
Robust Parameter Fitting to Realistic Network Models via
Iterative Stochastic Approximation

Thomas Bläsius
Karlsruhe Institute of Technology

Karlsruhe, Germany
thomas.blaesius@kit.edu

Sarel Cohen
The Academic College of Tel Aviv-Yaffo

Tel Aviv, Israel
sarelco@mta.ac.il

Philipp Fischbeck
Tobias Friedrich

philipp.fischbeck@hpi.de
tobias.friedrich@hpi.de

Hasso Plattner Institute, University of Potsdam
Potsdam, Germany

Martin S. Krejca
LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de

Paris
Palaiseau, France

martin.krejca@polytechnique.edu

ABSTRACT
Random graph models are widely used to understand network
properties and graph algorithms. Key to such analyses are the
different parameters of each model, which affect various network
features, such as its size, clustering, or degree distribution. The exact
effect of the parameters on these features is not well understood,
mainly because we lack tools to thoroughly investigate this relation.
Moreover, the parameters cannot be considered in isolation, as
changing one affects multiple features. Existing approaches for
finding the best model parameters of desired features, such as a
grid search or estimating the parameter–feature relations, are not
well suited, as they are inaccurate or computationally expensive.

We introduce an efficient iterative fitting method, named ParFit,
that finds parameters using only a few network samples, based on
the Robbins-Monro algorithm. We test ParFit on three well-known
graph models, namely Erdős–Rényi, Chung–Lu, and geometric
inhomogeneous random graphs, as well as on real-world networks,
including web networks. We find that ParFit performs well in terms
of quality and running time across most parameter configurations.

CCS CONCEPTS
• Theory of computation→ Graph algorithms analysis; Random
network models; Stochastic approximation.

KEYWORDS
Random Network Models, Stochastic Approximation, Network Fea-
tures, Parameters

1 INTRODUCTION
In the current age of big data, a lot of important information exists
as huge networks, such as interaction networks, semantic networks,
and social networks. Their immense size makes certain tasks very
challenging, for example, sharing, processing, or reasoning about
these networks. A common way to overcome this challenge is to
utilize models, which aim to describe networks via a small amount
of parameters. Ideally, these model parameters are sufficient to
capture all of the important features of real-world networks, thus
reducing their complexity and allowing to handle tasks more easily.

A fundamental concept for this purpose are random graph mod-
els [15]. Given a certain set of parameters, such models do not
construct a specific graph but instead a random graph out of a
family where most samples are likely to exhibit similar features.
This is oftentimes beneficial, as it, for example, allows to share the
structure of a network without sharing the exact network, or to
produce different benchmarks with similar properties. Due to this
importance, various random graph models have been analyzed with
respect to how well they can reproduce real-world graphs, such as
exponential random graph models [3], Kronecker graphs [18, 26],
approaches based on clustering [5, 21], approaches based on em-
beddings [9, 19], and further models [20, 27, 33]. In order for each
model to reproduce an input well, it is essential to choose the pa-
rameters of the model carefully. This poses a challenging task and
strongly depends on the network models, since the relationship
between input parameters and output features might not always
be clear.

To this end, suitable parameters are selected in various ways,
depending on what information about the model is available. If
applicable, gradient descent [26] or moment-based methods [18]
are good approaches for finding the log-likelihood maximizer of the
parameters. If no such closed expression is known, an alternative
is to estimate parameters based on domain knowledge (e.g., an
estimated linear relation, monotonic behavior, or a formula) [7, 29].
In case of a lot of data, techniques from machine learning to train a
network distance function can be used in order to choose nearest
neighbors of possible parameter configurations [2]. If (almost) no
information is available, running a grid search and choosing the
best parameters based on a distance measure [28, 33] is a possibility.

Although these approaches can yield good results, they come
with their own limitations. Minimizing the gradient typically re-
sults in hard, non-convex optimization problems [15]. Similarly,
the moment-method usually requires a huge amount of samples,
rendering it not very efficient [18]. Domain knowledge needs to
be specific to be of use. For example, the temperature parameter
of the geometric inhomogeneous random graph model is known
to be negatively correlated to the expected clustering coefficient of
the generated networks, but the exact relation is unclear and de-
pends on other model parameters. A linear estimation, as suggested
in [23], is not very accurate. Techniques from machine learning

ar
X

iv
:2

40
2.

05
53

4v
1

 [
cs

.S
I]

 8
 F

eb
 2

02
4

Bläsius et al.

usually yield intransparent weight functions and involve a compu-
tationally expensive training phase. Last, a grid search for the best
parameters is computationally expensive and has limited accuracy.

Another challenge all approaches have to face is that many
random graph models do not guarantee to construct connected
graphs, whereas real-world networks in available datasets are often
connected. This is usually not due to the represented real-world
network being completely connected but due to the dataset being
only its largest connected component, which can originate in the
dataset creation method (repeated neighbor selection) or during
some preprocessing, since usually only the largest component is
of interest. Determining the largest component of the artificial
graph resulting from models might affect some of its features, most
notably its number of vertices and its average degree. Thus, the
relation between the input parameters and output features becomes
more complex. While there is still a correlation, the exact relation
is not known. Previous works mainly deal with models generating
connected networks [28], or estimate the effect on the number
of vertices, but not on the other parameters, thus applying the
reduction to the largest component after parameter fitting [7].

We propose a method, named ParFit, that is designed to circum-
vent these problems. ParFit fits the parameters of a collection of
random network models while requiring only few network model
samples to reach well fitting model parameters. This method in-
volves no training phase and can deal with the complex parameter
landscape introduced by reducing to the largest component.

1.1 Setting
We consider three well-known random graph models, namely,
Erdős–Rényi, Chung–Lu with power-law degree distribution, and
geometric inhomogeneous random graphs (GIRGs). For all of these
models, we consider the variant of the model where only the largest
component is returned. For every model, we provide a correspon-
dence of model parameters to measurable network features with a
strong correlation; however, changing one parameter can change
multiple features, and the effect after only considering the largest
component is unclear. Further, due to the random nature of each
model, we only have access to samples from its probability distribu-
tion. Under these constraints, given a model and a graph, the goal
is to find model parameters that, in expectation, yield networks
with the corresponding features matching those of the given graph.

While there are asymptotic results on the giant components and
connectivity of the models based on the parameters [10–13, 16, 17]
as well as results on predicting features for the model without re-
duction to the largest component [10, 11], to the best of our knowl-
edge, no formulas for expected values of these models’ parameters
and features we consider are known, in particular for the GIRG
model with reduction to the largest component. This eliminates the
likelihood- and moments-based methods mentioned above.

1.2 Our Method: ParFit
We treat our setting as a root-finding problem and present a pa-
rameter fitting method for this scenario (ParFit, Section 4) based
on the Robbins-Monro method [31] in stochastic approximation. In
an iterative process, a model parameter guess is established, and
based on a single model network sample with these parameters, the

parameters are updated according to the deviation of the sample
feature values from the target features values. To account for fluc-
tuations around the optimal parameter values, the final parameters
are the mean over the parameters of the most recent iterations.

