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Abstract

We investigate the maximum-entropy model Bn,m,p for random n-vertex, m-edge multi-
hypergraphs with expected edge size pn. We show that the expected size of the minimization
of Bn,m,p, i.e., the number of its inclusion-wise minimal edges, undergoes a phase transition
with respect to m. If m is at most 1/(1 − p)(1−p)n, then the minimization is of size Θ(m).
Beyond that point, for α such that m = 1/(1− p)αn and H being the entropy function, it is

Θ(1) ·min

(
1, 1

(α− (1− p))
√

(1−α)n

)
· 2(H(α)+(1−α) log2 p)n.

This implies that the maximum expected size over all m is Θ((1 + p)n/
√
n).

Our structural findings have algorithmic implications for minimizing an input hyper-
graph, which in turn has applications in the profiling of relational databases as well as for
the Orthogonal Vectors problem studied in fine-grained complexity.

The main technical tool is an improvement of the Chernoff–Hoeffding inequality, which
we make tight up to constant factors. We show that for a binomial variable X ∼ Bin(n, p)
and real number 0 < x ≤ p, it holds that

P[X ≤ xn] = Θ(1) ·min
(

1, 1
(p− x)

√
xn

)
· 2−D(x ‖ p)n,

where D denotes the Kullback–Leibler divergence between Bernoulli distributions. The
result remains true if x depends on n as long as it is bounded away from 0.

1 Introduction
A plethora of work has been dedicated to the analysis of random graphs. Random hypergraphs,
however, received much less attention. For many types of data, hypergraphs provide a much
more natural model. This is especially true if the data has a hierarchical structure or reflects
interactions between groups of entities. In non-uniform hypergraphs, where edges can have
different numbers of vertices, a phenomenon occurs that is unknown to graphs: an edge may be
contained in another, with multiple edges even forming chains of inclusion. We are often only
interested in the endpoints of those chains, namely, the collections of inclusion-wise minimal or
maximal edges. This is the minimization or maximization of the hypergraph, respectively.

We investigate the maximum-entropy model Bn,m,p for random multi-hypergraphs with n
vertices and m edges and expected edge size pn for a constant sampling probability p. In other
words, out of all probability distributions on hypergraphs that result in an expected edge size
of pn, Bn,m,p is the one of maximum entropy. We are interested in the expected size of the
minimization/maximization of Bn,m,p, that is, the expected number of its minimal/maximal
edges. Our results are phrased in terms of the minimization, but replacing the probability p with

∗An extended abstract was presented at the 28th European Symposium on Algorithms (ESA 2020) [13].
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1−p immediately transfers them to the maximization. We show that the size of the minimization
undergoes a phase transition with respect to the number of edges m with the point of transition
at m∗ = 1/(1 − p)(1−p)n. While the number of edges is still small, a constant fraction of them
is minimal and the minimization grows linearly in the total sample sizes. For m > m∗, the
size of the minimization is instead governed by the entropy function of the exponent α such
that m = 1/(1 − p)αn (see Theorem 2 for a precise statement). We show that the ratio of
minimal edges goes down exponentially as m increases. This seems counter-intuitive at first as it
decouples the behavior of the minimization from the growth of the underlying hypergraph. We
further determine that the maximum expected number of minimal edges over all m is of order
Θ((1 + p)n/

√
n), the maximum is attained at m = 1/(1− p)

n
1+p .

Our results establish a close connection between the size of the minimization and the binomial
distribution.1 Theorem 1 (see below) characterizes the number of minimal edges in terms of the
total number of edges m and the likelihood that a binomial variable deviates from its expec-
tation. The main tool in our analysis is the Chernoff–Hoeffding theorem bounding the tail of
the distribution function via the Kullback–Leibler divergence from information theory. However,
the existing inequalities are not sharp enough to derive tight statements on the expected size
of the minimization. So far, there is an O(

√
n) gap between the best-known upper and lower

estimates. In this work, we improve both sides such that they match up to constant factors. The
improvement transfers directly to the weaker, but more practical, versions of Chernoff bounds
widely used in the literature. While our findings concentrates on the asymptotics, we also give an
explicit interval for the leading constants involved and our proofs indicate how large n must be to
be applicable. This makes the result useful also in a non-asymptotic setting and in areas beyond
the treatment of random hypergraphs. We illustrate this by giving an alternative proof that the
binomial distribution does not vanish outside of a constant number of standard deviations from
its mean. Our proof avoids the Berry–Esseen inequality, that is, normal approximation. We also
improve the rate of convergence in Cramér’s theorem.

Regarding our main topic of hypergraphs, our structural insights have algorithmic implica-
tions for the task of actually computing the minimization min(H) of an input hypergraph H.
We give two examples from fine-grained complexity as well as data profiling. There is reason to
believe that there exists no minimization algorithm running in time O(m2−ε) · poly(n) for any
ε > 0 on m-edge, n-vertex hypergraphs. The argument uses the Sperner Family problem, which
is to decide whetherH contains two edges such that one is contained in the other, that is, whether
|min(H)| < |H|. The latter is equivalent to the, arguably more prominent, Orthogonal Vectors
problem studied in fine-grained complexity. A truly subquadratic algorithm for the minimization
would thus falsify the Orthogonal Vectors Conjecture and in turn the Strong Exponential Time
Hypothesis (SETH), resulting in a major breakthrough in Boolean satisfiability. On the other
hand, partitioning the edges of the hypergraph H by their cardinality and processing them in
order of increasing cardinality gives an O(mn |min(H)|)-time algorithm, which is O(m2n) in the
worst case. When looking at the average-case complexity for the Bn,m,p distribution, we get a run
time of O(mnE[ |min(Bn,m,p)| ]). Our results therefore show that the algorithm is subquadratic
on average for all m beyond the phase transition, it is even linear for m larger than 1/(1− p)n.

There is also a connection to the profiling of relational databases. Data scientists regularly
need to compile and output a comprehensive list of metadata, like unique column combinations,
functional dependencies, or, most general, denial constraints. These multi-column dependencies
can all be described as the minimal hitting sets of certain hypergraphs created from comparing
pairs of rows in the database and recording the sets of attributes in which they differ. Computing
these difference sets one by one generates an incoming stream of seemingly random subsets.
Filtering the inclusion-wise minimal ones from the stream does not affect the solution, but
can greatly reduce the number of sets and the complexity of the resulting hitting set instance.
Minimizing the input is therefore a standard preprocessing technique in data profiling. In real-
world databases, there are often fewer minimal difference sets than rows in the database, let
alone pairs thereof. Therefore, the space needed to store the sets usually makes up only a small
fraction of the original input size. The upper bounds given in Theorems 2 provide a theoretical
explanation for this observation. We show that only a few difference sets can be expected to be

1The notation Bn,m,p is mnemonic of the binomial distribution emerging in the sampling process.
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minimal and their number even shrinks as the database grows larger. Conversely, the difference
sets and the corresponding multi-column dependencies are mutually dual, which allows to recover
the minimized input from the the collection of all solutions. In this sense, the matching lower
bounds in Theorems 2 can be seen as the smallest amount of data any enumeration algorithm
needs to process in order to correctly cover all dependencies.

Related Work. Erdős–Rényi graphs Gn,m [30] and Gilbert graphs Gn,p [35] are arguably the
most discussed random graph models in the literature. We refer the reader to the monograph
by Bollobás [16] for an overview. A majority of the work on these models concentrates on
various phase transitions with respect to the number of edges m or the sample probability p,
respectively. This intensive treatment is fueled by the appealing property that Erdős–Rényi
graphs are “maximally random” in that they do not assume anything but the number of vertices
and edges. More formally, among all probability distributions on graphs with n vertices and m
edges, Gn,m is the unique distribution of maximum entropy. The same holds for Gn,p under the
constraint that the expected number of edges is p

(
n
2
)
, see [2].

The intuition of being maximally random is captured by the Shannon entropy, which is
the central concept in information theory [22, 63]. A discrete stochastic system described by
the probability distribution (pi)i has a (binary) entropy of H((pi)i) = −

∑
i pi log2 pi. The

self-information of a single state with probability p is − log2 p, the entropy is the expected
information of the whole system. It is a measure of surprisal or how “spread out” the distribution
is. Originally stemming from thermodynamics [49], the versatility of this definition is key to the
successful application of information theory to fields as diverse as cryptography [19], machine
learning [36], quantum computing [55], and of course network analysis [54]. Jaynes’ principle of
maximum entropy states that out of an ensemble of probability distributions that all describe
the observed phenomena equally well, the one of maximum entropy is to be preferred in order to
minimize any outside bias [40, 41, 47]. Properties of the maximum-entropy model then pertain
to the average system matching the observations. In the context of random graphs, it is used to
define so-called null models [66]. After certain graph statistics observed in real-world networks are
fixed, one chooses the maximum-entropy distribution that meets these constraints. By comparing
the original network with a “typical” graph drawn from the null model, one can infer whether
other properties are correlated with the constraints. This method was made rigorous by Park
and Newman [59] building on earlier work in general statistics. Prescribing the exact or expected
number of edges leads to the Gn,m or Gn,p distributions, respectively. The configuration model
fixes the whole degree sequence of the graph [17] and the soft configuration model relaxes these
constraints to hold in expectation [11, 34].

Many early attempts to transfer the concept of null models to hypergraphs have been only
indirect in that they have studied hypergraphs via their clique expansion [53] or as bipartite
graphs [61]. This is unsatisfactory since the projections alter relevant observables, like node
degrees or the number of triangles. Only recently, Chodrow generalized the configuration model
directly to multi-hypergraphs [20], which has subsequently been refined by Arafat et al. [3]. There
also seems to be not much work on hypergraph models that can be cast into the maximum-
entropy framework without being intentionally designed as such, a notable exception is the
work by Schmidt-Pruzan and Shamir [62]. They fix the exact (respectively, expected) edge
sequence such that the largest edge has cardinality O(logn) and show a “double jump” phase
transition in the size of the largest connected component. Most of the recent literature on random
hypergraphs concentrates on the k-uniform model where every edge has exactly k vertices [7, 8,
43] or, equivalently, on random binary matrices with k 1s per column [21]. Our model neither
prescribes the exact cardinalities of the edges nor a bound on their maximum size, instead it
only requires that the expected edge size is pn.

Probably closest to our work is a string of articles by Demetrovics et al. [26] as well as Ka-
tona [44, 45]. They investigate random databases and connect the Rényi entropy of order 2
of the logarithmic number of rows with the probability that certain unique column combina-
tions or functional dependencies hold. In contrast, we connect the Shannon entropy of the
logarithmic number of pairs of rows (quantity α, see Section 2) with the expected number of
minimal difference sets. Unique column combinations, functional dependencies, and their gen-
eralization to denial constraints are dual to the difference sets, one are the hitting sets of the
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other [1, 10, 12, 32]. Also, the Shannon entropy is equal to the Rényi entropy of order 1 [22].
In this sense, we complement the result by Demetrovics et al. and show that the duality also
pertains to the order of entropy. Furthermore, it has often been observed in practice that the
collection of minimal difference sets of real-world databases is much smaller than the original
instance size [14, 15, 50, 58], our findings provide a theoretical explanation for this phenomenon.

