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ABSTRACT
Unique column combinations (UCCs) are a fundamental con-
cept in relational databases. They identify entities in the
data and support various data management activities. Still,
UCCs are usually not explicitly defined and need to be dis-
covered. State-of-the-art data profiling algorithms are able
to efficiently discover UCCs in moderately sized datasets,
but they tend to fail on large and, in particular, on wide
datasets due to run time and memory limitations.
In this paper, we introduce HPIValid, a novel UCC discov-

ery algorithm that implements a faster and more resource-
saving search strategy. HPIValid models the metadata dis-
covery as a hitting set enumeration problem in hypergraphs.
In this way, it combines efficient discovery techniques from
data profiling research with the most recent theoretical in-
sights into enumeration algorithms. Our evaluation shows
that HPIValid is not only orders of magnitude faster than
related work, it also has a much smaller memory footprint.
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1. INTRODUCTION
Keys are among the most fundamental type of constraint in
relational database theory. A key is a set of attributes whose
values uniquely identify every record in a given relational in-
stance. This uniqueness property is necessary to determine
entities in the data. Keys serve to query, link, and merge
entities. A unique column combination (UCC) is the obser-
vation that in a given relational instance a certain set of at-
tributes S does not contain any duplicate entries. In other
words, the multiset projection of schema R on S contains
only unique entries. Because UCCs describe attribute sets
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that fulfill the necessary properties of a key, whereby null
values require special consideration, they serve to define key
constraints and are, hence, also called key candidates.
In practice, key discovery is a recurring activity as keys are

often missing for various reasons: on freshly recorded data,
keys may have never been defined, on archived and transmit-
ted data, keys sometimes are lost due to format restrictions,
on evolving data, keys may be outdated if constraint en-
forcement is lacking, and on fused and integrated data, keys
often invalidate in the presence of key collisions. Because
UCCs are also important for many data management tasks
other than key discovery, such as anomaly detection, data
integration, data modeling, query optimization, and index-
ing, the ability to discover them efficiently is crucial.
Data profiling algorithms automatically discover meta-

data, like unique column combinations, from raw data and
provide this metadata to any downstream data management
task. Research in this area has led to various UCC discovery
algorithms, such as GORDIAN [34], HCA [2], DUCC [22], Swan [3],
and HyUCC [33]. Out of these algorithms, only HyUCC can
process datasets of multiple gigabytes in size in reasonable
time, because it combines the strengths of all previous algo-
rithms (lattice search, candidate inference, and paralleliza-
tion). At some point, however, even HyUCC fails to process
certain datasets, because the approach needs to maintain an
exponentially growing search space in main memory, which
eventually either exhausts the available memory or, due to
search space maintenance, the execution time.
There is a close connection between the UCC discovery

problem and the enumeration of hitting sets in hypergraphs.
Hitting set-based techniques were among the first tried for
UCC discovery [29] and still play a role today in the form of
row-based algorithms. To utilize the hitting set connection
directly, one needs to feed the algorithm with information on
all pairs of records of the database [1, 35]. This is prohibitive
for larger datasets due to the quadratic scaling.
In this paper, we propose a novel approach that automat-

ically discovers all unique column combinations in any given
relational dataset. The algorithm is based on the connec-
tion to hitting set enumeration, but additionally uses the
key insight that most of the information in the record pairs
is redundant and that the following strategy of utilizing the
state-of-the-art hitting set enumeration algorithm MMCS [31]
finds the relevant information much more efficiently. We
start the discovery with only partial (or even no) informa-
tion about the database. Due to this lack of information, the



resulting solution candidates might not actually be UCCs. A
validation then checks whether the hitting set is a true UCC.
If not, the validation additionally provides a reason for its
incorrectness, pointing directly to the part of the database
that MMCS needs to avoid the mistake. Moreover, we show
that all previous decisions of MMCS would have been exactly
the same, even if MMCS had full information about all row
pairs of the database. Thus, our new approach can include
the new information on the fly and simply resume the enu-
meration where it was before. Instead of providing full and
probably redundant information about the database to the
enumeration subroutine, the enumeration decides for itself
which information is necessary to make the right decisions.
Due to its hitting set-based nature, we named our algo-
rithm Hitting set enumeration with Partial Information and
Validation, HPIValid for short. Our approach adopts state-
of-the-art techniques from both data profiling and hitting
set enumeration bringing together the two research commu-
nities. We add the following contributions:
(1) UCC discovery. We introduce HPIValid, a novel UCC

discovery algorithm that outperforms state-of-the-art al-
gorithms in terms of run time and memory consumption.

(2) Hitting set enumeration with partial information. We
prove that the hitting set enumeration algorithm MMCS
remains correct when run on a partial hypergraph, pro-
vided that there is a validation procedure for candidate
solutions. We believe that this insight can be key to
also solve similar task like the discovery of functional
dependencies or denial constraints.

(3) Subset closedness. We introduce the concept of subset
closedness of hitting set enumeration algorithms, and
prove that this property is sufficient for enumeration
with partial information to succeed. This makes it easy
to replace MMCS with a different enumeration procedure,
as long as it is also subset-closed.

(4) Sampling strategy. We propose a robust strategy how
to extract the relevant information from the database
efficiently in the presence of redundancies.

(5) Exhaustive evaluation. We evaluate our algorithm on
dozens of real-world datasets and compare it to the cur-
rent state-of-the-art UCC discovery algorithm HyUCC.

Besides being able to solve instances that were previously
out of reach for UCC discovery, HPIValid is up to three
orders of magnitude faster than a non-parallel running HyUCC
and has a smaller memory footprint.
The requirement of subset closedness makes our novel al-

gorithm harder to parallelize, but offers a much more re-
source and environmentally friendly run time profile. We
focus on the discovery of minimal UCCs, from which all
UCCs can easily be inferred by simply adding arbitrary.
Next, we present related work in Section 2. Section 3 intro-
duces the paradigm of hitting set enumeration with partial
information and how to apply it to UCC discovery. Section 4
describes the components of HPIValid, in Section 5 we eval-
uate our algorithm. We conclude the paper in Section 6.

2. RELATED WORK
Due to the importance of keys in the relational data model,
much research has been conducted on finding keys in a given
relational instance. Early research on key discovery, such
as [16], is in fact almost as old as the relational model it-
self. Beeri et al. have shown that deciding whether there

exists a key of cardinality less than a given value in a given
relational instance is an NP-complete problem [5]. More-
over, the discovery of a key of minimum size in the database
is also likely not fixed-parameter tractable as it is W [2]-
complete when parameterized by the size [18]. Finding all
keys or unique column combinations is computationally even
harder. For this reason, only few automatic data profiling
algorithms exist that can discover all unique column combi-
nations. The discovery problem is closely related to the enu-
meration of hitting sets (a.k.a. the transversal hypergraph
problem, frequent itemset mining, or monotone dualization,
see [15]). Many data profiling algorithms, including the first
UCC discovery algorithms, rely on the hitting sets of certain
hypergraphs; the process of deriving complete hypergraphs,
however, is a bottleneck in the computation [30].
In modern data profiling, one usually distinguishes two