1.3 Contribution
We show the effectiveness of ParFit by evaluating it on a wide
range of scenarios, including both random graph models as well
as real-world networks. For all three random graph models, we
find that ParFit yields parameters that fit very well within only
few iterations (Table 1 and Figure 1), even in the difficult regime of
low vertex degree, where reducing to the largest component has a
large influence on all network features. For real-world networks
(Section 6), we also observe that ParFit works well, including the
low-degree regime. Especially, our fitted power-law exponents are
similar to those estimated in related work. Overall, ParFit is effective
and only needs few iterations to find suitable model parameters.

2 PROBLEM DEFINITION
Given a network model 𝑀 as well as an undirected, unweighted
graph 𝐺 , we aim to find parameters for𝑀 that provide the best fit
for𝐺 with respect to a well chosen metric. While the best metric
would be to compare the parameters of𝑀 and 𝐺 , this is generally
not possible, as the parameters of are not directly observable in 𝐺 .
Hence, we choose our metric based on the following observation:
For every parameter, there is usually a corresponding feature that
is measurable in any graph, which is mainly controlled by this
parameter. Our goal is to find model parameters such that these
measurable features match the features of 𝐺 in expectation.

To formalize this, we call𝑀 a random graph model with 𝑝 param-
eters 𝜃 = (𝜃1, . . . , 𝜃𝑝) ∈ R𝑝 if𝑀 (𝜃) is a probability distribution over
the set of all graphs G, i.e., the outcome of each trial is a graph and
𝑀 (𝜃) assigns a probability to each 𝐺 ∈ G. We write 𝐻 ∼ 𝑀 (𝜃) to
indicate that 𝐻 ∈ G was sampled from𝑀 (𝜃). To improve readabil-
ity, we add 𝜃 as a subscript to the sampled graph, i.e., 𝐻𝜃 ∼ 𝑀 (𝜃)
reminds the reader that 𝐻𝜃 was sampled using the parameters 𝜃 .

A model can be equipped with measurable features 𝜑1, . . . , 𝜑𝑝 ,
where each measurable feature 𝜑𝑖 for 𝑖 ∈ [𝑝] is a function mapping
a graph to a numerical value, i.e., 𝜑𝑖 : G → R. We assume a one-
to-one correspondence between the parameters of the model and
the measurable features and say that 𝜑𝑖 is the measurable feature
corresponding to the parameter 𝜃𝑖 for 𝑖 ∈ [𝑝]. A measurable feature
𝜑𝑖 is a good choice if it can be efficiently evaluated, if 𝜑𝑖 is strongly
correlated with its corresponding parameter 𝜃𝑖 , and if it has only a
minor dependence on other parameters 𝜃 𝑗 with 𝑗 ≠ 𝑖 . For brevity,
we also write 𝜑 (𝐺) = (𝜑1 (𝐺), . . . , 𝜑𝑝 (𝐺)) for a graph 𝐺 ∈ G.

With this formalization, we define the parameter fitting problem.
Given a random graph model𝑀 equipped with measurable features
𝜑 and given a graph𝐺 , find parameter values 𝜃 such that for a graph
𝐻𝜃 ∼ 𝑀 (𝜃) sampled from𝑀 , the expected measurable features are
close to the features of 𝐺 , i.e., ∥E[𝜑 (𝐻𝜃)] − 𝜑 (𝐺)∥ is minimized.

This is essentially a multivariate root-finding problem (when
assuming there is a solution with error 0), with the difficulty that the
measurable features of sampled graphs might have high variance.
Thus, we can view this as a stochastic optimization problem with
noisy evaluations. Moreover, note that the input graph 𝐺 is not

Robust Parameter Fitting to Realistic Network Models via Iterative Stochastic Approximation

really used except for evaluating the measurable features. Thus,
one can also view 𝜑 (𝐺) as being the input instead of 𝐺 itself.

3 NETWORK MODELS
We consider several random graph models. Here, we discuss their
parameters and our choice of corresponding measurable features.

Erdős–Rényi Graphs. Given two parameters 𝑛 and 𝑘 , the Erdős–
Rényi model [16] generates a graph with 𝑛 vertices where any pair
of vertices is connected with probability 𝑝 = 𝑘/(𝑛 − 1) indepen-
dently of all other choices. We consider the model variant that
reduces the resulting graph to its largest connected component.

As corresponding measurable features, we use the number of
vertices of a graph to correspond to the parameter 𝑛 and the aver-
age degree to correspond to 𝑘 . These are canonical choices, as the
initially generated graph has 𝑛 vertices and expected average de-
gree 𝑘 . Note, however, that only considering the largest connected
component makes this connection less direct.

Chung–Lu Graphs. In the Chung–Lu model [1, 11, 12], edges
are drawn independently with varying probabilities, allowing for a
heterogeneous degree distribution. Every vertex has a weight, and
every pair of vertices is connected with probability proportional to
the product of their weights. The expected degree of each vertex
then roughly follows its weight. We consider a power-law version
of this model where the weight distribution follows a power law
with exponent 𝛽 . Formally, the model has three parameters 𝑛, 𝑘 and
𝛽 . We use 𝑛 vertices, with vertex 𝑖 having weight𝑤𝑖 = 𝑐 · 𝑖−1/(𝛽−1) ,
where 𝑐 is such that the average weight is 𝑘 , i.e., the total weight is
𝑊 = 𝑘𝑛. Then, vertices 𝑢 and 𝑣 are adjacent with probability

𝑝 (𝑢, 𝑣) = min(1,𝑤𝑢𝑤𝑣/𝑊) .

We reduce the resulting graph to its largest connected component.
As before, we use the number of vertices of a graph as measurable

feature corresponding to the parameter 𝑛 and the average degree
as measurable feature corresponding to 𝑘 . The power-law expo-
nent 𝛽 controls the variance of the degree distribution, with lower
𝛽 yielding a higher variance. A way of measuring this is the het-
erogeneity as defined by Bläsius and Fischbeck [6], which is the
base 10 logarithm of the coefficient of variation of a graph’s degree
distribution. As the heterogeneity is negatively correlated with 𝛽 ,
we use its negation as measurable feature corresponding to 𝛽 .

Geometric Inhomogeneous Random Graphs. The model of geomet-
ric inhomogeneous random graphs (GIRGs) [10] is similar to the
Chung–Lu model but adds dependencies between edges, using an
underlying geometry. We use a 1-dimensional geometry for which
the GIRG model is closely related to hyperbolic random graphs [23].

