Proceedings of the

10th Ph.D. Retreat of
the HPI Research School
oh Service-oriented
Systems Engineering

Christoph Meinel, Hasso Plattner, Jurgen Dollner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese, Patrick Baudisch,
Tobias Friedrich, Emmanuel Mdller (Eds.)

Technische Berichte Nr. 111

des Hasso-Plattner-Instituts fur
Softwaresystemtechnik
an der Universitat Potsdam

,{\'Wel'sjzcé.
oV ‘ Hasso
@ﬁ@ Plattner
"T Kemp Institut

Digital Engineering * Universitdt Potsdam

Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitdt Potsdam

Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitat Potsdam | 111

Christoph Meinel | Hasso Plattner | Jiirgen Dollner | Mathias Weske |
Andreas Polze | Robert Hirschfeld | Felix Naumann | Holger Giese |
Patrick Baudisch | Tobias Friedrich | Emmanuel Miiller (Eds.)

Proceedings of the 10th Ph.D. Retreat of the
HPI Research School on
Service-oriented Systems Engineering

Universitdtsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet tiber http://dnb.dnb.de/ abrufbar.

Universititsverlag Potsdam 2017
http:/ /verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitiat Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts fiir Softwaresystemtechnik
an der Universitdt Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschiitzt.

Online veroffentlicht auf dem Publikationsserver der Universitdat Potsdam
URN urn:nbn:de:kobv:517-opus4-100260

http:/ /nbn-resolving.de /urn:nbn:de:kobv:517-opus4-100260

Zugleich gedruckt erschienen im Universitdtsverlag Potsdam:
ISBN 978-3-86956-390-9

mailto:verlag@uni-potsdam.de

Contents

ﬂ\/[ulti—objective Optimization for Biochip Design| 1
icla Alisiad

[One Working Day of the Berlin Police|., 13
|Aragats Amirkhanyan|

[Enhancing Decision Making for Business Processes| 23
|Ekaterina Bazhenoval

untime data-driven software evolution in enterprise software ecosystems| . . 33
P Y

'Thomas Brand

[Power of Greediness on Real World network]. 43
Ankit Chauhan

[Iowards the Interactive Rendering of Dynamic 3D Point Clouds| 53

E

[Coverage Considerations for Software Fault Injection| 65

§

[Improving Self-Healing by Estimating the Impact of Adaptation Rules on the

[Utility at Runtime| 75

[Programming Models for Consistent Memory Access in Shared Something

...................................... 85
|Andreas Grapentin|

[Metamaterial Mechanisms| 95
Alexandra lon|

[Profiling the Webof Data|. 107

[Creating Structurally Sound Truss Structures on Desktop 3D Printers| 119
bert Kovacs|

3

Contents

[Theoretical Analyses of Evolutionary Algorithms with a Focus on Estimation

fof Distribution Algorithms|.o oo oL 129

[Understanding “Bad Code” Using Qualitative Methods| 141
[Kateryna Kuksenok|

[Event Subscription| o oo oo 151
(Sankalita Mandal

[Relying on Development Data for Software Development Processes| 161
[Christoph Matthies|

[Supporting Program Comprehension Through Semantic Code Models| 171
Toni Mattis

[Large graph exploration| 185

Davide Mottin

[Optimizing Noisy Functions: Resampling vs. Recombination| 195
|Francesco Quinzan)|

[Active Expressions as a Basic Building Block for Reactive Programming

Concepts| e 207
Stefan Ramson

[Brain Image Analysis with convolutional Neural Network|. 217
Mina Rezaei

[Power-Law Distributions in Random Satistiability| 227
[Ralf Rothenberger|

Matching Unstructured Product Offers to a Product Catalog (A Case Study)| . 237

[Video Captioning with Deep Neural Networks|. 247

|Ckeng Wang|

Vi

Multi-objective Optimization for Biochip Design

Mirela Alistar

Human Computer Interaction group
Hasso-Plattner-Institut
Mirela.Alistar@hpi.uni-potsdam.de

Biochips are arrays of electrodes on a printed circuit board that can transport and
process droplets, such as performing an in-vitro diagnosis on a droplet of human
blood. Low-cost biochips hold the promise of putting the abilities to perform such
tests into the hands of millions of users, thereby democratizing parts of health
care. Unfortunately, designing such systems, including biochips, for a specific bio-
chemical process (‘bio-protocol’) requires substantial expertise, especially since
it requires optimizing for multiple objectives, such as cost and execution time.
To allow non-experts to design custom biochips, we have implemented an algo-
rithm that automates the design process, making our system accessible for a wider
audience.