types of profiling algorithms: row and column-based ap-
proaches. For a comprehensive overview and detailed dis-
cussions of the different approaches, we refer to [1] and [28].
Row-based algorithms, such as GORDIAN [34], advance the
initial hitting set idea. They compare all records in the
input dataset pair-wise to derive all valid, minimal UCCs.
Column-based algorithms, such as HCA [2], DUCC [22], and
Swan [3], in contrast, systematically enumerate and test in-
dividual UCC candidates while using intermediate results
to prune the search space. The algorithms vary mostly in
their traversal strategies, which are breadth-first bottom-up
for HCA and a depth-first random-walk for DUCC. Both row
and column-based approaches have their strengths: record
comparisons scale well with the number of attributes, and
systematic candidate tests scale well with the number of
records. Hybrid algorithms aim to combine both aspects.
The one proposed in [25] exploits the duality between mini-
mal difference sets and minimal UCCs to mutually grow
the available information about the search and the solution
space. HyUCC [33] switches between column and row-based
parts heuristically whenever the progress of the current ap-
proach is low. Hyb [35] is a hybrid algorithm for the discovery
of embedded uniqueness constraints (eUCs), an extension of
UCCs to incomplete data. It proposes special ideas tailored
to incomplete data, but is based on the same discovery ap-
proach as HyUCC. All three algorithms share the caveat of a
large memory footprint, HyUCC and Hyb need to store all dis-
covered UCCs or eUCs during computation, the algorithm
in [25] additionally tracks their minimal hitting sets.
Our algorithm HPIValid also implements a hybrid strat-

egy, but instead of switching in level transitions, the column-
based part of the algorithm enumerates preliminary solu-
tions on partial information. The validation of those solu-
tion candidates then points to areas of the database where
focused sampling can reveal new information. We show that
this partial information approach succeeds to find all UCCs
as if the row-based approach had been applied exhaustively.
Similar to [25], the duality with the hitting sets problem is
employed to find new relevant difference sets. However, the
tree search with validation allows us to compute them with-
out the need of holding all previous solutions in memory.
Regarding the transversal hypergraph problem, Demetro-

vics and Thi [14] as well as Mannila and Räihä [29], in-
dependently, were the first to pose the task of enumerat-
ing all minimal hitting sets of a hypergraph. Interestingly,
both raised the issue in the context of databases as they em-
ployed hitting sets in the discovery of hidden dependencies



between attributes. It was shown much later that also every
hitting set problem can be translated into the discovery of
UCCs in certain dataset, making the two problems equiva-
lent [18]. Hypergraphs stemming from real-world databases
are known to be particularly suitable for enumeration [10].
The applications of minimal hitting sets have grown far be-
yond data profiling to domains such as data mining, bioin-
formatics and AI. We refer the reader to the surveys [15,
19] for an overview. MMCS is currently the fastest hitting set
enumeration algorithm on real-world instances, see [19].

3. HITTING SET ENUMERATION
WITH PARTIAL INFORMATION

There is an intimate connection between unique column
combinations in relational databases and hitting sets in hy-
pergraphs [1, 7, 13, 18, 25]. Intuitively, when comparing any
two records of the database, a UCC must contain at least
one attribute in which the records disagree, otherwise, they
are indistinguishable. When viewing these difference sets of
record pairs as edges of a hypergraph, its hitting sets cor-
respond exactly to the UCCs of the database. This implies
a two-step approach for UCC enumeration. First, compute
the difference sets of all record pairs, and then apply one of
the known algorithms for hitting set enumeration.
The enumeration step is generally a hard problem. How-

ever, the hypergraphs generated from real-world databases
are usually well-behaved and allow for efficient enumera-
tion [9, 10]. In fact, the bottleneck of the above approach
is to compute all difference sets rather than the enumera-
tion [10]. This observation contrasts sharply with the theo-
retical running time bounds, which are exponential for the
hitting sets but polynomial for the difference sets [17].
The core idea of our algorithm is the following: We first

sample a few record pairs and compute their difference sets.
This gives us a partial hypergraph, which might be missing
some edges. However, we pretend for now that we already
have the correct hypergraph and start the hitting set enu-
meration. Due to the partial information, the candidate so-
lutions we find are no longer guaranteed to be UCCs. Thus,
whenever we find a hitting set, we use validation to check
whether it is a UCC of the original database. If not, we
know that the partial hypergraph is in fact incomplete. In
this case, the validation procedure provides new row pairs
whose difference sets yield yet unknown edges. In a very
simple approach, one could then include the new informa-
tion and restart the enumeration with the updated hyper-
graph. This is repeated until the validation certifies that
every hitting set we find is indeed a UCC.
To prove that this approach is successful, one needs to

show that we obtain the true hypergraph until the algo-
rithm terminates. Intuitively, this comes from the fact that
missing edges in the partial hypergraph make the instance
less constraint, meaning that the lack of information might
lead to some unnecessary hitting sets, which are rejected by
the validation, but the true UCCs are already present.
In the remainder of this section, we actually prove the

much stronger statement that we can even eliminate the
need of restarts. The crucial concept in the proofs is min-
imality: a hitting set is minimal, if no proper subset inter-
sects all edges; a UCC is minimal if it contains no strictly
smaller valid UCC. First, we show the correctness of our al-
gorithm. If the validation procedure asserts that a minimal

hitting set of the partial hypergraph is a UCC, then it must
also be a minimal UCC. Even though we cannot be sure
that we have all relevant information yet, we can already
start returning the found solution to the user. Secondly, we
show completeness, meaning that we indeed found all mini-
mal UCCs once the algorithm terminates. Thirdly, we define
what it means for an enumeration algorithm to be subset-
closed. We then show that subset-closed algorithms do not
need to be restarted on a failed validation. Instead, they
can simply resume the enumeration with an updated partial
hypergraph. Finally, we note that the MMCS [31] algorithm
we use to enumerate hitting sets is indeed subset-closed.
Before we prove these results, we introduce some notation

and our null semantics in Section 3.1. A detailed description
of HPIValid can be found in Section 4.

3.1 Notation and Null Semantics
Hypergraphs and hitting sets. A hypergraph is a finite ver-
tex set V together with a system of subsets H⊆P(V ), the
(hyper-)edges. We identify a hypergraph with its edgeset H.
H is a Sperner hypergraph if none of its edges is properly con-
tained in another. The minimization of H is the subsystem
of inclusion-wise minimal edges, min(H). For hypergraphs
H and G, we write H ≺ G if every edge of H contains an
edge of G. This is a preorder, i.e., ≺ is reflexive and transi-
tive. On Sperner hypergraphs, ≺ is also antisymmetric. A
transversal or hitting set for H is a subset T ⊆ V of vertices
such that T has a non-empty intersection with every edge
E ∈ H. A hitting set is (inclusion-wise) minimal if it does
not properly contain any other hitting set. The minimal
hitting sets for H form the transversal hypergraph Tr(H).
Tr(H) is always Sperner. For the transversal hypergraph, it
does not make a difference whether the full hypergraph is
considered or its minimization, Tr(min(H)) = Tr(H). Also,
it holds that Tr(Tr(H)) = min(H).
Relational databases. A relational schema R is a finite set
of attributes or columns. A record or row is a tuple whose
entries are indexed by R, a (relational) database r (over R)
is a finite set of such rows. For any row r ∈ r and any subset
S ⊆ R of columns, r[S] denotes the subtuple of r projected
on S and r[a] is the value of r at attribute a.
For any two rows r1, r2 ∈ r, r1 6= r2, their difference set
{a ∈ R | r1[a] 6= r2[a]} is the set of attributes in which the
rows have different values. We denote the hypergraph of
minimal difference sets by D. A unique column combination
(UCC) is a subset S ⊆ R of attributes such that for any two
rows r1, r2, there is an attribute a ∈ S such that r1[a] 6=
r2[a]. A UCC is (inclusion-wise) minimal if it does not
properly contain any other UCC. The (minimal) UCCs are
exactly the (minimal) hitting sets of D. Listing all minimal
UCCs is the same as enumerating Tr(D).
Null semantics. Relational data may exhibit null values (⊥)
to indicate no value [21]. This is an issue for the UCC vali-
dation procedure, because it needs to know how null values
compare to other values including other null values. In this
work, we follow the pessimistic null comparison semantics
of related work [2, 3, 22, 33, 34], which defines that null =
null and null 6= v for any non-null value v. More precise
interpretations of null values for UCCs use possible world
and certain world models [24], leading to specialized UCC
definitions and discovery approaches [35]. In general, null
semantics are an ongoing line of research [1, 4, 26], but not
the focus of this study, hence the practical definition.



