (C1, H1,R1, g1, g′

1) given by Lemma 27.
Case 3. R ∈ {Q ∈ Q3 : w(Q) ≥ λ}: in this case it is clear that w(R) ≥ λ.

The 4 conditions in the definition of PB-λ-CoD are trivially satisfied by (C3, H3,R3, g3, g′
3)

as H3 = ∅. ◀

C.5 Step IV: Balanced Expansion
The algorithm for Step (IV) is completely given in the description in Section C.1, so we do
not repeat it here. We prove here the related lemmas that are required for correctness.

▶ Lemma 32. After the execution of the step (IV) during algorithm FindBCD, (C∗, H∗, f∗)
remains a weighted crown decomposition of G.

Proof. Consider the r-th execution of step (IV). We do induction on r. The induction base
case is true because of Lemma 13 in Step (I). Let C∗

0 , H∗
0 and f∗

0 be the C∗, H∗ and f∗

before the execution of the step. By induction hypothesis we can assume that (C∗
0 , H∗

0 , f∗
0 ) is

a weighted crown decomposition (Note that step (IV) is the only place we modify C∗, H∗ and
f∗ apart from once at the start in step (I)). We know that C∗ = C∗

0 ∪C1 and H∗ = H∗
0 ∪H1

(see Step (IV) of FindBCD). Also, f∗ on C∗
0 is same as f∗

0 , and f∗ on C1 is same as f on
C1, where f is the assignment returned by the balanced expansion in Step (IV). By the
properties of balanced expansion, f satisfies:

a) there are no edges from f−1(H1) = C1 to H2 in B.
b) f(C) ∈ N(C) for all C ∈ CC(C1)
c) for all h ∈ H1, the f -weight of h is at least λ and
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We know that there are no edges from C∗
0 to C1 as H∗ separates C∗ from G − H∗ − C∗.

Thus all connected components in C∗ = C∗
0 ∪ C1 are either connected components of C1

or that of C∗
0 . We now prove the conditions 1-4 in Definition 6 for (C∗, H∗, f∗), thereby

showing that it is a WCD.

1. We know there are no edges from C∗
0 to V (G′) as (C∗

0 , H∗
0 , f∗

0 ) is a WCD. By a) above
and using that C1 contains only vertices in private components, we have that C1 has no
edges to G′ −H1. Hence, C∗ = C∗

0 ∪ C1 has no edges to G′ −H1 = G−H∗.
2. We deduce that each connected component of C1 has weight less than λ using that

(C, H,R, g, g′) is a PB-λ-CoD. Also, each connected component of C∗
0 has weight less

than λ because (C∗
0 , H∗

0 , f∗
0 ) is a WCD. Thus, all connected components in C∗ = C∗

0 ∪C1
have weight less than λ.

3. By b) above we have that f∗(C) ∈ N(C) for all C ∈ CC(C1). Also, we have that
f∗(C) = f∗

0 (C) ∈ N(C) for all C ∈ CC(C∗
0 ) as (C∗

0 , H∗
0 , f∗

0 ) is a WCD.
4. By c) above we get that the f∗-weight of h is at least λ for all h ∈ H1. Also, we have

that f∗-weight of h is at least λ for all h ∈ H∗, using that (C∗
0 , H∗

0 , f∗
0 ) is a WCD. ◀

For the correctness of step (IV) it remains to show that after the deletion of C1 and H1
we still have a PB-λ-CoD of the resulting graph in hand. Moreover, we need to ensure that
the remaining graph has no connected component of weight less than λ, thus ensuring the
necessary condition on the working graph G′.

▶ Lemma 33. In the algorithm FindBCD in step (IV), (C \ C (Q1) , H \H1,R, g, g′) is still
a PB-λ-CoD of G′ − (H1 ∪ C1), where C1 = V (Q1). Furthermore, each component of
G′−(H1 ∪ C1) weighs at least λ assuming that G′ does not contain any connected components
of weight smaller than λ.

Proof. Since NG′(C1) ⊆ H1, we have that the g and g′-assignments of h ∈ H\H1 remains the
same, after the deletion. Also R remains the same and C only looses some whole connected
components. From this, using that (C, H,R, g, g′) is a PB-λ-CoD of G′, it is easy to see that
(C \ C (Q1) , H \H1,R, g, g′) is a PB-λ-CoD of G′ −H1 − C1.

Now, we prove the second part of the lemma. Suppose there was a connected component
of weight less than λ in G′ −H1 − C1. Let this component be S. Since G′ did not have any
connected component of weight less than λ, we have that S has edge to either H1 or C1. It
cannot have edge to C1, as then it would be part of C1. It cannot have edge to H1, because
then also it will be part of C1. ◀

Next, we analyze the running time of step (IV).

▶ Lemma 34. In the algorithm FindBCD, step (IV) runs in time O(|V | |E|).

Proof. Finding a balanced expansion in G′ costs O(|V | |E|) by Lemma 4 and Theorem 2.
All remaining steps within step (IV) take no more time than O(|V | |E|). ◀

Finally, we show that the outer and inner index stays unchanged after this step.

▶ Lemma 35. In the algorithm FindBCD, after step (IV) the outer and inner index stays
unchanged.

Proof. Recall that the outer index corresponds to |H∗|+ |H|+ |R| and the inner index to
|H∗|+ |H|. Since we remove H1 from H and add to H∗, and R is unmodified, the lemma
holds. ◀
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C.6 Step V: Private Assignment
Let (C0, H,R, g0, g′

0) be the PB-λ-CoD L at the start of the step. In this step, we give an
algorithm that given (C0, H,R, g0, g′

0) and a function f : Qpriv
0 → H such that the f -weight

of each h ∈ H is at most 3λ − 3 (such an f is given by Step (IV)) as input, outputs a
PB-λ-CoD (C, H,R, g, g′) such that:

1. (C, H,R, g, g′) is a PB-λ-CoD, and
2. all sub-components in C

priv
0 are g-assigned , and

We give this step in the form of 3 subroutines AssignPriv, MergeSubComp, and FillDeficit
that will be executed in that order. In AssignPriv we g-assign all the private compon-
ents, but may violate the property that a sub-component is g-assigned to its neighbor. In
MergeSubComp we rectify this by merging some sub-components. In FillDeficit, we fill
up the g-assignments with the non-private sub-components so that the weight conditions
required for PB-λ-CoD are satisfied.

Let Qpriv
0 and C

priv
0 be the set of private components and private sub-components

respectively in C0. The algorithm AssignPriv will create an assignment g from C0 to H

such that all the private sub-components in C
priv
0 are g-assigned, and the following conditions

are satisfied for each h (we call them the h-conditions):

1. Ng[h] is connected,
2. wg[h] is at most 3λ− 3, and
3. either wg[h] ≥ 2λ− 1, or g−1

0 (h) ∩ C
priv
0 ⊆ g−1(h).

First of all, we will create for each h ∈ H an initial assignment of g according to f . That
is, for every h ∈ H we g-assign to h all the sub-components of each Q ∈ f−1(h). At
this point, all sub-components in C

priv
0 are g-assigned, and we will maintain this invariant

during the remaining algorithm. We also satisfy h-conditions 1 and 2 throughout. The
algorithm terminates when h-condition 3 is satisfied. The correctness and run-time analysis
are performed below each step.

C.6.0.1 Algorithm AssignPriv:

1. For each Q ∈ Qpriv
0 , and for each sub-component C of Q, we set g(C) = f(Q).

Note that Ng[h] is connected for every h ∈ H by definition of f . Also, wg[h] = wf [h] ≤
3λ − 3 for every h ∈ H. Thus h-conditions 1 and 2 are satisfied for all h ∈ H. Also,
all the private sub-components are now g-assigned. Note that it is possible now that
g(C) /∈ N(C) for some C ∈ g−1(h). This will only be rectified in MergeSubComp.
Running time: O(|V |).

2. Construct an auxiliary graph Ĝ = (V̂ = H ∪ C
priv
0 , Ê) where Ê contains the pair

C1, C2 ∈ C0 as an edge if there is an edge between C1 and C2 in G, and the pair
C ∈ C0, h ∈ H as an edge if C has an edge to h in G.
Consequently, if Ĝ[H ′∪C′

0] is connected for some C′
0 ⊆ C0 and H ′ ⊆ H, then G[H ′∪V (C′

0)]
is also connected.
Running time: O(|E|).

3. For each h ∈ H, construct a spanning tree Th rooted at h of the graph Ĝ[{h} ∪ g−1(h)].
Note that C

priv
0 =

⋃
h∈H V̂ (Th − h) and that Th and Th′ are disjoint for distinct h and h′.

Also observe that the subtree of Th rooted at x ∈ V̂ (Th−h) has weight at most λ because
it is completely contained in a connected component of G[C0] due to its connectedness.
Running time: O(|E|).
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4. As long as there is an h ∈ H whose h-condition 3 is violated: since h-condition 3
is violated, we know that g−1

0 (h) ∩ C
priv
0 ⊈ g−1(h) and hence there exist some C̃ ∈(

g−1
0 (h) ∩ C

priv
0

)
\ g−1(h). We know C̃ ∈ g−1(h′) for some h′ ̸= h because all sub-

components in C
priv
0 are g-assigned by Step 1 of AssignPriv. This implies that C̃ is a

vertex of Th′ . Consider the subtree rooted at C̃, i.e. Th′(C̃). We update g(C) = h for all
C ∈ V̂ (Th′(C̃)). We then remove Th′(C̃) from Th′ and attach it to Th with C̃ as a direct
child of h. Note that C̃ indeed has an edge to h for such an attaching, because g0(C̃) = h.
To see that h-condition 1 is not violated, observe that we maintain for all h ∈ H that Th

contains exactly those vertices of G in Ng[h], and that Th still remains a tree. To see
that h-condition 2 is not violated, observe that we only g-assign something to h only if
wg[h] < 2λ− 1. Also, the weight of the new additional assignment is at most λ, because
we only move a proper subtree of T ′

h from h′ to h, and any proper subtree of Th′ has
weight at most λ. We do not g-unassign something that was g-assigned, so it is clear
that all private sub-components remain g-assigned. Since step 4 is repeated as long as
h-condition 3 is violated by some h, when the step terminates we have that h-condition 3
is satisfied. We show below that this step indeed terminates, and in fact is only repeated
at most O(|V |) times.
Running time: O(|V ||E|). It is easy to see that each iteration of the step runs in O(|E|)
time. We will bound the number of iterations by O(|V |). For this, observe that each C̃

will be picked only once as the root of the tree to be moved. This is because once it is
picked then g(C̃) = g0(C̃), and it is afterwards not moved when some other vertex is
picked, because C̃ now is a direct child of h and does not occur in the subtree of any
other vertex in Th − h.

From the discussions at the end of each step of AssignPriv, we have the following lemma.