Our algorithm obtained a continuous solution space that allows selection among
trade-off alternatives for biochip designs. When compared to the related work, our
algorithm performed up to 125 % better in terms of execution time, and up to 76 %
better in terms of cost.

As future work, we will extend our system to include human editing.

1 Overview
Biochips are electronic devices that can perform the tasks traditionally performed

by a human wet lab technician with a pipette [18], such as an in-vitro diagnosis that
identifies microbes in human blood.

~\

reservoir

electrode

Figure 1: A biochip with four reservoirs and 8x8 electrodes holding a single droplet.
The biochip can move the droplet by applying a voltage to a neighboring electrode.

mailto:Mirela.Alistar@hpi.uni-potsdam.de

Mirela Alistar: Multi-objective Optimization for Biochip Design

As shown in Figure 1, biochips consist of arrays of electrodes, with each electrode
capable of holding a droplet. To move a droplet, biochips apply electrical voltage
on an electrode adjacent to the cell containing the droplet. The voltage attracts the
droplet to the electrode’s surface and the droplet moves. This allows biochips to exe-
cute biochemical processes (‘bio-protocols’), i.e., sequences of operations on droplets,
including dispensing, splitting, merging, and mixing (Figure 2).

Figure 2: To execute biochemical processes or bio-protocols, biochips (a) dispense,
(b) split, (c) merge, and (d) mix droplets.

The DIYbio [11] movement that aims at developing low-cost tools for, e.g., medical
applications including low-cost biochips, holds the promise of giving people access
to customized tests and procedures, thereby democratizing parts of health care. Un-
fortunately, designing such biochips for a specific biochemical process (‘bio-protocol”)
requires substantial expertise in multiple disciplines [10,12]. To better understand
the struggles people have with biochip design, we invited 12 people without any
prior knowledge on biochips to our lab and gave them the task to design biochips
for bio-protocols of different levels of complexity (19 operations, 28 operations, and
71 operations respectively, see Figure 3 as an example). The bio-protocols had to
execute within 20s, 45s, and 70s (e.g., moving a droplet by one electrode takes 0.01s).
The reason for this is the fast degradation of samples [19]. Within this constraint,
participants” objective was to produce the smallest possible biochip, i.e., a biochip
with the minimum number of electrodes. Before starting, everyone watched a 40
min bio-chips lecture, and after that we informed them about the design constraints
and how to compile the bio-protocol.

Participants reported that the most challenging aspect of the tasks was the trade-off
between different resources: ‘picking the right component as choices are interdepen-
dent’ (p2), ‘choosing the right chip size, small vs. fast’ (pg), ‘whether to choose one
component over another while thinking of the cost of different solutions was super
challenging’ (p2), ‘making trade-offs between different resources’ (p5). Six partici-
pants suggested the use of a bio-protocol simulator to make the design process easier.
While simulators exist that optimize for cost [4], no algorithm exists that optimizes
for both dimensions cost and time simultaneously. Therefore, we propose a novel
algorithm that takes both factors into consideration.

2 Related Work

1.1 Multi-Objective Design Automation

We have implemented an algorithm that generates biochip layouts automatically
based on a given bio-protocol, while considering cost and execution time. To illustrate
how our algorithm works, we explain it at the example bio-protocol for an in-vitro
diagnosis shown in Figure 3. The algorithm starts with a naive biochip layout (Figure
4a), then iteratively generates multiple layout alternatives (Figure 4b/c). It evaluates
each alternative in terms of cost and execution time and keeps the best solutions. It
repeats this process for a specific number of generations, here 10,000. Figure 4d /e
shows two versions of the final bio-chip generated by our algorithm: (d) is slightly
more expensive, but performs faster, (e) is cheaper, but performs slightly slower, but
within the time limit.

%Y

@ rcagent (O bufier @ sample (Ddilution ()mix ()detection

Figure 3: This example bio-protocol shows an in-vitro diagnosis that identifies mi-
crobes in human samples [15].

2 Related Work
Our work builds on previous work in biochips and in particular biochip optimization.

2.1 Biochip System

Droplet-based biochips were introduced in the late 2000s as a promising solu-
tion to a ‘lab-on-a-chip’ that can automate, miniaturize and integrate complex bio-
protocols [18]. Since then, significant research efforts have been directed towards
fabricating a cheap and reliable biochip. The most successful fabrication techniques
so far are based on chromium electrodes on a glass substrate [8], gold electrodes on a
printed circuit board [16] as in Figure 1, and silver electrodes printed on photographic

paper [9].

