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Abstract—Monitoring is a key prerequisite for self-adaptive
software and many other forms of operating software. Monitoring
relevant lower level phenomena like the occurrences of exceptions
and diagnosis data requires to carefully examine which detailed
information is really necessary and feasible to monitor. Adaptive
monitoring permits observing a greater variety of details with
less overhead, if most of the time the MAPE-K loop can
operate using only a small subset of all those details. However,
engineering such an adaptive monitoring is a major engineering
effort on its own that further complicates the development of
self-adaptive software. The proposed approach overcomes the
outlined problems by providing generic adaptive monitoring via
runtime models. It reduces the effort to introduce and apply
adaptive monitoring by avoiding additional development effort
for controlling the monitoring adaptation. Although the generic
approach is independent from the monitoring purpose, it still
allows for substantial savings regarding the monitoring resource
consumption as demonstrated by an example.

I. INTRODUCTION

Monitoring is a key prerequisite for self-adaptive software and
many other forms of operating software. The observations
obtained through monitoring are the basis for detecting and
reacting to occurring phenomena that require a reaction or
make one beneficial.

However, although the monitoring of rare event-based
changes such as adding or removing an architecture element
at runtime can be handled quite efficiently in an incremental
manner [1], monitoring properties like the number of calls
or the number of messages stored in a buffer results in a
substantial permanently occurring overhead for data gathering
and pre-processing [2]. Consequently, this kind of monitoring
for periodically detecting and reacting to phenomena requires
examining carefully, which detailed information is needed and
feasible to monitor.

If the question what information about the system and its
external environment needs to be measured and represented
[3] is only answered at development-time then the monitoring
needs to cover all future requirements for phenomenon detec-
tion. In contrast, adaptive monitoring permits in each situation
to monitor only the specifically required details that matter and
does not consider the other ones. Consequently, the monitoring
efforts can be substantially reduced, if most of the time only
small subsets of the complete monitoring data matter.

However, implementing such an adaptive monitoring is a
major engineering effort on its own. In the case of self-adaptive
systems, the adaptive monitoring also further complicates the
development of the underlying MAPE-K loop because the
monitoring needs to adapt to the situation specific require-

ments and changing foci of attention of the analysis, plan,
and execute activities.

The paper overcomes the outlined problem with the elab-
orated generic adaptive monitoring approach, which exploits
that runtime models [4] in contrast to ad hoc data structures
can be used to systematically observe accesses for monitoring
results. Based on those observations our generic adaptation
algorithm then adapts the active monitoring configuration to
the specific current needs.

Some proposals such as [5, 6] suggest an additional adap-
tation mechanism, which coordinates the adaptation of the
monitoring and other activities together. However, a specific
design and implementation for this higher-level adaptation that
adapts the underlying parts consistently has to be developed
in each case. Other approaches such as [7–12] outline how a
specific monitoring task for example, an adaptation strategy
employed for the analysis and planning can be extended
to also adjust the monitoring activity as required. However,
such an extension has to be developed for each specific
monitoring effort and such extensions could only be employed
if only this single monitoring effort is operating exclusively.
In contrast the suggested generic adaptive monitoring does
work for all possible changes concerning the monitoring needs
and independently of whether a single monitoring effort or
multiple ones are executed concurrently.

The paper is structured as follows: In Sec. II we introduce
a motivating example and the terminology. Sec. III describes
the proposed approach. Characteristics of the approach are
evaluated in Sec. IV also with the help of the motivating
example. Sec. V reviews the related work concerning adaptive
monitoring. Finally a conclusion and outlook of planned future
work is presented in Sec. VI.

II. BACKGROUND

In preparation to discuss the proposed approach, we introduce
a motivating example and clarify the used terminology.

A. Motivating example

The potential of the proposed approach to reduce monitoring
effort shall be illustrated with the help of an example. The
example is inspired by a work on continuous experimentation
in software product development [13]. Additionally the exam-
ple is based on the SEAMS exemplar mRUBiS [14], which
mimics an ebay-like auctioning software platform.

In our scenario the software manufacturer of mRUBiS
provides the software as a service in the cloud for online
shop tenants. Experiments are conducted on the productive
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Fig. 1: Simplified mRUBiS runtime model
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Fig. 2: Query in the form of a graph pattern to search mRUBiS
shops that require the safe mode

mRUBiS system to generate additional feedback. The software
manufacturer uses the resulting data to evolve the software
in small increments. This is supported by very short release
cycles and by independently deployable mRUBiS components.