As in the Chung–Lu model, we have the parameters 𝑛, 𝑘 , and
𝛽 with similar meanings as before; see details below. Additionally,
there is the temperature 𝑇 as fourth parameter, controlling the
strength of the geometry and thereby the amount of dependence
between the edges. Given these parameters, a GIRG is generated
as follows. Start with 𝑛 vertices and assign each vertex 𝑣 a random
weight𝑤𝑣 following a power-law distribution with exponent 𝛽 and
a random position 𝑥𝑣 drawn uniformly from the interval [0, 1]. The
distance between two vertices 𝑢 and 𝑣 with positions 𝑥𝑢 and 𝑥𝑣 is
∥𝑥𝑢 − 𝑥𝑣 ∥ = min(|𝑥𝑢 − 𝑥𝑣 |, 1 − |𝑥𝑢 − 𝑥𝑣 |). With this, any pair of

Algorithm 1: Our parameter fitting method ParFit that
returns for a given random graph model 𝑀 , measurable
features 𝜑 and target values 𝜑 (𝐺) a set of parameters 𝜃
such that𝑀 parameterized by 𝜃 exhibits features close to
𝜑 (𝐺). See Section 4 for more details.
Input:Model𝑀 , features 𝜑 , target feature values 𝜑 (𝐺)
Output:Model parameters

1 𝜃0 ← initial configuration;
2 𝑖±← 30;
3 for 𝑖 ← 0 to∞ do
4 𝐻𝜃𝑖 ← sample from𝑀𝜃𝑖 ;
5 Δ𝑖 ← 𝜑 (𝐺) − 𝜑 (𝐻𝜃𝑖);
6 𝜃𝑖+1 ← 𝜃𝑖 + Δ𝑖 ;
7 if sign change in all features at least once then
8 𝑖± ← min(𝑖±, 𝑖);
9 if 𝑖 ≥ 𝑖± then
10 𝜃𝑖 ← 1

𝑖−𝑖±+1
∑𝑘

𝑗=𝑖±
𝜃 𝑗 ;

11 if 𝑖 ≥ 𝑖± + 200 or 𝜃𝑖 converged then return 𝜃𝑖 ;

vertices 𝑢 and 𝑣 have an edge between them with probability

𝑝 (𝑢, 𝑣) = min
(
1, 𝑐

(
𝑤𝑢𝑤𝑣/(∥𝑥𝑢 − 𝑥𝑣 ∥𝑊)

)1/𝑇)
,

where𝑊 is the sum of all weights and the constant 𝑐 is chosen such
that the resulting graph has expected average degree 𝑘 [8]. Finally,
the resulting graph is reduced to its largest connected component.

Like in the Chung–Lu model, as measurable features, we use
the number of vertices corresponding to the parameter 𝑛, the aver-
age degree corresponding to 𝑘 , and the negative heterogeneity [6]
corresponding to 𝛽 . The temperature 𝑇 affects the influence of the
geometry. A stronger geometry leads to the emergence of more
triangles, and a common way to measure the amount of triangles
is the average local clustering coefficient (clustering coefficient for
short). The clustering coefficient is the probability that a random
vertex together with two random neighbors form a triangle. As the
clustering coefficient is negatively correlated with the temperature
𝑇 , we use its negation as measurable feature corresponding to 𝑇 .

4 OUR PARAMETER FITTING METHOD
Our method ParFit (see Algorithm 1) is an iterative stochastic
approximation method. It is based on the Robbins-Monro algo-
rithm [31], originally introduced to solve a root-finding problem
by exploiting the monotonicity of the root function and modifying
the result based on whether the current guess is too high or too
low. Similarly, ParFit maintains a choice of parameter values for the
parameter fitting problem and iteratively adjusts each parameter
randomly based on its corresponding measurable feature. This re-
sults in an anytime algorithm, i.e., it can be interrupted at any time
to output its current solution. Thus, when to stop the algorithm is
a trade-off between solution quality and run time.

As the standard Robbins-Monro algorithm leads to oscillations
around optima, we improve the convergence behavior of ParFit
by adding iterate averaging [30, 32]. That is, starting from some
fixed iteration, we log all subsequent results, and once ParFit is

Bläsius et al.

stopped, it returns the arithmetic mean of all logged values as the
final solution. We choose this iteration during the run, based on a
extension of an adaptive approach [22] to the multivariate case [14].

Algorithm Description. Given a random graph model 𝑀 with
measurable features 𝜑 as well as target values 𝜑 (𝐺), ParFit starts
with an initial parameter choice 𝜃0 (discussed below). In each iter-
ation 𝑖 , we compute a single sample 𝐻𝜃𝑖 ∼ 𝑀 (𝜃𝑖) of the model𝑀
with parameters 𝜃𝑖 . Then we compute the new solution 𝜃𝑖+1 from
𝜃𝑖 by adjusting each input parameter proportional to the deviation
Δ𝑖 B 𝜑 (𝐺) − 𝜑 (𝐻𝜃𝑖) of the corresponding feature of the sampled
graph from the target value 𝜑 (𝐺). In step 𝑖 , we scale Δ𝑖 by a weight
𝑎𝑖 , called the gain. The dependence of 𝑎𝑖 on 𝑖 makes it possible to,
e.g., introduce a cool-down by gradually reducing 𝑎𝑖 , which can
prevent oscillation. Formally, we set 𝜃𝑖+1 = 𝜃𝑖 + 𝑎𝑖Δ𝑖 .

For every feature, we keep track of the earliest iteration in which
the sign of Δ𝑖 is different than that of Δ𝑖+1. We set 𝑖± to be the
earliest iteration in which this has happened for all features, and
we store solutions from that point on.

When the algorithm is terminated in iteration 𝑖∗, we return the
arithmetic mean of all stored values, i.e., 𝜃𝑖∗ B 1

𝑖∗−𝑖±+1
∑𝑖∗

𝑗=𝑖±
𝜃 𝑗 .

Parameter Choices. A common choice for 𝑎𝑖 is (𝑖 + 1)−𝛼 for some
non-negative 𝛼 . However, in many contexts, 𝛼 = 0 and thus 𝑎𝑖 = 1
is chosen [24, 34], even though this does not guarantee conver-
gence [34]. In our scenario, this choice yields a good fit (Section 5.3).

For all models, we configure the algorithm as follows. For the
initial solution 𝜃0, we take the number of vertices 𝑛 and the aver-
age degree to be those of the target values 𝜑 (𝐺), and choose an
initial temperature of 0.5 and an initial power-law exponent of 3.0.
Further, we set 𝑖± to be at most 30. Last, we terminate the proce-
dure once the final solution1 𝜃𝑖 fulfills the following convergence
criterion: For the last 10 iterations, the relative change of 𝜃𝑖 across
all parameters is below 1%; these thresholds are further analyzed
in Section 5.3. We set a maximum of 200 such averaging iterations
to ensure termination; however, this maximum was never reached
in our experiments for our choice of algorithm configuration.

Remarks. While in general, one might have to add a factor to Δ𝑖
to account for imbalanced scaling between parameters and features,
this was not necessary for our parameters and features.

We compute 𝜃𝑖+1 via only a single sample 𝐻𝜃𝑖 from the model,
which gives a very coarse estimation of the expected feature values
𝐸 [𝜑 (𝐻𝜃𝑖)]. However, this is not a problem as repeated iterations
mitigate these noisy evaluations. Moreover, the iterate averaging
helps reduce the effect of outliers when close to the optimum.

5 EVALUATION
We evaluate how well ParFit (Algorithm 1) is able to recover the
model parameters of random graph models. For an evaluation on
real-world networks, please refer to Section 6.

We consider a predictive simulation in which we fit a model
to given networks, take samples based on the fitted parameters,
and compare the features of the samples to those of the original
networks. In order to only measure the quality of ParFit and not of
the model, we choose only networks that actually come from the

1That is, the arithmetic mean of all so-far stored solutions.

same network model, ensuring that the fitting is actually possible.
We consider different quality measures and discuss the results.