The minimization of hypergraphs also occurs in fine-grained complexity in form of the Sperner
Family problem. It is subquadratically equivalent to the Orthogonal Vectors problem [18, 33],
which in turn admits a fine-grained reduction from CNF-Satisfiability [65]. Any truly sub-
quadratic algorithm for computing the minimization of a hypergraph in the worst case would
mark a major breakthrough in satisfiability. Very recently, ideas from fine-grained complexity
have been extended to to the average case [6, 24, 42]. We show that a simple algorithm for
Sperner Family is subquadratic on average on hypergraphs with expected edge size pn.

The analysis of random (hyper-)graphs naturally builds on tools from combinatorics and
probability theory. Conversely, it has always helped to advance those fields by improving on
known techniques [9, 16, 39]. The binomial distribution is used all throughout science to describe
complex systems emerging from the overlapping effects of many independent choices. Its typical
behavior is well understood, as described in the central limit theorem and the strong law of large
numbers. Bounding its tails, however, remains the subject of ongoing research. The resulting
concentration inequalities play a significant role in the theory of large deviations [25, 27], the
analysis of randomized algorithms and search heuristics [28, 29, 51], as well as computational
learning [46], to name a few examples. In this work, we sharpen the tail inequalities of the
Chernoff–Hoeffding theorem [38]. We prominently use a result by Klar [48] on the relation
between the distribution function and the probability mass function. Some refined inequalities
have been known before. By Cramér’s theorem [23], Chernoff–Hoeffding is asymptotically tight
up to subexponential factors and the gap has subsequently been reduced to O(

√
n), see [4].

We close it down to a constant. There also exist comparatively tight bounds based on the
normal limit of the binomial distribution. Contributions by Prokhorov [60] and later Slud [64]
founded major lines of research in that direction. However, we avoid this approach and give a
purely combinatorial argument since the normal approximation cannot be expressed in terms of
elementary functions. Also, it tends to place unnecessary restrictions on the sampling probability
p for non-asymptotic results.

Outline. In the next section, we introduce the hypergraph model and state our results in full
detail. We review some notation and general concepts in Section 3. Section 4 is dedicated to the
Chernoff–Hoeffding theorem. Section 5 adds further technical contributions as the foundation of
the subsequent proofs. The main theorems on the size of the minimization are then proven in
Section 6. Section 7 concludes the work.

2 Model and Main Results
Fix a probability p and positive integers n and m. The random multi-hypergraph Bn,m,p is
generated by independently samplingm (not necessarily distinct) subsets of [n]. Each set contains
any vertex v ∈ [n] with probability p independently of all other choices.2

We quickly argue that it is indeed the maximum-entropy model. Besides the size of the
universe n and the number of edges m, the only constraint is the expected edge size pn. The
independence bound on the entropy reads as follows. Let X1 to Xm be random variables with
joint distribution PX1,...,Xm

and marginals PXj
. Then, their entropies observe the inequality

H(PX1,...,Xm) ≤
∑m
j=1 H(PXj ), with equality holding if and only if the Xj are independent [22].

This implies that the edges need to be sampled independently in order to maximize the entropy,
the same is true for the vertices inside one edge. Finally, the fact that setting the sampling
probability of the vertices to be all equal indeed gives the maximum entropy under a given mean
set size was proven by Harremoës [37].

We are interested in the expected number of inclusion-wise minimal edges in Bn,m,p, denoted
by E[ |min(Bn,m,p)| ]. We describe the asymptotic behavior of this expectation with respect to

2In the context of Boolean functions, this is called the p-biased distribution [56].
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(a) The expected size of the minimization as
a function of m for n= 10 and p= 0.6 in the
information-theoretic regime. The vertical line at
m = 1/(1−p)

n
1+p indicates the position of the max-

imum (Lemma 27). For m > 1/(1 − p)n, the size
goes to 1. The linear bound form ≤ 1/(1−p)(1−p)n

is not shown as it is too close to 0.
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(b) The expected size of the minimization as a func-
tion of α for p = 0.6 (the plot is independent of n).
The vertical line at α = 1 − p indicates the phase
transition between the linear and the information-
theoretic regime. The respective bounds are con-
tinued as dashed lines into the other regime. The
vertical line at α = 1/(1 + p) indicates the position
of the maximum (Lemma 27).

Figure 1: Illustration of Theorem 2 showing the expected size of the minimization of a random
hypergraph depending on the number of edges m (a) and on α (b). As α grows logarithmically
in m, (b) shows the same plot as (a) but with both axes being logarithmic.

n. In more detail, we view the number of edges m = m(n) as a function of n and bound the
univariate asymptotics of E[ |min(Bn,m,p)| ] with respect to n for any choice of m. The sampling
probability p is considered to be a constant throughout.

We show first that the expected size of the minimization can be described precisely in terms
of m and the binomial distribution Bin(n, p). To state our result in full detail, we define

α = log 1
(1−p)n

m = −
log1−pm

n
.

The quantity α is a non-negative function of p, n, and m, it is well-defined for all 0 < p < 1 and
n, m ≥ 1. Asymptotically in n, it is of order Θ((logm)/n). If p and n are fixed, choosing a value
for α determines m since we can rewrite m as 1/(1− p)αn.
Theorem 1. Let n, m be positive integers and p a probability. If p = 0 or p = 1, then
|min(Bn,m,p)| = 1 holds deterministically. For 0 < p < 1, let X ∼ Bin(n, p) be a binomially
distributed random variable.
(i) For any ε > 0 and all m ≤ 1/(1− p)(1−ε)n, i.e., all 0 ≤ α ≤ 1− ε,

E[ |min(Bn,m,p)| ] = Θ(m) · P[X ≤ (1− α)n ].

(ii) There exists a c > 0 such that for all m ≥ 1/(1− p)n+c lnn, i.e., all α ≥ 1 + c lnn
n ,

E[ |min(Bn,m,p)| ] = 1 + o(1).

The asymptotic estimate in the first statement is tight up to constants, the second statement is
even tight up to lower-order terms. The constants hidden in the big-O notation are universal in
the sense that they, of course, do not depend on m or n, but also not on α, which describes the
relation between the former two. We note that the constants may depend on p and ε. There is
a gap in the theorem at m = 1/(1 − p)n, which can, however, be made arbitrarily small. Let
C = 1/(1−p), then Statement (i) holds ifm ≤ (C−δ)n for any constant δ > 0 and Statement (ii)
takes over at m ≥ (C + o(1))n. Unlike what one might expect, we show (in Lemma 26) that
Theorem 1 (i) cannot be extended to the case where α converges to 1.

The characterization of the size of the minimization via the binomial distribution allows
us to give estimates in information-theoretic terms, namely, using the Shannon entropy of α.
This reveals a phase transition at m∗ = 1/(1 − p)(1−p)n, i.e., for α = 1 − p. Let H(x) =
−x log2 x− (1− x) log2(1− x) denote the binary entropy function.

5



Theorem 2. Let n, m be positive integers and 0 < p < 1 a non-trivial probability.

(i) If m ≤ 1/(1− p)(1−p)n, then E[ |min(Bn,m,p)| ] = Θ(m).

(ii) For any ε > 0 and all 1/(1− p)(1−p)n ≤ m ≤ 1/(1− p)(1−ε)n, i.e., all 1− p ≤ α ≤ 1− ε,

E[ |min(Bn,m,p)| ] = Θ(1) ·min
(

1, 1
(α− (1− p))

√
(1−α)n

)
· 2(H(α)+(1−α) log2 p)n

= Θ(1) ·min
(

1, 1
(α− (1− p))

√
(1−α)n

)
·
(

p1−α

(1− α)1−α αα

)n
.

The bounds in the two cases are very different in nature. They are visualized in Figure 1
showing the expected size of the minimization as a function of the number of edges m and of
α. To distinguish the cases also in writing, we use the term linear regime if m is between 1
and 1/(1 − p)(1−p)n, corresponding to 0 ≤ α ≤ 1 − p, likewise, we refer to m being between
1/(1 − p)(1−p)n and 1/(1 − p)n, i.e., 1 − p ≤ α ≤ 1, as the information-theoretic regime. In
Statement (ii) of the above theorem, the leading constant may depend on the choice of ε.

In order to derive Theorem 2 from Theorem 1, we tighten the Chernoff–Hoeffding inequality
on the binomial distribution function. Let D(x ‖ y) = −x log2

(
y
x

)
− (1 − x) log2

(
1−y
1−x

)
denote

the binary Kullback–Leibler divergence.

Theorem 3. Let n be a positive integer, 0 < p < 1 a non-trivial probability, and X ∼ Bin(n, p) a
binomial variable. Suppose the function x = x(n) takes real values in the interval [ε, 1− ε] for
some ε > 0. Let ϕ and ψ denote the functions

ϕ(n, p, x) = min
(

1, 1
(p− x)

√
xn

)
and ψ(n, p, x) = min

(
1, 1

(x− p)
√

(1− x)n

)
,

with additionally ϕ(n, p, p) = 1 and ψ(n, p, p) = 1.

There exist constants C1, C2, C3, C4 > 0, independent of n and x but possibly dependent on p
and ε, such that the following statements hold for all n sufficiently large.

(i) If x ≤ p, then C1ϕ · 2−D(x ‖ p)n ≤ P[X ≤ xn] ≤ C2ϕ · 2−D(x ‖ p)n.

(ii) If x ≥ p, then C3ψ · 2−D(x ‖ p)n ≤ P[X ≥ xn] ≤ C4ψ · 2−D(x ‖ p)n.

3 Preliminaries and Notation
Multi-Hypergraphs. A hypergraph on the vertex set [n] = {1, . . . , n} is a set of subsets

H⊆P([n]), called the (hyper-)edges. If H is a multiset instead, we have a multi-hypergraph. We
do not allow multiple copies of the same vertex in one edge. The minimization of a hypergraph
H is the collection of its inclusion-wise minimal edges, min(H) = {E ∈ H | ∀E′ ∈ H : E′ ⊆ E ⇒
E′ = E}. We extend this notion to multi-hypergraphs by requiring that, whenever a minimal
edge has multiple copies, only one of them is included in the minimization. This way min(H)
is always a mere hypergraph (a set). For a multi-hypergraph H, we use |H| to denote the total
number of edges counting multiplicities, and ‖H‖ for the number of distinct edges, that is, the
cardinality of the support of H. Evidently, we have |min(H)| ≤ ‖H‖ ≤ |H|.