Mirela Alistar: Multi-objective Optimization for Biochip Design

2.2 Optimizing the Physical Layout

To optimize the layout of electrodes and reservoirs, which reduces the overall cost of
the biochip, Alistar et al. introduced algorithms based on Simulated Annealing
and Tabu Search [4]]. However, optimizing only for cost is not enough since timing,
i.e., how fast the bio-protocol is executed on the bio-chip, is also crucial, especially
since samples degrade. Developing an optimization algorithm for both factors is
challenging since cost and time form a trade-off. For instance, when optimizing the
number of reservoirs, there are two factors to consider: the number of reservoirs and
the time it takes for droplets to be released. Having fewer reservoirs is cheaper, but
since droplets can only be dispensed one at a time, it also takes longer.

iteration O
. detector
) reservoir
b E‘\ | Duuuuu 11 iterati
iteration
| L]
(L FEEIEC SO SpERh
111 % E H
Eiqiﬂ [[[J
HEEEEREREREERN RN L]
@)
[TTTII
@ ANpEEEREN [T || iteration
HE 4 500
L IHWWW
on .[ﬁ-ﬁ N
Tﬂﬂﬂ RN T [T E]
GB;_LHJ LI iteration _ _
9900 iteration
Lt ' 10,000

@8

L1
C m

I m

]

Figure 4: Biochip designs generated by our algorithm for the bio-protocol in Figure
3. (a) The algorithm starts from a naive layout and (b), (c) evolves it iteratively to
create (d), (e) the final layouts optimized in terms of cost and execution time.

1=

a0

=

=

3 Proposed Algorithm

The algorithm we propose optimizes for exactly this trade-off: it takes both cost
and execution time into account, thereby allowing us to obtain the cheapest and
fastest biochip.

2.3 Compiling a Bio-protocol

To determine the execution time of a bio-protocol, we need to translate it into a
sequence of droplet movements on the biochip. Since this is an NP complete prob-
lem [13], there is no optimal solution. Initially, researchers proposed compilations for
small sized bio-protocols using integer linear programming [13]], but this approach
does not scale. Generic methods to obtain the near-optimal solution include Par-
allel Recombinative Simulated Annealing [5], Genetic Algorithms [14], and Tabu
Search [13]]. Since they all employ different strategies to generate the final result,
they are suitable for different use cases. However, all of these methods are slow and
often have to run overnight. Recently, researchers developed an approach to run the
compilation in real-time based on List Scheduling [a1]].

3 Proposed Algorithm

Algorithm 1: Optimization of the biochip design
Input: the Bioprotocol, deadline Timeconstraint, the cost of the components
Cost, the number of solutions N, the number of Iterations, the mutation
rate M, 4., the crossover rate C, g,
Output: the Pareto optimal biochip solutions Children
1 Solutions = GeneratelnitialBiochip(Bioprotocol)
2 repeat
Children = GenerateLayouts(Solutions, Myate, Crate)

3

4 for each biochip B in Children do

5 CheckAndFixRoutability(5)

6 Compile(B, Bioprotocol, Timeconstraint)

7 CalculateCost(C, Cost)

8 if) then ParetoOptimal(B3, Solutions

9 CalculateCrowdingDistance(B, Solutions)
10 Update(Solutions, N)

11 end

12 end

13 until Iterations = @

Our algorithm is based on the Non-dominated Sorting Genetic Algorithm (NSGA
II) [6]]. Our algorithm takes as inputs the bio-protocol, the costs of the components, the

Mirela Alistar: Multi-objective Optimization for Biochip Design

types of mutations and crossovers as described below, and the number of iterations.
It outputs a number of different biochip designs that perform equally well but along
different axes (e.g., one solution is cheaper but takes longer to execute vs. another
solution is more expensive but faster).

We summarize all steps of our algorithm in Algorithm 1.

3.1 Generating new layouts through mutation/crossover

Our algorithm starts with an initial non-optimal solution provided as input. It then
generates new solutions by performing mutations on the initial solution, such as
removing or adding electrodes at random positions (see Figure 5). We use a large set
of different mutation operations to increase the diversity of the biochip designs we
generate. Since circular routes, such as the one shown in Figure 5d, can be used for
both moving droplets and mixing, they enhance parallelism and thus save time [3]].
We therefore favor them when generating new solutions.

