
A Comparison of Allocation Algorithms
for Partially Replicated Databases

Stefan Halfpap
Hasso Plattner Institute

University of Potsdam, Germany
stefan.halfpap@hpi.de

Rainer Schlosser *
Hasso Plattner Institute

University of Potsdam, Germany
rainer.schlosser@hpi.de

Abstract—Increasing demand for analytical processing capa-
bilities can be managed by replication approaches. However, to
evenly balance the replicas’ workload shares while at the same
time minimizing the data replication factor is a highly challenging
allocation problem. As optimal solutions are only applicable for
small problem instances, effective heuristics are indispensable.
In this paper, we test and compare state-of-the-art allocation
algorithms for partial replication. By visualizing and exploring
their (heuristic) solutions for different benchmark workloads, we
are able to derive structural insights and to detect an algorithm’s
strengths as well as its potential for improvement. Further, our
application enables end-to-end evaluations of different allocations
to verify their theoretical performance.

I. INTRODUCTION

The demand for analytical processing capabilities is steadily
growing. The increasing workload can be scaled out to addi-
tional replica nodes. Using a naive replication approach, all
data is duplicated and stored on all nodes in the database
cluster. However, with such full data replication (i) the memory
consumption quickly increases with the number of nodes and
(ii) all replicas have to synchronize all data modifications
caused by inserts, updates, and deletes.

Analytical queries access large data sets. Nevertheless,
analyses of real workloads show that the majority of queries
require only a limited set of tuples and attributes [1]. When
scaling out, this knowledge can be used to optimize database
replicas to either process a specific subset of queries more
efficiently [2] or to reduce the memory consumption. One
approach to reduce the memory consumption of a database
cluster is partial replication.

Partial replicas are used to answer subsets of analytical
queries while not requiring the memory capacity of a full
copy of the database. For this purpose, the database must
be partitioned horizontally and/or vertically into disjoint data
fragments [3]. Individual fragments are, then, allocated to one
or multiple database nodes. The calculation of optimal frag-
ment allocations is an NP-hard problem as the data allocation
and the workload distribution are mutually dependent.

In this paper, we test and compare algorithms to assign data
to multiple replicas to evenly balance the query load while min-
imizing the overall memory capacity. While for small problems
optimal fragment allocations can be determined using linear

* The authors are listed alphabetically. All work was shared equally.

programming (LP), for larger problems heuristic approaches
have to be used. We consider two state-of-the-art algorithms
to calculate effective allocations which can be even applied to
large-scale problems: (i) the (greedy) allocation approach by
Rabl et al. [4] and (ii) the LP-based decomposition approach
described in [5].

In [4] and [5], the authors propose different concepts
and derive their allocation algorithms. They investigate their
solutions’ complexity (solving time, number of variables and
constraints, etc.) and analyze the performance of calculated
allocations for single examples.

However, more general properties or structures of the solu-
tions depending on the specific approaches cannot be derived
from their numerical results. We aim to address this issue. Our
contributions can be summarized as follows:

• We test different allocation concepts and visualize their
solutions/allocations for the TPC-H and TPC-DS bench-
mark as well as configurable workloads.

• We propose a step-by-step demonstration of the algo-
rithms and compare solution properties, which enable us
to derive structural insights.

• We support end-to-end evaluations to verify the theoret-
ical performance of allocations in practice.

The remainder of this paper proceeds with a precise problem
description in Section II. In Section III, we describe the
different allocation algorithms. In Section IV, we present the
demo scenario. Section V concludes this paper.

II. FRAGMENT ALLOCATION PROBLEM

The goal is to allocate fragments to replicas such that the
workload can be shared equally and the necessary data, i.e., the
replication factor, is minimized. Hence, we consider a coupled
data placement and workload distribution problem.

We assume a database consisting of N disjoint fragments
and K nodes, where fragments can be replicated. The size
of a fragment i is denoted by ai, i = 1, ..., N . Further, we
consider a set of Q (classes of) queries j, characterized by
fragments used, i.e., qj ⊆ {1, ..., N}, j = 1, ..., Q. We assume
a workload, where queries j occur with frequency fj , and the
costs of a query j are independent of the executing node k,
k = 1, ...,K, and denoted by cj , j = 1, ..., Q.