5.1 Setup
We implemented ParFit in Python, using several libraries. For net-
work property analysis as well as the Erdős–Rényi and Chung–Lu
model, we utilize the networKit library [4]. For the GIRG model, we
employ the efficient generator by Bläsius et al. [8]. The experiments
were run on a Macbook Pro with an Apple M1 chip and 16 GB RAM.
All code and data is published at https://github.com/PFischbeck/
parameter-fitting-experiments.

We consider a range of parameter configurations for all network
models. In particular, for the GIRG model, we choose number of
vertices 𝑛 = 10 000, average degree ranging from 2 to 10, power-law
exponent ranging from 2.1 to 25.0, and temperature ranging from
0.01 to 0.9999. For the Erdős–Rényi model and Chung–Lu model,
we let the number of vertices range between 1000 and 10 000. In
total, there are 171, 500 and 500 parameter configurations for the
Erdős–Rényi, Chung–Lu and GIRG model respectively.

Recall that ParFit aims to minimize the difference between the
target feature values and the expected actual feature values at the
fitted parameters. We aim to measure the quality of ParFit with
respect to predicting parameters for scenarios that are actually
achievable with the given model, in expectation; we focus on the
quality for individual networks in Section 6. To ensure the target
feature values are achievable in expectation, for every considered
parameter configuration, we take 50 samples from the model, and
consider the mean corresponding features across the samples as the
input 𝜑 (𝐺) for ParFit. For every input, we run ParFit and take 50
samples based on the fitted parameters. We measure the features of
those samples and compare their mean to the feature values given
to ParFit. While our problem definition states that we consider the
vector length of those differences, it is more useful to look at each
feature individually. For every feature, we measure the Pearson
correlation coefficient as well as the mean absolute error, i.e., the
mean of the absolute difference between the value of the target
feature value and the mean of the 50 samples across all settings.

5.2 Results & Discussion
Table 1 provides an overview of the measured qualities of ParFit
across the different models and scenarios. Across all features, we
see a very strong Pearson correlation. Considering the number of
vertices, the mean absolute error is very low for the Erdős–Rényi
model as well as the Chung–Lumodel. It is slightly increased for the
GIRG model. Note however that all initial parameter configurations
for the GIRG model were chosen such that 𝑛 = 10 000, while this
parameter varies for the other models. The 90th percentile of the
absolute error for GIRGs is at 113.2, indicating the effect of some
outliers, which we consider closer in a moment. The average degree
has a very low mean absolute error across all models. The other
two features of heterogeneity and clustering are strongly correlated
too. Recalling that the heterogeneity ranges roughly from −0.5 to
0.75, the MAEs of 0.01 and 0.02 are very low. The clustering feature
values can range from 0 to 1, but the MAE for the GIRG model is
only at 0.004. The mean iteration count is highest for the GIRG

https://github.com/PFischbeck/parameter-fitting-experiments
https://github.com/PFischbeck/parameter-fitting-experiments

Robust Parameter Fitting to Realistic Network Models via Iterative Stochastic Approximation

Table 1: For the three considered models and the range of settings described in the setup (Section 5.1), we provide statistics
on the quality of ParFit (Algorithm 1). For the four considered features (number of vertices, average degree, heterogeneity
and clustering), we consider the mean actual feature values in relation to the target feature values, and provide the Pearson
correlation coefficient as well as the mean absolute error (MAE). Values are left blank if not applicable for the respective models.
In addition, we provide the mean number of iterations. Please refer to Section 5.2 for a discussion.

Model Number of vertices Average degree Heterogeneity Clustering Iterations
Pearson MAE Pearson MAE Pearson MAE Pearson MAE

Erdős–Rényi 0.999 2.6 0.999 0.02 13.6
Chung–Lu 0.999 6.5 0.999 0.01 0.999 0.01 23.3
GIRG 0.999 51.1 0.999 0.02 0.998 0.02 0.999 0.004 32.2

Table 2: For the GIRG model and varying 𝛼 values for the
ParFit step size, we provide statistics on ParFit’s quality. For
the four considered features (number of vertices, average
degree, heterogeneity, clustering), we consider mean actual
feature values in relation to target feature values, and provide
the mean absolute error (MAE). We also provide the mean
iteration count. Please refer to Section 5.3 for a discussion.

𝛼 Mean absolute error Iterations
Vertices Avg. deg. Het. Clu.

0.0 50.6 0.02 0.02 0.004 32.0
0.2 42.7 0.02 0.02 0.004 29.0
0.4 46.9 0.02 0.03 0.004 28.3
0.6 63.5 0.03 0.04 0.006 28.2
0.8 96.5 0.04 0.05 0.007 30.3
1.0 126.9 0.05 0.06 0.009 32.2

Table 3: For the GIRG model and varying relative thresh-
old values (Thrsh.) for the convergence stopping criterion,
we provide statistics on the quality of ParFit. For the four
considered features (number of vertices, average degree, het-
erogeneity and clustering), we consider mean actual feature
values in relation to target feature values, and provide the
mean absolute error (MAE). In addition, we provide themean
iteration count. Please refer to Section 5.3 for a discussion.

Thrsh. Mean absolute error Iterations
Vertices Avg. deg. Het. Clu.

0.001 49.9 0.02 0.01 0.003 104.9
0.005 48.2 0.02 0.02 0.003 44.0
0.010 50.0 0.02 0.02 0.004 32.4
0.050 61.1 0.03 0.02 0.004 21.8
0.100 61.1 0.02 0.02 0.004 20.9

model; however, this can be expected as it has the most parameters
and corresponding features out of the considered models.

Figure 1 shows the target and mean features of the fitted sam-
ples for the GIRG model. Across all four features (heterogeneity,
clustering, average degree, number of vertices), the values of the
samples from the fitted parameters closely follow the values given

to ParFit. Even in those scenarios we consider very difficult, for
example those with low average degree leading to a target vertex
count considerably below 10 000, ParFit manages to find suitable
parameters. We see that the number of iterations is usually highest
for those scenarios with extreme target values, i.e., high clustering
coefficient and low heterogeneity. The cases of low vertex count
are not inherently hard because of this feature value, but rather the
target vertex count is very low if the average degree is small.

There are some scenarios where ParFit seems to not give per-
fectly fitting parameters. In particular, for very low heterogeneity,
ParFit finds parameters that are slightly too high. In addition, for
high heterogeneity, fitted parameters yield graphs with heterogene-
ity slightly too high or low. For the clustering, there are some pa-
rameter configurations in the high clustering regime where ParFit
struggles to yield matching parameters. And for the number of
vertices, there are several scenarios where the number of vertices of
the fitted samples is slightly higher than required. We can also see
that those are the cases where the number of iterations taken by
ParFit is high. Overall, there are some outliers where ParFit yielded
parameters that do not provide perfectly fitting features. However,
these cases are rare and coincide with a high number of iterations.

In Section A (Appendix), we provide the corresponding figures
for the Erdős–Rényi and the Chung–Lu power-law model. In these
cases, the parameters fit very well again. In the case of the Erdős–
Rényi model in particular, low-degree scenarios lead to a higher
number of iterations, due to the increased influence of the reduction
to the largest component. However, ParFit deals with these cases
easily, finding suitable parameters in under 20 iterations.