Information Theory. We intend the expressions 0 loga 0 and 0 loga( 0
0 ) to both mean 0 for

any positive real base a. Note that this convention implies 00 = a0 loga 0 = 1 and ( 0
0 )0 = 1. We

use ldx for the binary (base-2) logarithm of x. The (binary) entropy function H is defined for
all probabilities x as

H(x) = −x ldx− (1− x) ld(1− x).

6



The entropy function is the Shannon entropy (equivalently, the Rényi entropy of order 1) of
the Bernoulli distribution with parameter x. In the notation of the previous sections, we have
H(x) = H((x, 1− x)). The entropy function is symmetric around 1/2 with H(x) = H(1− x). On
the open unit interval, H is positive and strictly concave, it has its maximum at 1/2 with value
H(1/2) = 1. The entropy power

2H(x) = 1
xx (1− x)1−x

is called the perplexity of x. We use it to estimate binomial coefficients, see [22].

Lemma 4. Let n be a positive integer and 0 < x < 1 a rational such that xn is an integer, then

2H(x)n√
8nx(1− x)

≤
(
n

xn

)
≤ 2H(x)n√

πnx(1− x)
.

For any two probabilities x and y, the (binary)Kullback–Leibler divergence3 between Bernoulli
distributions with respective parameters x and y is

D(x ‖ y) = −x ld
(y
x

)
− (1− x) ld

(
1− y
1− x

)
.

The function D(x ‖ y) is convex in both x and y, and attains its minimum 0 for x = y. The
divergence observes D(x ‖ y) = D(1− x ‖ 1− y). Its partial derivative with respect to x is

∂

∂x
D(x ‖ y) = ld

(
x

1− x
1− y
y

)
.

Next, we establish the fact that the divergence scales quadratically in the difference y − x.

Lemma 5. Let 0 < x ≤ y < 1 be two non-trivial probabilities. Define t+ to be the maximizer of
t(1− t) over the interval [x, y], and t− the minimizer. Then, it holds that

(y − x)2

t+(1− t+) ≤ 2 ln(2) ·D(x ‖ y) ≤ (y − x)2

t−(1− t−) .

Proof. Let ε = y − x. D(y − ε ‖ y) is two-times differentiable with respect to ε with derivatives

∂

∂ε
D(y − ε ‖ y) = ld

(
y

1− y
1− y + ε

y − ε

)
and ∂2

∂ε2 D(y − ε ‖ y) = 1
ln 2

1
(y − ε)(1− y + ε) .

Both the divergence itself as well as its first derivative vanish at ε = 0. By Taylor’s theorem
(with the Lagrange form of the remainder), there exists an ξ with 0 ≤ ξ ≤ ε such that

D(y − ε ‖ y) = ε2

2! ·
∂2

∂ε2 D(y − ε ‖ y)
∣∣∣∣
ε=ξ

= ε2

2 ln 2 (y − ξ)(1− y + ξ) .

The lemma follows from y − ξ ranging over [x, y].

We often use the following quantity derived from the divergence, resembling the perplexity.

2−D(x ‖ y) = 2H(x) · yx(1− y)1−x =
(y
x

)x(1− y
1− x

)1−x
.

The next lemma is useful when relating quantities of this kind for different parameters.

Lemma 6. Let 0 ≤ x ≤ y ≤ z ≤ 1 be three probabilities, then

2−D(x ‖ z) =
(

y

1− y
1− z
z

)y−x
2−D(x ‖ y) · 2−D(y ‖ z).

In particular, for any fixed z, 2−D(x ‖ z) is non-decreasing in x as long as x ≤ z.
3The divergence is sometimes called relative entropy, we avoid this term due to ambiguities, see [22].
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Proof. The convention ( 0
0 )0 = 1 ensures that ( y

1−y
1−z
z )y−x is well-defined even for z = 0.

2−D(x ‖ z)

2−D(y ‖ z) =

(
z
x

)x ( 1−z
1−x

)1−x

(
z
y

)y (
1−z
1−y

)1−y =

(
z
x

)x ( 1−z
1−x

)1−x

(
z
y

)y−x (
z
y

)x (
1−z
1−y

)1−x (
1−z
1−y

)x−y
= 1(

z
y

)y−x (
1−z
1−y

)x−y (yx)x
(

1− y
1− x

)1−x
=
(

y

1− y
1− z
z

)y−x
2−D(x ‖ y).

The monotonicity follows from the last two factors being at most 1 due to x ≤ y ≤ z.

Polynomials of Probabilities. We regularly estimate expressions of the form (1− x)n where
x is a probability. The first inequality is taken from [52].

Lemma 7. Let n be a positive integer and x a real number such that |x| ≤ n, then

ex
(

1− x2

n

)
≤
(

1 + x

n

)n
.

We reach rather tight bounds on (1− x)n by substituting x for −nx above, and combining this
with the simple fact that (1 + x) ≤ ex holds for all x.

Corollary 8. Let n be a non-negative integer and x a probability, then

e−nx
(
1− nx2) ≤ (1− x)n ≤ e−nx.

The next inequalitiy was given by Badkobeh, Lehre, and Sudholt [5].

Lemma 9 (Lemma 10 in [5]). Let n be a non-negative integer and x a probability, then

nx

1 + nx
≤ 1− (1− x)n ≤ nx.

We prepare the following lemma on conditional probabilities of series of events for later.

Lemma 10. Consider a random experiment with three outcomes A, B, and C with P[B] > 0. In
a series of m i.i.d. trials, let Aj denote the event that the outcome of the j-th trial is A, same
with B. Then, it holds that P[∀j ≤ m : ¬Aj | ∃k ≤ m : Bk ] ≤ P[∀j ≤ m : ¬Aj | Bm ].

Proof. The case P[B] = 1 is trivial, thus assume 0 < P[B] < 1. The assertion in the lemma is
equivalent to

P[∀j ≤ m : ¬Aj | ¬Bm ∧ (∃k < m : Bk)] ≤ P[∀j ≤ m : ¬Aj | Bm ]. (1)

To see this, observe that for any four reals x, y, z, w such that y, w, and y+w are all non-zero,
x+z
y+w ≤

z
w holds if and only if x

y ≤
z
w does. The event [∃k ≤ m : Bk ] can be partitioned into

[¬Bm ∧ (∃k < m : Bk)] and [Bm], giving

P[∀j ≤ m : ¬Aj | ∃k ≤ m : Bk ] = P[(∀j ≤ m : ¬Aj) ∧ (∃k ≤ m : Bk)]
P[∃k ≤ m : Bk ]

= P[(∀j ≤ m : ¬Aj) ∧ ¬Bm ∧ (∃k < m : Bk)] + P[(∀j ≤ m : ¬Aj) ∧Bm ]
P[¬Bm ∧ (∃k < m : Bk)] + P[Bm ] .

Applying the observation to the real numbers x = P[(∀j ≤ m : ¬Aj) ∧ ¬Bm ∧ (∃k < m : Bk)],
y = P[¬Bm∧(∃k < m : Bk)], z = P[(∀j ≤ m : ¬Aj)∧Bm ], and w = P[Bm] gives the equivalence.
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The actual lemma is proven by induction over m. The case m = 1 is trivial as both sides
simplify to P[¬A1 | B1]. Suppose that P[∀j < m : ¬Aj | ∃k < m : Bk ] ≤ P[∀j < m : ¬Aj | Bm−1 ]
holds, it is sufficient to conclude (1). The independence of the trials imply

P[∀j ≤ m : ¬Aj | ¬Bm ∧ (∃k < m : Bk)] = P[(∀j ≤ m : ¬Aj) ∧ ¬Bm ∧ (∃k < m : Bk)]
P[¬Bm ∧ (∃k < m : Bk)]

= P[¬Am ∧ ¬Bm ] · P[(∀j < m : ¬Aj) ∧ (∃k < m : Bk)]
P[¬Bm ] · P[∃k < m : Bk ]

= P[¬Am | ¬Bm ] · P[∀j < m : ¬Aj | ∃k < m : Bk ].

By induction, this is at most P[¬Am | ¬Bm ] · P[∀j < m : ¬Aj | Bm−1 ]. The probabilities of the
outcomes do not change over the trials, and also event Bm implies ¬Am. Therefore,

P[¬Am | ¬Bm ]·P[∀j < m : ¬Aj |Bm−1 ] = 1− P[Am]− P[Bm]
1− P[Bm]

(1− P[Am])m−2 · P[Bm−1]
P[Bm−1]

=
(

1− P[Am]
1− P[Bm]

)
·
(

1−P[Am]
)m−2

≤
(

1−P[Am]
)m−1

= P[∀j ≤ m : ¬Aj | Bm ].

4 The Chernoff–Hoeffding Theorem
Most of the concentration bounds on the binomial distribution that are used in many different
fields of science can be traced back to the Chernoff–Hoeffding theorem [29, 38]. It employs the
Kullback–Leibler divergence to bound the probability that a random variable X ∼ Bin(n, p)
deviates from its expectation E[X] = pn. The theorem states for all x with 0 ≤ x ≤ p that

P[X ≤ xn] ≤ 2−D(x ‖ p)n =
( p
x

)xn( 1− p
1− x

)(1−x)n
.

It follows easily that also P[X ≥xn] ≤ 2−D(x ‖ p)n is true for all p ≤ x ≤ 1. Several weaker but
more practical inequalities have been derived from the Chernoff–Hoeffding theorem, colloquially
summarized as Chernoff bounds [28, 51]. Cramér’s theorem asserts that the exponent D(x ‖ p)
is asymptotically tight [23, 27]. Any improvement of this inequality can therefore be at most
subexponential in n. Stirling’s approximation, see [4], gives the following lower bound assuming
that the product xn is an integer,

P[X ≤ xn] ≥ 1√
8nx(1− x)

· 2−D(x ‖ p)n.

There is an obvious gap of order
√
n between the two estimates. This section is dedicated to

closing this gap by proving Theorem 3. It sharpens both inequalities, making them tight up to
constant factors. While this improvement will be a valuable tool in our study of hypergraphs, it
has applications also in many other areas. The proof is split into two major parts. The first one
treats those x for which the product xn is an integer, the second one extends this to the general
case. The parts are further subdivided depending on the limiting behavior of x = x(n), namely,
whether it converges to p or not.

4.1 Integral Case
For the integral case, we first use a result by Klar [48] about the connection between the distri-
bution function and the probability mass function (PMF) of the binomial distribution.

Lemma 11 (Proposition 1(c) in [48]). Let n be a positive integers, p 6= 0 a probability, and
X ∼ Bin(n, p) a binomial variable. For all non-negative integers k ≤ pn, it holds that

1 ≤ P[X ≤ k]
P[X = k] ≤

p(n+ 1− k)
n+ 1− k − (n+ 1)(1− p) .