▶ Lemma 36. AssignPriv runs in O(|V ||E|) time and when it terminates, the h-conditions
are satisfied and all the sets in C

priv
0 are g-assigned.

C.6.0.2 Algorithm MergeSubComp:

For each h ∈ H, and for each child C of H: merge all the sub-components that are in the
sub-tree of Th rooted at C and add it as a single sub-component to C; then g-assign this
component to h. Finally add all the sub-components in C0 \ Cpriv

0 to C1.
The merged sub-components have weight less than λ as each proper sub-tree of Th has

weight less than λ. Also every vertex in V (C0) now appear in a sub-component in C as
each sub-component in C

priv
0 appears in some Th. Crucially, now for each g-assigned C ∈ C,

we have g(C) ∈ N(C). Also, notice that each private sub-component of C is formed by
merging of private sub-components in C0, and the non-private sub-components of C are the
non-private sub-components of C0.
Running time: O(|E|).

C.6.0.3 Algorithm FillDeficit:

For each h ∈ H , if wg[h] ≥ 2λ− 1 then assign g′(h) = ∅, otherwise do the following:

(a) let C1, C2, . . . , Cp be the sub-components in C0 \ Cpriv
0 that were g0-assigned to h, in

decreasing order of weight.
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(b) Starting with i = 1, as long as wg[h] + w(Ci) ≤ 3λ− 3 and i ≤ p, we g-assign Ci to h,
and increase i by 1.

(c) If i ≤ p then assign g′(h) = Ci, otherwise assign g′(h) the sub-component in C that
contains g′

0(h) as a subset (such a sub-component should exist because we only merged
the components in C0 to get the components in C).

Running time: O(|E|+ |V | log |V |). Here |V | log |V | is for the sorting in decreasing weight.

▶ Lemma 37. For some h ∈ H, if Step (a) of FillDeficit g-assigns all of C1, C2, . . . , Cp

to h, then each C ∈ g−1
0 (h) is a subset of some C ′ ∈ g−1(h).

Proof. Since FillDeficit enters Step (a) for h, it should be the case that wg[h] was less than
2λ− 1 before FillDeficit. Then, since the h-condition 3 was satisfied after AssignPriv,
we have that all subcomponents in C ∈ g−1

0 (h) ∩
(
C0 ∩ C

priv
0

)
were g-assigned to h after

AssignPriv. Also, we g-assign to h all C ∈ g−1
0 (h) ∩

(
C0 \ Cpriv

0

)
in FillDeficit, by

assumption of the lemma. Hence, the lemma follows. ◀

▶ Lemma 38. After FillDeficit, we have wg[h] ≤ 3λ− 3 for all h ∈ H.

Proof. We maintained the upper bound 3λ− 3 during AssignPriv by h-condition 2. The
g-weight does not change in MergeSubComp. In FillDeficit, we g-assign the Ci one by
one, only as long as the g-weight remains at most 3λ− 3. Thus we have the required upper
bound. ◀

▶ Lemma 39. After FillDeficit, (C, H,R, g, g′) is a PB-λ-CoD and all private sub-
components in C are g-assigned.

Proof. We first prove the 3 conditions for (C, H,R, g) to be a λ-CoD.

1. component condition: this is satisfied as V (C) = V (C0).
2. g-neighbor condition: due to MergeSubComp, we have that g(C) ∈ N(C) for all g−assigned

C in C.
3. R-condition: follows because we have not modified R in this step of FindBCD.

Next, we prove the 4 conditions required by PB-λ-CoD.

1. g′-neighbor condition: By FillDeficit, we have that if g′(h) ̸= ∅ then g′(h) is either
a superset of g′

0(h) or in g−1
0 (h), and hence is in NC(h). So it only remains to prove

that g′(h) is not in g−1(h). If FillDeficit allocates one of the Ci : i ∈ [p] as g′(h) then
this is indeed the case clearly as FillDeficit g-assigns only C1, . . . , Ci−1. So assume
the other case, i.e., when g′(h) is the superset of g′

0(h). Suppose g′(h) ∈ g−1(h) for
the sake of contradiction. This means that all of C1, C2, . . . , Cp was assigned to h by
FillDeficit. Then we claim that wg[h] ≥ wg0+g′

0 [h]. By Lemma 37, we have that
V (g−1

0 (h)) is contained in V (g−1(h)). Since V (g′
0(h)) ⊆ V (g′(h)) is also contained in

g−1(h) by assumption, we have that indeed wg[h] ≥ wg0+g′
0 [h] ≥ 3λ− 2, a contradiction

to Lemma 38.
2. g-weight condition: the upper bound 3λ − 3 on the g-weight of any h ∈ H is given by

Lemma 38. Now, we prove the lower bound 2λ−1 on the g-weight of any h ∈ H. Suppose
there is an h violating this lower bound i.e., wg[h] < 2λ − 1 after FillDeficit. This
means that wg[h] < 2λ− 1 before FillDeficit and hence Step (a) of FillDeficit was
entered for h. If FillDeficit g-assigned all of C1, C2, . . . , Cp to h in Step (a), then by
Lemma 37, we have that wg[h] ≥ wg0 [h] ≥ 2λ − 1, a contradiction. Thus there exists
some i ∈ [p] such that only C1, C2, . . . , Ci−1 was g-assigned to h in Step (a). But then
wg[h] + w(Ci) ≥ 3λ− 2, implying w(Ci) ≥ λ, a contradiction.
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3. (g + g′)-weight condition: If h has already a g-weight of at least 2λ− 1 after AssignPriv,
then observe that we don’t g-assign anything to h afterwards. So in that case all
the g-assigned sub-components to h are private sub-components. Then the (g + g′)-
weight condition is trivially satisfied. So assume that h has g-weight less than 2λ − 1
after AssignPriv. This means that in FillDeficit, Step (a) is entered for h. If
FillDeficit allocates one of the Ci : i ∈ [p] as g′(h) then it is clear by construction that
wg+g′ [h] ≥ 3λ− 2. So assume that it g-assigns all of C1, C2, . . . Cp to h and g′(h) ⊇ g′

0(h).
Then by using Lemma 37 and the properties of PB-λ-CoD (C0, H,R, g0, h0), we have
that wg+g′ [h] ≥ wg0+g′

0 [h] ≥ 3λ− 2.
4. 0.5(λ− 1) condition: If h has already a g-weight of at least 2λ− 1 after AssignPriv, then

observe that we don’t g-assign anything to h afterwards. So in that case all the g-assigned
sub-components to h are private sub-components. Then the 0.5(λ − 1) condition is
trivially satisfied. So assume that h has g-weight less than 2λ− 1 after AssignPriv. Also,
assume that the 0.5(λ− 1) condition condition is violated for the sake of contradiction.
Then we have that wg[h] < 2.5(λ− 1) and there is a non-private sub-component in C1
that has weight less than 0.5(λ− 1). Let this sub-component be C. Now, note that we
g-assign non-private sub-components only during FillDeficit. Thus, C was g-assigned
in FillDeficit and hence C = Ci for some i ∈ [p]. But this means that C was also
g0-assigned to h. Then, by the 0.5(λ−1) condition of (C0, H,R, g0, h0) we have that the g0-
weight of h is at least 2.5(λ− 1). This means that we did not g-assign all of C1, C2, . . . Cp

to h because otherwise by Lemma 37, we have that wg[h] ≥ wg0 [h] ≥ 2.5(λ − 1), a
contradiction. This means that g′(h) = Cj for some j > i ∈ [p]. Also w(Cj) ≥ 0.5(λ− 1)
because otherwise we would have g-assigned Cj also. This means that C1, C2, . . . , Cj−1
have weight at least 0.5(λ − 1) as we arranged them in decreasing order of weight. In
particular, w(Ci) ≥ 0.5(λ− 1), a contradiction.

Now, it only remains to prove that the private sub-components of C are g-assigned. This
holds because all private sub-components of C0 were g-assigned after AssignPriv and the
private sub-components of C are formed by the merging of private sub-components of C in
MergeSubComp, where each such merged sub-components was g-assigned. ◀

Lastly, we point out that the outer-index or inner-index does not change during this step of
FindBCD, since H∗, H and R are the same as before.

C.7 Step VI: Merge unassigned sub-components
In this step, we do the following algorithm:

C.7.0.1 Algorithm MergUnassgndSComp:

As long as there is a sub-component C ∈ C that is unassigned and not a whole connected
component then:

1. Clearly there exists a C ′ ∈ C such that there is an edge between C and C ′. Merge C

and C ′ into a single sub-component of C (and remove C and C ′ from C). Let C̃ be the
new merged component. If C ′ was g-assigned to some h, then g-assign C̃ to h. If now
g-weight of h is at least 3λ− 2, then:

(a) Let C1, C2, . . . , Cp be the non-private sub-components g-assigned to h in increasing
order of weight. (Note that p ≥ 1 as C̃ is one such sub-component). Remove them one
by one from g−1(h) in order, until wg[h] ≤ 3λ− 3. Assign g′(h) as the last removed
Ci.
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To see that in Step 1 (a), we do get back to a g-weight of at most 3λ− 3 by the deletions,
note that C̃ is a non-private sub-component and removing C̃ would make the g-weight at
most 3λ − 3, as the g-weight went above 3λ − 3 only after the addition of C ′ ⊆ C̃ to the
g-neighborhood of h.

▶ Lemma 40. After MergUnassgndSComp, the following holds:

(a) (C, H,R, g, g′) is a PB-λ-CoD,
(b) all sub-components in Cpriv are g-assigned, and
(c) for each Q ∈ CC(V (C)), either all sub-components of Q are g-assigned, or Q itself is a

single sub-component in C.

Proof. (a) Since V (C) and R have not been modified, the component condition and the
R-condition of λ-CoD are satisfied. The g-neighbor condition also remains satisfied
because C̃ is the only newly assigned sub-component and it is g-assigned to a neighbor of
it by construction. The g-weight of h remains at most 3λ− 3 because of Step 1 (a). It
does not go below 2λ− 1 either, as we delete sub-components only as long as the g-weight
is at least 3λ− 2 and the weight of the deleted sub-component is less than λ. Thus the
g-weight condition is satisfied.
Now let us prove the g′-neighbor condition. Suppose this is violated. Therefore for some
h ∈ H, we have g′(h) ̸= ∅ and g′(h) /∈ NC(h) \ g−1(h). If g′(h) was assigned during
Step 1 (a), then it is clear by construction that g′(h) ∈ NC(h) \ g−1(h). Thus Step 1 (a)
was not executed and g′(h) was assigned before MergUnassgndSComp. Since g′-neighbor
condition was satisfied before, we know that g′(h) ∈ NC(h). Thus, we have g′(h) ∈ g−1(h).
Since g′(h) was not in g−1(h) before, this means that g′(h) = C ′. But then by (g + g′)-
weight condition we know that adding C̃ to the g-neighborhood would have increased the
g-weight to at least 3λ− 2. Thus Step 1 (a) was executed, a contradiction.
Now, we prove (g + g′)-weight condition. First note that we do not assign g′(h) as
∅ in MergUnassgndSComp. The only point where we delete from g-neighborhood is in
Step 1 (a). Thus, wg+g′ [h] can decrease only if Step 1 (a) is executed. But in this case
by construction we have that wg+g′ [h] ≥ 3λ− 2.
Now, we prove 0.5(λ − 1) condition. The only possibility where it can be violated is
in Step 1 (a). Suppose we removed C1, C2, . . . , Ci in this step. If wg[h] is still at least
2.5(λ−1), then we are fine. So suppose it is lesser. Then w(Ci) ≥ 0.5(λ−1) as before the
deletion of Ci, the g-weight of h was at least 3λ−2. Then we have that w(Cj) ≥ 0.5(λ−1)
for all j > i as C1, C2, . . . , Cp are arranged in increasing order of weight. Thus all the
non-private components that remain in g−1(h) have weight at least 0.5(λ − 1), thus
satisfying the 0.5(λ− 1) condition.