Om

%%% /), removed electrode
%%%% JT: |:| detector

Figure 5: Here, our algorithm generates new layouts using mutations, such as (a)
removing electrodes at random positions, (b) removing rows of electrodes, (c)
re-positioning a reservoir, and (d) carving to favor certain mixing routes.

The initial naive biochip solution is generated by computing the width of the
bio-protocol graph (i.e., counting the maximum number of nodes on the largest
level) and then placing the minimal number of electrodes needed to execute the
operations in parallel. Our algorithm then adds border electrodes to enable faster
routing. Figure 4a shows such a naive biochip implementation for the bio-protocol
from Figure 3.

3.2 Checking Routability

New solutions might have several disconnected parts (i.e., a droplet is not able to
move from one side of the biochip to the other because of a gap, see Figure 5b). To

3 Proposed Algorithm

make sure that all electrodes are connected with each other, our algorithm checks
the connectivity of the generated design (based on the k-vertex connectivity [7]) and
if needed repairs the path by adding electrodes. The connecting electrodes are again
added in a way that favors circular routes.

Checking if the generated design can actually execute the bio-protocol (e.g., if
there is enough space to route the droplets and to place the mixing operations) is
done in the next step together with the time estimation.

3.3 Evaluating the Execution Time

For each operation (e.g., mixing, dispensing, or splitting a droplet), our algorithm
first places it on the biochip (taking up a certain number of electrodes), then deter-
mines a time at which it is executed, and finally computes a route to move the droplet
there (we use the fast List-Scheduling [1] algorithm from the related work for this).
Placing and scheduling the last operation determines the overall execution time of
the bio-protocol. When our algorithm places the operations, it tries to avoid droplets
passing each other in adjacent cells as this leads to them being merged (Figure 6).
Our algorithm resolves this either by introducing extra electrodes for rerouting (Fig-
ure 6a) or by making one droplet wait until the other droplet has passed by (Figure
6b).

NER
m !H n
| Jusif ajian

Figure 6: To avoid undesired droplet merge the droplets can be either (a) re-routed
or (b) timed out.

i

In case not every operation can be placed (e.g., because there is not enough space,
or droplets run into a deadlock), our algorithm dismisses that solution. For the
remaining working solutions, our algorithm checks if they perform within the time
constraints, and discards those that take too long.

3.4 Evaluating the cost of the solution

To evaluate the generated biochip design in terms of cost, we use the metric proposed
by Alistar et al. [4] that considers both the cost for the electrodes/reservoirs and the
costs for the fluids (Equation[i). The terms in the equation consist of the number of
physical components Ny, of type M; (e.g., 5 electrodes, or 4 incubators that keep the
droplets at a certain temperature), their cost Costys,, and the number of reservoirs
Np, times the cost of the fluid per pl R;.

Mirela Alistar: Multi-objective Optimization for Biochip Design

Costq = Y_ Ny, x Costy, +) Ng, x Costg, (1)

The first term of Equation f1calculates the cost of the physical components and the
second term calculates the cost of the input fluids. The physical components (e.g.,
electrodes, reservoirs and detectors) and their unit cost are provided by the designer
in a library. The unit cost of the input fluids, used by the biochemical application, are
specified in a fluidic library. The assumption is that all the reservoirs integrated in
the cartridge are fully loaded. We ignore the cost of the controller platform because,
regardless of its cost, the controller platform is acquired only once, thus having its
cost amortized over time.

3.5 Next Generations

To increase the space of solutions, the working solutions that were generated from
the initial input form the basis for the next round of mutations. Our algorithm uses
only the best N solutions as input, thus it has to rank them first. The ranking is done
on both scales time and cost using the Pareto dominance (e.g., one solution is cheaper
but takes longer to execute vs. another solution that is more expensive but faster),
and crowding distance (solutions with similar cost/time are ranked lower).

.

Figure 7: After generating the first round of solutions, we can use cross-overs
between them for the next iteration.

Our algorithm then repeats steps 1—4, but now also uses cross-overs in step 1 as
illustrated in Figure 7 in addition to the mutations. For the next ranking, all generated
solutions (i.e., from the current and all previous generations) are considered. Our
algorithm repeats the steps until the defined number of iterations is reached.