9



We combine this with the perplexity bound on the binomial coefficient in Lemma 4. The re-
spective lower bounds in the next lemma where known before, see for example the textbook by
Ash [4, Lemma 4.7.2], we reprove them here en passant. The upper bounds are novel and we
will later use them in our proof of the integral case of Theorem 3.

Lemma 12. Let n be a positive integer, 0 < p < 1 a non-trivial probability, and X ∼ Bin(n, p) a
binomial variable. Suppose 0 < x < 1 is a rational such that xn is an integer.

(i) If x < p, then

1√
8nx(1− x)

· 2−D(x ‖ p)n ≤ P[X ≤ xn] ≤ p
√

1− x
(p− x)

√
πxn

· 2−D(x ‖ p)n.

(ii) If p < x, then

1√
8nx(1− x)

· 2−D(x ‖ p)n ≤ P[X ≥ xn] ≤ (1− p)
√
x

(x− p)
√
π (1− x)n

· 2−D(x ‖ p)n.

Proof. Applying the first statement to the complementary variable X ∼ Bin(n, 1− p) implies the
second statement since P[X ≥ xn] = P[X ≤ (1−x)n]. Hereby, we use that the Kullback–Leibler
divergence observes D(1−x ‖ 1− p) = D(x ‖ p). We are left to prove the first statement.

Lemma 4 gives the following error bounds on the PMF P[X = xn] =
(
n
xn

)
· pxn(1− p)(1−x)n.

1√
8nx(1− x)

≤ P[X = xn]
2H(x)n · pxn(1− p)(1−x)n = P[X = xn]

2−D(x ‖ p)n ≤
1√

πnx(1− x)
.

The lower bounds follows immediately from P[X ≤ xn] ≥ P[X = xn].
For the upper bound, we use Lemma 11 at the integer position k = xn. Let fn,xn(p) denote

the resulting bound on the ratio P[X ≤ xn]/P[X = xn], that is,

fn,xn(p) = p(n+ 1− xn)
n+ 1− xn− (n+ 1)(1− p) = p(n+ 1− xn)

p(n+ 1)− xn =
p(1− xn

n+1 )
p− xn

n+1
.

We claim that for all x and p with x < p, the function fn,xn(p) is increasing in n. We show this
by verifying that the (partial) discrete derivative ∆n(fn,xn) with respect to n is positive.

∆n(fn,xn)(p) = fn+1,x(n+1)(p)− fn,xn(p) = p(n+ 2− x(n+ 1))
p(n+ 2)− x(n+ 1) −

p(n+ 1− xn)
p(n+ 1)− xn

= p(1− p)x
((p− x)n+ p) · ((p− x)n+ 2p− x) > 0.

The function fn,xn(p) thus converges from below to p(1 − x)/(p − x) as n increases, giving
an upper bound on P[X ≤ xn]/P[X = xn] for all n. Multiplying with the error bounds and the
divergence completes the proof.

The upper bounds above are already very close to the desired ones of Theorem 3. In fact, we
will see that the lemma is enough to conclude P[X ≤ xn] ≤ ϕ ·2−D(x ‖ p)n if xn is an integer and
ϕ = min(1, 1/((p−x)

√
xn)). The lower bound in Statement (i), however, matches the upper one

only if the x = x(n) is bounded away from p for all n. More work is needed for the case x→ p. It
has already been useful to have a good estimate for the ratio P[X ≤ k]/P[X = k]. Unfortunately,
Lemma 11 gives only a trivial lower bound. We strengthen this in the next lemma, Lemma 14
then shows how this translates into a stronger lower bound on the binomial distribution function.
Finally, Lemma 15 combines all results of this section into a version of the Chernoff–Hoeffding
theorem, which is tight whenever the product xn is an integer.

Lemma 13. Let n be a positive integer, 0 < p < 1 a non-trivial probability, and X ∼ Bin(n, p) a
binomial variable. Then, for all non-negative integers i and k with i ≤ k ≤ pn, it holds that

P[X ≤ k]
P[X = k] ≥ (k − i+ 1)

(
1− pn− i

pn(1− k
n )

)k−i
.
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Proof. The PMF of X is increasing for arguments smaller than pn, therefore

P[X ≤ k]
P[X = k] =

k∑
j=0

P[X = j]
P[X = k] ≥

k∑
j=i

P[X = j]
P[X = k] ≥ (k − i+ 1) P[X = i]

P[X = k] .

The last ratio is lower-bounded by

P[X = i]
P[X = k] = k! (n− k)!

i! (n− i)!

(
1− p
p

)k−i
=
k−i∏
`=1

i+ `

n− i− `+ 1 ·
(

1− p
p

)k−i
≥
(

i

n− i
1− p
p

)k−i
.

For the base of the last expression we get

i

n− i
1− p
p

= pn− pi− pn+ i

pn− pi
= 1− pn− i

pn− pi
= 1− pn− i

np(1− i
n )
≥ 1− pn− i

np(1− k
n )
.

The first factor k− i+ 1 increases as i gets smaller while at the same time the second factor
decreases. Therefore, in order to apply Lemma 13, one has to choose a balancing cut-off point.
We do so in the proof of the following lemma.

Lemma 14. Let n be a positive integer, 0 < p < 1 a non-trivial probability, and X ∼ Bin(n, p) a
binomial variable. Suppose 0 < x < 1 is a rational such that xn is an integer.

(i) If x < p, then

P[X ≤ xn] ≥ p
√

1− x
16
√

2
·min

(
1, 1

(p− x)
√
xn

)
· 2−D(x ‖ p)n.

(ii) If p < x, then

P[X ≥ xn] ≥ (1− p)
√
x

16
√

2
·min

(
1, 1

(x− p)
√

(1− x)n

)
· 2−D(x ‖ p)n.

Proof. The second statement follows from the first as in Lemma 12. Define an auxiliary integer
function g = g(n, p, x) as

g(n, p, x) =
⌊
p(1− x)

2 ·min
(√

xn,
1

p− x

)⌋
.

Applying Lemma 13 at position k = xn with the cut-off point i = xn− g gives

P[X ≤ xn] ≥ (g + 1)
(

1− pn− xn+ g

pn(1− x)

)g
· P[X = xn]. (2)

We want to lower-bound the middle factor in (2) by a constant. Bernoulli’s inequality gives(
1− pn− xn+ g

pn(1− x)

)g
=
(

1−
p− x+ g

n

p(1− x)

)g
≥ 1−

g(p− x) + g2

n

p(1− x) .

We claim that the numerator g(p − x) + g2/n is at most 3p(1 − x)/4. We split the argument
depending on the relative size of

√
xn and 1/(p − x). If

√
xn ≥ 1/(p − x), then we have

g = b p(1− x)/2(p− x)c and thus

g(p− x) + g2

n
≤ p(1− x)

2 + p2(1− x)2

4 · 1
(p− x)2n

≤ p(1− x)
2 + p2(1− x)2

4 · x.
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Conversely, if
√
xn ≤ 1/(p− x), then g = b p(1− x)

√
xn/2c and

g(p− x) + g2

n
≤ p(1− x)

2 · (p− x)
√
xn+ p2(1− x)2

4 · xn
n
≤ p(1− x)

2 + p2(1− x)2

4 · x.

The last expressions of both inequalities are the same and can be bounded by 3p(1− x)/4. The
middle factor is therefore at least a constant since

1−
g(p− x) + g2

n

p(1− x) ≥ 1− 3p(1− x)
4

1
p(1− x) = 1

4 .

Reinserting this into Inequality (2) and applying the definition of g and Lemma 4 gives the result.

P[X ≤ xn] ≥ g + 1
4 · P[X = xn] ≥ p(1− x)

8 ·min
(√

xn,
1

p− x

)
· P[X = xn]

≥ p(1− x)
8 ·min

(√
xn,

1
p− x

)
· 1√

8nx(1− x)
· 2−D(x ‖ p)n

= p
√

1− x
16
√

2
·min

(
1, 1

(p− x)
√
xn

)
· 2−D(x ‖ p)n.

Next, we prove Theorem 3 for the case that xn is an integer by combining the results above.
We emphasize the facts that Lemma 15 holds for all positive integers n, not only asymptotically,
and x may range over the whole interval [0, 1].

Lemma 15 (integral case of Theorem 3). Let n be a positive integer, 0 < p < 1 a non-trivial
probability, and X ∼ Bin(n, p) a binomial variable. Suppose x = x(n) takes rational values in
the unit interval such that xn is an integer. Let ϕ and ψ denote the functions

ϕ(n, p, x) = min
(

1, 1
(p− x)

√
xn

)
and ψ(n, p, x) = min

(
1, 1

(x− p)
√

(1− x)n

)
,

with additionally ϕ(n, p, 0) = ϕ(n, p, p) = 1 and ψ(n, p, 1) = ψ(n, p, p) = 1.

(i) If x ≤ p, then p
√

1−p
16
√

2 · ϕ · 2
−D(x ‖ p)n ≤ P[X ≤ xn] ≤ ϕ · 2−D(x ‖ p)n.

(ii) If x ≥ p, then (1−p)√p
16
√

2 · ψ · 2−D(x ‖ p)n ≤ P[X ≥ xn] ≤ ψ · 2−D(x ‖ p)n.

Proof. Statement (ii) follows from (i) in the usual way since ψ(n, p, x) = ϕ(n, 1− p, 1−x). Let
C = p

√
1− p/16

√
2. Note that C is at most 0.045 for any p. We first discuss the corner cases

x = 0 and x = p (assuming that pn is an integer). If x = 0, then we have P[X ≤ 0·n] = (1−p)n =
ϕ(n, p, 0) · 2−D(0 ‖ p)n. If x = p, the upper bound P[X ≤ pn] ≤ 1 = ϕ(n, p, p) · 2−D(p ‖ p)n holds
vacuously. The lower bound follows from pn being the median of the binomial distribution, which
implies P[X ≤ pn] ≥ 1/2 ≥ C = C · ϕ(n, p, p) · 2−D(p ‖ p)n.

Assume 0 < x < p. The original Chernoff–Hoeffding theorem and Lemma 12 together give

P[X ≤ xn] ≤ min
(

1, p
√

1− x
(p− x)

√
πxn

)
· 2−D(x ‖ p)n ≤ min

(
1, p√

π

1
(p− x)

√
xn

)
· 2−D(x ‖ p)n.

The latter is at most ϕ · 2−D(x ‖ p)n. Finally, the lower bound in this case is an easy consequence
of Lemma 14 and p

√
1− x/16

√
2 being larger than C = p

√
1− p/16

√
2.