(b) We know this condition was satisfied before MergUnassgndSComp from the output of
Step (V) of FindBCD. Here in Step (VI), we do not g-unassign any private components.
Note that C, C ′, C̃ and the sub-components we delete in Step 1 (a) are all private
sub-components. So this condition remains true.

(c) By construction, the algorithm MergUnassgndSComp terminates only when this condition
is satisfied. It indeed terminates in at most |V | iterations because at each iteration we
merge two sub-components and therefore there can be only at most |V | merges. ◀

▶ Lemma 41. MergUnassgndSComp (and hence Step (VI) of FindBCD) can be implemented
in O(|V ||E|) time.

Proof. The number of iterations of the algorithm is at most |V | because each iteration
merges 2 sub-components. We can sort the sub-components by weight at the start of the
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algorithm. This only takes O(|V | log |V |) per iteration. We only need to update the sorted
list during each merge. This only takes O(|V |) per iteration. The remaining procedures in
an iteration can be done in O(|E|) by standard methods. ◀

Lastly, we point out that the outer-index or inner-index does not change during this step
of FindBCD, since H∗, H and R are the same as before.

C.8 Step VII: Final Step
The algorithm for Step (VII) is completely given in the description in Section C.1, so we do
not repeat it here. We prove here the related lemmas that are required for correctness.

▶ Lemma 42. In the algorithm FindBCD in Step (VII), if (C, H,R, g, g′) is a FB-λ-CoD of
G′, then the deduced (C∗, H∗,R∗, f∗) is a λ-BCD of G.

Proof. Every time if we extend C∗, H∗ and f∗ in Step (I) and Step (IV) we ensured that
C∗, H∗ and f∗ are a WCD of G by Lemma 13 and Lemma 32, respectively. That is, the
first four conditions are satisfied in the definition of λ-BCD 6.

The remaining condition concerning R∗ is ensured by property of FB-λ-CoD, which we
have already explained in Step (VII) in Section C.1. ◀

Since Step (VII) is the only possibility for the algorithm to terminate, we have the following
corollary.

▶ Corollary 43. If the algorithm terminates, then it terminates by giving a λ-BCD.

C.9 Proof Conclusion of Balanced Crown Decomposition Theorem
In this section, we conclude the proof of correctness and runtime of algorithm FindBCD as
desired in Theorem 7. We show in the Sections C.2-C.8 that each step in FindBCD works
correctly and that each step needs no more time than O(|V ||E|). The runtime is easy to see
for Steps (I),(II) and (VII) and hence we did not state this explicitly. In particular, we have
shown that (C, H,R, g, g′) is a PB-λ-CoD at the end of any step throughout the algorithm,
by Lemmata 15, 19, 22, 23, 33, 39, and 40. For the correctness of the algorithm FindBCD, it
only remains to show that it terminates, because if it terminates then it gives a λ-BCD by
Corollary 43. We will show now that in fact the algorithm can perform at most k2 iterations.
Recall that k = |H∗|+ |R∗| according to Theorem 7. This will then also prove the required
running time.

▶ Lemma 44. There are at most k2 iterations of Algorithm FindBCD. Moreover, the outer
index never decreases.

Proof. We proved that the outer index never decreases during any step, and as long as outer
index remains same, the inner index does not decrease, by Lemmata 20, 24, 35. Note that in
Steps (V), and (VI), and (VII), we do not modify H∗,R and V (C) and hence it is clear that
outer and inner indices remain same.

Moreover, in each iteration, when Step (III) is executed we make progress, i.e. either the
outer index |H∗|+ |H|+ |R| increases (Lemma 20) or the outer index remains the same and
the inner index |H∗|+ |H| increases (Lemma 24).

Observe that k = |H∗|+ |R∗| = |H∗|+ |H|+ |R| at the time of termination in Step (VII)
and hence outer-index and inner index are at most k always. Thus there are at most k2

iterations of Algorithm FindBCD. ◀
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This concludes the proof of Theorem 7. We conclude the section with three tool-lemmas that
will be used in the applications in later sections to build connected-vertex partitions.

▶ Lemma 45. In the algorithm FindBCD, there exists a [λ,∞)-CVP of V of size equal to
the outer index |H∗| + |H| + |R| after any step in any iteration. Moreover, such a CVP
can be found in linear time given the PB-λ-CoD (C, H,R, g, g′) and the WCD (C∗, H∗, f∗),
maintained by the algorithm.

Proof. First we show how to construct a [λ,∞)-connected packing of V of size |H|+ |R|
from (C, H,R, g, g′). We have shown that (C, H,R, g, g′) is a PB-λ-CoD at the end of any
step throughout the algorithm, by Lemmata 15, 19, 22, 23, 33, 39, and 40. Let Vh :=
{h} ∪ V

(
g−1(h)

)
for every h ∈ H. Recall that by property of PB-λ-CoD we have w(Vh) ≥ λ

for every h ∈ H and G[Vh] is connected, since g(C ′) ∈ N(C ′) for every C ′ ∈ g−1(H).
Moreover, g is a function, i.e.

⋂
h∈H Vh = ∅. As a result, we obtain by VH := {Vh | h ∈ H}

a [λ,∞)-connected packing of H ∪ V (C) of size |H|. By property of PB-λ-CoD, R is a
[λ,∞)-connected packing of size |R| of V \H ∪ V (C). Thus, VH ∪R is a [λ,∞)-connected
packing of V of size |H|+ |R|.

Next, we show how to construct a [λ,∞)-connected packing of C∗ ∪ H∗ of size |H∗|
using f∗. We will use that (C∗, H∗, f∗) is always a weighted crown decomposition of G

(see Lemma 13 and Lemma 32). Let V ∗
h := {h} ∪ V

(
f∗−1(h)

)
for every h ∈ H∗. Recall

by the weighted crown decomposition we have w(V ∗
h ) ≥ λ for every h ∈ H and G[V ∗

h ] is
connected, since f(Q) ∈ N(Q) for every Q ∈ CC(C∗). Moreover, f∗ : CC(C∗) → H is a
function, i.e.

⋂
h∈H V ∗

h = ∅. As a result, V∗
H := {V ∗

h | h ∈ H∗} is a [λ,∞)-connected packing
of C∗ ∪H∗ of size |H∗|.

Thus T := VH ∪R ∪ V∗
H is a [λ,∞)-connected packing of V of size equal to the outer

index |H∗|+ |H|+ |R|. Observe that V (T ) includes all vertices V (R)∪H ∪H∗∪V
(
f−1(H)

)
.

That is, only vertices in V (C) are not included in V (T ). Just add those vertices to some
vertex sets in T such that T becomes a [λ,∞)-CVP of V of size |H∗|+ |H|+ |R|. Note that
such a CVP is guaranteed, since each component in the working graph G′ in the algorithm
weighs at least λ and each component CC(V (C)) weighs less than λ. ◀

▶ Lemma 46. Let G = (V, E, w) be a vertex-weighted graph. Let λ ∈ N and let (C, H, f,R)
be a λ-BCD of G. There exists a [λ,∞)-CVP of C ∪H of size |H|.

Proof. Let Vh := {h} ∪ V (f−1(h)) for every h ∈ H. Recall by property of λ-BCD we
have w(Vh) ≥ λ for every h ∈ H and G[Vh] is connected, since f(Q) ∈ N(Q) for every
Q ∈ CC(C). Moreover, f : CC(C) → H is a function, i.e.

⋂
h∈H Vh = ∅. As a result, we

obtain a [λ,∞)-CVP of C ∪H by {Vh | h ∈ H} of size |H|. ◀

▶ Lemma 47. Let G = (V, E, w) be a vertex-weighted graph. Let λ ∈ N and let (C, H, f,R)
be a λ-BCD in G. There exists a [λ,∞)-CVP of V of size |H|+ |R|.

Proof. We make use of Lemma 46 and obtain a [λ,∞)-CVP VH of C ∪H of size |H|. By
property of λ-BCD, R is a [λ, 3(λ− 1)]-CVP of size |R| of V \ (C ∪H). Thus, VH ∪R is a
[λ,∞)-CVP of V of size |H|+ |R|. ◀

D Applications of Balanced Crown Decomposition

In the following subsections we give the detailed versions of the applications of the balanced
crown decomposition.
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D.1 Kernel for W -weight Separator
The prototype application for crown decompositions is kernelizations for vertex deletion
problems. As our first application of the balanced crown decomposition we therefore consider
the W -weight Separator problem. For W ∈ N, a set S ⊆ V is called a W -weight vertex
separator for a vertex-weighted graph G = (V, E, w) if each connected component of G− S

has weight less than W . By kWSep we denote the parameterized problem to decide for
instances (G, W, k) if there exists a W -weight vertex separator for G of size at most k. We
say S is a solution for (G, W, k) if |S| ≤ k and S is a W -weight vertex separator for G.

We investigate the parameterized complexity of kWSep and consider the parameter k+W .
Recall that kWSep is not fixed parameter tractable by considering k or W individually as
parameter, as it is para-NP-hard for parameter W and is W[1]-hard for parameter k by [15].

Let (G, W, k) be an instance of kWSep. To simplify the algorithm, we assume that
W > wmax, since such vertices have to be included in any solution. Moreover, we remove
all connected components that have a weight less than W in G. Note that this is a valid
reduction rule, since those components require no further separation. Thus, we can assume
that each component in G has a weight of at least W . That is, we satisfy the input of the
algorithm FindBCD to obtain a W -BCD (C, H,R, f) of G (see Definition 6) which yields the
following formal kernelization algorithm.

D.1.0.1 Algorithm WSepKernel:

We first call the algorithm FindBCD with W to obtain a W -BCD (C, H,R, f) of G. If during
the algorithm FindBCD the outer index becomes greater than k, then just cut-off FindBCD
and output a trivial no-instance. Otherwise, output (G− (C ∪H) , W, k − |H|).