For the Chung–Lu power-law model, the method behavior is
similar to that of the GIRGmodel scenario. In particular, the number
of vertices and the average degree are mostly tightly fitted, except
for few outliers where the method also takes substantially more
iterations. For the heterogeneity, we can see that for scenarios with
low heterogeneity, the method usually yields parameters that lead
to a slightly too high heterogeneity, and it takes up to 60 iterations
in such cases. Overall, ParFit provides fitting parameters across a
wide variety of scenarios for all three considered models.

5.3 Algorithm Configuration
Since ParFit can be configured (Section 4), we discuss our configu-
ration choice and evaluate the effect of varying its parameters.

Bläsius et al.

Figure 1: ParFit (Algorithm 1) evaluated on several scenarios of geometric inhomogeneous random graphs (GIRG; see also
Section 3) instances. We sample 50 GIRG instances from a parameter configuration, take their mean corresponding features,
run ParFit, and take 50 samples based on the fitted parameters. For the four relevant features of GIRG instances, the plots
show the target feature value (given to ParFit; 𝑥-axis) as well as the mean actual feature value of 50 samples based on the
fitted parameters (𝑦-axis). The color shows the number of iterations (i.e., number of samples) taken by ParFit. A darker color
indicates fewer iterations. The diagonal line shows the identity function. Please refer to Section 5.2 for a discussion.

Non-constant Gain. One aspect of ParFit is the choice of the gain
function for the step size. We chose a constant gain of 1; however,
in literature, a gain of (𝑘 + 1)𝛼 is commonly used [34], where 𝑘 is
the iteration, and 𝛼 is a non-negative constant.

We consider a range of values for 𝛼 ranging from 0 to 1 and how
this affects the number of iterations as well as the quality of the
fitted parameters, across the same scenarios described above. In
particular, for the same models and scenarios, we run the altered
ParFit version and again measure the resulting features.

Table 2 shows the resulting mean absolute error (MAE) values for
the GIRG model when considering 𝛼 values of 0.0, 0.2, 0.4, 0.6, 0.8,
and 1.0. See Appendix A for results on other models. We measure
only little change in the number of iterations across all models.
However, the MAE across the four considered features increases
with increasing 𝛼 , supporting our choice of 𝛼 = 0. The exception
is a slightly higher MAE for the number of vertices for low 𝛼 . In
contrast, theMAE of the heterogeneity on the GIRGmodel increases
from 0.022 to 0.055when going from 𝛼 = 0 to 𝛼 = 1. The interaction

Robust Parameter Fitting to Realistic Network Models via Iterative Stochastic Approximation

of higher 𝛼 with iterate averaging was nicely explained by Spall
[34]: With decreased gain, the process gets closer to the optimal
parameters from one side only, while iterate averaging performs
best when the process moves around these optimal parameters.

Sign Change Phase. In our algorithm, we configure 𝑖± to be the
earliest iteration in which all features had a sign change at some
point, but we set it to at most 30 to ensure termination. In the
experiments discussed in Section 5.2, this limit was reached for 160
out of the 1171 algorithm runs. In particular, reaching the limit was
most commonly due to no sign changes in the heterogeneity in the
low heterogeneity regime. In these scenarios, ParFit struggled to
reach such low heterogeneity; see Figure 1.

Convergence Criterion. In our method, we stop the algorithm
once the relative change in the current solution was below the
threshold 1% across all parameters for the last 10 iterations. We
consider different values for this threshold to observe the effect on
number of iterations and solution quality. Note that we still limit
the number of averaging iterations to at most 200. This limit was
only reached for 107 out of 5855 algorithm runs.

Table 3 shows the resulting mean absolute errors (MAE) for
the GIRG model (see Appendix A for results on other models). As
expected, a higher (i.e., more tolerant) threshold for convergence
leads to a decreased number of iterations but also to slightly higher
MAE values. Since we still enforce at least 10 iterations, even the
solutions where the method is stopped early seem to provide gener-
ally good values. Our final choice of 0.01 for the threshold provides
a good middle ground between few iterations and low MAE values.

6 APPLICATIONS
We apply ParFit (Algorithm 1) with the GIRGmodel to 35 undirected
real-world networks from the KONECT database [25]. Table 4 shows
the results. The expected values for the measurable features were
obtained by sampling 50 graphs for the fitted parameters.

Quality of Fit. We first discuss the number of vertices and the av-
erage degree. For many networks, the average degree is sufficiently
high such that the model generates a connected graph. In these
cases, simply setting 𝑛 to the number of vertices yields the correct
result. Similarly, setting the parameter 𝑘 to the desired average
degree works well as the fitter for the average degree of the GIRG
generator is already very good [8]. Although ParFit does not know
this, it easily finds the correct values for 𝑛 and 𝑘 in these cases.

In the more interesting cases of low average degrees, ParFit
works very well. For all but two networks, the deviation between
the desired and the mean number of vertices is below 1%. For
the other two, Youtube and Hyves, the error is 1.87% and 2.04%.
For the average degree, we have a similar picture, with deviations
below 1%, except for Youtube and Hyves with 2.47% and 2.78%.
To highlight one example where ParFit provides new capabilities
that were not available before, consider the Route views network.
It has 6.5 k vertices and an average degree of 3.9. To generate a
connected graph of that size and density with the same clustering
and heterogeneity using the GIRGmodel, it is necessary to generate
a graph with 13.4 k vertices and average degree 1.94, i.e., twice the
number of vertices and half the average degree.

Figure 2: The power law exponents (PLEs) of all real-world
networks (𝑥-axis) versus the respective PLEs fitted by ParFit
(Algorithm 1,𝑦-axis) assuming a GIRGmodel (Section 3). The
𝑥-axis shows the range of the three PLE estimators in [35].
Red lines refer to strong power laws, blue to the rest. The di-
agonal is the identity function. See Section 6 for a discussion.

The two other measurable features are less directly controllable
by model parameters than the number of vertices and the average
degree. In fact, for some real-world networks, the measurable fea-
tures might take values that are impossible to produce with the
GIRG model. For the clustering coefficient, the largest deviation be-
tween desired and achieved value is only 0.06. For the heterogeneity,
the deviation is also small for most instances. However, there are
some instances with very high or very low heterogeneity, where
the deviation is a bit higher. This is particularly true for the four
road networks (Roads TX/CA/PA and Chicago roads). We want
to stress that this is not a flaw of ParFit but rather indicates that
the model is not a good representation of these types of networks.
Although GIRGs can be used to generate homogeneous graphs by
setting the power-law exponent very high (which is equivalent
to giving all vertices the same weight), the degree of each vertex
still follows a binomial distribution, which has some amount of
variance. This makes it impossible to generate GIRGs that have
the same heterogeneity as regular graphs (or graphs that are too
close to being regular). Detailed figures for the heterogeneity and
clustering coefficient can be found in Appendix B.

Temperature and Power-Law Exponent. Observe that the fitted
temperatures are rather high for most networks. We offer three
potential explanations for this. First, the influence of a latent under-
lying geometry is rather low. Second, the one-dimensional geometry
of the model does not fully capture the higher-dimensional nature
of the networks. Increasing the dimension has a similar effect on
the clustering coefficient as increasing the temperature. And third,
using the clustering coefficient as a measure for the strength of
the underlying geometry oversimplifies matters. An example for
this are the road networks, where it is reasonable to assume that
the influence of an underlying geometry is rather high. However,
the considered road networks have a low clustering coefficient and

Bläsius et al.