4.2 General Case
The second major step of the argument is to extend the result above from integral products xn
to arbitrary real x. The equality P[X ≤ xn] = P[X ≤ bxnc ] holds universally as X assumes only
integer values. In Section 4.1, we have given bounds on the second probability P[X ≤ bxnc ] in
terms of the ratio bxnc/n. To reach the generality of the Chernoff–Hoeffding theorem, we need
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to infer bounds on P[X ≤ xn] in terms of x. In what follows, let x′ abbreviate bxnc/n. Consider
the upper bound in Lemma 15 (i) as an illustrating example. It states that

P[X ≤ xn] = P[X ≤ x′n] ≤ min
(

1, 1
(p− x′)

√
x′n

)
· 2−D(x′ ‖ p)n.

If there exists some constant C, possibly dependent on p but independent of x and n, such that

1
(p− x′)

√
x′n
· 2−D(x′ ‖ p)n ≤ C

(p− x)
√
xn
· 2−D(x ‖ p)n,

then our estimate transfers to the general case. A similar reasoning applies to the other cases.
The next two lemmas prepare the necessary technical machinery to show the existence of

those constants. Lemma 16 clarifies the monotonicity of the functions in question. It shows that
transitioning from x′ to x can only increase the upper bound, meaning that we can actually
choose C = 1 in the above illustration. For the opposite direction, Lemma 17 asserts that this
transitions incurs a multiplicative loss that is at most linear in x. Below, we often conclude
the monotonic behavior of a product of functions from that of its factors. While in general the
product of non-decreasing functions is not itself non-decreasing, the monotonicity transfers if all
factors are additionally non-negative.

Lemma 16. Let n be a positive integer, and p and x two probabilities. The function

gn,p(x) = 2−D(x ‖ p)n

(p− x)
√
xn

is non-decreasing for all x such that 1/n ≤ x < p, provided that n is sufficiently large.

Proof. Quantity 2−D(x ‖ p)n is non-decreasing for x ≤ p (Lemma 6) and it is not hard to prove
this also for 1/(p− x)

√
xn given that x ≥ p/3. The main focus of this proof is to show that the

divergence power dominates the monotonicity of gn,p also for 1/n ≤ x ≤ p/3.
Taking derivatives gives

d
dx gn,p(x) = 1

(p− x)2x
√
n

((
∂

∂x
2−D(x ‖ p)n

)
(p− x)

√
x− 2−D(x ‖ p)n

(
∂

∂x
(p− x)

√
x

))
= 1

(p− x)2x
√
n

(
n ln

(
1− x
x

p

1− p

)
2−D(x ‖ p)n (p− x)

√
x− 2−D(x ‖ p)n p− 3x

2
√
x

)
= 2−D(x ‖ p)n

(p− x)x3/2
√
n

(
n ln

(
1− x
x

p

1− p

)
x− p− 3x

2(p− x)

)
.

The first factor is positive for all n and x < p and the same is true for the second one if p/3 < x.
Assume x ≤ p/3 in the remainder. Then, the last term of the second factor, −(p− 3x)/2(p− x),
is at least −1/2. It is thus sufficient to prove the non-negativity of

hn,p(x) = n ln
(

1− x
x

p

1− p

)
x− 1

2

on the subinterval [1/n, p/3] for all n large enough. We do this in two claims. First, hn,p is concave
there and, secondly, its values at the endpoints of the interval are non-negative. Regarding the
concavity, observe that the derivative

d
dx hn,p(x) = n ln

(
1− x
x

p

1− p

)
− n

1− x

is the sum of two non-increasing functions of x; n ln( 1−x
x

p
1−p ) is non-increasing as it is the

derivative of the concave mapping x 7→ −D(x ‖ p)n. At the endpoint 1/n, we have

hn,p

(
1
n

)
= ln

(
(n− 1) p

1− p

)
− 1

2 ,
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which is non-negative for all n ≥ (
√
e(1− p)/p) + 1. Similarly at endpoint p/3,

hn,p

(p
3

)
= n ln

(
3− p
1− p

)
p

3 −
1
2

is non-negative for n ≥ 3/2p ln( 3−p
1−p ).

Lemma 17. Let n be a positive integer, p and x two probabilities, x′ = bxnc/n, and again

gn,p(x) = 2−D(x ‖ p)n

(p− x)
√
xn
.

The following inequalities hold for all x such that 1/n ≤ x < p and n sufficiently large.

(i) gn,p(x′) ≥ 1−p
p
√

2 e
− 1

2−2p · x · gn,p(x);

(ii) 2−D(x′ ‖ p)n ≥ 1−p
p e−

1
2−2p · x · 2−D(x ‖ p)n.

Proof. We make heavy use of the facts that x− 1/n < x′ ≤ x, and that x ≥ 1/n implies x′ ≥ 1/n.
The relative difference between gn,p(x′) and gn,p(x) is

gn,p(x′)
gn,p(x) = 2−D(x′ ‖ p)n

2−D(x ‖ p)n ·
p− x
p− x′

·
√
x

x′
.

The last factor is at least 1 and the middle one is p−x
p−x′ = 1 − x−x′

p−x′ ≥ 1 − 1
pn ≥

1√
2 given that

n ≥ 2/(2−
√

2)p. The first factor can be estimated using Lemma 6 and x′ − x ≤ 1/n as

2−D(x′ ‖ p)n

2−D(x ‖ p)n =
(

x

1− x
1− p
p

)(x−x′)n
2−D(x′ ‖ x)n · 2−D(x ‖ p)n

≥ x

1− x
1− p
p

2−D(x′ ‖ x)n · 2−D(x ‖ p)n ≥ x · 1− p
p

2−D(x′ ‖ x)n · 2−D(x ‖ p)n.

It remains to show that 2−D(x′ ‖ x)n is at least a constant, namely, we claim 2−D(x′ ‖ x)n > e−
1

2−2p .
Let t− = arg mint∈[x′,x] t(1 − t), observe that 1/n ≤ t− < p holds. By Lemma 5, the exponent
D(x′ ‖x)n (to the base 1/2) is bounded.

D(x′ ‖x)n ≤ (x− x′)2

t−(1− t−)2 ln 2 · n <
1
n2

1
n (1− t−)2 ln 2

· n = 1
(1− t−)2 ln 2 <

1
(2− 2p) ln 2 .

We have the tools ready to prove Theorem 3 in its entirety.

Theorem 3 (restated with explicit constants). Let n be a positive integer, 0 < p < 1 a non-trivial
probability, and X ∼ Bin(n, p) a binomial variable. Suppose the function x = x(n) takes real
values in the interval [ε, 1− ε] for some ε > 0. Let ϕ and ψ denote the functions

ϕ(n, p, x) = min
(

1, 1
(p− x)

√
xn

)
and ψ(n, p, x) = min

(
1, 1

(x− p)
√

(1− x)n

)
,

with additionally ϕ(n, p, p) = 1 and ψ(n, p, p) = 1. The following statements hold for all n
sufficiently large.

(i) If x ≤ p, then ε (1−p)
3
2

32 e−
1

2−2p · ϕ · 2−D(x ‖ p)n ≤ P[X ≤ xn] ≤ ϕ · 2−D(x ‖ p)n.

(ii) If x ≥ p, then εp
3
2

32 e−
1

2p · ψ · 2−D(x ‖ p)n ≤ P[X ≥ xn] ≤ ψ · 2−D(x ‖ p)n.
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Proof. We only need to prove the first statement. Let x′ = bxnc/n. This implies x′ ≤ x and
makes x′n an integer such that P[X ≤ x′n] = P[X ≤ xn]. Recall the definition of gn,p from
Lemma 16. It is chosen such that for all n, p, and x, we have

ϕ(n, p, x′) · 2−D(x′ ‖ p)n =
{

2−D(x′ ‖ p)n, if 1 ≤ 1
(p−x′)

√
x′n

or x′ = p;
gn,p(x′), otherwise.

Lemmas 6 and 16 together establish ϕ(n, p, x′) · 2−D(x′ ‖ p)n ≤ ϕ(n, p, x) · 2−D(x ‖ p)n in both
cases, provided that n is large enough. The upper bound in Statement (i) now follows from the
integral case in Lemma 15. Regarding the lower bound, Lemma 17 gives for all n large enough,

ϕ(n, p, x′) · 2−D(x′ ‖ p)n ≥

{ 1−p
p e−

1
2−2p · x · 2−D(x ‖ p)n, if 1 ≤ 1

(p−x′)
√
x′n

or x′ = p;
1−p
p
√

2 e
− 1

2−2p · x · gn,p(x), otherwise.

In summary, using Lemma 15 and the assumption x ≥ ε, we have

P[X ≤ xn] = P[X ≤ x′n] ≥ p
√

1− p
16
√

2
· ϕ(n, p, x′) · 2−D(x′ ‖ p)n

≥ ε(1− p) 3
2

32 e−
1

2−2p · ϕ(n, p, x) · 2−D(x ‖ p)n.

4.3 Applications
In this excursive section, we highlight two applications of Theorem 3 that do not fall into our
main objective of studying hypergraphs, we find them instructive nevertheless. First, we give an
alternative proof for the intuition that the probability of a binomial variable taking values outside
of a few standard variation of its expectation may be small but does not converge to 0. The result
was previously obtained via the Berry–Esseen inequality using the normal approximation of the
binomial distribution [57]. Secondly, we improve the rate of convergence in Cramér’s theorem.

Anti-Concentration Inequalities. Chernoff bounds are usually interpreted as concentration
inequalities [29]. They state that the mass of the binomial distribution is concentrated around its
mean and the probability for any other value falls exponentially in the distance to the expectation.
However, it is also known that the probability of a binomial variable X ∼ Bin(n, p) taking values
outside of a constant number of standard deviations from E[X] does not vanish, even as n
grows large. Results of the latter kind are occasionally called anti-concentration inequalities.
The particular bound4 we are interested in was given by Oliveto and Witt [57]. We give an
alternative proof that avoids the normal distribution.

Corollary 18 (Lemma 6.1 in [57]). Let n be a positive integer, 0 < p < 1 a non-trivial probability,
and X ∼ Bin(n, p) a binomial variable. Let σX =

√
np(1− p) denote the standard deviation of

X. For every non-negative real c ≥ 0, there exists some positive C > 0, independent of n but
possibly dependent on c and p, such that

P[X ≤ E[X]− c · σX ] ≥ C.

Conversely, for any non-negative function f = f(n) with limn→∞ f(n) =∞, it holds that

lim
n→∞

P[X ≤ E[X]− f · σX ] = 0.

Proof. Let c′ = c
√
p(1− p). In the notation of the previous sections, we have

x = E[X]− c · σX
n

= p− c′√
n
.

4Lemma 6.1 in [57] only states the existence of a particular pair of constants c, C. It is easy to check that
their proof remains valid for any c ≥ 0. For a generalization to unequal probabilities, see Lemma 1.10.16 in [28].
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We assume x ≥ p/2, this does not loose generality as x converges to p. Applying Theorem 3 gives

P[X ≤ E[X]− c · σX ] ≥ p(1− p) 3
2

64 e−
1

2−2p ·min
(

1, 1
c′
√
x

)
· 2−D(x ‖ p)n.