We start by observing that |H|+ |R| > k implies that (G, W, k) is a no-instance. Since
the outer index only increases (Lemma 44) and finally becomes |H|+ |R| (Theorem 7), such
a lemma ensures the correctness of this step.

▶ Lemma 48. If |H|+ |R| > k, then (G, W, k) is a no-instance.

Proof. We make use of Lemma 47 and obtain a [W,∞)-CVP of V of size |H|+ |R|. Since
the vertex sets in this partition are disjoint, we need at least one vertex in each part for a
feasible solution. This fact concludes the lemma. ◀

For the correctness of WSepKernel it remains to show that (G− (C ∪H) , W, k − |H|) is a
valid reduction rule for (G, W, k), and that we obtain the desired kernel in case |H|+ |R| ≤ k.
We point out, that the following proof uses the standard techniques to derive a kernel from a
crown decomposition (see e.g. [19, 26, 42]). Nevertheless, the full proof is provided, for the
sake of completeness.

▶ Lemma 49. (G, W, k) is a yes-instance if and only if (G− {H ∪ C} , W, k − |H|) is a
yes-instance. Furthermore, |H|+ |R| ≤ k implies w (G− (H ∪ C)) ≤ 3k (W − 1).

Proof. Let S be a solution of size k for the instance (G, W, k). Consider the partition of S

into Sc = S ∩ (C ∪H) and Sr = S \ Sc. By Lemma 46 there is a [W,∞)-CVP VH of C ∪H

of size |H|. Since S is a feasible solution, we obtain S ∩ V ′ ̸= ∅ for each V ′ ∈ VH . Moreover,
the |H| vertex sets in VH are pairwise disjoint, hence |H| ≤ |Sc|. Consequently, we obtain
|Sr| ≤ |S| − |H| = k − |H|. Let G′ = G − (H ∪ C). We claim that Sr is a solution of the
instance (G′, W, k − |H|), i.e. Sr is a W -weight vertex separator in G′. Assuming that Sr is
not a W -weight vertex separator in G′, there exists at least one connected vertex set D in
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G′, with w (D) ≥W and D ∩ Sr = ∅. Since S is a solution of G, we obtain that S ∩D ̸= ∅
which contradicts D ∩ Sr = ∅ as S \ Sr = Sc ⊆ C ∪H and D ⊂ V (G) \ (C ∪H). Thus, Sr

is a W -weight vertex separator in G′ of size at most k − |H|.
Conversely, let S′ be a solution for the instance (G− {H ∪ C} , W, k − |H|) of size k−|H|.

Since the components in CC(C) have weight less than W and H separates V \ (H ∪ C) from
C, it is easy to see that S′ ∪H has size k and is a solution for (G, W, k).

The second part of the lemma can be seen as follows. By |H| + |R| ≤ k we obtain
|R| ≤ k − |H|. Since R is a [W, 3(W − 1)]-CVP of V \ (C ∪H), the reduced instance
(G− (C ∪H) , W, k − |H|) satisfies w (G− (C ∪H)) ≤ 3|R| (W − 1) ≤ 3 (k − |H|) (W − 1).

◀

D.1.0.2 Running time:

The algorithm FindBCD runs in O
(

k̃2|V | |E|
)

(see Theorem 7). Since we have at most k + 1

iterations in FindBCD, (i.e. the outer index is bounded by k + 1), we obtain O
(

k̃2|V | |E|
)
⊆

O
(

(k + 1)2 |V | |E|
)

= O
(
k2|V | |E|

)
. This completes the proof of the following theorem.

▶ Theorem 8. W -weight Separator admits a kernel of weight 3k (W − 1). Furthermore,
such a kernel can be computed in time O

(
k2|V | |E|

)
.

D.2 Kernelization and Approximation for W -weight Packing
In a similar fashion as in the previous section, a balanced crown decomposition can be used
to derive a kernelization for connected packing problems - in a linear programming sense, the
dual of the W -weight separator problem. For this type of problem, the packing provided
by our balanced crown decomposition can also be used to derive an approximate solution.
Formally, we consider the following notion of packing. For W ∈ N, we call T = {T1, . . . , Tℓ},
a W -packing of a vertex-weighted graph G = (V, E, w) if Ti ⊆ V , G [Ti] is connected and
w (Ti) ≥W for all i ∈ [ℓ], and Ti ∩ Tj = ∅ for all i, j ∈ [ℓ] with i ̸= j.

We denote the optimization problem to find a W -packing of maximum size by WPack.
By kWPack we denote the parameterized problem to decide for instances (G, W, k) if there
exists a W -packing of size at least k in G. We say T is a solution for (G, W, k), if |T | ≥ k

and T is a W -packing for G. We show that a balanced crown decomposition directly gives a
3k (W − 1)-kernel for kWPack, as well as a 3-approximation for WPack.

We start with the kernel result, so let (G, W, k) be an instance of kWPack. As reduction
rule, we first remove all connected components in G, of weight less than W . Note that this
is valid, since such components cannot be part of any solution. Thus, we assume that the
components in G have weight at least W . With this, we satisfy the input of the algorithm
FindBCD to obtain a W -BCD (C, H,R, f) of G (see Definition 6), which formally yields the
following kernelization algorithm.

D.2.0.1 Algorithm WPackKernel:

We first call the algorithm FindBCD with W to obtain a W -BCD (C, H,R, f) of G. If during
the algorithm FindBCD the outer-index becomes k, then just cut-off FindBCD and output a
trivial yes-instance. Otherwise, output (G− (C ∪H) , W, k − |H|).

Since the outer-index only increases (Lemma 44) and finally becomes |H|+ |R| (Theorem
7), the following lemma shows the correctness in case |H|+ |R| ≥ k.
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▶ Lemma 50. If |H|+ |R| ≥ k, then (G, W, k) is a yes-instance.

Proof. We make use of Lemma 47 and obtain a [W,∞)-CVP of V of size |H|+ |R| which is
a solution for the kWPack instance (G, W, k). ◀

Next, we show a more general relation between a W -BCD (C, H,R, f) and a W -packing
T for G, that will be useful for both the kernelization and the later approximation result.
Denote for a W -packing T of a vertex-weighted graph G = (V, E, w) and a subset H ⊆ V by
T H the subset of T of sets intersecting H, i.e. T H := {T ∈ T |T ∩ (C ∪H) ̸= ∅}. Then the
structure of the W -BCD yields the following connection.

▶ Lemma 51. Let G be a vertex-weighted graph and W ∈ N. For any W -BCD (C, H,R, f)
and W -packing T for G, it follows that

∣∣T H
∣∣ ≤ |H|.

Proof. Let (C, H,R, f) be a W -BCD of G and T be a W -packing for G. By the separator
property of a W -BCD, the set H separates C from V \(C ∪H), and the connected components
of G[C] have weight less than W . Thus, every T ∈ T H contains at least one vertex of H;
recall that each set T in T has to be connected and weigh at least W . Since the sets in T are
disjoint and T H ⊆ T , every h ∈ H is included in at most one set in T H . As, by definition,
at least one vertex from H is in each set in T H , it follows that

∣∣T H
∣∣ ≤ |H|. ◀

For the correctness of the algorithm WPackKernel it remains to show that the reduction
in case |H|+ |R| < k is valid, and gives a kernel of the desired weight.

▶ Lemma 52. (G, W, k) is a yes-instance if and only if (G− (C ∪H) , W, k − |H|) is a
yes-instance. Furthermore, if |H|+ |R| < k, then w (G− (C ∪H)) ≤ 3k (W − 1).

Proof. Assume (G, W, k) is a yes-instance and let T = {T1, . . . , Tk} be a corresponding
solution for (G, W, k). Denote by T H := {T ∈ T |T ∩ (C ∪H) = ∅}, i.e T H , T H is a partition
of T . Observe that by definition T H is a W -packing for G − (C ∪H). By Lemma 51, it
follows that

∣∣T H
∣∣ ≤ |H| which yields

∣∣∣T H
∣∣∣ = |T | −

∣∣T H
∣∣ ≥ k − |H|. As a result, T H is a

feasible solution of size at least k − |H| in G− (C ∪H), hence (G− (C ∪H) , W, k − |H|) is
a yes-instance.

Conversely, assume (G− (C ∪H) , W, k − |H|) is a yes-instance and let T ′ =
{

T ′
1, . . . , T ′

k−|H|

}
be a solution for (G− (C ∪H) , W, k − |H|). By Lemma 46 we obtain a [W,∞)-CVP VH

of C ∪ H of size |H|. Thus, T ′ ∪ VH is W -packing of G of size k, hence (G, W, k) is a
yes-instance.

The bound on the kernel size can be seen as follows. By |H| + |R| < k we obtain
|R| ≤ k − |H|. Since R is a [W, 3 (W − 1)]-CVP of V \ (C ∪H), the reduced instance
(G− (C ∪H) , W, k − |H|) satisfies w (G− (C ∪H)) ≤ 3 |R| (W − 1) ≤ 3 (k − |H|) (W − 1).

◀

D.2.0.2 Running time:

The algorithm FindBCD runs in O
(

k̃2|V | |E|
)

(see Theorem 7). Since we have at most k

iterations in FindBCD, (i.e. the outer-index is bounded by k), we obtain O
(

k̃2|V | |E|
)
⊆

O
(
k2|V | |E|

)
. This completes the proof of the following theorem.

▶ Theorem 9. W -weight Packing admits a kernel of weight 3k (W − 1). Furthermore,
such a kernel can be computed in time O

(
k2|V | |E|

)
.

Lastly, we show that a W -BCD can also be used to derive a 3-approximation for WPack.
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▶ Lemma 53. Let G = (V, E, w) be a vertex-weighted graph and W ∈ N. If there exists a
W -packing of size k for G, then a W -packing of size at least ⌈k/3⌉ can be derived from any
W -BCD for G in linear time.