Stefan Halfpap
Accepted at ICDE 2019, https://doi.org/10.1109/ICDE.2019.00226.
© 2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.�



Database

Client

1

2 43
6

5

7 98 10

5

1 2 3 4

3 4 6

97 8

108 9

1

q1

q2

q3

q4

q5

Client

q1 (100%)
q5 (50%)

25%
Allocation

10%

15%

25%
30%

20%

Replica 1

1

2 43
6

7 98 10

5

Replica 2

1

2 43
6

7 98 10

5

Replica 3

1

2 43
6

7 98 10

5

Replica 4

1

2 43
6

7 98 10

5

q2 (100%)
q5 (33.3%)

25%
q3 (100%)

25%

q4 (100%)
q5 (16.6%)

25%

Fig. 1. Workload-driven fragment allocation. The left hand side of the figure visualizes the model input. Single tables, marked with different colors, consist of
individual fragments. Queries correspond to different workload shares. Processing queries requires storing subsets of fragments. The objective is to minimize
the overall memory consumption of the replication cluster while evenly balancing the load among (four) replica nodes. The right hand side of the figure
illustrates a valid allocation and workload distribution. Transparent fragments visualize the memory savings per partial replica.

TABLE I
ILLUSTRATING EXAMPLE OF QUERIES, ASSOCIATED REQUIRED

FRAGMENTS, AND TOTAL WORKLOAD SHARES (MEASURED BY QUERY
COSTS × FREQUENCY), Q = 5, N = 10.

queries j fragments i costs cj × frequency fj workload share

q1 1, 2, 3, 4 5 × 20 10%
q2 3, 4, 5, 6 50 × 3 15%
q3 7, 8, 9 10 × 25 25%
q4 8, 9, 10 20 × 10 20%
q5 1 6 × 50 30%

Suitable metrics to model query costs may differ in com-
plexity, ranging from easy to measure and widely applicable
metrics, such as the average processing time of a query, to
advanced cost models, e.g., considering memory hierarchies
and memory access patterns.

Figure 1 illustrates the model input and an exemplary
allocation for N = 10 fragments, K = 4 nodes, and Q =
5 queries. For the illustrating example, we assume an equal
size for each fragment. Based on all query frequencies and
costs, we obtain the workload share of each query. The input
parameters for the five queries of the illustrating example are
summarized in Table I, describing the accessed fragments and
workload shares (cf. frequency × costs).

An algorithm has to decide (i) on which node to put which
fragments and (ii) which query is executed at which node to
which extent. The data placement problem and the workload
distribution problem cannot be decoupled and have to be
simultaneously solved. Further requirements are:

(a) A query j can only be executed at node k, if all relevant
fragments are stored on node k.

(b) A perfect workload distribution aims at a workload share
of 1/K at each node k.

(c) Additional factors can be taken into account: costs to
synchronize replica nodes with regard to data modifica-
tions, reallocation costs to react on workload changes,
and robustness of allocations to cope with node failures.

III. ALLOCATION ALGORITHMS

In this section, we describe the key ideas of the three state-
of-the-art allocation algorithms that we compare.

A. Optimal Solution via Linear Programming

The described fragment allocation problem is NP-hard.
However, it can be formulated as a linear mixed integer prob-
lem. The complexity of the LP problem quickly increases with
the number of queries, fragments, and nodes. The problem can
be optimally solved using off-the-shelf solvers as long as the
size of the problem is sufficiently small. For instance, it is
only possible to calculate optimal solutions (within 8 hours)
for TPC-H (61 fragments, 22 queries) for up to 8 nodes [5]
and TPC-DS (425 fragments, 99 queries) for up to 5 nodes.