The minimum is at least 1/cp
√

1− p. To show that also the last factor is bounded, we use
an argument very similar to the one in Lemma 17. Let t− = arg mint∈[x,p] t(1 − t). We have
p/2 ≤ t− ≤ p, resulting in

D(x ‖ p) · n ≤

(
c′√
n

)2

t−(1− t−)2 ln 2 · n = c2 p(1− p)
t−(1− t−)2 ln 2 ≤

c2 p(1− p)
p
2 (1− p)2 ln 2 = c2

ln 2 .

If we move away from E[X] by more than a constant number of standard deviations, already
the original Chernoff–Hoeffding theorem is sharp enough to prove that the distribution function
vanishes. For some non-negative f(n) = ω(1), define x = p− (f

√
p(1− p)/

√
n). If x is negative,

the statement holds vacuously; otherwise, we have P[X ≤ E[X] − f · σX ] ≤ 2−D(x ‖ p)n. Let
t+ = arg maxt∈[x,p] t(1− t). Lemma 5 gives

D(x ‖ p) · n ≥ f(n)2 p(1− p)
t+(1− t+)2 ln 2 = ω(1).

Cramér’s Theorem. Theorem 3 also has implications for the rate of convergence in Cramér’s
theorem in the theory of large deviations. Fix some non-trivial probability p and let (Xi)i be a
sequence of i.i.d. Bernoulli variables5 with success probability p. Define

Λ∗(x) = sup
t∈R

{
tx− ln(E[etX1 ])

}
to be the Legendre transform of the cumulant-generating function of X1. Cramér’s theorem [23,
27] states that the transform observes the following limiting property for all x with p < x < 1,

lim
n→∞

1
n

ln
(

P
[

n∑
i=1

Xi ≥ xn

])
= −Λ∗(x).

For notational convenience, let De(x ‖ y) = ln(2) ·D(x ‖ y) = −x ln
(
y
x

)
− (1− x) ln

(
1−y
1−x

)
denote

the natural (base-e) Kullback–Leibler divergence. It is straightforward to verify from E[etX1 ] =
1−p+pet that Cramér’s function Λ∗(x) = De(x ‖ p) is in fact the natural divergence. This shows
that the original Chernoff–Hoeffding inequality with 2−D(x ‖ p)n = e−De(x ‖ p)n is asymptotically
tight up to sublinear terms in the exponent. However, the rate of convergence of the above
limit is subject of ongoing research [25, 27, 31]. Observe that under the current assumptions, we
have 1 ≥ 1/(x − p)

√
(1− x)n for all n sufficiently large. Theorem 3 thus implies the following

corollary, which further clarifies the rate in the Bernoulli case.

Corollary 19. Let 0 < p < 1 be a non-trivial probability and (Xi)i a sequence of i.i.d. Bernoulli
variables with parameter p. Then, for any x with p < x < 1, it holds that

1
n

ln
(

P
[

n∑
i=1

Xi ≥ xn

])
= −De(x ‖ p)−

1
2

lnn
n
− ln(x− p)

n
− 1

2
ln(1− x)

n
±O

(
1
n

)
.

5Cramér’s theorem holds more generally for any i.i.d. sequence (Xi)i such that the cumulant-generating
function of X1 is finite everywhere [27].
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5 Distinct Sets and Minimality
We return to the main topic of this work, which is determining the expected number of minimal
edges in the maximum-entropy multi-hypergraph Bn,m,p. The vertex sampling probabilities p = 0
or p = 1 result in trivial hypergraphs, we thus assume 0 < p < 1 in the remainder of this work,
unless explicitly stated otherwise. Also n, m always denote positive integers and X ∼ Bin(n, p)
a binomial variable. Under this assumptions, every subset of [n] then has a non-vanishing chance
to be sampled. Such a set is minimal for Bn,m,p if and only if it is generated in one of the trials
and no proper subset ever occurs. Both of these aspects influence the chance of minimality, but
their impact varies depending on the cardinality of the sets in question.

The number of vertices per edge is heavily concentrated around pn and the more vertices
there are in an edge, the less likely it is minimal. Intuitively speaking, almost no sets with very
low cardinalities are sampled, but if so, they are very likely included in the minimization. There
are plenty of edges with a medium number of vertices and there is still a good chance they are
minimal. Sets of high cardinality rarely occur and usually they are dominated by smaller edges.
This disparity is exacerbated by a large number of trials. Boosting m increases the probability
that also sets of cardinality a bit further away from pn are sampled, at the same time the process
now generates more duplicate sets that do not count towards the minimization. More importantly
though, the likelihood of a larger set being minimal is smaller with many trials. Eventually, the
last effect outweighs all others, creating the situation in which the only minimal edge is empty.

In this section, we make this intuition rigorous. We start by giving preliminary bounds on
the number of minimal edges as a first step towards the proof of Theorem 1. These bounds have
the form of are binomial sums of polynomials of probabilities, depending on which factors we
include in those sums, we get an upper or a lower bound. The estimates are already tight up to
constants but are rather unwieldy. They will serve as the basis for our further analysis.

Let Dn,p denote the maximum-entropy distribution on the power set P([n]) provided that
ES∼Dn,p

[ |S| ] = pn, each vertex is included independently with probability p. Let Sj ∼ Dn,p be
the outcome of the j-th trial. Define sn,p(i,m) = P[∃j ≤ m : Sj = [i] ] to be the probability that
the set [i] (in fact, any set of cardinality i) is sampled, and wn,p(i,m) = P[∀j ≤ m : ¬(Sj ( [i]) ]
as the probability that no trial ever samples a proper subset of [i].6

Lemma 20. We have sn,p(i,m) = 1−(1−pi(1−p)n−i)m and wn,p(i,m) = (1−(1−p)n−i(1−pi))m.
The following statements hold for the minimization of multi-hypergraph Bn,m,p.

(i) E[ |min(Bn,m,p)| ] ≥
∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m).

(ii) E[ |min(Bn,m,p)| ] ≤
∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m− 1).

(iii) E[ |min(Bn,m,p)| ] ≤ 1 + 1
p

∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m).

Proof. To see the closed forms of sn,p(i,m) and wn,p(i,m), observe that the random set Sj ∼ Dn,p
differs from [i] with probability 1 − pi(1 − p)n−i. The independence of the trials gives sn,p =
1− (1− pi(1− p)n−i)m. Similarly, Sj is a subset of [i] if it does not contain an element of [n]\[i],
having probability (1 − p)n−i, Conditioned on being any subset, Sj is a proper subset if it is
missing at least one element of [i]. The expression for wn,p(i,m) follows from here.

Regarding the main statements, some fixed set S ⊆ [n] is in min(Bn,m,p) if and only if it is
sampled in one of the m trials and no proper subset is sampled. The probability for both events
depends only on |S| as all sets with the same cardinality are equally likely.

E[ |min(Bn,m,p)| ] =
∑
S⊆[n]

P[(∃k ≤ m : Sk = S) ∧ (∀j ≤ m : ¬(Sj ( S))]

=
n∑
i=0

(
n

i

)
P[∃k ≤ m : Sk = [i] ] · P[∀j ≤ m : ¬(Sj ( [i]) | ∃k ≤ m : Sk = [i] ]

=
n∑
i=0

(
n

i

)
sn,p(i,m) · P[∀j ≤ m : ¬(Sj ( [i]) | ∃k ≤ m : Sk = [i] ].

6The notation sn,p refers to the set being sampled, these probabilities are then weighted by the factors wn,p.
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The last factor describes the likelihood that any set with i elements is minimal, conditioned
on it being sampled at all. The stated bounds differ only in the way this factor is estimated.
We claim it to be at least P[∀j ≤ m : ¬(Sj ( [i]) ] (that is, without the condition) while at the
same time being at most P[∀j < m : ¬(Sj ( [i]) ] (with one fewer trial). The first inequality is
obvious because conditioning on some trial producing [i] itself only increases the chances of never
sampling a proper subset. For the second one, we apply Lemma 10 to the events Aj = [Sj ( [i] ]
and Bj = [Sj = [i] ], which shows that

P[∀j ≤ m : ¬(Sj ( [i]) | ∃k ≤ m : Sk = [i] ] ≤ P[∀j ≤ m : ¬(Sj ( [i]) | Sm = [i] ].

The proof of the claim, and thereby the one of Statements (i) and (ii), is completed by the fact
that P[∀j ≤ m : ¬(Sj ( [i]) | Sm = [i] ] is equal to P[∀j < m : ¬(Sj ( [i]) ].

In order to prove Statement (iii), note that the i-th term of the sums in the first two state-
ments have a relative difference of wn,p(i,m)/wn,p(i,m−1). By independence, this is equal to
wn,p(i, 1), the probability to not sample a strict subset of [i] in a single trial. For i < n, it is easy
to see that wn,p(i, 1) ≥ p. If i = n, we have wn,p(n, 1) = pn which is sub-constant. However, the
statement follows anyway as the contribution of the last term to the whole sum is at most 1.

The part that all three bounds of Lemma 20 have in common describes the expected number
of distinct sets in Bn,m,p. Recall that we use ‖H‖ to denote the number of distinct sets of some
multi-hypergraph H. That means, we have

E[‖Bn,m,p‖ ] =
n∑
i=0

(
n

i

)
sn,p(i,m) =

n∑
i=0

(
n

i

)(
1− (1− pi(1− p)n−i)m

)
.

We weight the terms of the sum by wn,p(i,m) or wn,p(i,m−1) to estimate the size of the mini-
mization. We analyze the two parts separately, starting with the weighting factors wn,p.

The behavior of the wn,p may have applications besides our study of random hypergraphs.
Consider m trials according to the maximum-entropy distribution Dn,p on subsets of [n]. Then,
wn,p(i,m) is by definition the probability that any fixed subset of cardinality i survives as minimal
after m trials, equivalently, any proper subset is sampled with probability 1 − wn,p(i,m). It is
easy to see that weighting factors are non-increasing in both i and m. We prove next that the
weighting factors are in fact threshold functions falling abruptly from almost 1 to almost 0 as
i increases from 0 to n, the position of the transition depends on n, m, and p. Recall that
α = −(log1−pm)/n. Lemma 21 below establishes a sharp threshold behavior of wn,p(i,m) at

i∗ = n+ log1−pm = (1− α)n.

Note that i∗ is always at most n since log1−pm is non-positive. The definition is such that it
ensures the equality m = 1/(1 − p)n−i∗ = 1/(1 − p)αn. For increasing m, the threshold gets
smaller relative to n. Once m grows beyond 1/(1−p)n, i.e., α > 1, the quantity i∗ can no longer
be interpreted as a cardinality as it becomes negative. Later, in Lemma 25, we will see that m
being this large is in fact irrelevant for the analysis of the minimization.
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Lemma 21. It holds that wn,p(0,m) = 1 and wn,p(n,m) = pnm. Suppose i = i(n) takes integer
values such that 0 < i < n, then

(i) exp(−m(1− p)n−i) · (1−m(1− p)2(n−i)) ≤ wn,p(i,m) ≤ exp(−m(1− p)n−i+1).