3.2 Correctness and Completeness
We need two things to show that the restart approach in-
deed enumerates the minimal UCCs of a database: first, an
effective validation whether a minimal hitting set for the
partial hypergraph is also a minimal UCC, and, secondly,
the assertion that once the enumeration does not produce
any more new edges, we have indeed found all UCCs. We
do so by showing a general result about hypergraphs that
yields the two assertions as corollaries. This lemma is of
independent interest for hypergraph theory.

Lemma 1. For any two hypergraphs H and G, we have
H ≺ G if and only if Tr(H) � Tr(G).

Proof. First, let T ∈ Tr(G) be a minimal hitting set
for G. If every edge of H contains some edge of G, T is
also a hitting set for H. T may not be minimal in that
regard but it contains some minimal transversal from Tr(H).
Tr(H) � Tr(G) follows from here.
For the other direction, the very same argument shows

that Tr(H) � Tr(G) implies Tr(Tr(H)) ≺ Tr(Tr(G)), this is
equivalent to min(H) ≺ min(G). The proof is completed by
applying the transitivity of the preorder ≺ and the two facts
H ≺ min(H) and min(G) ≺ G.

Recall that D denotes the collection of minimal difference
sets of some database and that Tr(D) are the minimal UCCs.
Let P be the current partial hypergraph consisting of the
difference sets sampled so far. It may contain difference
sets that are not globally minimal (or not even minimal in
P), i.e., P * D. Nevertheless, we always have P ≺ D,
because every difference set contains a minimal difference
set. Tr(P) consists of the minimal hitting sets of the partial
hypergraph. These are the candidates for validation.

Corollary 1. A minimal hitting set for a partial hyper-
graph is a minimal UCC if and only if it is any UCC.

Proof. The implication from minimal UCC to any UCC
is trivial. For the opposite direction, let T ∈ Tr(P) be
a hitting set for the partial hypergraph such that T is a
UCC of the database. T thus contains some minimal UCC
T ′ ∈ Tr(D). P ≺ D holds and Lemma 1 shows that there ex-
ists some hitting set E ∈ Tr(P) such that E ⊆ T ′. As Tr(P)
is a Sperner hypergraph, we must have T = E ⊆ T ′ ⊆ T .
All three sets are the same, T itself is the minimal UCC.

Corollary 2. If the enumeration of hitting sets for the
partial hypergraph does not produce a new edge, we have
indeed found all minimal UCCs.

Proof. If no call to the validation reveals a new unhit
edge, we have reached the state Tr(P) ⊆ Tr(D). We need
to show that this is sufficient for Tr(P) = Tr(D). The pre-
order ≺ generalizes set inclusion, thus Tr(P) ⊆ Tr(D) im-
plies Tr(P) ≺ Tr(D). Also, P ≺ D gives Tr(P) � Tr(D) via
Lemma 1. Now Tr(P) = Tr(D) follows from the antisym-
metry of ≺ on Sperner hypergraphs.

3.3 Forgoing Restarts
Restarting the enumeration every time we discover a new
unhit edge is obviously not ideal. The main obstacle to sim-
ply resuming the work with the updated hypergraph is the
risk of overlooking solutions that are minimal UCCs of the
database but not minimal hitting sets of the partial hyper-
graph. This is because past decisions may lock the algorithm

out of regions in which the new update reveals undiscovered
solutions. Next, we give a sufficient condition for overcom-
ing these obstacles. Any algorithm that meets the condition
can therefore be combined with our sampling scheme to solve
the UCC problem without any restarts.
A hitting set enumeration method can be seen as a means

to decide, at least implicitly, for vertex sets whether they are
minimal hitting sets or not. We call an algorithm subset-
closed if this decision is never made for a set before it is
made for all of its subsets. Note that this does not mean
that the algorithm needs to check every subset explicitly.

Lemma 2. Any subset-closed hitting set enumeration al-
gorithm combined with a sampling scheme and validation
discovers all minimal UCCs of a database without restarts.

Proof. We claim that a subset-closed algorithm does not
overlook any minimal UCC, even if this solution is only re-
vealed by some later update of the partial hypergraph P.
Recall that the transversal hypergraph Tr(D) contains ex-
actly the minimal UCCs. To reach a contradiction, assume
that the claim is false and let solution T ∈ Tr(D)\Tr(P)
be such that T corresponds to a node in the power set lat-
tice that was discarded in a previous computation step. By
construction, P ≺ D holds and Lemma 1 implies Tr(P) �
Tr(D). In other words, there exists a hitting set S ∈ Tr(P)
for the partial hypergraph such that S ( T . The algorithm
is subset-closed, thus S was previously found and validated.
This is a contradiction to T being a minimal UCC.

There are many enumeration algorithms known for mini-
mal hitting sets [19]. Currently the fastest algorithm in prac-
tice is the Minimal-To-Maximal Conversion Search (MMCS)
by Murakami and Uno [31]. One can verify that MMCS is
indeed a subset-closed algorithm, we can thus apply it to ef-
ficiently enumerate UCCs in the partial information setting.

4. ALGORITHM DESCRIPTION
We first give a high-level overview of our algorithm Hitting
Set Enumeration With Partial Information and Validation
(HPIValid) illustrated in Figure 1. The different compo-
nents are subsequently explained in detail. The execution
of HPIValid is split into four major phases. During prepro-
cessing, the input table is read and brought into a form that
is suitable for the later enumeration. The algorithm then
starts with building a partial hypergraph by computing dif-
ference sets of sampled row pairs. For this partial hyper-
graph, the minimal hitting sets are enumerated using the
tree search of MMCS. Whenever the search finds a new candi-
date solution, the validation checks whether the candidate is
indeed a UCC. If so, it is a minimal UCC and HPIValid out-
puts it. If the validation shows that a column combination
is not unique, we get an explicit list of yet indistinguishable
records as a by-product. Every such pair gives a difference
set that is not yet contained in the partial hypergraph. We
resort again to sampling, focused on those pairs, to manage
the influx of new sets. The tree search then resumes with
the updated hypergraph from where it was paused.