B. Greedy Heuristic

The heuristic of Rabl et al. [4] starts to assign queries
which account for a large workload share and access the most
data, because these queries potentially cause the highest data
duplication if they are assigned late. In specific, queries are
ordered by the product of the workload share and the total size
of accessed fragments. The node to assign a query is chosen by
determining the largest overlap of already allocated fragments
and those accessed by the query (nodes with no assigned
queries are treated as if they have a complete overlap.) If a
query’s workload share exceeds the workload capacity of a
node, the replica is assigned up to its limit and the remaining
workload share has to be assigned later.

The algorithm runs in polynomial time. The heuristic has
two shortcomings: First, when ordering the queries, the ac-
cessed fragments are not regarded (only their sizes). Second,
the remaining queries are not regarded. Details of the algo-
rithm are described in [4].

C. Decomposition-Based Heuristic

The key idea of the decomposition-based heuristic is to
iteratively split the workload into smaller workload packages
(chunks) such that the data redundancy is minimized in each



q1 (100%), q2 (100%), q3 (100%), q4 (100%), q5 (100%)
fragments: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

q1 (100%), q2 (100%), q5 (83.3%)
fragments: 1, 2, 3, 4, 5, 6

q3 (100%), q4 (100%), q5 (16.6%)
fragments: 1, 7, 8, 9,10

q1 (100%), q5 (50%)
fragments: 1, 2, 3, 4

q2 (100%), q5 (33.3%)
fragments: 1, 3, 4, 5, 6

q3 (100%)
fragments: 7, 8, 9

q4 (100%), q5 (16.6%)
fragments: 1, 8, 9, 10

Fig. 2. Decomposition-based approach. Iteratively splitting data allocations
and workload shares, cf. Table I; illustration of the case of B = 2 subnodes
at two levels leading to K = 2×2 = 4 nodes (using three subproblems) [5].

step, cf. [5]. The decomposition of workload is done using
smaller LP subproblems similar to the program to calculate
optimal solutions.

Figure 2 illustrates a decomposition for the problem exam-
ple of Figure 1. The top node represents the total workload.
The decomposition leads to K = 4 final nodes (leaves). The
final data allocation enables a perfect workload distribution
with a share of 1/K in each leaf node.

For each chunk node, the data allocation and workload
distribution are calculated by applying a generalized LP. In
particular, the number of subnodes B and their workload
weights wb, b = 1, ..., B, can be chosen arbitrarily. This way,
the number of variables and constraints can effectively be
decreased such that in each step the problem complexity is
still manageable.

However, as in case of large problems early decompositions
can still be costly, it is advisable to initially use small numbers
of subnodes, e.g., B = 2. Alternatively, also a hybrid decom-
position approach is possible: While the heuristic of Rabl et
al. is applied close to the root node, the LP-based approach is
used as soon as the subproblems are sufficiently small.

IV. DEMONSTRATION

We implemented the three algorithms and integrated them
into an end-to-end application to calculate, visualize, and set
up partial replica allocations. In this section, we describe
the visualization (IV-A), summarize the algorithms’ structural
properties (IV-B), and explain how to conduct end-to-end
evaluations for replication clusters (IV-C).

A. Visualization

Figure 3 shows an application screenshot, which visualizes
a fragment allocation for six replicas. The application offers
to calculate and visualize fragment allocations for arbitrary
workloads and data sets, for which the costs per query and
sizes of fragments are known. The demonstration includes
query costs and fragments sizes for the benchmarks TPC-H
and TPC-DS: costs for running the queries in PostgreSQL;
measuring fragment sizes for scale factor 1, vertical parti-
tioning with each column as individual fragment, and single
column indices on all primary key columns.

The navigation bar shows the input parameters for the
currently visualized allocation. In this case, we visualize an
allocation for the TPC-H benchmark, using six replica nodes,
and calculated by the decomposition approach.

The workload shares of the individual queries are visualized
below the navigation bar. (Processing TPC-H query 17 and 20
did not return within 120s. That is why we omitted them in our
allocations.) We can derive that the execution costs for query
1, 9, and 18 are the highest, because their segment widths are
the broadest. When hovering the mouse over a query segment,
the required fragments for the query are shown.