In particular, the following statements hold.

(ii) If i = n+ log1−pm+ ω(1), then limn→∞ wn,p(i,m) = 0.

(iii) If i = n+ log1−pm− ω(1), then limn→∞ wn,p(i,m) = 1.

(iv) If i = n+ log1−pm±Θ(1), then wn,p(i,m) = Θ(1).

Proof. The corner cases are elementary. Assume 0 < i < n for the rest of the proof. We estimate
wn,p(i,m) using mainly Corollary 8. This yields

wn,p(i,m) = (1−(1−p)n−i(1−pi))m ≤ (1−(1−p)n−i(1−p))m ≤ exp
(
−m(1−p)n−i ·(1−p)

)
.

The limiting behavior is determined by the product m(1 − p)n−i. If i = n + log1−pm + ω(1),
then m(1 − p)n−i = m(1 − p)−(log1−p m)−ω(1) = (1 − p)−ω(1) diverges and the weighting factor
wn,p(i,m) converges to 0. Conversely, we get from 1− pi ≤ 1 that

wn,p(i,m) ≥ (1− (1− p)n−i)m ≥ exp
(
−m(1− p)n−i

)
· (1−m(1− p)2(n−i)).

If i = n+ log1−pm− ω(1), both m(1− p)n−i = (1− p)ω(1) and m(1− p)2(n−i) = (1− p)ω(1)/m
tend to 0, implying limn→∞ wn,p(i,m) = 1.

Finally, if the cardinality i is close to the threshold i∗ = n+log1−pm, the limit may not exist.
We show that wn,p(i,m) is still bounded away from 0 for all n. Suppose i = n + log1−pm ±
Θ(1), in particular, the difference i∗ − i is bounded. If m is constant with respect to n, so is
wn,p(i,m) ≥ (1− (1− p)n−i)m ≥ pm. Here, we used the assumption i < n. If m diverges, then
n− i = log1−pm∓Θ(1) = ω(1) diverges with it and thus

wn,p(i,m) ≥ exp
(
−m(1− p)n−i

)
(1−m(1− p)2(n−i))

= exp
(
− (1− p)i

∗−i
)
· (1− (1− p)(i∗−i)+(n−i)) = Ω(1).

After demonstrating a sharp threshold for the weighting factors, we turn to the number of
distinct sets ‖Bn,m,p‖. A trivial cap for distinct sets is the total number of edges m. When
starting the sampling, many different sets are generated and ‖Bn,m,p‖ is close to m. As the
number of trials increases though, duplicates occur in the sample and the two quantities grow
apart. To discuss this in more detail, we introduce some notation. For a pair of integers `, u
with 0 ≤ ` ≤ u ≤ n, let ‖Bn,m,p(`, u)‖ denote the number of distinct samples whose cardinality
is between ` and u, including. This is also at most as large as the total number of samples in
that range. It thus makes sense to expect an upper bound in terms of the binomial distribution.
We confirm this below and further prove that there is also a lower bound of the same flavor.

Lemma 22. Let `, u be integers such that 0 ≤ ` ≤ u ≤ n and p = max`≤i≤u {pi(1− p)n−i }, then

p =


p`(1− p)n−`, if p < 1/2;
1/2n, if p = 1/2;
pu(1− p)n−u, otherwise.

The expected number of distinct sets in Bn,m,p with cardinality between ` and u observes

m

1 +mp · P[` ≤ X ≤ u ] ≤ E[‖Bn,m,p(`, u)‖ ] ≤ m · P[` ≤ X ≤ u ].
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Proof. The closed form for p can be seen from the equality pi(1− p)n−i = (p/(1− p))i · (1− p)n
since the odds p/(1 − p) are strictly smaller than 1 iff p < 1/2. For the number of distinct sets
in Bn,m,p(`, u), Lemma 9 implies that

E[‖Bn,m,p(`, u)‖ ] =
u∑
i=`

(
n

i

)
(1− (1− pi(1− p)n−i)m) ≤ m ·

u∑
i=`

(
n

i

)
pi(1− p)n−i.

Conversely, we have

E[‖Bn,m,p(`, u)‖ ] ≥
u∑
i=`

(
n

i

)
mpi(1− p)n−i

1 +mpi(1− p)n−i ≥
m

1 +mp ·
u∑
i=`

(
n

i

)
pi(1− p)n−i.

6 Size of the Minimization
We now prove the main theorems with the help of the tools above. The key observation is that
the minimization is dominated by the sets with cardinalities around i∗ = n+log1−pm = (1−α)n.

6.1 Binomial Characterization
Theorem 1 establishes a close connection between the expected size E[ |min(Bn,m,p)| ] of the
minimization and the binomial distribution. We split its proof into three lemmas corresponding,
in that order, to the lower bound in the first statement of the theorem, the tight upper bound,
and the second statement.

Note that the following lemma is slightly more general than what is claimed in Theorem 1 (i).
It pertains to all m ≤ 1/(1− p)n, equivalently, it does not require α to be bounded away from 1.

Lemma 23 (Lower bound of Theorem 1 (i)). For all m ≤ 1/(1− p)n, i.e., all 0 ≤ α ≤ 1, it holds
that E[ |min(Bn,m,p)| ] = Ω(m) · P[X ≤ i∗ ].

Proof. The sought expectation is at least as large as the number of distinct minimal sets up to
some cardinality i, for an arbitrary choice of i ≤ n. As an ansatz, we set it equal to the threshold
i∗ = n + log1−pm = (1 − α)n. Without loosing generality, i∗ is an integer; otherwise, we take
bi∗c. Note that the assumptionm ≤ 1/(1−p)n ensures i∗ ≥ 0. Let p = max0≤i≤i∗{pi(1−p)n−i }.
Lemmas 20 (i) and 22 imply

E[ |min(Bn,m,p)| ] ≥
i∗∑
i=0

(
n

i

)
sn,p(i,m) · wn,p(i,m) ≥

i∗∑
i=0

(
n

i

)
sn,p(i,m) · wn,p(i∗,m)

= E[‖Bn,m,p(0, i∗)‖ ] · wn,p(i∗,m) ≥ 1
1 +mp · wn,p(i

∗,m) ·mP[X ≤ i∗ ].

To complete the proof, we verify that the first two factors do not vanish. The first factor is
immediate from the closed form for p (Lemma 22) since mp = max0≤i≤i∗{mpi(1 − p)n−i} ≤
max{1, pi∗} = 1. Lemma 21 (i) shows that there exists a universal constant δ > 0 for all
m ≤ 1/(1− p)n such that w(i∗,m) ≥ δ.

Lemma 24 (Upper bound of Theorem 1 (i)). For any ε > 0 and all m ≤ 1/(1− p)(1−ε)n, i.e., all
0 ≤ α ≤ 1− ε, E[ |min(Bn,m,p)| ] = O(m) · P[X ≤ i∗ ]. The leading constant may depend on ε.

Proof. We know that E[ |min(Bn,m,p)| ] ≤
∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m − 1). We split the sum

at the threshold i∗ = (1 − α)n and handle the two parts separately. The assumption on m is
such that i∗ ≥ εn. For the first part, Lemma 22 implies

i∗∑
i=0

(
n

i

)
sn,p(i,m) · wn,p(i,m− 1) ≤ E[‖Bn,m,p(0, i∗)‖ ] ≤ m · P[X ≤ i∗ ].

For cardinalities larger than i∗, we can no longer ignore the influence of the weighting factors.
We show that the whole second part of the sum is within constant factors of m ·P[X = i∗ ]. Let
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` ≤ n − i∗ be a positive integer. Consider the (i∗+`)-th term. If ` = n − i∗ this is the last one
and contributes at most 1. Assume ` < n − i∗. As in the proof of Lemma 22, we see that the
term is upper-bounded by m · P[X = i∗ + ` ] · wn,p(i∗+`,m). Dividing by m · P[X = i∗ ] gives(

n
i∗+`

)
sn,p(i∗ + `,m) · wn,p(i∗ + `,m− 1)

m P[X = i∗ ] ≤ mP[X = i∗ + ` ]
mP[X = i∗ ] · wn,p(i∗ + `,m− 1)

=
(
n

i∗+`
)(

n
i∗

) (
p

1− p

)`
wn,p(i∗ + `,m− 1).

The first factor is bounded for any fixed `, using α ≤ 1− ε.(
n

i∗+`
)(

n
i∗

) =
∏̀
j=1

n− i∗ − j + 1
i∗ + j

≤
(
n− i∗

i∗

)`
=
(

α

1− α

)`
≤ 1
ε`
.

Applying Lemma 21 (i) and the same idea as in Lemma 20 (iii) to the weighting factor yields

wn,p(i∗ + `,m− 1) = wn,p(i∗ + `,m− 1)
wn,p(i∗ + `,m) · wn,p(i∗ + `,m)

≤ 1
p

exp(−m(1− p)n−i
∗−`+1) = 1

p
exp(−(1− p)−`+1).

Here, we used ` < n− i∗, ensuring that the ratio between subsequent factors is a constant.
Define a = p/ε(1− p) and b = 1/(1− p). So far, we have established that the ratio between

the term at i∗ + ` and m · P[X = i∗ ] is at most

r(`) = 1
p

a`

exp(b`−1) .

The function r itself is free of any dependence on n, m, or α, but in order to prove our claim, we
need to bound the sum 1+

∑n−i∗−1
`=1 r(`). We show that the series

∑∞
`=1 r(`) is in fact summable.

To this end, consider the sequence t(`) = r(`) · 2`. Its logarithm ln t = ` ln(2a)− ln p− b`−1

diverges to−∞ as ` increases, implying t→ 0. This means, there exists an `0 such that r(`) ≤ 2−`
for all ` ≥ `0.

∞∑
`=1

r(`) ≤
`0∑
`=1

a`

p · exp(b`−1) +
∞∑

`=`0+1

1
2` ≤

`0∑
`=1

a`

p · exp(b`−1) + 2 = O(1).

Finally, we show that once m is a polynomial factor larger than 1/(1− p)n, the minimization
essentially consists of only a single edge, the empty set.

Lemma 25 (Theorem 1 (ii)). There exists a constant c > 0, possibly dependent on p, such that
for all m ≥ 1/(1− p)n+c lnn, it holds that 1 ≤ E[ |min(Bn,m,p)| ] = 1 + o(1).