4 Performance

We evaluated the performance of our algorithm by comparing it to the best known
solution as reported by Alistar et al. [4] using the four bio-protocols reported in [17,
20]. However, as pointed out in the related work section, Alistar et al.’s approach only

5 Discussion and Future Work

optimizes for cost and only outputs a single solution while our algorithm outputs
a continuous solution space that allows users to select among different trade-offs.
Figure 8 reports that solution space for one of the bio-protocols (the interpolating di-
lution bio-protocol from [17]) and shows how our algorithm outputs better solutions
in terms of both cost and execution time. For a direct comparison, we select from our
solution space, those solutions that are similar to the solution in the related work
along one of the dimensions, i.e., either execution time (solution 1) or cost (solution
2). Solution 1, which has a similar execution time as the related work, is 74 % cheaper.
Solution 2, most similar in cost, executes the bio-protocol 67 % faster.

Execution time our results related work
250

150

100

50 #2

20 40 60 | 80 100 120 Cost

250
200

150 #2
100 #1

50

Cost Execution time

Figure 8: Our algorithm outputs a continuous solution space that allows selection
among trade-off alternatives.

We obtained similar results for the other three bio-protocols with an improvement
over the related work from 20 % to 76 % in terms of cost and 27 % to 125 % in terms
of execution time.

5 Discussion and Future Work

We presented an algorithm that automates the design process of biochips by optimiz-
ing for both cost and time constraints. By providing an automated way to generate
biochips efficiently, we provide a step towards a future in which even non-technical
users are able to create biochips for their personal applications, thereby democratiz-
ing parts of health care. Our algorithm obtained a continuous solution space that
allows selection among trade-off alternatives. When compared to the related work,

Mirela Alistar: Multi-objective Optimization for Biochip Design

our algorithm performed up to 125 % better in terms of execution time, and up to
76 % better in terms of cost.

As future work, we will further explore design strategies for more complex biochip
systems. We plan to investigate strategies that combine both automation and human
editing.

References

[1]

[7]

[8]

[10]

M. Alistar, P. Pop, and]. Madsen. “Online synthesis for error recovery in digital
microfluidic biochips with operation variability”. In: Proc. of the Symposium on
Design, Test, Integration and Packaging of MEMS/MOEMS. 2012, pages 53-58.

M. Alistar, P. Pop, and]. Madsen. “Application-specific fault-tolerant architec-
ture synthesis for digital microfluidic biochips”. In: Proc. of the 18th Asia and
South Pacific Design Automation Conference. 2013, pages 794-800.

M. Alistar, P. Pop, and J. Madsen. “Operation placement for application-
specific digital microfluidic biochips”. In: Proc. of the Symposium on Design,
Test, Integration and Packaging of MEMS/MOEMS. 2013, pages 1-6.

M. Alistar, P. Pop, and J. Madsen. “Synthesis of Application-Specific Fault-
Tolerant Digital Microfluidic Biochip Architectures”. In: IEEE T. on Computer-
Aided Design of Integrated Circuits and Systems 35.5 (2016), pages 764-777.

K. Chakrabarty and F. Su. Digital microfluidic biochips: synthesis, testing, and
reconfiguration techniques. CRC Press, 2006.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist multi-
objective genetic algorithm: NSGA-II"”. In: IEEE transactions on evolutionary
computation 6.2 (2002), pages 182—-197.

S. Even. “An algorithm for determining whether the connectivity of a graph
is at least k”. In: SIAM |. on Computing 4.3 (1975), pages 393—396.

R. Fobel, C. Fobel, and A. R. Wheeler. “DropBot: An open-source digital micro-
fluidic control system with precise control of electrostatic driving force and
instantaneous drop velocity measurement”. In: Applied Physics Letters 102.19
(2013), page 193513.

R. Fobel, A. E. Kirby, A. H. Ng, R. R. Farnood, and A. R. Wheeler. “Paper
microfluidics goes digital”. In: Advanced materials 26.18 (2014), pages 2838—
2843.

C. L. Kaiying and S. Lindtner. “Legitimacy, boundary objects & participation
in transnational DIY biology”. In: Proceedings of the 14th Participatory Design
Conference: Full papers-Volume 1. ACM. 2016, pages 171-180.

10

[11]

[15]

[16]

[17]

[18]

[19]

[20]

References

S. Kuznetsov, C. Doonan, N. Wilson, S. Mohan, S. E. Hudson, and E. Paulos.
“DIYbio things: open source biology tools as platforms for hybrid knowledge
production and scientific participation”. In: Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems. ACM. 2015, pages 4065—
4068.

S. Kuznetsov, A. S. Taylor, T. Regan, N. Villar, and E. Paulos. “At the seams:
DIYbio and opportunities for HCI”. In: Proceedings of the Designing Interactive
Systems Conference. ACM. 2012, pages 258—267.