Proof. Let T = {T1, . . . , Tk} be a W -packing for G and (C, H,R, f) be a W -BCD for G.
By Lemma 51 we have that

∣∣T H
∣∣ ≤ |H|. Denote again T H = T \ T H . Since T H ∪ T H is a

partition of T , we obtain
∣∣∣T H

∣∣∣ = k −
∣∣T H

∣∣ ≤ k − |H| and therefore, k ≤
∣∣∣T H

∣∣∣ + |H|.
Since R is a [W, 3(W − 1)]-CVP of V \ (C ∪H) it follows that w (V \ (C ∪H)) =

w (V (R)) < 3 |R|W . Any packing that includes only vertices of V \ (C ∪H) consequently
has size at most 3 |R| − 1. Since we have T ⊆ V \ (C ∪H) for every T ∈ T H , we obtain∣∣∣T H

∣∣∣ < 3 |R|.
To construct a W -packing of cardinality at least ⌈k/3⌉ from the W -BCD, note that R

is a W -packing of V \ (C ∪H). We make use of Lemma 46 and obtain a [W,∞)-CVP VH

of C ∪H of size |H|. As a result, R ∪ VH is a W -packing of V of size |R| + |VH | of G as
V (R) ∩ V (VH) = ∅. Finally, k ≤

∣∣∣T H
∣∣∣ + |H| < 3|R| + |VH | yields the claimed size of at

least ⌈k/3⌉ for the derived W -packing R ∪ VH . ◀

Computing a W -BCD (C, H,R, f) for a vertex-weighted graph G can be done in
O

(
k̃2|V | |E|

)
by Theorem 7 where k = |H|+ |R|. Since any W -BCD (C, H,R, f) yields a

W -packing of size |H|+ |R|, k cannot be larger than the size of a maximum W -packing for
G. Hence, Lemma 53 in particular shows the following.

▶ Theorem 10. A 3-approximation for the optimization problem of W -weight Packing
can be computed in O

(
k∗2|V | |E|

)
, where k∗ denotes the optimum value.

D.3 Approximations for BCP
Our third example of problems that benefit from the structure of a balanced crown decom-
position, are connected partition problems. We consider the problems Max-Min BCP and
Min-Max BCP, and first recall their definition.

For a vertex-weighted graph G = (V, E, w) and V ′ ⊆ V , we call a partition T of V ′ a
CVPk of V ′ if T is a CVP of V ′ with |T | = k. In Max-Min BCP we search, on input
(G, k) with k ∈ N, for a CVPk T = {T1, . . . , Tk} of V such that mini∈[k] w(Ti) is maximized.
Conversely, as the name might suggest, in Min-Max BCP the value maxi∈[k] w(Ti) should
be minimized.

D.3.1 Approximation for Max-Min BCP
Let (G, k) be an instance of Max-Min BCP. We can assume that G has at most k connected
components and at least k vertices. Otherwise, the instance does not have a feasible solution.
Furthermore, we denote the smallest weight of the connected components in G by Wmin.
Let X∗ be the optimal value for the instance (G, k). Note that X∗ ≤ min (w(G)/k, Wmin).
For any given X ≤ min (w(G)/k, Wmin), we now use our balanced partition (as formally
stated in the algorithm MaxMinApx below) to either give a [X/3,∞)-CVPk, or report that
X > X∗. Once we have this procedure in hand, a binary search for the largest X in
the interval (0, min (⌈w(G)/k⌉ , Wmin)] for which we find a [X/3,∞)-CVPk can be used to
obtain an [X∗/3,∞)-CVPk, costing only an additional running time of factor O

(
log w(G)

k

)
as X∗ ≤ min (w(G)/k, Wmin). Note that using algorithm FindBCD in the following procedure
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is valid, since all connected components of the input graph have a weight at least Wmin and
we only consider values X, with X ≤ min (w(G)/k, Wmin).

D.3.1.1 Algorithm MaxMinApx:

We first call FindBCD with λ = ⌈X/3⌉ to obtain a λ-BCD (C, H,R, f) of G. If during the
algorithm FindBCD the outer index becomes k, then just cut-off FindBCD and output an
[X/3,∞)-CVPk of V (G) by using Lemma 45. Otherwise, report that X > X∗.

Note that the outer-index in FindBCD only increases (Lemma 44). Moreover, we point
out that in case the outer-index is k′ < k after the termination of FindBCD, the algorithm
has computed a λ-BCD (C, H,R, f) for λ = X with k′ = |H|+ |R| < k. The correctness of
MaxMinApx is proven through the following lemma.

▶ Lemma 54. If Algorithm MaxMinApx terminates with outer index k′ < k, then X > X∗.

Proof. Let (C, H,R, f) be the computed λ-BCD for λ = ⌈X/3⌉, and note that k′ =
|H|+ |R| < k. Suppose k′ < k and X ≤ X∗. Let T ∗ = {T ∗

1 , . . . , T ∗
k } be an optimal solution

of (G, k), i.e., T ∗ is a connected partition of V (G) with w(T ∗
i ) ≥ X∗ for all i ∈ [k], and

mini∈[k] w(Ti) = X∗.
Consider the partition of T ∗ into T C∪H := {T ∗

i ∈ T ∗|T ∗
i ∩ (C ∪H) ̸= ∅} and T C∪H :=

{T ∗
i ∈ T ∗|T ∗

i ∩ (C ∪H) = ∅}. We show that
∣∣T C∪H

∣∣ ≤ |H| and
∣∣∣T C∪H

∣∣∣ ≤ |R|, implying
that |T ∗| ≤ |H|+ |R| = k′ < k, contradicting |T ∗| = k.

First we show
∣∣T C∪H

∣∣ ≤ |H|. For this, it is sufficient to prove that T ∗
i ∩H ̸= ∅ for each

T ∗
i ∈ T C∪H , since T ∗ is a partition of V . We prove this by contradiction to the properties of

the λ-BCD (C, H,R, f). Suppose there is a T ∗
i ∈ T C∪H , such that T ∗

i ∩H = ∅. This implies
that T ∗

i ⊆ C, as H separates C from V \(C∪H). Moreover, T ∗
i is completely contained in some

connected component of G[C] as T ∗
i is connected. Hence, w(T ∗

i ) < X because the connected
components of G[C] have weight less than λ = X. Thus, w(T ∗

i ) < λ = ⌈X/3⌉ ≤ ⌈X∗/3⌉,
which is a contradiction to mini∈[k] w(Ti) = X∗.

Next, we show
∣∣∣T C∪H

∣∣∣ ≤ |R|. From the properties of the λ-BCD (C, H,R, f), we know
that w(R) ≤ 3λ−3 for each R ∈ R. Thus, w(R) ≤ 3λ−3 = 3⌈X/3⌉−3 ≤ 3⌈X∗/3⌉−3 ≤ X∗.
Hence, w(V \ (C ∪ H)) ≤ |R|X∗. Since each T ∗

i ∈ T ∗ weighs at least X∗, we obtain∣∣∣T C∪H
∣∣∣ ≤ |R|. ◀

D.3.1.2 Running time:

The algorithm FindBCD runs in O
(

k̃2|V | |E|
)

(see Theorem 7). Since we have at most k

iterations in FindBCD, (i.e. the outer-index is bounded by k), we obtain O
(

k̃2|V | |E|
)
⊆

O
(
k2|V | |E|

)
. We modify slightly the binary search to optimize the running time. Let

g(ℓ) := 2ℓ, N ∋ ℓ ≥ 1. We increase stepwise ℓ in g(ℓ) until we find an ℓ∗ with g(ℓ∗) <

X∗ ≤ min (g (ℓ∗ + 1) , w(G)/k) =: X̂ ≤ 2X∗. Afterwards, we perform a binary search in the
interval X ∈

[
g(ℓ∗), X̂

]
. As a result, the algorithm runs in O

(
(log X∗ + logX∗) (k2|V | |E|)

)
and thus, we obtain a running time in O

(
log (X∗) (k2|V | |E|)

)
. This completes the proof of

the following theorem.

▶ Theorem 11. A 3-approximation for the Max-Min BCP problem can be computed in
O

(
log (X∗) k2|V | |E|

)
, where X∗ denotes the optimal value.
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Finally, we point out that Theorem 11 provides also an approximation algorithm for the
problem of finding a connected k-subgraph Max-Min edge partition in an edge-weighted
graph G. Formally the problem MaxMin Balanced Connected Edge Partition
(MaxMinBCEP) searches on an edge-weighted graph G = (V, E, wE) with w : E → N and
k ∈ N as input, for a partition {E1, . . . , Ek} of E such that G[Ei] is connected for each i ∈ [k]
and that mini∈[k] wE(Ei) is minimal. The best known approximation for this problem is 2
by [3], however this result only holds for instances G = (V, E, wE) where wE(e) ≤ wE(E)/2k

for each e ∈ E. Our following result only gives an approximation ratio of 3, but it holds
without restrictions on the weights.

We can simply use our approach above, since we can consider the line graph as vertex-
weighted graph; note that connected vertices in the line graph can be represented as connected
edges in the original graph. This directly yields.

▶ Theorem 55. A 3-approximation for MaxMin BCEP problem can be computed in
O

(
log (X∗) k2|V | |E|

)
, where X∗ denotes the optimum value.

D.3.2 Approximation for Min-Max BCP
For the Min-Max objective it is not so trivial to derive an approximation from a λ-BCD.
The main problem is that, in contrast to the Max-Min case, an optimal solution can (and
sometimes has to) build more than |H| sets from the vertices in H ∪C. With the connectivity
constraints, this means that some components in G[C] are in fact a set in the optimal partition.
Hence, when computing an approximate solution from a balanced crown decomposition,
we have to also choose some components from G[C] to be sets, while others are combined
with some vertex in H. In order to make the decision of where to place the components
in G[C], we use a min-cost flow on a network that models the options for components in
G[C] to either be sets or be combined with some vertex in H. With this additional use of a
cost-flow network, our balanced crown structure can be used to derive a 3-approximation for
Min-Max BCP.

We use our crown decomposition by fixing a target value X and deriving from a λ-BCD
with λ = X either a (0, 3X)-CVPk or deducing that X < X∗. As already indicated, we need
more sophisticated further computations with the cost-flow network to find an approximate
solution or decide X < X∗ for the Min-Max objective. The overall structure however remains
as for the Max-Min case, that with such a procedure (as formally stated in MinMaxApx below),
a binary search for X in the interval [max (⌈w(G)/k⌉ , wmax) , w(G)] can be used to obtain
a (0, 3X∗)-CVPk, and hence a 3-approximation, costing only an additional running time
factor in O

(
log

(
w(G)− w(G)

k

))
as X∗ ≥ max (w(G)/k, wmax).

To apply our balanced crown decomposition, first observe the following characteristics
for any instance (G, k) of Min-Max BCP. We can assume that G has at most k connected
components and has at least k vertices, as otherwise the instance does not have a feasible solu-
tion. Also, the optimum value X∗ for instance (G, k) satisfies X∗ ≥ max (⌈w(G)/k⌉ , wmax),
where wmax = maxv∈G(V ) w(v). When searching for a solution of a fixed value X, we can
also assume that G has only connected components of weight at least X, since we may put
connected components of G with lower weight than X to the desired CVP and accordingly
update k by subtracting the number of those components. This yields a valid input for
our algorithm FindBCD to compute a λ-BCD of G with λ = X. Furthermore, if we have
a (0, 3λ)-CVPk′ with k′ < k, one can easily construct an (0, 3λ)-CVPk by splitting some
partitions in (0, 3λ)-CVPk′ . (This is possible because we can also take a single vertex as one
vertex set of the partition).
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One step of the binary search for X looks as follows on a high level. (The precise
construction of the network Hλ and how it is used to build a connected partition follows in
Definition 57 and Lemma 61.

