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Abstract. The active global SARS-CoV-2 pandemic caused more than
167 million cases and 3.4 million deaths worldwide. The development
of completely new drugs for such a novel disease is a challenging, time
intensive process and despite researchers around the world working on this
task, no effective treatments have been developed yet. This emphasizes
the importance of drug repurposing, where treatments are found among
existing drugs that are meant for different diseases. A common approach
to this is based on knowledge graphs, that condense relationships between
entities like drugs, diseases and genes. Graph neural networks (GNNs) can
then be used for the task at hand by predicting links in such knowledge
graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently
developed the Dr-COVID model. We further extend their work using
additional output interpretation strategies. The best aggregation strategy
derives a top-100 ranking of candidate drugs, 32 of which currently being
in COVID-19-related clinical trials. Moreover, we present an alternative
application for the model, the generation of additional candidates based
on a given pre-selection of drug candidates using collaborative filtering.
In addition, we improved the implementation of the Dr-COVID model
by significantly shortening the inference and pre-processing time by
exploiting data-parallelism. As drug repurposing is a task that requires
high computation and memory resources, we further accelerate the post-
processing phase using a new emerging hardware — we propose a new
approach to leverage the use of high-capacity Non-Volatile Memory for
aggregate drug ranking.
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1 Introduction

With the novel coronavirus, a global pandemic with serious socio-economic
implications for most parts of our daily lives is active [13]. The limited ability to
take precautions for an unsuspected event like this and the rapid spread make
finding an effective treatment as necessary as difficult, since the disease-specific
knowledge is limited at the beginning and human lives are lost every day. Known
and approved drugs happen to be well-studied, thus, they pose a good starting
point for swift development of treatments, and an emerging tactic in fighting the
pandemic [19]. DrugBank, an extensive database compiling information about
drugs approved by the US Food and Drug Administration as well as experimental
drugs, contained more than 2 300 approved drugs and over 4 500 experimental
drugs as of 2018; both with a strong upward trend [22]. This emphasizes the need
for computer aided development of treatments.

Drug repurposing with knowledge graphs, as first described by [1], is the
current state-of-the-art approach for finding possible treatments for novel diseases
among known drugs using machine learning. Applying drug repurposing allows for
a better way to maneuver through the pandemic. It can lead to better treatments
for patients infected with one of the COVID-19 strains and a better understanding
of the characteristics of the individual strains. Today, we approach the problem
of drug repurposing using machine learning, focusing on deep learning methods.
The idea of predicting unknown links between entities in a knowledge graph is
traditionally known as Collaborative Filtering, as described by [17]. In this work
we expand on the concept of graph embeddings, which map a fixed-size feature
vectors to graph nodes and relations. A state-of-the-art technique for the creation
of such embeddings based on deep neural networks (DNNs) is TransE [2].

Knowledge graph embeddings are already utilized to solve different tasks
related to drug discovery, e.g., they are used to predict potential drug targets
for diseases to reduce cost and increase speed in the drug development process
in general [26]. Regarding the specific application of drug repurposing relying
on edge prediction in a knowledge graph of biomedical data (see Section 2), [6]
present a novel classification approach to this problem by implementing and
merging various different ideas and techniques into one ensemble classifier. At
its core, they deploy a DNN with an encoder-decoder structure. The encoder
mechanism of it, which is based on the Decagon graph neural network by [28],
was initially proposed for the prediction of side effects of concurrent drug use.

Our Contribution. In this paper we extend the work done by Doshi and Chepuri
[4]. Specifically we continue our work in Drug Repurposing [11, 12]. We offer the
following contributions to the complex networks community analyzing medicine
networks:

1. We improve the post prediction step of [4] by using a clustering of similar
diseases and increasing by more than 50% the number of predicted drugs in
the top-100 that were or are in clinical trials.
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2. We explore the additional application of finding drug candidates similar to
a manually pre-selected candidate using collaborative filtering on the same
model output. We show that many drugs that are in clinical trial can be found
by detecting the drugs that are the most similar (e.g. using cosine-distance
on the embedding of the drugs) to a given known drug (or a subset of drugs)
which is or was in clinical trials.