The manufacturer now wants to gain feedback on how a new
version of a software component behaves with real data and
customer traffic before making it generally available. After
comprehensive tests in test environments the manufacturer
selects tenants who agreed to take part in experiments and
deploys the new component version to their shops.

Conducting the experiment must not have a noticeable
negative impact on the shops. To avoid increasing response
times, the software manufacturer wants to utilize adaptive
monitoring for a focused data collection. Additionally, in the
case of errors caused by the new component version, the
system shall quickly self-adapt to a safe mode. The decision to
switch to safe mode and abort the experiment for a particular
tenant shall be based on monitoring results.

B. Runtime model

In this paper we consider graph-based runtime models as
the data structure to query and access monitoring results. A
runtime model is defined as an abstraction of a running system
that is being manipulated at runtime for a specific purpose [4].
Fig. 1 depicts the simplified mRUBiS runtime model. The
actual model is based on the Eclipse Modeling Framework,
which is a model-driven engineering technology.

The runtime model is maintained through monitoring. In
order to reduce the monitoring effort our approach allows
keeping only selected fragments of the runtime model up-to-
date. The rest of the model that is currently not of interest
then only represents an older or incomplete state of the
corresponding system parts.

C. Monitorable properties

The data structure - in our case the runtime model - holds
representations of monitorable properties (MP), through which
the monitoring results can be accessed. An MP is determined
by a property and a monitorable object.

A property can be measured such as an exception count or
be examined such as the status of a component. A property
also defines how the monitoring result for an MP is deter-
mined, for example, the size of the moving time window for
the exception count so that the property would only hold the
number of exceptions during the last hour.

The monitorable object determines for which entity the
property shall be observed. It answers questions like for which
specific component shall the exceptions be counted.

If an MP has a current monitoring result depends on whether
the monitoring for that particular MP is active or inactive. To
produce monitoring results, a monitoring instrument gathers
pieces of data and might further process them. For example,
this can comprise filtering, transforming, enriching and ag-
gregating them. For those tasks and the presentation of the
monitoring results the monitoring instrument might consist of
several maybe even distributed parts.

Next characteristics of MPs are discussed that are relevant
for the proposed approach. One of those characteristics is
whether the MP is inexpensive or expensive regarding the
production of monitoring results. This can be considered in
terms of time and processing effort. Time-wise the essential
question is how long it takes from triggering the monitoring
activation until a monitoring result is available. This latency
depends for example, on how long data needs to be gathered
first. Effort-wise the required data processing is crucial as for
example, complex aggregation operations can take a significant
amount of time.

Another characteristic is the purpose of the MP. Configura-
tional MPs are used to monitor the configuration of the system
and cover parameters as well as structural aspects, which are
reflected in the runtime model as nodes and edges. Their
monitoring results rarely or never change. MPs that are not
configurational shall be called operational MPs. For example,
they indicate the number of exceptions that occurred.

Finally the flexibility characteristic shall be considered. For
sporadically monitored MPs the production of monitoring
results can be deactivated to avoid expensive monitoring effort.
Sporadically monitored MPs are a prerequisite for adaptive
monitoring and typically operational.

In comparison continuously monitored properties are, as
the name suggests, always monitored, either because their
results need to be checked constantly or because they avoid
the latency caused by monitoring activation when short query
response times are required. Configurational MPs are typically
continuously monitored.

D. Querying monitoring results

Working with monitoring results that are accessed through a
data structure involves querying them. With a runtime model
this includes searching fragments of the model that match a



structural pattern. This is done by checking configurational
MPs. The found fragments are match candidates. Evaluating
the operational MPs of the candidates then determines the
actual matches for the query result. Checking operational and
configurational MPs can happen alternately.

Every match that is found for a query indicates the existence
of a phenomenon upon which a reaction is intended. Fig. 2
depicts the query of our example. It is used to detect those
tenants for which the experiment needs to be aborted by
switching to the safe mode. The query is shown in the form
of a graph pattern to make the searched structure of nodes
and edges easier to comprehend. Further the constrains, which
need to be fulfilled for a match, are specified. For our example
a match requires that the safe mode is not active, already (S),
the importance of the shop is higher than one (Q), and that
the new version 2.0.0 of the recommendation item filter is
deployed (R). Further, the safe mode shall only be activated if
at least one request was erroneous (T) and the detailed analysis
indicates that the safe mode should be considered (U).