4.1 Preprocessing
The only information from the database that is relevant for
the enumeration of its UCCs is the grouping of rows with
same value in every column. HPIValid uses a data structure
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Figure 1: Overview of HPIValid. During preprocessing, the table is read and the preliminary cluster structure is extracted.
The PLIs are created by copying and the memory is subsequently freed. Sampling generates a partial hypergraph of difference
sets for the tree search to find new candidate solutions to validate.

called position list indices1 (PLI) to hold this information,
like many other data profiling algorithms [2, 12, 22, 23, 32,
33]. Each row is identified by some record ID. The PLI of an
attribute a is an array of sets of record IDs. It has one set for
each distinct value in a and the IDs in any set correspond to
exactly those rows that have this value. The sets are called
clusters and labeled by their cluster ID. We say a cluster is
trivial if it has only a single row; they are not needed for the
further computation. A PLI is thus a way to represent the
cluster structure. They are not limited to single attributes
and pertain also to combinations of columns.
The top part of Figure 1 shows an example. There are

three records with IDs 0, 1, and 2. The values in attribute
First are “John” for record 0 and 1 and “Jane” for record
2. The PLI of First thus contains two clusters. The cluster
with ID 0 contains the record IDs 0 and 1. The cluster with
ID 1 is trivial as it contains only the record ID 2.
The preprocessing consists of three steps. HPIValid first

reads the table and, for each column, creates a preliminary
data structure, a hash map, from the values to their respec-
tive clusters. In the second step, we extract the PLIs from
the hash map. As same values do not necessarily appear
in consecutive rows of the input file, the memory layout of
the clusters is quite ragged after the initial read. To make
the later enumeration more cache efficient, we create the
actual PLIs by copying the data from the preliminary struc-
ture into consecutive memory. Besides the PLIs themselves,
we also compute the inverse mappings from record IDs to
cluster IDs [32], see Figure 1. This mapping is used in the
validation of UCC candidates to efficiently intersect the PLI
of a column combination with the PLI of a single attribute;
hence, inverse mappings are needed only for single columns.
Finally, we free up the memory occupied by the prelimi-

nary data structure. Due to the ragged memory layout, this
can take a material amount of time, which we report sepa-
rately in the evaluation. This step could be avoided trading
a higher memory footprint for a slightly smaller run time.

1Position list indices are also called stripped partitions [23].

4.2 Sampling
Sampling with respect to an attribute a means that we
draw record pairs that coincide on a uniformly at random.
In the language of PLIs, the PLI of a is a set of clusters
C1, C2, . . . , Cn where each Ci contains records with equal
values in a. Then there are p =

∑n

i=1

(|Ci|
2

)
pairs that are

indistinguishable with respect to a.2 As p grows quadrati-
cally in the cluster size and thus in the number of rows, it
is infeasible to compare all pairs by brute force. Instead,
we fix some real number x between 0 and 1 as the sampling
exponent and sample px record pairs. As long as there is
sampling budget left, we select a cluster i with probability
proportional to

(|Ci|
2

)
and then sample two rows from the

cluster uniformly at random without replacement.
The sample exponent x enables control over the number of

pairs and thus the time needed for the sampling. HPIValid
allows the user to choose the sample exponent. Our experi-
ments show that x = 0.3 is a robust choice, see Section 5.1.
Comparing the sampled pairs attribute-wise gives the par-

tial hypergraph of difference sets. We need only its inclusion-
wise minimal edges for the UCC discovery. To save space,
we discard all non-minimal difference sets.
Initially, we sample once with respect to each attribute.

As the resulting hypergraph P is potentially missing some
edges, we have to resample later. This is done in such a
way that every newly sampled record pair is guaranteed to
yield an edge that is new to P. We achieve this by letting
the tree search (described in the next section) enumerate
minimal hitting sets of P. If the validation concludes that
such a hitting set S of P is not actually a UCC, then there
must be a so far unsampled record pair in the database that
coincides on S. Thus, the PLI of S has non-trivial clusters
and we sample with respect to S, i.e., we sample from all
record pairs that are in the same cluster. Every difference
found in this way is a witness for the fact that S is not a
hitting set of the true hypergraph.

2Trivial clusters do not contribute to p since
(1

2

)
= 0.



The example in Figure 1 has three records. Assume that
the initial sampling returns only the record pairs (0, 1) and
(0, 2) but not (1, 2), i.e., the partial hypergraph P is missing
an edge (grayed out). The tree search will later find the
hitting set S = {A}. The validation concludes that S is not a
UCC and resampling w.r.t. S yields the missing record pair.
The tree search continues with an updated hypergraph.
Our sampling differs from the one of HyUCC in that we

draw uniformly from a cluster without a pair-picking heuris-
tic like pre-sorting or windowing. A heuristic would be less
impactful on our algorithm, as we selectively choose only
few record pairs from specific clusters, any time we sample.

4.3 Tree Search
As mentioned above, we use the MMCS algorithm [31] to enu-
merate minimal hitting sets of the current partial hyper-
graph. We can use it almost as a black box, except that we
integrated the validation directly into the search tree to save
computation time. We thus briefly discuss the information
necessary to understand how the validation works.
The MMCS algorithm, working on the partial hypergraph
P, constructs a search tree of partial solutions. Every node
of the tree maintains a set S of vertices (corresponding to
attributes in the database) and the collection of those edges
E ∈ P that are not yet hit by S, i.e., E ∩S = ∅. Based on a
heuristic, MMCS then chooses an unhit edge E∗. As a hitting
set must hit every edge, we in particular have to choose at
least one vertex from E∗. MMCS now simply branches on the
decision which vertex v ∈ E∗ to add to S. After branching,
the search continues in a child node with the new set S∪{v}.
If there is no unhit edge left, we have found a hitting set.
In the example in Figure 1, the partial hypergraph P con-

sists of two initially unhit edges. MMCS chooses the smaller
one {A, C} to branch on. It selects C in one branch and A
in the other. After selecting C, the edge {A, B, D} is still
unhit and we branch on whether to include D, B, or A.
The former two branches (with D and B) yield minimal hit-
ting sets. For the last branch, MMCS recognizes that {C, A}
violates a minimality condition and prunes this branch.

4.4 Validation
As mentioned above, we adapt MMCS to directly integrate
the validation. The tree search makes sure that we find the
minimal hitting sets of the partial hypergraph. We addition-
ally have to verify that this set is a UCC of the database r
(see Corollary 1). A set S ∪ {v} of attributes is a UCC if
it partitions its subtuples r[S ∪ {v}], for all records r ∈ r,
into only trivial clusters. We obtain the PLI for S ∪ {v}
from the one for S and the single column v via PLI intersec-
tion [23] using the inverse PLIs for optimization [32]. Recall
from the previous section that every node of the search tree
corresponds to a set S of columns and that every child just
adds a single column v to S. Thus, once we have the PLI
for one node S in the search tree, the PLI intersect of S’s
and v’s PLIs produces the PLI for any child S ∪ {v}.
Suppose that we know the clusters C1, . . . , Cn of set S,

with trivial clusters already stripped. By intersecting the
PLI of S with that of v, the Ci are subdivided into smaller
groups corresponding to the same values in column v. For
the single-column PLI of v we know the inverse mapping, so
for each cluster ID i and every record ID identifying some
r[S] ∈ Ci, we look up in which cluster of v this record lies.
This gives us a new PLI now representing the cluster struc-

ture of S ∪ {v}. Subdivided clusters that became trivial
can again be stripped from the partition. Building these
mappings scales with the total number of rows in the Ci.
If some set is found to be a hitting set of the partial hy-

pergraph and its cluster structure is empty (contains only
trivial clusters), we output it as a minimal UCC; otherwise,
there are non-trivial clusters left and we sample new differ-
ence sets from these clusters as described in Section 4.2.
As some branches of the search tree do not produce hitting

sets that have to be validated, it is not necessary to compute
the PLIs for every node of the tree. Instead, we intersect
the PLIs lazily only along branches that find a solution.

5. EVALUATION
We evaluate our algorithm HPIValid in four main aspects:
(1) Parameter choice: How should one choose the sample

exponent x? Is there a single universally good choice,
independent of the dataset? How robust is the algorithm
against small changes in the parameter?