P. Pop, M. Alistar, E. Stuart, and]. Madsen. Fault-Tolerant Digital Microfluidic
Biochips. 2016.

A.J. Ricketts, K. Irick, N. Vijaykrishnan, and M. J. Irwin. “Priority scheduling
in digital microfluidics-based biochips”. In: Proc. of the Conference on Design,
Automation and Test in Europe. 2006, pages 329—334.

J. Sambrook, E. F. Fritsch, T. Maniatis, et al. Molecular cloning. Volume 2. Cold
spring harbor laboratory press New York, 1989.

R. S. Sista, T. Wang, N. Wu, C. Graham, A. Eckhardt, T. Winger, V. Srinivasan,
D. Bali, D. S. Millington, and V. K. Pamula. “Multiplex newborn screening
for Pompe, Fabry, Hunter, Gaucher, and Hurler diseases using a digital micro-
fluidic platform”. In: Clinica Chimica Acta 424 (2013), pages 12—18.

F. Suand K. Chakrabarty. “Benchmarks for digital microfluidic biochip design
and synthesis”. 2006.

F. Su, K. Chakrabarty, and R. B. Fair. “Microfluidics-based biochips: technol-
ogy issues, implementation platforms, and design-automation challenges”. In:
IEEE Transactions on computer-aided design of integrated circuits and systems 25.2
(2006), pages 211—223.

J.-I. Yoshida. “Flash chemistry: flow microreactor synthesis based on high-
resolution reaction time control”. In: The Chemical Record 10.5 (2010), pages 332—
341.

Y. Zhao, T. Xu, and K. Chakrabarty. “Integrated control-path design and error
recovery in the synthesis of digital microfluidic lab-on-chip”. In: J. on Emerging
Technologies in Computing Systems 6.3 (2010). DOI: 10.1145/1777401.1777404.

11

https://doi.org/10.1145/1777401.1777404

One Working Day of the Berlin Police
Analysis of Data From the #24hPolizei Twitter Marathon

Aragats Amirkhanyan

Internet Technologies and Systems
Hasso-Plattner-Institut
Aragats.Amirkhanyan@hpi.de

Nowadays, emergency agencies actively use the potential of the social networks
from the perspective of providing situational and public safety awareness. One
of such agencies is the Berlin Police that is the subject of our interest in this re-
port. They use its Twitter account to inform Berlin inhabitants about incidents
that happen in the city. Also, they provide the Twitter marathons and campaigns
to demonstrate how the police work and to provide public safety awareness for
inhabitants. In this report, we analyze data from the Twitter account of the Berlin
Police during the #24hPolizei marathon in May 2016. We provide the description of
the methods for normalization, entity recognition, and tweets categorization. Our
analysis results show the different views on public safety: distribution of incidents
among districts in the city, distribution of different types of incidents, the intensity
of the incidents during the day and others.

1 Introduction

Many law enforcement agencies and state departments actively use the potential of
social networks from the perspective of providing situational awareness. They use
social networks as a channel for informing people about threat-related events on a
daily basis and, especially, during extreme events [4, 5, 7]. The Berlin Police Depart-
ment is one of the law enforcement departments that actively uses social networks,
particularly, its Twitter account (@PolizeiBerlin_E) [9], to post tweets (messages) about
incidents in the city. And in this way, they provide situational awareness for Berlin
inhabitants. Also, the police once per year run the #24hPolizeff|marathon. During this
marathon, which goes 24 hours, the police post in real-time tweets about incidents
happening in the city. Sometimes after marathons, the police publish in Facebook
the statistics of the most utilized words in tweets. Such analysis of data and statistics
are limited and they do not fully discover the potential of data. Therefore, we are
interested in the deep analysis of data from the #24hPolizei Twitter marathon. It can
give us the possibility to obtained the detailed view, understand the safety situation
in the city during the marathon, and as a result, provide public safety awareness for
city inhabitants.

The remainder of the report is organized as follows: in Section |2} we provide
the motivation and the brief overview of related work. Section 3| explains briefly

Thttps://de.wikipedia.org/wiki/24hPolizei (last accessed 2016-10-20).