D.3.2.1 Algorithm MinMaxApx:

Call FindBCD with λ = X to obtain a λ-BCD (C, H,R, f) for G. If during the algorithm
FindBCD the outer index becomes greater than k, cut-off FindBCD and report X < X∗.
Otherwise use the constructed λ-BCD (C, H,R, f) to build the cost-flow network Hλ and
compute a min-cost flow Y ∗ for it. If p(Y ∗) + |R| > k, report X < X∗. Otherwise, compute
from Y ∗ a (0, 3X)-CVPk′ of V (G) where k′ ≤ k.

We point out that we use the first report of X < X∗ in case the outer index becomes
greater than k to optimize the running time. The correctness of this decision can be easily
seen as follows.

▶ Lemma 56. If there is a λ-BCD (C, H,R, f) for G with λ = X and k′ = |H|+ |R| > k,
then X < X∗ for the optimum value X∗ of (G, k).

Proof. Note that X∗ being the optimum value of the Min-Max BCP instance (G, k) in
particular, implies that w(G) ≤ kX∗. Conversely, any λ-BCD (C, H,R, f) for G with λ = X

and k′ = |H| + |R| yields a [X,∞)-CVPk′ of V (G) by Lemma 47. Any [X,∞)-CVPk′

of V (G) in turn implies w(G) ≥ k′X, which yields k′X ≤ kX∗, hence k′ > k implies
X < X∗. ◀

To create the network Nλ recall that we denote a flow in a network with edges −→E by Y ,
where Y = {y−→e ∈ N0 | −→e ∈

−→
E (Hλ)}. We will use capacitated min-cost flow, which means

that the input network has both a capacity and a cost function on its edges. For the capacity,
we use a function c : −→E → N. For the cost, we use a linear function p−→e : Q → Q for each
−→e ∈

−→
E . Corresponding networks are hence given by tuples of the form H = (V,

−→
E , c, p). For

a flow Y on such a network, we denote by p(Y ) :=
∑

−→e ∈
−→
E

p−→e (y−→e ) the cost of Y and by
v(Y ) :=

∑
−→e ∈δ−(t) y−→e the value of Y . For a fixed required flow value F ∈ N, we call Y a

feasible flow if Y satisfies the capacity constraints, the flow conservation for every vertex in
V (N) \ {s, t}, and if v(Y ) = F .

We now define the cost-flow network Hλ that we use to decide an assignment for
components in G[C] either to a vertex in H or to themselves (indicating that they are sets
in the balanced partition). In the network, each component Q ∈ CC(C) corresponds to a
node q that can route a flow of capacity equal to the weight of its component w(Q) from the
source. From q, the flow can either be routed through a copy of q to the target (indicating
Q is a set in the solution) or through a node representing a vertex in H that is connected
to Q (indicating that Q lands in a set connected via a vertex in H). Capacities for the arc
leading from a node h ∈ H to t model assignments from Q ∈ CC(C) to build around h a
component of weight λ. We choose the costs on the arcs leading to t such that an assignment
of the whole weight w(Q) going to q′, and the whole weight λ yields 1 (modeling that we
pay one unit from k by making Q a set in the solution). Similarly, we choose the cost for
the vertices in H. The network could be defined without the copies q′ and also with easier
weights (especially without the added constants), however this more complicated formulation
allows an easier comparison with the optimum value for Min-Max BCP on (G, k) in the
proofs that follow. The formal definition of the network is given below and we recommend
comparing it with Figure 7.
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▶ Definition 57 (Hλ). For a λ-BCD (C, H,R, f) of G, the network Hλ is given by the tuple(
H ∪Q ∪Q′ ∪ {s, t},

−→
E , c, p

)
defined as follows.

Q and Q′ both represent CC(C), i.e. for each component Q in G[C] there are corresponding
vertices q ∈ Q and q′ ∈ Q′.
s and t are sink, and source vertex, and H is a copy of the set H in the λ-BCD
For each q ∈ Q there is an arc −→sq with capacity c(−→sq) = w(Q) (where we always use Q to
denote the component in CC(C) corresponding to q) and cost function p−→sq ≡ 0.
For each q ∈ Q there is an arc

−→
qh for each h ∈ N(Q) with capacity set to c(

−→
qh) = w(Q)

and cost function p−→
qh
≡ 0.

Every q ∈ Q is connected to its copy q′ ∈ Q′ through an arc
−→
qq′ with capacity c(

−→
qq′) = w(Q)

and cost function p−→
qq′ ≡ 0.

For each h ∈ H there is an arc
−→
ht with capacity c(

−→
ht) = λ−w(h) and p−→

ht
(y) = 1

λ (w(h)+y)
as cost function.
For each q′ ∈ Q′ there is an arc

−→
q′t with capacity c(

−→
q′t) = w(Q) and p−→

q′t
(y) = y/w(Q) =

y/w(Q′) as cost function.

Further, we set the required flow value for Hλ to F :=
∑

Q∈CC(C) w(Q).

Observe the following properties that Hλ directly inherits from the λ-BCD (C, H,R, f).
By the bound on the weights of the components in G[C], it follows that w(Q) < λ for every
Q ∈ CC(C). Since every Q ∈ Q is connected to at least one vertex in H, each q ∈ Q is
connected to at least one h ∈ H. Note also that we can assume that λ − w(h) ≥ 0 by
λ ≥ max (w(G)/k, wmax), which gives a valid capacity to these arcs in the above definition.
Moreover, we point out that the additional costs w(h)/λ for arcs in

{−→
ht ∈

−→
E | h ∈ H

}
are

constants in Hλ, and we introduce them only to simplify some later proofs.
Note that all arcs except −→e ∈ δ−(t) have cost zero. Moreover, note that once we reach

vertices from H or Q′ by a flow, then the flow conservation implies that this flow is passed
on to t, which in turn means that we have to pay for it. Lastly, we point out that for every
q ∈ Q there is only one arc that leads from q to a vertex in Q′ which is the arc that leads
to the vertex q′ that corresponds to the same component in CC(C). Hence if we refer for a
q ∈ Q about the arc

−→
qq′ or its copy q′, then this is unique and needs no further explanation.

First, observe that there exists a feasible flow in Y , and that it gives us a full assignment of
the weight of each component Q.

▶ Lemma 58. There exists a feasible flow Y for Hλ w.r.t. the required flow F . Furthermore,
a feasible flow Y satisfies y−→sq = c (−→sq) = w(Q) for every q ∈ Q.

Proof. Obviously, we obtain y−→sq = c (−→sq) = w(Q) for every q ∈ Q, since
∑

q∈Q w(Q) = F is
the required flow. Finally, we may easily build a feasible solution with the required flow by
sending w(Q) flow via paths −→sq,

−→
q′ ,
−→
q′t for all q ∈ Q. ◀

In order to build a best possible assignment, we want the components to favor vertices in
H which translates to a min-cost flow saturating the capacities from each h ∈ H to t. The
properties of the balanced crown decomposition used to build Hλ can be used to show this.

▶ Lemma 59. Any min-cost flow Y ∗ of Hλ satisfies y∗−→
ht

= c
(−→

ht
)

= λ − w(h) for every
h ∈ H.
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Figure 7 Min-cost flow network Nλ resulting from a λ-BCD (C, H,R, f) of G through H and
CC(C) = Q with corresponding capacities and costs. Note that Qi is the component in G[C]
corresponding to vertex qi and that ye denotes the flow through edge e

Proof. Let Y ∗ be a min-cost flow of Hλ, and suppose there exists an h0 ∈ H with y∗−→
h0t

<

λ−w(h0). Let R be the residual digraph resulting from Y ∗, where we denote the arc weights
by r : −→E (R)→ N0. That is, for every −→e ∈ −→E we have r (−→e ) = c (−→e )− y∗−→e and r (←−e ) = y∗−→e
for the reverse direction. We remove all arcs −→e ∈ −→E (R) with r (−→e ) = 0 from R. Note that
−→sq /∈

−→
E (R) for every q ∈ Q by Lemma 58.

Consider a q′
ℓ-t-path in the residual network R of the form P = q′

ℓ, qℓ, hℓ−1, qℓ−1, . . . ,

h1, q1, h0, t where ℓ ∈ N and qi denotes some vertex in Q and q′
i its copy in Q′, for each i ∈ [ℓ].

Observe that if such a path exists in R, then we can reduce the flow costs of Y ∗ adjusting
with respect to the residual graph, since 1/λ < 1/ maxq∈Q w(Q). (Note that λ > w(Q) for
every q ∈ Q by the definition of a λ-BCD.) Thus, such a path would contradict the optimality
Y ∗.

We show that y∗−→
h0t

< λ − w(h0) yields the existence of such a path P . To this end,
consider the graph R′ obtained by deleting t and s from R. If we now find a path of the
form P ′ = q′

ℓ, qℓ, hℓ−1, qℓ−1, . . . , h1, q1, h0 in this graph, then the assumption y∗−→
h0t

< λ−w(h0)

yields the existence of
−→
h0t in R to build the path P . In order to find such a path P ′ pointing

to h0, we reverse the direction of all edges in R′ and start a breadth first search from h0.
The structure of the balanced crown decomposition yields a contradiction to this search not
reaching any q′ ∈ Q′.

Denote by R̂ the graph obtained from R′ by reversing all edges. Let Th0 be the arborescence
Th0 rooted at h0 that we find by a breadth first search from h0. Observe that a path in
Th0 alternates between vertices h ∈ H and q ∈ Q, so once we reach some vertex q′ ∈ Q′

in Th0 we have shown the existence of a path P ′. We claim that Q′ ∩ Th0 = ∅ leads to a
contradiction to the properties of the λ-BCD (C, H,R, f) underlying Hλ .

Notice that, for a component Q ∈ Q = CC(C) and an h ∈ H, the assignment f(Q) = h

implies h ∈ δ+
Hλ

(Q) by the construction of Hλ. We define for every h ∈ H the mismatches
comparing Y ∗ with f , i.e. Qh

Y ∗ := f−1(h)∩
{

q ∈ Q |
−→
qh ∈

−→
E (Hλ) | y−→

qh
< c

(−→
qh

)}
⊆ δ−

R(h) =
δ+

R̂
(h), and for every q ∈ Q the distributed outgoing flow from Y ∗ through q to vertices in

H ∪Q′, i.e. V q
Y ∗ :=

{
v ∈ H ∪Q′ | −→qv ∈

−→
E (Hλ) | y−→qv > 0

}
⊆ δ−

R(q) = δ+
R̂

(q). Notice also that,

for q ∈ Q and v ∈ H ∪ Q′ we consider the same arc −→qv ∈
−→
E (Hλ) from different directions,
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which leads to this relation in the residual graph R and its reverse version R̂. Further, note
that if q ∈ Qh

Y ∗ for some h ∈ H and q ∈ f−1(h), then the arc y−→
hq

is in R̂, and similarly, y−→
hq

in R̂ implies that h ∈ V q
Y ∗ .