(2) Performance: How does HPIValid perform regarding
run time and memory consumption? How does it com-
pare to the stat-of-the-art solution HyUCC?

(3) Scaling: How does HPIValid scale with the number of
rows and columns in the input?

(4) Reasoning: What makes HPIValid perform well? Which
optimizations contribute to its performance?

Experimental setup. HPIValid is implemented in C++3 and
was compiled with GCC 10.1.0. All experiments were run
on a GNU/Linux system with an Intel® Core™ i7-8700K
3.70 GHz CPU and 32 GB RAM main memory. Unless oth-
erwise stated, we used a time limit of 1 h (3600 s). The
comparison experiments with HyUCC, implemented in Java,
were run with OpenJDK 13 and the heap memory limit set
to 25 GB. For both, HPIValid and HyUCC, run times were
measured by the algorithms themselves, excluding, e.g., the
JVM startup time. Memory consumption was measured us-
ing the time -f ‘%M’ command.
Comparability. Run time measurements always evaluate the
specific implementation. The differences between HPIValid
and HyUCC we observe with respect to total run time (Sec-
tion 5.2) and scaling behavior (Section 5.3) are beyond what
can be explained with implementation details or the differ-
ence between C++ and Java. We take the following addi-
tional measures to negate the differences between C++ and
Java: We exclude datasets with very low execution times
and use the -server flag to optimize Java code more aggres-
sively at run time. We run the compiler and garbage col-
lector in parallel with 4 threads each (-XX+UseParallelGC
-XX:ConcGCThreads=4 -XX:CICompilerCount=4). Finally,
we log the time the Java execution is suspended at safepoints
and report the total execution time minus this suspension.
Run time breakdown. We regularly break down the total run
time into the times required for specific subtasks performed
by HPIValid. Read table denotes the time to read and parse
the input, build PLIs refers to the construction of the data
structures needed to store the clusters for each column as
well as the inverse mapping. The preprocessing is completed
by freeing memory that is no longer necessary for the enu-
meration. See Section 4.1 for details on the preprocessing
phase. The enumeration phase consists of three tasks that

3hpi.de/friedrich/research/enumdat.html#HPIValid
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Figure 2: Run time scaling of HPIValid with respect to the
sample exponent x in a log-plot. The time is shown without
preprocessing, it is broken down into sampling time and the
remaining enumeration. Data points correspond to medians
of five runs.

do not occur in a fixed order but interleave. Sampling and
validation respectively refer to the time spent to generate
new difference sets (Section 4.2) and to validate candidate
solutions (Section 4.4). Everything else is referred to as tree
search, which is the time required by MMCS without the UCC-
specific extensions. In the plots below, we associate specific
colors with these subtasks, see Figure 3 for a legend. The
same colors have already been used in Figure 1.

5.1 Parameter Choice
Recall that every time we encounter row pairs that are yet
indistinguishable with respect to some candidate selection of
columns, we compute the number p of such pairs and ran-
domly sample px of them for an exponent 0 ≤ x ≤ 1. Since
p can be quadratic in the number of rows, it makes sense
to choose x ≤ 0.5. Larger values would yield a superlinear
running time, which is prohibitively expensive.
In general, a smaller exponent x leads to fewer sampled

row pairs, which should be beneficial for the run time. On
the other hand, sampling fewer pairs leads to more inaccu-
racies in the partial hypergraph. It can be assumed that this
lack of information misleads the algorithm in the enumer-
ation phase, leading to higher run times. Our experiments
confirm this intuition. Figure 2 shows run times on three
datasets depending on x, divided into sampling time and
enumeration time (tree search and validation). The general
trend is that the sampling time increases with x, while the
time for the remaining enumeration decreases.
In more detail, the sampling time resembles a straight

line in the logarithmic plot for larger values of x. This
corresponds to an exponential growth in x, which is to be
expected since we sample px pairs. The constant or even
slightly decreasing sampling time for very small values of x
(e.g., between 0 and 0.1 for census and ncvoter_allc in
Figure 2) is explained by the fact that we have to sample at
least as many difference sets as there are edges in the correct
hypergraph. Thus, if we sample fewer pairs, we have to sam-
ple more often. The enumeration time (excluding sampling)
has a moderate downward trend. Also, for small values of x
it is order of magnitudes higher than the sampling time and
thus dominates the run time. The situation is reversed for
larger values of x. There, the enumeration time decreases
only slowly, while the sampling time goes up exponentially,
making the sampling the dominant factor.

As a result, there is a large range between 0 and 0.4 where
the total run time varies only slightly before the sampling
time takes over. The minimum appears to be around 0.3.
Preliminary experiments showed the same effect on other
datasets. We thus conclude that x = 0.3 is a good choice
for many datasets. Moreover, the fact that 0.3 lies in a wide
valley of very similar run times makes it a robust choice. All
other experiments in this paper were done with this setting.

5.2 Performance
To evaluate the performance of HPIValid and to compare
it to HyUCC, we ran experiments on 62 datasets of differ-
ent sizes from various domains. Additionally, we considered
truncated variants for some datasets, mainly for consistency
with related work [33], and to increase the comparability in
cases where HyUCC exceeded the time limit. Table 1 shows
the results sorted by run time, excluding thirteen datasets
where HPIValid took less than 1 ms. For these instances,
the speedup factor of HPIValid was between 74 and 640.
Run time performance. HPIValid solved all but two in-
stances within the time limit of 1 h. The exceptions are
isolet, and uniprot truncated at 1 k rows (but with the
full 223 columns). Compared to the other instances, these
datasets seem rather special as they have a huge number
of UCCs. After 1 h, HPIValid enumerated for isolet and
uniprot more than 153 M and 1743 M UCCs, which corre-
sponds to 42 k and 484 k per second, respectively. To prevent
I/O from obfuscating the actual run time, we do not output
the UCCs but instead merely count the solutions.
Besides the two special cases, only tpch_denormalized

came close to the time limit with its processing taking 2291 s.
All other instances were solved in less than 3 min. Moreover,
the breakdown of the run times in Table 1 into the different
subtasks (see also Figure 3) shows that preprocessing usually
makes up more than half of the total run time. The over-
all performance therefore cannot be significantly improved
without improving the preprocessing. There are some inter-
esting exceptions to this trend: On the instances lineitem,
ncvoter_allc and tpch_denormalized, HPIValid spent the
majority of the execution on the validation. We discuss this
effect further in the scaling experiments in Section 5.3. For
the mentioned instances isolet and uniprot truncated at
1 k rows, the algorithm spent by far the most time with the
tree search. The same holds true for these datasets respec-
tively truncated at 200 and 120 columns. Improving upon
these run times requires to improve MMCS, the state-of-the-
art in enumerating minimal hitting sets [19, 31].
Memory consumption. Concerning the consumption of main
memory, HPIValid tops out at 13 GB, with only three of
the datasets requiring more than 10 GB. For those three,
already the input size is rather large: the ncvoter_allc
dataset has 7.5 M rows, VTTS has 13 M, and iloa 20 M rows.

Read Table Build PLIs Free Memory

Sampling Validation Tree Search

Preprocessing

Enumeration

Figure 3: Color-coding of the run time breakdown.