Table 4: Comparison of four different features (Actual; number of vertices, average degree, heterogeneity, clustering) of
real-world networks (Graph) to the average of those features of 50 samples from ParFit (Algorithm 1) fitted to each network
(Measured), using the GIRG model (Section 3). The column following each feature shows the respective GIRG model parameter
from ParFit. The last column is the number of iterations that ParFit ran before terminating. See Section 6 for a discussion.

Graph Number of Vertices 𝑛 Average degree 𝑘 Heterogeneity 𝛽 Clustering 𝑇 Iterations
Actual Measured Actual Measured Actual Measured Actual Measured

CAIDA (IN) 26 475 26 463 51 917 4.0 4.1 2.1 0.92 0.80 2.10 0.21 0.21 0.79 22
Skitter (SK) 1 694 616 1 705 244 1 716 088 13.1 13.0 12.9 1.02 1.10 2.35 0.26 0.24 0.86 25
Actor collaborations (CL) 374 511 374 511 374 511 80.2 80.3 80.2 0.31 0.33 2.87 0.78 0.78 0.16 21
Amazon (CA) 334 863 334 867 342 937 5.5 5.5 5.4 0.02 0.01 3.41 0.40 0.40 0.59 18
arXiv (AP) 17 903 17 903 17 903 22.0 22.0 22.0 0.15 0.18 2.98 0.63 0.63 0.42 15
Bible names (MN) 1707 1710 1717 10.6 10.6 10.5 0.23 0.25 2.69 0.71 0.71 0.32 18
Brightkite (BK) 56 739 56 792 57 758 7.5 7.5 7.4 0.44 0.41 2.61 0.17 0.17 0.87 18
Catster (Sc) 148 826 148 826 148 826 73.2 73.2 73.2 1.05 0.79 2.10 0.39 0.38 0.92 16
Catster/Dogster (Scd) 601 213 601 213 601 214 52.1 52.1 52.1 0.96 0.94 2.31 0.50 0.48 0.71 24
Chicago roads (CR) 12 979 12 992 13 872 3.2 3.2 3.0 −0.45 −0.29 10.11 0.04 0.04 0.99 40
DBLP (CD) 317 080 319 189 334 410 6.6 6.6 6.4 0.18 0.18 3.10 0.63 0.63 0.36 19
Dogster (Sd) 426 485 426 486 426 488 40.1 40.1 40.1 0.85 0.86 2.22 0.17 0.19 0.98 17
Douban (DB) 154 908 155 044 174 190 4.2 4.2 3.8 0.44 0.41 2.56 0.02 0.04 1.00 17
U. Rovira I Virgili (A@) 1133 1133 1135 9.6 9.6 9.6 −0.01 0.00 2.94 0.22 0.22 0.86 18
Euro roads (ET) 1039 1043 1310 2.5 2.5 2.1 −0.32 −0.26 6.17 0.02 0.05 1.00 42
Flickr (LF) 1 624 991 1 625 669 1 626 051 19.0 19.0 19.0 0.84 0.84 2.47 0.19 0.16 0.89 20
Flickr (FI) 105 722 105 722 105 722 43.8 43.8 43.8 0.42 0.40 2.49 0.09 0.11 1.00 26
Flixster (FX) 2 523 386 2 539 464 2 649 795 6.3 6.2 6.0 0.77 0.76 2.53 0.08 0.08 0.94 17
Gowalla (GW) 196 591 197 260 198 829 9.7 9.6 9.6 0.74 0.57 2.55 0.24 0.21 0.83 20
Hamsterster (Shf) 1788 1787 1789 14.0 14.0 14.0 0.18 0.17 2.46 0.14 0.20 1.00 18
Hamsterster (Sh) 2000 2000 2000 16.1 16.2 16.1 0.12 0.12 2.90 0.54 0.55 0.52 19
Hyves (HY) 1 402 673 1 431 249 1 983 390 4.0 3.9 2.8 1.06 1.06 2.30 0.04 0.05 0.99 32
LiveJournal (Lj) 5 189 808 5 189 824 5 189 986 18.8 18.8 18.8 0.43 0.46 2.84 0.27 0.27 0.75 24
Livemocha (LM) 104 103 104 103 104 103 42.1 42.1 42.1 0.42 0.39 2.50 0.05 0.11 1.00 15
Orkut (OR) 3 072 441 3 072 441 3 072 441 76.3 76.3 76.3 0.31 0.28 2.93 0.17 0.16 0.84 17
Power grid (UG) 4941 4942 6356 2.7 2.7 2.2 −0.17 −0.16 3.85 0.08 0.08 0.88 19
Proteins (Mp) 1458 1448 2303 2.7 2.7 1.8 0.11 0.12 2.65 0.07 0.07 0.96 19
Reactome (RC) 5973 5973 5973 48.8 48.8 48.8 0.14 0.16 2.85 0.61 0.61 0.46 17
Roads CA (RO) 1 957 027 1 952 063 2 203 991 2.8 2.8 2.5 −0.45 −0.28 10.52 0.05 0.05 0.91 40
Roads PA (RD) 1 087 562 1 089 165 1 222 095 2.8 2.8 2.6 −0.45 −0.28 10.37 0.05 0.05 0.91 40
Roads TX (R1) 1 351 137 1 355 658 1 535 134 2.8 2.8 2.5 −0.44 −0.28 10.16 0.05 0.05 0.91 40
Route views (AS) 6474 6499 13 432 3.9 3.9 1.9 0.81 0.64 2.10 0.25 0.25 0.70 24
WordNet (WO) 145 145 145 224 146 237 9.0 9.0 9.0 0.36 0.35 2.82 0.60 0.60 0.45 26
Youtube (CY) 1 134 890 1 156 102 1 339 791 5.3 5.1 4.5 0.98 1.01 2.30 0.08 0.07 0.98 26
Human PPI (MV) 2783 2790 3033 4.3 4.3 4.0 0.21 0.17 2.62 0.07 0.09 1.00 22

thus require high temperature. This is due to connections being
often subdivided, i.e., there are many vertices of degree 2, which
heavily decreases the number of triangles. We believe that all three
explanations have merit for different networks and that it is an
interesting future question to study which explanation is the right
one for which network. We note that, though this is beyond the
scope of this paper, ParFit enables the study of these kind of ques-
tions by running experiments on models with higher dimensions
or other measurable features corresponding to the temperature.

The values we obtain for the power-law exponents are not sur-
prising. Figure 2 shows them in comparison to the results of Voitalov
et al. [35], who applied three different estimation methods. The
figure includes all networks that were classified as power-law net-
works [35]. In most cases, our obtained power-law exponents are
within the range obtained by Voitalov et al. or close to it.

This is insofar interesting, as the two approaches have different
objectives. The goal of Voitalov et al. [35] is to find an exponent
such that the observed tail-distribution best fits a power-law distri-
bution with that exponent, potentially taking cutoffs into account.

ParFit on the other side aims at finding a power-law distribution
whose variance best fits the variance observed in the degree dis-
tribution. Both approaches lead to similar results, indicating the
heterogeneity measure we use is well suited as a proxy for the
power-law exponent. Additionally, differences between the result-
ing power-law exponents may in part come from the fact that we
reduced the networks to their largest connected component, while
Voitalov et al. [35] considered the whole network’s distribution.