LetQTh0
:= Q∩V (Th0) and HTh0

:= Th0\QTh0
. Since Th0 is exhausted andQ′∩V (Th0) =

∅, we obtain HTh0
⊆ H. Furthermore, the definition of V q

Y ∗ implies
⋃

q∈QTh0
V q

Y ∗ = HTh0
.

Vice versa, the exhaustive search and the definition of Qh
Y ∗ implies

⋃
h∈HTh0

Qh
Y ∗ ⊆ QTh0

.
By Lemma 58 we have y−→sq = c (−→sq) = w(Q) for all q ∈ Q which implies

∑
v∈δ+

Hλ
(q) y∗−→qv

=
w(Q) by the flow conservation. Moreover, we have for every q ∈

⋃
h∈HTh0

f−1(h) which is

not in QTh0
that y∗−→

qh
= c

(−→
qh

)
for some h ∈ HTh0

by definition of Qh
Y ∗ . Thus, we obtain for

every q ∈
⋃

h∈HTh0
f−1(h) that

∑
h∈δ+

Hλ
(q)∩HTh0

y∗−→
qh

= w(Q).
From the definition of a λ-BCD we have w(h) + w

(
f−1(h)

)
≥ λ and

⋂
h∈H{h} ∪

f−1(h) = ∅. Thus, we obtain
∑

h∈HTh0

(
w(h) + w

(
f−1(h)

))
≥

∣∣HTh0

∣∣ λ. Since we assumed

y∗−→
h0t

+ w(h0) < c(
−→
h0t) = λ and y∗−→

ht
+ w(h) ≤ w(h) + c

(−→
ht

)
= λ for all h ∈ HTh0

\ {h0}, we

obtain
∑

h∈HTh0

(
y∗−→

ht
+ w(h)

)
<

∑
h∈HTh0

(
c(
−→
ht) + w(h)

)
= |HTh0

|λ.
For every q ∈

⋃
h∈HTh0

f−1(h) we have shown that
∑

h∈δ+
Hλ

(q)∩HTh0
y∗−→

qh
= w(Q) which

leads by the flow conservation to
∑

h∈HTh0

(
y∗−→

ht
+ w(h)

)
=

∑
h∈HTh0

(
w(h) + w

(
f−1(h)

))
≥

|HTh0
|λ.

This concludes the contradiction to Q′ ∩ Th0 = ∅ and therefore shows the existence
of ah0-q′

ℓ-path in R̂. Recall that such a path allows to reduce the cost of Y ∗, which is a
contradiction to Y ∗ being a min-cost flow. As a result, we obtain y∗−→

ht
= c(
−→
ht) = λ−w(h) for

every h ∈ H. ◀

Now we show how the cost of the min-cost flow Y ∗ is linked to the optimum value X∗ of
Min-Max BCP(G, k), which justifies our second decision to report X < X∗ in the algorithm
MinMaxApx.

▶ Lemma 60. If p(Y ∗) + |R| > k, then X < X∗.

Proof. We show this by contraposition, i.e. if X ≥ X∗, then p(Y ∗) + |R| ≤ k. Let T ∗ =
{T ∗

1 , . . . , T ∗
k } be an optimal solution of an instance Min-Max BCP(G, k). Let TC := {T ∈

T ∗ | T ∩ (V \ C) = ∅} and let T ′
H := {T ∈ T ∗ | T ∩ H ̸= ∅}. Denote by TH the set of

components obtained from T ′
H by deleting V \ (C ∪H) from each T ∈ T ′

H .
Since H separates C from the rest of the graph, it immediately follows that TC contains

exactly the T ∈ T ∗ with T ⊆ C. Further, removing V \ (C ∪H) does not separate sets in
T ′

H which shows that TC ∪ TH is a connected partition of C ∪H.

Our intermediate goal is to prove |TC |+
w

(⋃
T ∈TH

T

)
X ≥ p(Y ∗). To show this, we construct

a feasible flow Y in Hλ through TC and TH with cost at most |TC |+
w

(⋃
T ∈TH

T

)
X as follows.

Recall that the required flow is F =
∑

Q∈Q w(Q), and that the vertices from Q in Hλ

correspond to the connected components of G[C].
We represent TC∪TH as flow in Hλ by routing for every q ∈ Q a flow of w(Q) according to

the partition T C∪H := TC∪TH of C∪H in the following way: At first, set y−→sq = w(Q) = c (−→sq)
for every q ∈ Q. For each T ∈ TC , we route a flow of w(T ) trough y−→

qq′ for the component
Q that contains T ; recall that the sets in T are subsets of some component in G[C] which
means that for each T ∈ TC there is a unique component Q(T ) containing T . We also extend
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the routing towards t and hence set for every q ∈ Q that contains some T ∈ TC the values
y−→

qq′ = y−→
q′t

=
∑

T ∈TC
w(T ∩Q). Observe that this is valid since

∑
T ∈TC

w(T ∩Q) ≤ w(Q) =

c
(−→

qq′
)

= c
(−→

q′t
)

. The total cost of this assignment is
∑

T ∈TC

w(T )
w(Q(T )) .

For each T ∈ TH , we assign flow as follows. Denote by HT := H ∩ T the nodes from H

in a T ∈ TH , and by CT := {T ∩Q | Q ∈ CC(C)} the partition of the vertices from C in T

with respect to the components in CC(C). We denote by Q(C ′) the unique Q ∈ Q of which
C ′ ∈ CT is a part, and by Q(T ) the set {Q ∈ Q | V (CT ) ∩ Q ̸= ∅}. Note that for every
C ′ ∈ CT we have Q(C ′) ∈ Q(T ).

Since H separates C from V \ (C ∪H), H separates T ∗ ∩ C from V \ (C ∪H) for every
T ∗ ∈ T ′

H . For the restriction T ∈ TH of T ∗ to C ∪H, we hence find that for every Q ∈ Q(T )
there exists at least one arc

−→
qh in Hλ to some h ∈ HT . Hence we can, for every T ∈ TH , send

for every C ′ ∈ CT a flow of w(C ′) through
−−→
qc′h,

−→
ht, where qc′ is the vertex in Q corresponding

to the component Q(C ′) and h ∈ δ+(Q(C ′)) ∩HT chosen arbitrarily. Since the sets in TH

are disjoint, it follows for each Q ∈ CC(C) that {T ∩Q | T ∈ TH} is a packing of Q, hence∑
T ∈TH

w(Q ∩ T ) ≤ w(Q) and we consequently do not violate any capacity constraint in
−→
qh ∈

−→
E (Hλ) with h ∈ H and q ∈ Q by our settings.

Moreover, each vertex in h occurs at most in one T ∈ TH , and further the sets T are
subsets of sets in the optimum solution T ∗, which implies that w(T ) ≤ X∗. We only
route flow for sets C ′ = Q ∩ T to some h ∈ T ∩ H, hence we route at most a total of∑

Q∈CC(C) w(T ∩ Q) to a vertex h ∈ T ∩ H. With the assumption X ≥ X∗, we see that

c
(−→

ht
)

= X − w(h) ≥ X∗ − w(h) ≥
∑

Q∈CC(C) w(T ∩Q) for every T ∈ TH and every h ∈ H,

which means that we do not violate any capacity constraints on any edge
−→
ht. Finally, the

cost for this flow is
∑

T ∈TH

(∑
C′∈CT

w(C′)
X +

∑
h∈HT

w(h)
X

)
=

∑
T ∈TH

w(T )
X =

w

(⋃
T ∈TH

T

)
X ,

since the flow cost for every h ∈ HT is defined as p−→
ht

(y−→
ht

) = w(h)
X + y−→

ht

X .
Finally, TC ∪TH is a partition of C∪H, which ensures that Q =

⋃
T ∈TH ∪TC

T ∩Q for each
Q ∈ CC(C). Since we route a flow of w(T ∩Q) for each T ∈ TC∪TH and Q ∈ CC(C), we send
a flow of w(Q) through y−→sq for every q ∈ Q, satisfying the flow conservation. As a result, we

obtain a feasible flow Y with costs p(Y ) =
∑

−→e ∈δ−(t) p(y−→e ) =
w

(⋃
T ∈TH

T

)
X +

∑
T ∈TC

w(T )
w(Q(T )) .

With this, we show our intermediate goal |TC |+
w

(⋃
T ∈TH

T

)
X ≥ p(Y ∗) as follows. Since

Y is feasible, we obtain p(Y ) ≥ p(Y ∗). Therefore, it is enough to show that |TC | ≥∑
T ∈TC

w(T )
w(Q(T )) , which immediately follows from w(T )

w(Q(T )) ≤ 1 since by definition T ⊆ Q(T ),
for each T ∈ TC .

The intermediate goal gives us a relationship of the flow to the sets in the optimum
solution involving vertices from H and C. To combine this into a result on the whole
graph, recall that R is a [X, 3X − 3]-CVP of V \ (C ∪H). Hence, X|R| ≤ w(V − (C ∪H)).
Finally, we may show the desired contraposition of the lemma, i.e. X ≥ X∗ leads to
p(Y ∗) + |R| ≤ k. We only need to combine all inequalities as follows. Let WH = w (V (TH))
and WC = w (V (TC)). We obtain: Y ∗ + |R| ≤ |TC | + WH

X + |R| = |TC | + WH +X|R|
X ≤

|TC | + WH +w(V \(C∪H))
X = |TC | + w(V )−WC

X ≤ |TC | + (k − |TC |) = k. Note that for the last
inequality we use that TC ⊂ T ∗, which in particular means that T ∗ \ TC is a [1, X∗]-CVP of
a graph with total weight w(G) −WC and obviously containing k − |TC | sets. This gives
the trivial bound of w(G)−WC ≤ X∗(k − |TC |) and the assumption X ≥ X∗ hence gives
w(G)−WC ≤ X(k − |TC |).
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◀

It remains to show how to construct the approximate solution from Hλ in the case that
p(Y ∗) + |R| ≤ k.

▶ Lemma 61. If |R| + w (Y ∗) ≤ k, then a (0, 3X)-CVPk′ of V (G) with k′ ≤ k. can be
computed in O

(
|V | |E|+ |H| |V |2

)
.

Proof. We prove this lemma by showing that we find a (0, 3X)-CVP
k̂

of C ∪ H with
k̂ := k − |R| ≤ w (Y ∗), since R is already a (0, 3X)-CVP|R| of V \ (C ∪H).