13

mailto:Aragats.Amirkhanyan@hpi.de
https://de.wikipedia.org/wiki/24hPolizei

Aragats Amirkhanyan: One Working Day of the Berlin Police

our research design. Then in Section |4, we present our analysis and findings. We
conclude the report and provide directions for future work in Section|[5|

2 Motivation and Related Work

This research study is the part of our main research project, which is analysis and vi-
sualization of publicly available data to provide situational and public safety aware-
ness [1, |2, |3]. Our focus is public safety awareness of Berlin, therefore, we gather
relevant to this location publicly available data. One of such relevant sources of data
is the Twitter account of the Berlin Police (@PolizeiBerlin_E). The police use it to post
tweets about incidents that happen in the city. Analysis of data from this account is
the next step of the research project and it is the challenge that we address in this
report.

The data from the account of the Berlin Police have been partially analyzed in
some papers [6} [8]. Mirbabaie and Ehnis et al. [§] analyzed the communication roles
in public events. For that, they analyzed the Twitter data related to the 1st May 2014
event (Labour Day) in Germany. In their analysis, the account of the Berlin Police
was one of five primary roles during the 1st May event and tweets from them were
most re-tweeted very frequently. They showed the primary role of the Berlin Police
in informing users about the happening event. Later in December 2014, Ehnis and
Mirbabaie et al. [6] published another paper, in which they presented their analysis
of the role of social media network participants in extreme events. In this paper,
they again used data from the 1st May for analysis and they analyzed the network
behavior and perception of the police role during the 1st of May event. The analysis
showed the major role of the police during the 1st May event.

From the related papers of previous years, we have seen that these social network
accounts of emergency agencies play the major role in informing users about inci-
dents and, especially, during the extreme events. The data from the Twitter account
of the Berlin Police have been partially analyzed in previous papers, but the analysis
was very specific and limited by the concrete use case. We claim that more deep anal-
ysis of these data can bring new research findings and research results in the scope of
analysis of public safety in the city. Therefore, in this report, we provide our research
analysis of data from the account of the Berlin Police during the #24hPolizei marathon
jointly with the research methods that we use for normalization and analysis.

3 Research Design

For analysis, we gathered data from the Twitter account of the Berlin Police (@PolizeiBer-
lin_E) during the last #24hPolizei marathon in May 2016. Data contain original and
retweeted tweets. To fetch these data, we developed the TwitterCrawler tool based
on Twitter Public APT [12]].

14

3 Research Design

The key for analysis of data is the data normalization. One of the ways for nor-
malization is the extraction of valuable named entities. Therefore, in the next two
subsections, we provide the brief overview of the methods for the location entity
recognition and incident-related keywords extraction that we use.

3.1 Normalization — Location

The Berlin Police post tweets without geo coordinates, but they quite often include lo-
cation names or location hashtags into the text to show where the incident happened.
Therefore, we aim to recognize and extract these location entities.

We use the Stanford Named-Entity Recognition (NER) tool [11] that supports the
German language. This tool recognizes location entities in 66.91 % of data. We do
not evaluate this result because the challenge of location entity recognition is out of
the scope of this report and we use one of the existing solutions that supports the
German language. Meanwhile, we do not expect to have 100 % of location recognized
tweets, because a lot of them do not have location names. Many tweets are just
announcements and updates of recent news.

We observed that there are some cases when the NER tool can not recognize the
location entity in the text even if it is there. Therefore, we apply the second approach
to increase the percentage of recognized locations. This approach is dictionary-based
entity recognition (dictionary ER). We noticed that quite often tweets about incidents
have the names of S-Bahn and U-Bahn stations. Therefore, we created the dictionary
from the station names. The dictionary originally contains 315 station names, but
we extend it up to 1222 names because the station names are not always written in
the original form. If the station name has 2 or more words then the name can be
written in the concatenated form without whitespaces or concatenated with dashes.
It is just a one example, but we carefully apply known variations of reductions and
concatenations to extend the dictionary and to cover all possible ways of writing
station names. Additionally, we use the lowercase for the station names and tweets’
texts.

The tweet has usually one location name, but if it has more we consider all of
them. If the tweet has two or more location names and one of them is Berlin then we
consider only others because Berlin reflects the very broad area. The dictionary ER
recognizes location entities in 60.74 % of tweets, which is less than the result of the
Stanford NER tool. But if we combine both methods then we obtain 83.55 %.

3.2 Normalization — Incident

We observed that the Berlin Police post tweets about different types of incidents
(crimes) with appropriate hashtags: thefts (#pickpocket), traffic accidents (#8geben),
break-ins (#keinbruch), public disorders, and some news. Therefore, we aim to catego-
rize tweets into these four categories, which we call incident types. Here is the exam-
ple of the incident-tweet (the tweet about the incident): Schon wieder Taschendiebe
in #Charlottenburg. Wir helfen mehreren Geschddigten. #24hPolizei (English:
Again pickpockets in #Charlottenburg. We help several victims. #24hPolizei).