7 CONCLUSION
We have presented a fitting method (ParFit; Algorithm 1) that, given
an Erdős–Rényi, Chung–Lu or GIRG model as well target feature
values, finds model parameters that lead to the desired features on
average. We have shown that ParFit works well for a wide range
of scenarios, assuming the target feature values are achievable by
the model. We have applied ParFit to real-world networks covering
several areas, including infrastructure and online social networks. In
these cases, ParFit still provides well-fitting parameters and closely
matches related work on the scale-freeness of these networks.

Robust Parameter Fitting to Realistic Network Models via Iterative Stochastic Approximation

We think our work is applicable to other random graph models,
including hyperbolic random graphs. Our work now allows for the
use of accurate parameter fitting in many contexts, e.g., further
fitting the models to real-world networks in order to properly mea-
sure how realistic other features of the sampled model instances
are. Further improvements to the fitting method are also possible,
e.g., a better approximation of the gain via the Kiefer–Wolfowitz
algorithm in the simultaneous perturbation variant.

REFERENCES
[1] William Aiello, Fan Chung, and Linyuan Lu. 2000. A Random Graph Model for

Massive Graphs. In STOC, Vol. 2000. Citeseer, 1–10.
[2] Sadegh Aliakbary, Sadegh Motallebi, Sina Rashidian, Jafar Habibi, and Ali

Movaghar. 2015. Noise-Tolerant Model Selection and Parameter Estimation
for Complex Networks. Physica A: Statistical Mechanics and its Applications 427
(2015), 100–112.

[3] Weihua An. 2016. Fitting ERGMs on Big Networks. Social Science Research 59
(2016), 107–119.

[4] Eugenio Angriman, Alexander van der Grinten, Michael Hamann, Henning
Meyerhenke, and Manuel Penschuck. 2022. Algorithms for Large-Scale Network
Analysis and the NetworKit Toolkit. In Algorithms for Big Data: DFG Priority
Program 1736. Springer Nature Switzerland, 3–20. https://doi.org/10.1007/978-
3-031-21534-6_1

[5] Shweta Bansal, Shashank Khandelwal, and Lauren A. Meyers. 2009. Exploring
Biological Network Structure with Clustered Random Networks. BMC Bioinfor-
matics 10, 405 (2009). https://doi.org/10.1186/1471-2105-10-405

[6] Thomas Bläsius and Philipp Fischbeck. 2022. On the External Validity of Average-
Case Analyses of Graph Algorithms. In 30th Annual European Symposium on
Algorithms (ESA 2022) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 244), Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman
(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
21:1–21:14. https://doi.org/10.4230/LIPIcs.ESA.2022.21

[7] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Anton Krohmer, and
Jonathan Striebel. 2018. Towards a Systematic Evaluation of Generative Network
Models. In International Workshop on Algorithms and Models for the Web-Graph.
Springer, 99–114.

[8] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel
Penschuck, and Christopher Weyand. 2022. Efficiently Generating Geometric
Inhomogeneous and Hyperbolic Random Graphs. Network Science 10, 4 (2022),
361–380.

[9] Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. 2010. Sustaining
the Internet with Hyperbolic Mapping. Nature Communications 1, 62 (2010).

[10] Karl Bringmann, Ralph Keusch, and Johannes Lengler. 2019. Geometric Inho-
mogeneous Random Graphs. Theoretical Computer Science 760 (2019), 35–54.
https://doi.org/10.1016/j.tcs.2018.08.014

[11] Fan Chung and Linyuan Lu. 2002. The Average Distances in Random Graphs
with given Expected Degrees. Proceedings of the National Academy of Sciences
99, 25 (2002), 15879–15882. https://doi.org/10.1073/pnas.252631999

[12] Fan Chung and Linyuan Lu. 2002. Connected Components in Random Graphs
with given Expected Degree Sequences. Annals of Combinatorics 6, 2 (2002),
125–145. https://doi.org/10.1007/PL00012580

[13] Fan Chung and Linyuan Lu. 2006. The Volume of the Giant Component of a Ran-
dom Graph with Given Expected Degrees. SIAM Journal on Discrete Mathematics
20, 2 (Jan. 2006), 395–411. https://doi.org/10.1137/050630106

[14] Bernard Delyon and Anatoli Juditsky. 1993. Accelerated Stochastic Approxima-
tion. SIAM Journal on Optimization 3, 4 (1993), 868–881.

[15] Mikhail Drobyshevskiy and Denis Turdakov. 2019. Random Graph Modeling: A
Survey of the Concepts. Comput. Surveys 52, 6 (2019), 1–36.

[16] Paul Erdős and Alfréd Rényi. 1959. On Random Graphs I. Publicationes Mathe-
maticae 6 (1959), 290–297.

[17] Paul Erdős and Alfréd Rényi. 1960. On the Evolution of Random Graphs. 5, 1
(1960), 17–60.

[18] David F. Gleich and Art B. Owen. 2012. Moment-Based Estimation of Stochastic
Kronecker Graph Parameters. Internet Mathematics 8, 3 (2012), 232–256.

[19] Palash Goyal and Emilio Ferrara. 2018. Graph Embedding Techniques, Applica-
tions, and Performance: A Survey. Knowledge-Based Systems 151 (2018), 78–94.

[20] Alexander Gutfraind, Ilya Safro, and Lauren Ancel Meyers. 2015. Multiscale
Network Generation. In International Conference on Information Fusion. IEEE,
158–165.

[21] Mark S. Handcock, Adrian E. Raftery, and Jeremy M. Tantrum. 2007. Model-
Based Clustering for Social Networks. Journal of the Royal Statistical Society
Series A: Statistics in Society 170, 2 (2007), 301–354.

[22] Harry Kesten. 1958. Accelerated Stochastic Approximation. The Annals of
Mathematical Statistics 29, 1 (1958), 41–59.

[23] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and
Marián Boguñá. 2010. Hyperbolic Geometry of Complex Networks. Physical
Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
82, 3 (2010), 036106. https://doi.org/10.1103/PhysRevE.82.036106

[24] C-M Kuan and Kurt Hornik. 1991. Convergence of Learning Algorithms with
Constant Learning Rates. IEEE Transactions on Neural Networks 2, 5 (1991),
484–489.

[25] Jérôme Kunegis. 2013. KONECT – The Koblenz Network Collection. In Proc.
Int. Conf. on World Wide Web Companion. 1343–1350. https://doi.org/10.1145/
2487788.2488173

[26] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and
Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to Modeling Net-
works. Journal of Machine Learning Research 11 (2010), 985–1042.

[27] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over
Time: Densification Laws, Shrinking Diameters and Possible Explanations. In
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowl-
edge Discovery in Data Mining. ACM, Chicago Illinois USA, 177–187. https:
//doi.org/10.1145/1081870.1081893

[28] Marcell Nagy and Roland Molontay. 2019. On the Structural Properties of
Social Networks and Their Measurement-Calibrated Synthetic Counterparts. In
Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining. 584–588.

[29] Marcell Nagy and Roland Molontay. 2022. Network Classification Based Struc-
tural Analysis of Real Networks and Their Model-Generated Counterparts.
arXiv:1810.08498 [cs.SI]

[30] Boris T Polyak and Anatoli B Juditsky. 1992. Acceleration of Stochastic Approx-
imation by Averaging. SIAM journal on control and optimization 30, 4 (1992),
838–855.