Table 1: Run times and memory consumption of HPIValid and HyUCC. All times shown are the median of five runs, except when
the algorithm hit the timeout, in which case it is only a single run. The run times for HPIValid are broken down according to
the color-coding in Figure 3. The empty entries for HyUCC indicate that the 25GB heap memory did not suffice. For HyUCC, the
reported times exclude the time the JVM suspended execution at safepoints. The actual execution times including this are given
in the ‘Total’ column. a)‘UCCs’ column shows the number of solutions HPIValid enumerated within the time limit of 3,600 s.
b)Subsets of another dataset appearing in the table. c)Shrunk from 45M rows to 20M to fit into memory. d)Single run with a
time limit of 28,800 s for HyUCC.

HPIValid HyUCC Comparison
Dataset Rows Cols UCCs Time Time Mem Total Time Mem Speedup

[#] [#] [#] [s] Breakdown [MB] [s] [s] [MB]

horse 300 29 253 1.14 m 8 0.10 0.10 76 92.27
amalgam1_denormalized 51 87 2,737 1.67 m 8 0.07 0.07 77 44.97
t_bioc_measurementsorfacts 3.11 k 24 2 3.79 m 9 0.09 0.09 70 22.41
plista 996 63 1 4.67 m 9 0.29 0.29 83 61.39
nursery 13.0 k 9 1 5.74 m 10 0.14 0.14 82 23.54
t_bioc_specimenunit_mark 8.98 k 12 2 8.48 m 11 0.14 0.14 87 16.62
chess 28.1 k 7 1 9.43 m 12 0.15 0.15 100 15.90
letter 18.7 k 17 1 0.02 12 0.43 0.43 132 22.53
flight 1.00 k 109 26,652 0.03 10 1.50 1.48 622 56.02
t_bioc_multimediaobject 18.8 k 15 4 0.04 27 0.28 0.28 133 7.28
SG_TAXON_NAME 106 k 3 2 0.05 26 0.27 0.27 173 5.57
entytysrcgen 26.1 k 46 3 0.08 31 1.33 1.33 207 17.41
t_bioc_gath_agent 72.7 k 18 4 0.11 41 0.51 0.50 230 4.46
Hospital 115 k 15 12 0.12 48 0.88 0.87 231 7.52
t_bioc_preparation 81.8 k 21 2 0.12 46 0.51 0.50 229 4.19
SPStock 122 k 7 14 0.14 37 0.56 0.55 226 3.93
t_bioc_gath_sitecoordinates 91.3 k 25 2 0.17 56 0.62 0.61 245 3.53
t_bioc_gath_namedareas 138 k 11 4 0.18 55 0.85 0.83 235 4.62
t_bioc_ident_highertaxon 563 k 3 1 0.18 56 1.08 1.06 374 5.71
t_bioc_gath 91.0 k 35 1 0.19 59 1.02 1.00 350 5.36
t_bioc_unit 91.3 k 14 2 0.22 63 0.61 0.59 253 2.66
SG_BIOENTRY_REF_ASSOC 358 k 5 1 0.25 66 0.86 0.84 294 3.34
t_bioc_ident 91.8 k 38 2 0.34 82 1.21 1.18 400 3.48
musicbrainz_denormalized 79.6 k 100 2,288 0.45 125 22.24 22.19 1,155 49.22
census 196 k 42 80 0.48 160 394.57 385.19 3,972 800.69
SG_BIOSEQUENCE 184 k 6 1 0.49 143 1.06 1.01 486 2.07
SG_REFERENCE 129 k 6 3 0.51 113 0.67 0.62 341 1.20
SG_BIOENTRY 184 k 9 3 0.52 106 0.78 0.74 308 1.42
SG_BIOENTRY_QUALIFIER_ASSOC 1.82 M 4 2 0.72 201 3.70 3.62 798 5.02
SG_SEQFEATURE_QUALIFIER_ASSOC 825 k 4 1 0.76 156 1.25 1.18 486 1.55
SG_BIOENTRY_DBXREF_ASSOC 1.85 M 3 2 0.79 193 2.43 2.37 701 2.98
SG_DBXREF 618 k 4 2 0.89 158 0.88 0.80 513 0.89
SG_SEQFEATURE 1.02 M 6 2 0.97 196 2.19 1.98 894 2.05
ncvoter_allcb) 100 k 94 15,244 1.02 193 184.42 184.06 5,920 180.79
Tax 1.00 M 15 13 1.46 214 9.70 9.63 1,352 6.58
SG_LOCATION 1.02 M 8 2 1.76 305 2.26 2.07 1,014 1.17
uniprotb) 1.00 k 120 1,973,734 1.93 12 32.47 31.38 8,229 16.24
struct_sheet_range 664 k 32 167 4.14 623 17.89 17.24 2,277 4.17
fd-reduced-30 250 k 30 3,564 4.36 187 115.15 114.89 2,297 26.34
CE4HI01 1.68 M 65 25 6.88 1,514 34.29 33.48 4,674 4.87
ZBC00DT_COCM 3.18 M 35 1 9.60 1,752 34.43 32.57 5,233 3.39
isoletb) 7.80 k 200 1,282,903 11.12 132 249.74 249.04 2,267 22.40
ditag_feature 3.96 M 13 3 13.09 1,736 109.86 106.41 4,637 8.13
ncvoter_allcb), d) 1.50 M 94 206,220 17.12 2,626 >28,800 >28,771 13,701 >1,680
uniprot 539 k 223 826 19.56 2,746
PDBX_POLY_SEQ_SCHEME 17.3 M 13 5 24.40 4,394 83.53 73.52 11,705 3.01
ncvoter 8.06 M 19 96 47.50 4,226 286.48 274.61 10,471 5.78
ILOAc) 20.0 M 48 1 48.26 13,208 235.67 217.32 21,599 4.50
VTTS 13.0 M 75 2 60.48 12,373 384.00 373.25 19,098 6.17
lineitem 6.00 M 16 390 81.34 2,234 454.29 448.56 7,172 5.51
ncvoter_allc 7.50 M 94 1,704,511 124.77 12,471 >3,600 >3,549 20,742 >28
tpch_denormalized 6.00 M 52 347,805 2,291.33 9,331 >3,600 >3,586 13,623 >1
uniprota), b) 1.00 k 223 >1,743 M >3,600 13
isoleta) 7.80 k 618 >153 M >3,600 295



Nine datasets required between 1 GB and 10 GB, and all
remaining datasets took less memory.
Memory consumption compared to HyUCC. When comparing
HPIValid and HyUCC, one striking difference is the fact that
HyUCC has to keep its search front of column combinations
in memory. In particular, the front includes all minimal
UCCs found so far, while HPIValid only needs to store the
current branch of the search. It has thus a significantly
larger memory footprint, especially on instances with many
solutions. In fact, this makes it infeasible to process the two
extreme datasets isolet and uniprot truncated at 1 k rows
with HyUCC. The variants in which the number of columns
are cut at 200 for isolet and 120 for uniprot can still be
solved. However, on the former, HPIValid is more memory
efficient than HyUCC by an order of magnitude. On uniprot
with 200 columns and 1 k rows, it is by almost three orders
of magnitude: HyUCC requires 8 GB, HPIValid 12 MB.
It is curious to see that the full uniprot dataset with

539 k rows is much more well-behaved than the one trun-
cated at 1 k rows. One could expect that larger databases
lead to higher run times, and indeed this is the case for most
databases, see Section 5.3. However, the uniprot dataset
is special in that the extended instance has only 826 UCCs
and HPIValid can solve it in under 20 s using 2.7 GB. Recent
theoretical work on random hypergraphs shows that a larger
number of rows and more difference sets can indeed result
in hypergraphs with fewer and smaller edges [8]. HyUCC on
the other hand cannot solve the full uniprot instance due
to memory overflow. Thus, the fact that uniprot includes
a hard subinstance seems to throw off HyUCC even though
the full instance contains only few UCCs. On all remaining
instances, HPIValid is also more memory efficient.
Run time compared to HyUCC. HPIValid outperformed HyUCC
on every instance with only one exception. On some in-
stances with very few UCCs, HyUCC achieves comparable
run times. On many other instances HPIValid was signifi-
cantly faster than HyUCC. The highest speedup achieved on
instances that HyUCC finished was for the census dataset,
HPIValid was 800 times faster. On the ncvoter_allc dataset
truncated at 1.5 M rows, we ran it with an 8 h timeout, which
was exceeded by HyUCC, while HPIValid solved it in below
20 s, a speedup of at least three orders of magnitude.