Below the navigation bar and the query list, the allocation
result is visualized: (i) the replication factor and (ii) its
comparison to an optimal allocation (if available). Further six
segments, one for each replica node, display detailed allocation
information: (iii) assigned workload shares with regard to the
queries and (iv) the allocated data fragments.

The list of workload shares shows the assigned queries and
visualize to which extent they contribute to the replica load.
For example: the TPC-H queries 4, 12, 14, 19, and 21 are
assigned to replica one. Thereby, query 21 accounts for the
largest load on this replica.

The allocated fragments are visualized as hierarchical map
with nested rectangles. Rectangles with the same basic color
represent fragments of the same table. Transparently colored
fragments are not stored, but show the memory savings. The
size of the rectangles corresponds to the fragment size. The
16 blue tiles model the 16 columns of the TPC-H LINEITEM
table, which accounts for the largest share of the data set.

Besides visualizing allocations for different input parame-
ters, the application offers to visualize the steps taken by the
algorithms: For Rabl’s algorithm, these steps are the greedy
query by query allocations to replicas; for the decomposition
approach, the single partition steps can be examined.

In Figure 3, the final allocation to six nodes is based on an
intermediate partitioning of the workload into two chunks with
4+ 2 = 6 nodes. When hovering over the chunk information,
the fragments of the selected chunk are visualized.

B. Summary

The visualization of different solutions enables to detect
characteristic properties. This way, more general insights can
be derived and potential for improvement can be identified.
Our key findings can be summarized as follows.

First, the visualization of heuristic [5]’s solutions reveals the
following structure: Queries that have little common data over-
lap are separated from each other; queries that share similar
fragments are kept together. In solutions of [4], replicas are
typically filled after another since queries are mostly assigned
to comparably full replica as their overlap is likely to be large.

Second, compared to [4] the heuristic [5] finds more effi-
cient allocations requiring less memory. Splitting the workload
in a way that is consistent with the original problem preserves
characteristics of optimal solutions. However, splitting the
queries’ workloads among fewer replicas makes the allocation
less robust against node failures or changing workloads.



Fig. 3. Screenshot of a visualized allocation result for six replica nodes, applying the decomposition approach to 20 queries of the TPC-H benchmark.

C. End-to-End Evaluation

To calculate and setup allocations for arbitrary workloads
and data sets, we offer a toolchain which extracts input param-
eters for the algorithms and deploys the calculated allocations
on a PostgreSQL cluster. The user has to provide an SQL
schema file with all table definitions, data files to load into
the tables, and the workload in form of (optionally templated)
SQL queries. The process works as follows:

1) We create all tables by executing the SQL schema file,
load the provided data into the tables, and optionally
create indexes.

2) Inputs for all allocation algorithms are: measured frag-
ment sizes, query execution costs, query frequencies, and
the number of replica nodes.

3) Result allocations can be visualized and optionally be
deployed on chosen servers for end-to-end evaluations.

V. CONCLUSIONS

In this paper, we compared three workload-driven fragment
allocation algorithms, minimizing the overall memory con-
sumption of a replication cluster while maximizing throughput
by balancing the load evenly. Our application visualizes the in-
termediate steps and final solutions of the different algorithms.
The visualization enables to detect characteristic properties of
the algorithms and solutions, thereby helping to derive general
insights and potential for improvement.

REFERENCES

[1] M. Boissier et al., “Analyzing data relevance and access patterns of live
production database systems,” in CIKM, 2016, pp. 2473–2475.

[2] M. P. Consens et al., “Divergent physical design tuning for replicated
databases,” in SIGMOD, 2012, pp. 49–60.

[3] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems,
Third Edition. Springer, 2011.

[4] T. Rabl and H. Jacobsen, “Query centric partitioning and allocation for
partially replicated database systems,” in SIGMOD, 2017, pp. 315–330.

[5] S. Halfpap and R. Schlosser, “Workload-driven fragment allocation for
partially replicated databases using linear programming,” in ICDE, 2019.