3. We re-implement4 the model described by [4] and improve it by allowing
flexible neighborhood capture sizes. We also improve the implementation
by [12] by improving training speed, inference time, readability and by
reducing pre-processing time from 30 minutes to 2 minutes by leveraging
matrix operations. We further extend the implementation to support Self-
Label-Enhancement.

We also contribute to the way drug repurposing is computed. Drug repur-
posing is a task that requires high computation and memory resources. The
emerging hardware of Intel Optane Persistent Memory Modules (Optane-PM)
communicates via the memory bus, mitigating bottlenecks such as PCI-express
lane availability, using the same interface as DRAM. While there are other
Persistent Memory technologies, Optane-PM being the most mature product
on the market is based on 3D-XPoint (3DXP) technology and operates at a
cache-line granularity with a latency of around 300ns [8], which is more than
an order of magnitude faster than the current state of the art NVMe SSDs, but
approximately three times slower than DRAM. Additionally, it has high capacity
which is 8x larger than the available DRAM — a single DIMM of Optane-PM
can reach 512GB. We note that it is practically necessary to use Optane-PM as
the scale of the problem increases [24, 23].

To the best of our knowledge, in this paper, we show for the first time
an application of the emerging Optane-PM for the task of Drug Repurposing.
We generate a large dataset for the Drug Repurposing problem by extending
(both vertically and horizontally) the dataset we have and evaluate two simple
aggregation strategies which are implemented and processed on the Optane-PM .
We obtain fast and promising results for the use of Optane-PM to process large
datasets in the context of Drug Repurposing.

2 Dataset

Our work relies on the Drug Repurposing Knowledge Graph (DRKG) by [7],
which compiles data from different biomedical databases. It contains 97; 238
entities belonging to 13 entity types and 5; 874; 261 triplets belonging to 107 edge
types. We restrict ourselves to 98 edge types between 4 entity types, namely
gene, compound, anatomy and disease, which leaves us with a knowledge graph
with 69; 036 entities and 4; 885; 854 edges. In particular, it contains drugs and

4 Our implementation of the experiments and the model can be found
here: https://drive.google.com/file/d/1hYxMe3AFwcJ4UKsn8SPsZVPW3buXe0u4/
view?usp=sharing.
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Fig. 1. The architecture of our model as described in Section 3.

substances as compound entities, as well as different COVID-19 variants as disease
entities. The edge types include e.g. compound -treats-disease edges, which is the
kind of edge our model predicts.

One part of DRKG are the precomputed TransE embeddings trained using
dgl-ke by [27]. To train our model to predict whether a given edge in some
compound -treats-disease relation exists, we have to create suitable training data.
To provide our model with both positive and negative samples for training, for
each positive edge we sample 30 non-edges in the dataset, which results in a ratio
similar to Dr-COVID. This process tries to account for the imbalance of edges
and non-edges in the ground truth. The set of edges included in the dataset is not
complete, however, it is quite certain to be correct. Consequently, the positive
edges are given a higher weight in the loss calculation, and the higher number
of negative edges (which are not certain to be truly negative) are given a lower
weight. To prevent too much imbalance in the individual minibatches, we use a
weighted random batch sampler that over-samples the positive samples yielding
an expected ratio of 1 : 1:5 of positive to negative samples in each batch.

3 Model Architecture

A Graph Neural Network (GNN) is a message passing framework where vertex
embeddings are passed along edges of a graph. A single GNN layer traditionally
performs a single round of message passing where messages are transformed via
an edge function, are collected together into a single message via an aggregator
function, and finally are used to produce new messages using a vertex function.
We refer the reader to [28, 18, 10] for a more in-depth description.

In our experiments, we used a traditional encoder-decoder architecture using
a two-layer GNN encoder and a custom decoder. The architecture of our model
is illustrated in Figure 1. It consists of a SIGN [5] architecture encoder, which
provides an embedding y 2 R250 for each node. We apply tanh to the encoder
output and forward it into our decoder. Given two nodes u; v, the decoder takes
their encodings yu; yv and assigns a score su;v 2 [0; 1], which measures the
probability for an edge between nodes u and v to exist. The decoder consists
of two linear layers ‘1(u) and ‘2(v) that process the encodings yu and yv via