5.3 Scaling
We now evaluate how HPIValid scales with respect to the
number of rows and columns. To provide some context, we
preface our experiments with a short discussion on worst-
case run times from a slightly more theoretical perspective.
Regarding the column scaling, the bottleneck is the ac-

tual enumeration (tree search and validation). As there can
be exponentially many minimal hitting sets and as many
UCCs, the worst-case running time must be exponential [6].
However, even if the number of solutions is small, there is no
subexponential upper bound known for the MMCS algorithm,
which is the core of HPIValid. We thus have to assume that
HPIValid scales exponentially with the number of columns,
even if the output is small. It is a major open question
whether an output-polynomial algorithm exists for the hit-
ting set enumeration problem, see [15].
Concerning the number of rows, in principle, we have to

compute the difference set of every record pair, which scales
quadratically in the number of rows. Moreover, when build-
ing the hypergraph of difference sets, we only keep edges that
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Figure 4: Column scaling of HPIValid and HyUCC on isolet.
Shown are the run times, the memory consumption, the num-
ber of solutions (log-plots), and the average delay between
outputs. Data points correspond to the median of three runs.
Dashed lines show runs of HPIValid with 15 min timeout.

are minimal, without affecting the solutions. For each new
edge we sample, this takes time linear in the number of edges
currently in the hypergraph. This means a quadratic run
time in the number of difference sets. Thus, the best worst-
case upper bound for the run time in terms of the number of
rows n is O(n4). Moreover, there are lower bounds known
for the minimization step based on the strong exponential
time hypothesis (SETH), implying that there is likely no
algorithm with subquadratic running time in n [11, 20].
Although these worst-case bounds seem to prohibit the

solution of large instances, HPIValid performs well on prac-
tical datasets. The reason for this lies in the fact that these
databases behave very differently from worst-case instances.
Real-world instances have only comparatively few minimal
difference sets [9, 10] and indeed HPIValid finds them by a
focuses sampling approach involving only a few record pairs.
Similarly, the tree search algorithm MMCS has been observed
to be fast on hypergraphs arising in practice [19, 31], and
the instances emerging from the UCC enumeration problem
are no exception to this. The only outliers in our experi-
ments in that regard are isolet and uniprot truncated at
1 k rows, where the hitting set enumeration is slow, which is
not surprising due to their large output size.
Consequently, the goal of our experiments is the gath-

ering of insights into the behavior of HPIValid on typical
datasets rather than worst-case instances. The emphasis of
our scaling experiments is on databases other than isolet.
Nonetheless, we have a short section discussing the column
scaling for this as well since isolet has by far the most
columns among all the tested datasets, and it has been con-
sidered before for scaling experiments [33]. Although exper-
iments on isolet may not reflect the typical scaling, we can
still make some interesting observations, in particular on the
differences between HPIValid and HyUCC.
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5.3.1 Column Scaling on the isolet dataset
We used the first 40 to 280 columns of isolet, stride 40, and
ran HPIValid and HyUCC on the resulting instances. Since
the run times for isolet are fairly concentrated over the
different runs, we used the median of three. We also ran
HPIValid with a timeout of 15 min for number of columns
beyond 280. The results are shown in Figure 4.
The run time of HPIValid resembles a straight line in the

plot with a logarithmic time-axis, meaning an exponential
scaling. As discussed before, this is to be expected on cer-
tain classes of inputs. In contrast, it is interesting to see
that the run time of HyUCC as well as the number of UCCs
(second plot) seems to scale subexponentially. A possible
explanation is that HPIValid uses the branching technique
of MMCS, which potentially scales exponentially, regardless
of the output. HyUCC on the other hand explores the search
space of all column combinations starting with the smaller
subsets. Given that the solutions for isolet are essentially
all column combinations of size 3, then HyUCC’s run time is
dominated by the output size, which grows cubically here.
Another indicator that the run time of HPIValid scales

worse than the number of UCCs is the uptick for the time
per UCC in the bottom plot of Figure 4. The last experi-
ments with timeout effectively provide a snapshot of the first
15 min of execution with many columns. There the trend in
the time per UCC is reversed. Although the average delay
over the entire run goes up, it is decreasing at the start. This
is helpful if one is interested in getting only a few UCCs.

5.3.2 Column Scaling on Typical Instances
We chose two datasets to investigate typical column scaling.
The uniprot dataset (with all rows) is an obvious choice

with its 223 columns. The other dataset, ncvoter_allc, is
one of the hardest instances for HPIValid with a run time of
125 s, and it has enough columns (94) to enable meaningful
scaling experiments. For additional comparison with HyUCC,
we also ran experiments on ncvoter_allc truncated at 100 k
rows. The results are shown in Figure 5. We discuss them
instance by instance from left to right. For the color-coding
of the run time breakdown, recall Figure 3.
Truncating ncvoter_allc at 100 k rows makes it small

enough so that the preprocessing dominates the run time
of HPIValid. It stands out that the run time appears to
scale sublinearly with respect to the number of columns. In
theory, this cannot happen for an algorithm that processes
the whole input at least once. The reason for the observed
behavior are the later columns in the table having fewer
different values and more empty cells. This makes reading
the table faster as the hash map matching string values to
arrays of record IDs needs to cover a smaller domain during
dictionary encoding in the preprocessing.
The actual enumeration times are very low with a slight

uptick after 50 columns. This is due to the fact that the
nature of the instance changes markedly here. The output
size increases from a single minimal UCC for the first 50
columns to 4 k solutions at 60 columns. The further in-
crease to 8 k minimal UCCs for 70 columns is not reflected
in the enumeration time, starting at 60 columns. Instead,
the enumeration time scales linearly in this experiment. The
bottom plot shows the scaling behavior of HyUCC in compar-
ison. HyUCC also performs well on instances with a single
solution. However, the scaling of HyUCC beyond that point
(60+ columns) does not seem to be linear in the number of
columns but rather follows the number of UCCs.
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15 runs of HPIValid broken down according to the colors in Figure 3. The middle shows the number of UCCs. The bottom row
compares the median run times of HPIValid with that of HyUCC with five runs each for VTTS and lineitem. Only one HyUCC
run was done for ncvoter_allc, note the different abscissa.