Writing the query in expression form allows providing
details on how the query shall be executed. The individual
variables v to z in the Expr. 1 and 2 represent the nodes in
Fig. 2 and Q to U the related constraints. P becomes true
if the shown graph structure of the query and the currently
investigated runtime model fragment match. For both exres-
sions we consider an evaluation order from left to right. The
two expressions differ in the use of boolean operators. Expr. 1
contains only conditional and-operators (&&), whereas Expr. 2
also contains a logical and-operator (&).

For the conditional and-operator && the so called short-
circuit evaluation is performed. This means that the right
operand of the operator is only evaluated if it still can impact
the result. Thus whether an operand and the corresponding
MPs get evaluated depends on a preceding MP. For example,
consider the operand P in the Expr. 1 and 2. If P is false then
the remaining part of both query expressions cannot change
the result anymore and thus none of subsequent operands and
MPs are evaluated due to short-circuit evaluation.

For the boolean logical and-operator & the standard eval-
uation is performed. This means its right operand always
gets evaluated no matter if it could still change the result.
Consequently, also all related MPs get evaluated, too. For
example, this is the case in Expr. 2 with the logical and-
operator & and the operands T and U.

P(v, w, x, y, z) && Q(v) && R(w) && S(x) &&

T(y) && U(z) (1)

P(v, w, x, y, z) && Q(v) && R(w) && S(x) &&

T(y) & U(z) (2)

Short-circuit evaluation is used for both expressions in their
first part that covers the configurational MPs. The intention

:AnalyzeAndPlan

internal structure

<<component>>
:MonitoringAdaptationEngine

:Execute:Monitor

:Knowledge

internal structure

Effector

<<component>>
:MonitoringInstrument [*]

<<Subsystem>>
Monitor

Sensor

<<component>>
monitorableObject

ValidityCheck

Query
Withdrawal
Notification Sensor

<<component>>
RuntimeModel

internal structure

:MonitorableProperty [*]

Restructure

access
Set

Get

Query
<<component>>
QueryExecutor

SharedContext

accessEnhancement

Access
Notification

Fig. 3: Monitoring adaptation engine

is to avoid effort on those model fragments that are not and
likely will not become query matches soon due to the stable
nature of the configurational MPs. In comparison, with the
operational MPs that are represented by the bold variables y
and z either standard or short-circuit evaluation is applied.

Because Expr. 1 contains a conditional and-operator be-
tween the operational MPs in the underlined expression part,
it shall be called query with short-circuit evaluation. Expr. 2 is
called query with standard evaluation because of the absence
of a conditional operator in that expression part.

III. APPROACH

The goal of the proposed adaptive monitoring approach is to
provide those monitoring results that are currently of interest in
order to avoid unnecessary monitoring effort. The monitoring
results are accessible through a data structure such as a runtime
model from where they can be retrieved by querying.

The required adaptation of the monitoring subsystem is
driven by the monitoring adaptation engine (MAE), which
is depicted in Fig. 3. The engine is based on a MAPE-K
control loop [15]. The Monitor function of the loop in the
MAE observes the state of the monitoring instruments as
well as which monitoring results are currently of interest. The
Analyze and Plan functions determine whether and when the
monitoring configuration needs to be adapted. The changes
are then applied by the Execute function. All functions of the
loop act upon shared Knowledge.

The MAE determines for which operational MPs the mon-
itoring needs to be active by observing if they are accessed
while the runtime model is queried. As prerequisite the run-
time model needs to contain representations of the operational
MPs. Monitoring instruments for configurational MPs add
those representations as structural elements to the runtime
model using the Restructure interface shown in Fig. 3.
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Fig. 4 provides more details on observing MP accesses in
the runtime model. First the QueryResultRequester requests
a result for a query like the one discussed in our example
above. For this purpose the requester uses the Query interface
of the QueryExecutor. The QueryExecutor stores the identifier
of the query in the SharedContext and then starts the query
execution. During the execution every MP representation in
the runtime model that is accessed through the Get interface
submits an access notification. The notification contains the
MP identifier and the identifier of the executed query, which
is available through the SharedContext. The notification is
submitted asynchronously to a destination from where the
MAE can get it.

Afterwards, the MP returns a monitoring result or a default
value to the query executor. The default value is supposed to
avoid errors and the abortion of the query execution due to
not yet available monitoring results. Returning a default value
makes the query result invalid but allows activating further
required MPs also for other match candidates because the
QueryExecutor continues working.