[31] Herbert Robbins, Sutton Monro, et al. 1951. A Stochastic Approximation Method.
The Annals of Mathematical Statistics 22, 3 (1951), 400–407.

[32] D Ruppert. 1991. Stochastic Approximation. Handbook of Sequential Analysis,
BK Ghosh and PK Sen, Eds.

[33] Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng, and
Ben Y. Zhao. 2010. Measurement-Calibrated Graph Models for Social Network
Experiments. In Proceedings of the 19th International Conference on World Wide
Web (WWW ’10). 861–870. https://doi.org/10.1145/1772690.1772778

[34] James C Spall. 2005. Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. John Wiley & Sons.

[35] Ivan Voitalov, Pim Van Der Hoorn, Remco Van Der Hofstad, and Dmitri Krioukov.
2019. Scale-Free Networks Well Done. Physical Review Research 1, 3 (2019),
033034.

https://doi.org/10.1007/978-3-031-21534-6_1
https://doi.org/10.1007/978-3-031-21534-6_1
https://doi.org/10.1186/1471-2105-10-405
https://doi.org/10.4230/LIPIcs.ESA.2022.21
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1007/PL00012580
https://doi.org/10.1137/050630106
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1145/1081870.1081893
https://arxiv.org/abs/1810.08498
https://doi.org/10.1145/1772690.1772778

Bläsius et al.

Table 7: For the Chung–Lu model and varying values for the
convergence threshold, we provide statistics on the quality
of ParFit. For the three considered features (number of ver-
tices, average degree, heterogeneity), we consider the mean
actual feature values in relation to the target feature values,
and provide the mean absolute error (MAE). In addition, we
provide the mean number of iterations.

Threshold Mean absolute error Iterations
Vertices Avg. deg. Het.

0.001 7.6 0.01 0.00 54.5
0.005 6.1 0.01 0.01 24.4
0.010 6.7 0.01 0.01 23.3
0.050 6.7 0.01 0.01 22.7
0.100 6.6 0.01 0.01 22.8

Table 8: For the Erdős–Rényi model and varying values for
the convergence threshold, we provide statistics on the num-
ber on the quality of ParFit. For the two considered features
(number of vertices, average degree), we consider the mean
actual feature values in relation to the target feature values,
and provide the mean absolute error (MAE). In addition, we
provide the mean number of iterations.

Threshold Mean absolute error Iterations
Vertices Avg. deg.

0.001 2.5 0.01 25.8
0.005 3.2 0.01 14.5
0.010 2.9 0.01 13.6
0.050 3.5 0.01 13.3
0.100 2.8 0.02 13.4

Table 5: For the Chung–Lu model and varying values of 𝛼
for the ParFit step size, we provide statistics on the quality
of ParFit. For the three considered features (number of ver-
tices, average degree, heterogeneity), we consider the mean
actual feature values in relation to the target feature values,
and provide the mean absolute error (MAE). In addition, we
provide the mean number of iterations.

𝛼 Mean absolute error Iterations
Vertices Avg. deg. Het.

0.0 6.8 0.01 0.01 23.2
0.2 5.8 0.01 0.01 24.9
0.4 6.7 0.01 0.02 27.5
0.6 10.5 0.01 0.02 31.4
0.8 21.2 0.02 0.03 36.1
1.0 44.3 0.03 0.05 37.7

Table 6: For the Erdős–Rényi model and varying values of 𝛼
for the ParFit step size, we provide statistics on the quality
of ParFit. For the two considered features (number of ver-
tices, average degree), we consider the mean actual feature
values in relation to the target feature values, and provide
the mean absolute error (MAE). In addition, we provide the
mean number of iterations.

𝛼 Mean absolute error Iterations
Vertices Avg. deg.

0.0 2.8 0.01 13.4
0.2 2.6 0.01 13.6
0.4 2.5 0.01 13.8
0.6 3.2 0.01 14.2
0.8 4.4 0.02 14.8
1.0 7.4 0.02 15.6

A ADDITIONAL EVALUATION RESULTS
In this section, we provide further figures for the Erdős–Rényi
model and Chung–Lu power-law model that did not fit into the
main paper.

Figure 3 and Figure 4 show the differences between the target
features and the mean of the fitted samples, similar to those for the
GIRG model shown in Figure 1.

Table 5 and Table 6 show the quality measures for varying values
of ParFit gain 𝛼 , similar to those for the GIRG model shown in
Table 2. In a similar fashion, Table 7 and Table 8 show the quality
measures for varying values for the convergence threshold, similar
to those for the GIRG model shown in Table 3. Across all tables,
we see very similar results in that a low 𝛼 is a good choice, and a
medium threshold is a good trade-off between solution quality and
iteration count.

B REAL-WORLD NETWORKS
Figure 5 shows information of the fitting method on the real-world
networks discussed in Section 6 on the GIRGmodel; in particular on
the accuracy in terms of heterogeneity and clustering coefficient.

Robust Parameter Fitting to Realistic Network Models via Iterative Stochastic Approximation

Figure 3: ParFit (Algorithm 1) evaluated on several Erdős–Rényi scenarios. We sample 50 Erdős–Rényi instances from a
parameter configuration, take their mean corresponding features, run the parameter fitting algorithm, and take 50 samples
based on the fitted parameters. For the two relevant features of Erdős–Rényi instances, the plots show the target feature value
(given to ParFit; 𝑥-axis) as well as the mean actual feature value of 50 samples based on the fitted parameters (𝑦-axis). The
color shows the number of iterations (i.e., number of samples) taken by ParFit. A darker color indicates fewer iterations. The
diagonal line shows the identity function.

Bläsius et al.

Figure 4: ParFit (Algorithm 1) evaluated on several Chung–Lu scenarios. We sample 50 Chung–Lu instances from a parameter
configuration, take their mean feature values, run the parameter fitting algorithm, and take 50 samples based on the fitted
parameters. For the three relevant features of Chung–Lu instances, the plots show the target feature value (given to ParFit;
𝑥-axis) as well as the mean actual feature value of 50 samples based on the fitted parameters (𝑦-axis). The color shows the
number of iterations (i.e., number of samples) taken by ParFit. A darker color indicates fewer iterations. The diagonal line
shows the identity function.

Robust Parameter Fitting to Realistic Network Models via Iterative Stochastic Approximation

Figure 5: For every considered real-world network, we run the parameter fitting algorithm for the GIRG model on it, and
take 50 samples based on the fitted parameters. The plot shows the true measured heterogeneity/clustering of the real-world
network versus the mean heterogeneity/clustering of 50 samples based on the fitted parameters. The color shows the number
of iterations (i.e., number of samples) taken by the fitting method. The diagonal line shows an identity function.

	Abstract
	1 Introduction
	1.1 Setting
	1.2 Our Method: ParFit
	1.3 Contribution

	2 Problem Definition
	3 Network Models
	4 Our Parameter Fitting Method
	5 Evaluation
	5.1 Setup
	5.2 Results & Discussion
	5.3 Algorithm Configuration

	6 Applications
	7 Conclusion
	References
	A Additional Evaluation Results
	B Real-World Networks