The middle column of Figure 5 shows the ncvoter_allc
dataset with all 7.5 M rows. The output size is also small in
the beginning, but there is always more than one solution.
The overall column scaling is roughly linear. However, the
box plots show that the run time has a high variance, which
mainly comes from the validation. A possible explanation
is as follows. Recall that every node in the MMCS search tree
corresponds to a set of columns that was selected to be part
of the solution. The core operation of the validation is the
intersection of the PLI of this subset with the PLI of a single
column. The time required for the intersection is linear in
the number of rows that are not already unique with respect
to the selected columns. If the search happens to select
columns high up in the tree that make many rows unique,
all intersections in the lower subtrees are sped up. Whether
this occurs in any given run of the algorithm heavily depends
on the difference sets present in the partial hypergraph when
starting the enumeration. As the initial partial hypergraph
is random to some extent, the run times vary strongly. The
run time breakdowns in the top row of Figure 5 show average
values and thus give an estimation of the expected running
time of our randomized algorithm (in addition to the median
values of the runs shown in the box plots).
The comparison with HyUCC on ncvoter_allc with full

rows is difficult due to the large total run times. The mea-
surements for HyUCC in the bottom plot are thus restricted to
the instances with up to 40 columns. The scaling of HyUCC
is clearly worse, although there are only few UCCs in the
considered range (403 UCCs at 40 columns).
Finally, the right column of Figure 5 shows that the run

time of HPIValid on uniprot is again dominated by the
preprocessing. The enumeration part in turn consists mainly

of sampling new difference sets rather than the validation,
as was the case for ncvoter_allc. This makes sense in the
light of the results in Section 5.2. Truncating the dataset at
1 k rows gives a hard subinstance with billions of minimal
solutions. It thus cannot suffice to sample only a few record
pairs and hope to come close to the correct hypergraph.
In other words, redundant information seems to be not as
prevalent in uniprot as in other databases.
The bottom plot shows that the scaling of HyUCC is super-

linear in the number of columns. As observed before, HyUCC
appears to have difficulties with uniprot due its hard subin-
stance. In Section 5.2, this became apparent with respect to
the memory consumption. Here, it also pertains to the run
time. Thus, even with hypothetically unbounded memory,
the run time of HyUCC is infeasibly high.

5.3.3 Row Scaling on Typical Instances
For the row scaling experiments, we chose the three datasets
VTTS, lineitem, and ncvoter_allc. There HPIValid had
the highest run time (apart from tpch_denormalized). They
have 13 M, 6 M, and 7.5 M rows, respectively, which makes
them well suited for scaling experiments with respect to the
number of rows. The results are shown in Figure 6. We note
that many aspects discussed in Section 5.3.2 apply here as
well, we thus focus on the specifics of the row scaling.

VTTS is the largest of the selected datasets, but HPIValid
has the lowest run time there. The database carries only
two minimal UCCs independently of the number of rows,
making the linear preprocessing dominant.
The number of solutions for lineitem is also rather steady

but on a higher level. It ranges from 300 to 400 suggest-
ing that also the correct hypergraphs of difference sets vary



not too much for the different numbers of rows, given that
a critical minimum value is exceeded. This gives a clean
straight line for the average run time and most of this time
is spent on the validation. For reasons already discussed in
Section 5.3.2, the validation time has a comparatively high
variance as indicated by the box plots.
In stark contrast to the other two datasets, the output

size varies heavily for ncvoter_allc. With 500 k to 3 M
rows, the number of solutions lies at between 91 k to 335 k,
with 3 M to around 4 M rows, there is a jump to 1.8 M mini-
mal UCCs. After this, the output size remains high until
it goes down to 1.2 M at 7 M rows. Thus, the underlying
hypergraph of minimal difference sets also changes signifi-
cantly when adding more and more rows. This is reflected
in the trend of the average run time being not as clean as
the one for lineitem, although for both datasets the execu-
tion of HPIValid is dominated by the validation. Addition-
ally, the run time has high variance again, the effect is even
more prominent here due to the higher number of columns
(lineitem has 16, while there are 94 in ncvoter_allc).
When comparing the row scaling of HPIValid with that

of HyUCC, VTTS and lineitem are quite similar. Both al-
gorithms seem to scale linearly, but with HyUCC having a
steeper slope. For ncvoter_allc, the scaling is very differ-
ent (note the different abscissa). HPIValid scales slightly
superlinear, while HyUCC shows a sudden jump on instances
truncated at more than 1 M. Further scaling experiments
became infeasible even with an extended time limit of 8 h

5.4 Reasons for Efficiency
There are two crucial factors for the efficiency of HPIValid.
First, the number of record pairs for which we compute dif-
ference sets, and secondly, the size of the search tree.
Concerning the number of difference sets, we initially sam-

ple p0.3 record pairs where p is the total number of available
pairs. This is sublinear in the number of records and thus
always fast. However, the resulting hypergraph can be in-
complete, which forces us to resample additional pairs later
on. We measure this using the relative resample rate, which
is the number of difference sets computed after the initial
sampling divided by the number of difference sets computed
in the initial sampling. Excluding two outliers, all instances
considered in Section 5.2 have a relative resample rate be-
low 0.36, with a median of 0.00038 and a mean of 0.041.
The two outliers are the somewhat special isolet instances
with different column numbers. They had relative resam-
pling rates of 15.1 and 10.0, respectively.
Concerning the search tree, the number of leaves is at

least the number of solutions. In the best case, the tree
consists of just the root together with one child per solution.
To measure the efficiency of the tree search, we consider
the solution overhead, i.e., the number of non-root nodes
per solution. For all instances with at least two solutions,
the maximum overhead was 4.5, with a median of 1.4 and
mean 1.7. This shows that the MMCS tree search enumerates
hitting sets very efficiently even when working with partial
information. On instances with only a single solution the
overhead equals the total tree size. We got a maximum of
54, with a median of 5.0 and mean 10.5. Although these
numbers are higher, they still indicate small search trees.
The efficiency of HPIValid is mainly due to the aspects

discussed above. Beyond that, we have two minor optimiza-
tions that slightly improve the run time. First, to make
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Figure 7: Run times with and without tiebreaking heuris-
tic (H) and PLI copying (C) for the datasets ncvoter,
tpch_denormalized (reduced to 500 k rows), and lineitem.
Each column is based on 25 runs.

the validation more cache efficient, we copy the PLIs such
that each PLI lies in a consecutive memory block. Secondly,
whenever MMCS has multiple edges of minimum cardinality
to branch on, we use a tiebreaker that aims at speeding up
the validation by making the clusters in the resulting PLIs
small. For this, we rank the columns by uniqueness, with a
lower number of indistinguishable record pairs with respect
to that column meaning higher uniqueness. Among the
edges with minimum cardinality, we choose the one where
the least unique column is most unique.
On instances where the HPIValid run time is dominated

by the preprocessing, the effect of these two optimizations
is negligible. However, one can see in Figure 7 that both
optimizations improve the validation time at the cost that
the PLI copying slightly increasing the preprocessing time.

6. CONCLUSION
We proposed a novel approach for the discovery of unique
column combinations. It is based on new insights into the
hitting set enumeration problem with partial information,
where the lack of relevant edges is compensated by a valida-
tion procedure. Our evaluation showed that our algorithm
HPIValid outperforms the current state of the art. On most
instances, the enumeration times are so small that they are
dominated by the preprocessing. This indicates that the
room for further improvements is somewhat limited. We be-
lieve that it is much more promising to study how our new
techniques can be used to solve other problems. Embedded
uniqueness constraints, for example, are a generalization of
UCCs to incomplete datasets with a similar discovery pro-
cess [35]. Also closely related are functional dependencies:
one can transform their discovery into a hitting set prob-
lem as well, only with slightly different hypergraphs. As for
UCCs, the direct translation is infeasible in practice due to
the quadratic number of record pairs, but it seems that re-
cently proposed algorithms [32, 36] could be accelerated by
enumeration with partial information. Similarly, we believe
that our approach can work for denial constraints [9, 27].
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