At the end of the query execution the QueryExecutor re-
moves the query identifier from the SharedContext and returns
the query result. As the query result might be falsified by
default values the QuerResultRequestor needs to reconfirm the
validity of the result with the MAE using the ValidityCheck
interface. In case of an invalid result the QueryResultRequestor
may trigger the query execution again.

Based on the access notifications the MAE determines
for which MPs monitoring needs to be preformed. After
activating the necessary monitoring instruments using their
Effector interface depicted in Fig. 3 they produce monitoring
results about the monitored objects. The instruments store
those results with the corresponding MPs in the runtime model
using the Set interface.

Through the query identifier in each access notification
the MAE can keep track of which MPs are required by
which query. This allows the MAE to deactivate those MPs
that are no longer associated with a query in order to save

monitoring effort. The QueryWithdrawalNotification interface
can be use to inform the MAE that a particular query will not
be used anymore. In our example this could happen after the
experiment with the new software component ended.

Employing model-driven engineering technologies espe-
cially the Eclipse Modeling Framework for implementing the
proposed approach with a runtime model is advantageous
because required features are already provided or easily added.

IV. EVALUATION

The motivating example introduced in Sec. II-A is now used
to illustrate potential of the proposed approach to reduce
monitoring effort. However first we discuss the risk of latency
caused by the approach as well as why the approach is generic.

A. Genericness of the approach

The proposed approach determines which monitoring results
to produce by observing which are requested while the data
structure for accessing them is queried. Solely based on those
observations the monitoring configuration is adapted. There-
fore the executed queries influence the monitoring configu-
ration. However it is completely transparent to the approach
why which monitoring result is needed. This makes it reusable
for multiple different purposes. The approach is called generic
because it does not include a domain specific or single purpose
adaptation algorithm.

Special requirements for adopting this generic approach
are emphasized in the Figs. 3 and 4. The relevant parts are
depicted with a bold blue line and have already been described
in Sec. III. The dotted orange parts in Fig. 4 are related
to the query execution and can be implemented through a
lightweight wrapper around the original QueryExecutor, which
could for example, be a plain Java algorithm or be based on
languages like the VIATRA Query Language [16] or story
patterns as applied in [17]. Code generation or aspect weaving
could be employed to minimize the implementation effort for
the hatched turquoise part related to the access notification
submission. Overall, due to the reusable MAE the effort for
adopting the proposed approach is comparatively low.

B. Risk of latency

The proposed approach allows saving the most monitoring
effort by activating only the actually required MPs as late as
possible. Which MPs to activate can depend on the monitoring
results of other MPs. This causes uncertainty due to the fact
that monitoring results of MPs can change over time. One
way to handle this uncertainty is to activate all MPs at once
that could potentially be required. This can be achieved by
using the query that we defined at the end of Sec. II-D as
query with standard evaluation. This query probably causes
the activation of more than actually required MPs but avoids
the latency caused by MP monitoring activation for subsequent
query executions at least as long as no configurational MP
changes. Using a query with short-circuit evaluation as defined
in Sec. II-D, enables detecting phenomena with even less
active MPs. The drawback is the higher risk of latency due
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Fig. 5: Gathered and processed runtime data per hour
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to monitoring activation, as in this case latency can be caused
by changing monitoring results of both, configurational and
operational MPs as well as the stepwise MP activation through
multiple query executions. In summary, the proposed approach
implicates accepting the risk of latency due to monitoring
activation and thus longer query response times for the op-
portunity to reduce monitoring effort.

C. Monitoring effort reduction

The motivating example, which we introduced in Sec. II-A,
also allows comparing scenarios with adaptive and exhaustive
monitoring. If monitoring exhaustively then all MPs are always
active and no query execution is required to activate them.

For our example we chose the number of gathered and
processed log entries as an easily and reliably determinable
monitoring effort indicator. The results depicted in the Figs. 5
and 6 indicate the monitoring effort per hour over time and
in total, respectively. The effort depends on the user traffic on
the mRUBiS system. The simulated traffic is based on data
about actual online shopping behavior [18, 19].

For the comparison of monitoring efforts only those op-
erational MPs of the mRUBiS system are considered that
are referenced in Fig. 2, namely the MPs called erroneous
and considerSafeMode. For the MP named erroneous two log
entries are created per user request. Additional 18 entries are
created if the considerSafeMode MP is activated, too.