We find this (0, 3X)-CVP
k̂

of C ∪H with the flow Y ∗. By Lemma 58, it follows that
y∗−→sq

= w(Q) for every q ∈ Q, which means that the full weight of each component is routed in
flow Y ∗, and by this assigned to the h ∈ H or to itself (via q′). Essentially, we will round the
assignment of components in G[C] to h ∈ H given by the flow. For this, we first show that
an optimum flow does not assume too much integrality in the sense of splitting assignment
for some q ∈ Q among some h ∈ H and the copy q′. For this, we define for every h ∈ H

the set of such undecided components Qh =
{

q ∈ Q | y∗−→
qh

> 0 ∧ y∗−→
qq′

> 0
}

. We claim that if

|Qh| ≥ 2 for some h ∈ H, then the weights w(Q) are equal for all q ∈ Qh.
First recall that X > maxq∈Q w(Q) and note that this means that cost p−→

q′t
(y) is

y/w(Q′) = y/w(Q) > y
X for every q′ ∈ Q′, h ∈ H and y > 0.

Suppose there exist q1, q2 ∈ Qh w.l.o.g. with w(Q1) > w(Q2). Thus, by 1/w(Q2) >

1/w(Q1) we would improve the flow costs p(Y ∗) by altering the edge-assignments y∗−−→
q2q′

2
− 1,

y∗−→
q2h

+1, y∗−→q1h
−1 and y∗−−→

q1q′
1
+1. Note that this yields an improvement of 1/w(Q2)−1/w(Q1) > 0.

Clearly, we do not violate any capacity constraint by this change, as by the definition of Qh

we know that y∗−→
qih

> 0 and y∗−−→
qiq′

i

> 0 for i ∈ {1, 2} which also means that the capacity on
both of these edges is not fully saturated by the flow. Thus, this contradicts that Y ∗ is a
min-cost flow and therefore, it follows that |Qh| ≥ 2 yields that all q ∈ Qh have the same
weight.

With this condition in hand we can modify the solution Y ∗, such that we obtain |Qh| ≤ 1
for every h ∈ H without changing the flow costs p(Y ∗) as follows. Consider any situation
where q1, q2 ∈ Qh with |Qh| ≥ 2 for an h ∈ H. Assume y∗−−→

q1q′
1

= x and y∗−−→
q2q′

2
≥ x. By adjusting

y∗−−−→
Q1Q′

1
− x, y∗−−→

Q1h
+ x, y∗−→

Q2h
− x and y∗−−−→

Q2Q′
2

+ x the flow costs p(Y ∗) do not change. Note that
we obtain y∗−−−→

Q1Q′
1
− x = 0 and for the same reason as above, we do not violate any capacity

constraint with these adjustments. Thus, we reduce |Qh| by one without changing the flow
costs p(Y ∗), or violating any capacity constraint. Repeating this process, we obtain a flow
for which |Qh| ≤ 1 for every h ∈ H. We keep referring to this flow by Y ∗. This procedure
can be performed in time O(|H| |V |2) by checking every pair of Q w.r.t. the vertices in H.

Next, we construct a (X, 3X)-CVPk′ of C ∪H with Y ∗. For this we define a function
g : H ×Q → N, initialized with g(h, q) = 0 for all (h, q) ∈ H ×Q. Recall that Q = CC(C)
corresponds to the connected components in G[C]. Except for the vertex q ∈ Qh (if it exists)
we set for each h ∈ H, g(h, q) = y∗−→

hq
for every

−→
qh ∈

−→
E with y∗−→

hQ
> 0. Afterwards, for each

q ∈ Q such that q ∈ Qh for some h ∈ H we set arbitrarily g(h, q) = y∗−→
hq

+ y∗−→
qq′

for one of the
h ∈ H with q ∈ Qh.

As a result, for every h ∈ H we obtain w(h) +
∑

q∈Q g(h, q) ≤ 2X − 1, since c
(−→

ht
)

=
X − w(h), w(Q) < X and |Qh| = 1. Determining the weights for g can be done in
O(|E|) time. Note that g(h, q) > 0 implies

−→
qh ∈

−→
E (Hλ) for h ∈ H, q ∈ Q. Let Q̂ =

{q ∈ Q | ∃h ∈ H : g(q, h) > 0} and Ê = {(h, q) ∈ Q×H | g(q, h) > 0}.
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We construct a bipartite graph GB = (H ∪ Q̂, Ê) and observe that (∅, H, g, 2X − 1) is a
fractional balanced expansion for GB. Hence we can use cycle canceling like in Theorem 2
to derive a balanced expansion f for GB. With this, we obtain a function f ′ : Q̂ → H

with f ′(q) ∈ NB(q) for every q ∈ Q̂. Note that f ′(q) ∈ NB(q) implies
−−−→
f ′(q)q ∈ −→E (Hλ)

which in turn means that the component corresponding to q in G[C] is connected to the
vertex f ′(q) in H. With this, we obtain a connected vertex set Th := {h} ∪ V

(
f ′−1(h)

)
in G[C ∪H] for every h ∈ H. Moreover, we obtain from Theorem 2 for every h ∈ H that
w(Th) = w(h) + w

(
f ′−1(h)

)
≤ 2X − 1 +

(
max

q∈Q̂ w(Q)− 1
)
≤ 2X − 1 + X − 2 = 3X − 3,

as max
q∈Q̂ w(Q) ≤ X − 1. Finally, Theorem 2 provides that we can compute f in O(|V | |E|).

Note that vertices q ∈ Q with
∑

h∈(δ+(q)∩H) y∗−→
qh

> 0 are in Q̂. Let k̂ = |H|+ |Q \ Q̂|.

Note that for every q ∈ Q \ Q̂ we have
∑

h∈(δ+(q)∩H) y∗−→
qh

= 0, we obtain a (0, 3λ)-CVP
k̂

by T C∪H := {Q ∈ CC(C) | q ∈ Q \ Q̂} ∪ {Th | h ∈ H} of C ∪H, since maxQ∈Q w(Q) < X.
Note that V (Q) ∪H = C ∪H.

It remains to show that k̂ ≤ p(Y ∗). Since for every q ∈ Q\Q̂ we have
∑

h∈(δ+(q)∩H) y∗−→
qh

=

0, the corresponding flow satisfies y∗−→
qq′

= w(Q). Thus, each q ∈ Q \ Q̂ yields a cost of one for

Y ∗, as p−→
q′t

(y∗−→
qq′

) = y∗−−→
QQ′

/w (Q) = 1. Hence, we obtain
∑

q∈Q\Q̂ p−→
q′t

(y∗−→
q′t

) = |Q \ Q̂|.

By Lemma 59 we obtain y∗−→
ht

= c(
−→
ht) = X − w(h) for all h ∈ H and therefore,∑

h∈H p−→
ht

(
y∗−→

ht

)
=

∑
h∈H

w(h)+y∗
−→
ht

X =
∑

h∈H
X
X = |H|. At last, we obtain k̂ = |H|+ |Q\Q̂| =∑

h∈H p−→
ht

(
y∗−→

ht

)
+

∑
q∈Q\Q̂ p−→

q′t
(y∗−→

q′t
) =

∑
−→e ∈δ−(t) p−→e

(
y∗−→e

)
= p (Y ∗).

Lastly, the construction runs in time O
(
|H| |V |2 + |E|+ |V | |E|+ |V |

)
and thus, in time

O
(
|V | |E|+ |H| |V |2

)
. ◀

D.3.2.2 Running time:

Similar to the Max-Min case we modify slightly the binary search to optimize the running
time. Let g(ℓ) := 2ℓ, N ∋ ℓ ≥ 1. We increase stepwise ℓ in g(ℓ) until we find an ℓ∗ with
g(ℓ∗) ≤ X∗ ≤ g(ℓ∗ + 1) ≤ 2X∗. Thus, we obtain a running time of O(log X∗) for the binary
search and may bound X by 2X∗.

For computing a min-cost flow in Hλ we have already indicated that the network was
designed with the rational cost functions only for the sake of easier correctness proofs (from
the 1-1-correspondence of flow cost and number of sets in the partition). In order to find a
min-cost flow Y ∗ in Hλ, we can equivalently search for a min-cost flow in the network H ′

λ

derived from Hλ by choosing a different cost function p′ defined by:

p′−→
q′t

(y) = (λ + 1− w(Q))y for all q ∈ Q′,
p′−→

ht
(y) = y for all h ∈ H, and

all-zero assignment on the remaining arcs.

Note that this alteration of the cost function yields that a flow Y is optimal for H ′
λ if and

only if it is optimal for Hλ. First note that the capacity function of the two networks is
the same, so especially any flow Y is valid in H ′

λ if and only if it is valid in Hλ. Further,
for any such flow Y , the residual network of H ′

λ and Hλ contains the same arcs. A valid
flow (of the desired value F ) in Y is a min-cost flow, if there are no cost-reducing cycles
in the residual network. Since, by our construction, Hλ is bipartite, the existence of any
cost-reducing cycle yields the existence of a cost-reducing simple cycle (i.e. a cycle without
repetition of vertices). Since the only arcs in Hλ, and also in H ′

λ, with non-zero cost are
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adjacent to t, any cost-reducing cycle contains at most two arcs with non-zero cost. By our
definition of p′ we see that for any pair of arcs −→e1 ,−→e2 ∈

−→
E we have p−→

( e1) < p−→
( e2) if and only

if p′−→
( e1)

< p′−→
( e2)

, which shows that any cycle in the residual network is cost-reducing in H ′
λ

if and only if it is cost-reducing in Hλ.
By [1], a min-cost flow can be computed in O (|V | |E| log log U log (|V |P )), where U ∈ N

is the maximum capacity and P ∈ N is the maximum flow cost. For this altered network H ′
λ,

we can thus compute Y ∗ in O (|V | |E| log log X log (|V |wmax)); note that in H ′
λ the cost of

Y ∗ is, very roughly estimated, at most |V |3wmax, where wmax denotes the maximum weight
wmax = maxv∈V w(v).

The algorithm FindBCD that provides a λ-BCD (C, H,R, f) of G and runs in O(k̃′2|V | |E|)
(see Theorem 7). Since we have at most k iterations in FindBCD, (i.e. the outer-index is
bounded by k + 1), we obtain O(k̃2|V | |E|) ⊆ O(k2|V | |E|). Moreover, for the step where we
actually construct a solution, this construction requires time O

(
|V | |E|+ |H| |V |2

)
, where we

know that |H| ≤ k. With the adjusted binary search, that never checks a value larger than
2X∗, this yields an overall running time inO

(
log (X∗) |V | |E|

(
log log X∗ log (|V |wmax) + k2))

for the algorithm MinMaxApx.
This completes the proof of the following theorem.

▶ Theorem 12. A 3-approximation for the Min-Max BCP problem can be computed in time
O

(
log (X∗) |V | |E|

(
log log X∗ log (|V |wmax) + k2))

, where X∗ denotes the optimum value
and wmax = maxv∈V w(v) the maximum weight of a vertex.
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