Proof. The lower bound is immediate. Suppose we have m = 1/(1 − p)n+f for some non-
negative function f = f(n). As soon as the empty set is sampled in one of the m trials, the
minimization of Bn,m,p comprises only a single set; otherwise, we fall back to the trivial estimate
|min(Bn,m,p)| ≤ m. Let A denote the event [∅ ∈ Bn,m,p]. The law of total expectation together
with Corollary 8 implies that

E[ |min(Bn,m,p)| ] = E[ |min(Bn,m,p)| | A] · P[A] + E[ |min(Bn,m,p)| | ¬A] · P[¬A]
≤ P[A] +m · (1− (1− p)n)m ≤ 1 + exp(lnm−m(1− p)n)
= 1 + exp

(
lnm− (1− p)−f

)
.

We have lnm = − ln(1−p)(n+f), where − ln(1−p) is a constant strictly larger than 1. Requiring
f ≥ c′ (lnn)/(− ln(1 − p)) for some arbitrary c′ > 1 ensures that lnm is negligible compared to
(1−p)−f and the expression above converges to 1. Setting c = −c′/ ln(1−p) gives the lemma.
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6.2 The Case m = 1/(1 − p)n

There is a mismatch in the upper and lower bounds above in the range of parameters for which
they hold. The lower bound has been shown for the full range of m = 1/(1− p)αn ≤ 1/(1− p)n,
this includes the case where the function α(n) converges to 1. We get from Lemma 23 that
E[ |min(Bn,m,p)| ] = Ω(1) if α = 1 (for all n sufficiently large). This is not very surprising as
already the the definition of min(Bn,m,p) guarantees the existence of at least one minimal edge.
The upper bound in Lemma 24 is more interesting. It only has been proven for α ≤ 1−ε for any
ε > 0. If instead we were to insert, say, α = 1−o(1/n), which corresponds to m = 1/(1−p)n−o(1),
we would get P[X ≤ (1 − α)n ] = P[X = 0] = (1 − p)n and the result would default to O(1).
We refute this below. Contrarily, we prove a lower bound for α = 1 that is stronger than the
inherited one. This shows that the binomial characterization breaks down if α converges to 1.

Lemma 26. For m = 1/(1− p)n, i.e., α = 1, it holds that E[ |min(Bn,m,p)| ] = Ω(n).

Proof. We extend the idea of the proof of Lemma 25. If none of the m trials produces the empty
set, then all distinct sampled singletons are minimal.

E[ |min(Bn,m,p)| ] ≥ E[‖Bn,m,p(1, 1)‖ ] · P[∅ /∈ Bn,m,p] = n · sn,p(1,m) · (1− sn,p(0,m)).

We show that the product sn,p(1,m)(1 − sn,p(0,m)) is bounded away from 0 for all n. From
Corollary 8, Lemma 9, and the assumption m = 1/(1− p)n, it follows that

sn,p(1,m) = 1− (1− p(1− p)n−1)m ≥ mp(1− p)n−1

1 +mp(1− p)n−1 = p.

For the second factor, we have

1− sn,p(0,m) = (1− (1− p)n)m ≥ exp(−m(1− p)n) · (1−m(1− p)2n) = 1− (1− p)n

e
.

Lemmas 25 and 26 together show that a slight polynomial increase (in n) of the number
of trials beyond 1/(1 − p)n is enough to push the size of the minimization from at least linear
to 1. We leave it as an open problem to give exact bounds for the transitional behavior of
|min(Bn,m,p)| around m = 1/(1− p)n, i.e., α = 1.

6.3 Phase Transition at m = 1/(1 − p)(1−p)n

We show that the size of the minimization undergoes a phase transition at m∗ = 1/(1−p)(1−p)n.
This is made explicit in Theorem 2 (restated below) and illustrated in Figure 1. Intuitively,
for a small number of edges, the ratio of minimal edges among all edges is constant and thus
|min(Bn,m,p)| scales linearly with m. At the transition point, both the size of the multi-
hypergraph as well as its minimization are of order m∗ = 1/(1 − p)(1−p)n = 2(H(1−p)+p ld p)n.
This overlap is indicated in Figure 1b by dashed lines. Beyond that, in the information-
theoretic regime, the size of the minimization is instead given by the perplexity of α, it follows
2(H(α)+(1−α) ld p)n up to polynomial factors. To gauge the transition more accurately, we reuse
the correction term ϕ = ϕ(n, p, 1− α) from Section 4. Close to the transition, for α ≈ 1− p, we
have ϕ ≈ 1. As α moves further away, ϕ is shrinking and once there is a constant additive gap
between α and 1 − p it is of order ϕ = Θ(1/

√
n). In summary, our results for the information-

theoretic regime show that the growth of |min(Bn,m,p)| continues at first after the transition, but
is now only sublinear in m. The minimization peaks at m = 1/(1 − p)

n
1+p (see Lemma 27) and

for larger m, the number of minimal edges is even falling exponentially, although the number of
trials further increases. Once m exceeds 1/(1− p)n, the minimization collapses under the sheer
likelihood of the empty set being sampled.

Theorem 2 (restated). Let n, m be positive integers and 0 < p < 1 a non-trivial probability.

(i) If m ≤ 1/(1− p)(1−p)n, then E[ |min(Bn,m,p)| ] = Θ(m).
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(ii) For any ε > 0 and all 1/(1− p)(1−p)n ≤ m ≤ 1/(1− p)(1−ε)n, i.e., all 1− p ≤ α ≤ 1− ε,

E[ |min(Bn,m,p)| ] = Θ(1) ·min
(

1, 1
(α− (1− p))

√
(1−α)n

)
· 2(H(α)+(1−α) log2 p)n

= Θ(1) ·min
(

1, 1
(α− (1− p))

√
(1−α)n

)
·
(

p1−α

(1− α)1−α αα

)n
.

Proof. The first statement covers the linear regime of m ≤ 1/(1−p)(1−p)n. By the binomial char-
acterization in Theorem 1, we have E[ |min(Bn,m,p)| ] = Θ(m) · P[X ≤ i∗ ], with X ∼ Bin(n, p).
It is thus enough to verify that P[X ≤ i∗] = P[X ≤ (1 − α)n ] does not converge to 0. This
follows easily from α ≤ 1− p and pn being the median of the binomial distribution.

In the remainder, we treat the information-theoretic regime of allm such that 1/(1−p)(1−p) ≤
m ≤ 1/(1 − p)(1−ε)n for some fixed ε > 0. In particular, (1 − α)n is now smaller than E[X].
Recall the definition of function ϕ from Section 4, inserting 1− α for x gives

ϕ = ϕ(n, p, 1−α) = min
(

1, 1
(α− (1− p))

√
(1− α)n

)
.

Our improved Chernoff–Hoeffding bound (Theorem 3) implies E[ |min(Bn,m,p)| ] = Θ(m) · ϕ ·
2−D(1−α ‖ p)n. Expressing the (the power of) the divergence in terms of the perplexity, and using
H(1− α) = H(α) as well as m = 1/(1− p)αn, shows that this is equal to

Θ(1) · ϕ ·m 2−D(1−α ‖ p)n = Θ(1) · ϕ · 1
(1− p)αn 2H(1−α)n p(1−α)n (1− p)αn

= Θ(1) · ϕ · 2(H(α)+(1−α) ld p)n.

The behavior of the minimization for increasing m suggests that there is a sweet spot in
the information-theoretic regime where the expected number of minimal edges is maximum. We
apply Theorem 2 to calculate this maximum.

Lemma 27. The maximum expected number of minimal edges is maxm≥1 E[ |min(Bn,m,p)| ] =
Θ((1 + p)n/

√
n), it is attained for m = 1/(1− p)

n
1+p .

Proof. We first verify that that the maximum indeed sits in the information-theoretic regime.
Observe that 1/(1− p)1−p < 1 + p holds for all non-trivial probabilities p. This can be seen from
1/(1− p)1−p being strictly concave on the open unit interval and 1 + p being its tangent line at
p = 0. Theorem 2 (i) shows that the sample sizes in the linear regime are too small to lead to the
claimed bound of Θ∗((1 + p)n). Moreover, 2H(α)+(1−α) ld p as a function of α is continuous and
concave, it converges to 2H(1−p)+p ld p = 1/(1 − p)(1−p) as α ↘ 1 − p (for any p). Hence, there
exists some δ > 0 small enough such that 2H(1−p+δ)+(p−δ) ld p < 1 + p. Similarly, the function
converges to 1 from above as α ↗ 1. Let ε > 0 be such that 2H(1−ε)+ε ld p < 1 + p. In other
words, any bound exponential in 1 + p must come from an α ∈ [1− p+ δ, 1− ε], we are in the
setting of Theorem 2 (ii).

There are suitable constants C,C ′ > 0 such that

C · ϕ · 2(H(α)+(1−α) ld p)n ≤ E[ |min(Bn,m,p)| ] ≤ C ′ · ϕ · 2(H(α)+(1−α) ld p)n.

As α is bounded away from both 1 − p and 1, we have ϕ = Θ(1/
√
n) and the hidden constants

are independent of α (but possibly depending on δ and ε). We are thus left to determine the
extremum of the exponential part. Let

g(α, p) = H(α) + (1− α) ld p = −α ldα− (1− α) ld(1− α) + (1− α) ld p

be the exponent to base 2n of the expression above. Its partial derivative

∂

∂α
g(α, p) = ld

(
1− α
α

)
− ld p
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has a single zero in the interval [1− p+ δ, 1− ε] at α∗ = 1/(1 + p), resulting in an exponent of

g(α∗, p) = − 1
1 + p

ld
(

1
1 + p

)
− p

1 + p
ld
(

p

1 + p

)
+ p

1 + p
ld p = ld(1 + p).

7 Conclusion
We calculated the number of minimal edges of maximum-entropy multi-hypergraphs with ex-
pected edge size pn and discovered a phase transition with respect to the total number of edges.
As long as m is at most m∗ = 1/(1− p)(1−p)n, the expected size of the minimization is linear in
m. Once the sample size increases beyond that point, the minimization is instead governed by
the entropy of α where m = 1/(1− p)αn. The minimization continues to grow sublinearly until
m reaches 1/(1 − p)

n
1+p , from there on, it decays rapidly. Raising m above 1/(1 − p)n finally

ensures that only the empty set is minimal.
The Chernoff–Hoeffding theorem played an integral role in verifying these results. We tight-

ened the tail bounds on the binomial distribution and provided explicit upper and lower bounds
on the constants involved. We are convinced that this improvement can help other researchers
in probability well beyond the scope of this paper.

A possible extension of our work would be to generalize Theorem 1 to the case where α
converges to 1 as n increases. It is also interesting to investigate hypergraph models for which
the sampling probability p is no longer constant, but tends to 0. This would bring the study of
random hypergraphs closer to that of sparse random graphs. Finally, a promising direction in the
light of our original motivation of relational databases is to allow different sample probabilities
per vertex as well as dependencies between the elements. This requires the maximum-entropy
model to incorporate additional constraints.
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