The results for the comparison have been generated for a
mRUBiS instance with 400 tenants and for an experiment
duration of two weeks. 100 tenants were selected by the
software manufacturer to take part in the experiment. 90 of
them had an importance value greater one. For ten out of
those 90 tenants the experiment had to be aborted and the

safe mode be activated due to issues with the new component
version. About 36 million requests were handled in total. The
average error rate was 40 per one million requests for normal
and 1000 per one million for problematic deployments.

In the exhaustive monitoring scenario the above mentioned
operational MPs were continuously active for all 400 tenants.

For the first adaptive monitoring scenario based on the query
with standard evaluation defined in Sec. II-D the Expr. 2 was
utilized. In this case both operational MPs were immediately
activated for 90 tenants after the experiment started and the
configurational MP constrains Q, R and S shown in Fig. 2
have been evaluated.

In the second adaptive monitoring scenario based on the
query with short-circuit evaluation only the erroneous MP got
activated at the beginning. Due to short-circuit evaluation the
expensive considerSafeMode MP only got activated temporar-
ily, whenever an error occurred.

As the Figs. 5 and 6 illustrate, the proposed adaptive
monitoring approach allows reducing the monitoring effort
significantly. In comparison the scenario based on the query
without short-circuit evaluation produces and processes only
24% of the log entries that would be caused by exhaustive
monitoring. The scenario based on the query with short-circuit
evaluation only requires 4%.

V. RELATED WORK

A common approach is to adapt the monitoring simultaneously
with other changes to the monitored system instead of only
when the data is actually requested. For example, [5] and
[6] describe how a new monitoring configuration is derived
from changed service level agreement specifications and gets
activated with the adaptation of the monitored system.

Other approaches do not separate deciding which data is
required from obtaining it by reconfiguring the monitoring,
what makes those approaches specific to a certain monitoring
goal such as anomaly detection. To identify the required subset
of the metrics for adaptive monitoring, [7] suggests to use the
metric correlation information. As due to the dependencies in a
system often failures affect many metrics, the approach argues
that to detect anomalous behavior a small subset of the metrics
is often sufficient to detect anomalies. A monitoring rule set
is employed in [8] to define, which probes are active when
and where. The monitoring rules can be updated at runtime
and are periodically executed to enable and disable probes
as required. In [9] adaptive monitoring is used to generate a
representation of a system. While the system behaves normally
this approach activates only minimal monitoring to check if the
system remains in the normal state. When selecting the active
measurement points the algorithm also considers their cost and
entropy. To reduce the overhead for monitoring, [10] suggests
to use lightweight global monitoring for normal conditions and
precise and localized monitoring in case problems have been
detected. The heuristic employed by the approach exploits the
assumption that the cause of newly detected problems is likely
to come from the most recent changes in the application.



In contrast to our proposed direction the approaches dis-
cussed do not provide a generic solution to adaptive mon-
itoring. In [5, 6] the adaptation of the MAPE-K activities
including monitoring is guided by goals. However, the ad-
ditional higher-level adaptation engine that adapts the MAPE-
K activities based on the given goals is not generic and
monitoring purpose independent but requires a substantial
development effort each time the scheme is employed. Also
when the monitoring is adjusted to the needs of the other
MAPE-K activities, the existing proposals [7–10] require
either that a specific kind of solution is employed for the
other MAPE-K activity [7, 9, 10] or that the knowledge about
the right adaptation steps for the monitoring steps must be
explicitly specified [8]. Consequently, the existing approaches
are either limited to specific solutions employed for specific
monitoring purposes respectively other MAPE-K activities
or require a substantial development effort. In contrast, the
solution proposed in this paper is generic and independent
of the purposes for which the monitoring is performed and
requires only little additional development effort.

VI. CONCLUSION AND FUTURE WORK

After introducing the required terminology in Sec. II we
described in Sec. III our adaptive monitoring approach. We
explained how it supports changing foci of attention for
different monitoring purposes without specific development
efforts for each purpose by better separating the monitoring
adaptation mechanism from the rest of the system.

Finally, in Sec. IV we showed that substantial savings
concerning the runtime overhead for the monitoring can be
achieved in a more or less aggressive manner for the two
classes of queries.

As future work we plan to also consider deactivating MPs
more aggressively, to consider change events to trigger the
reevaluation of queries to minimize the need to wait for
activation of MPs required by the queries and to address also
a combination of the approach with incremental queries as
consider in [17].
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