15

Aragats Amirkhanyan: One Working Day of the Berlin Police

Table 1: Example of Keywords of Incident Types

Theft Traffic Accident
#pickpocket #8geben
Stehlen (steal) Unfall (accident)
Taschendieb (pickpocket) VU (traffic accident)
Gestohlen (stolen) Verkehrsunfall (traffic accident)
Dieb (thief) Prallt(-en) (clashed)
Break-in Public Disorder
#keinbruch Alkohol (alcohol)
Einbruch (burglary) Verpriigelt (beaten)

Einbrecher (housebreaker) Schrei(e) (scream)
Alarmanlage (alarm system) Laut (loud)

- Betrunken (drunk)

For incidents extraction we use dictionary-based ER. We observed the most utilized
incident-related keywords and grouped them into four categories (incident types)
and created the dictionary. In Table [1} you can find some keywords of categories:
Theft, Traffic Accident, Break-in and Public Disorder. The original dictionary contains
stemmed keywords in the lowercase. For stemming, we use the Snowball Stemmer
library [10].

Every tweet should have one category. Therefore, firstly, we look at the hashtag,
whether it is one of the three predefined (#pickpocket, #8geben, #keinbruch) because
it can help easily to identify the category. Then we try to find the matches between
words in the text and keywords in the dictionary. If the tweet has keywords of the
several incident types, then we choose the type that is more specific (narrow). From
Theft and Break-in, we choose Break-in. From Public Disorder and other, we choose
other.

We have more keywords that can reflect incidents and threat-related information,
but they do not definitely belong to one of the four categories. Meanwhile, they
should be considered for public safety analysis. Such keywords we group into the
“Other” category. We do not present them in the table, but they are more general
than for other categories, for example, Krankenhaus (English: hospital), Hilfloser
(English: helpless), Verdacht (English: suspicion) and so on.

16

4 Analysis — #24hPolizei Marathon

Table 2: Statistics of Data

Tweets Tweets with Location Incident-tweets Incidents with Injured

1070 894 (83.55 %) 562 (52.52 %) 34 (6.04 %)

4 Analysis — #24hPolizei Marathon

The Berlin Police once per year run the Twitter #24hPolizei marathon. During this
marathon, which goes 24 hours, the police post tweets with the hashtag #24hPolizei
about incidents happening in the city. Many of these tweets come from the calls to
the police. The goal of this marathon is to show the police work and provide public
safety awareness for inhabitants. Overall, there were 3 #24hPolizei marathons, but in
this report we analyze only the last one in May 2016.

The last #24hPolizei marathon was on the 27-28th of May 2016 from 19:00 until
19:00 of the next day. Overall, we have 1070 tweets and 83.55 % of them have location
names recognized by the Stanford NER tool and dictionary ER. Also, we apply the
method for recognition and extraction of incident-related keywords from Table
and, as a result, 52.52 % of tweets are categorized into incident types. Additionally,
we calculate how many tweets have keywords that reflect the injured. For German
language, such words are Verletzung (English: injury) and verletzen (English: hurt).
The percentage of incident-tweets with possible injured people equals 6.04 %. This
statistics is presented in Table

We calculate the frequency of the incident-related keywords in tweets. The top
10 utilized keywords are presented in the list below. In the list, you can find the
German keyword, English translation, the count of tweets with this keyword, the
percentage of tweets over the incident-tweets and the incident type to which the
keyword belongs.

1. Laut (loud) 66 (11.74 %) — Public Disorder

2. Verdacht (suspicion) 36 (6.40 %) — Public Disorder

Verkehrsunfall (traffic accident) 35 (6.22 %) — Traffic Accident

A

Verletzt (injured) 33 (5.87 %) — Any type

+

5. #8geben 31 (5.51 %) — Traffic Accident

6. Schlag (beat) 27 (4.80 %) — Public Disorder

7. Unfall (accident) 22 (3.91 %) — Traffic Accident
8. Verlass (leave) 20 (3.55 %) — Any type

9. Betrunk (drunk) 19 (3.38 %) — Public Disorder

10. Larm (alarm) 18 (3.20 %) — Public Disorder

17

Aragats Amirkhanyan: One Working Day of the Berlin Police

Table 3: Statistics of Incident Types

Public Disorder Traffic Accident Theft Break-in Other

274 (48.76 %) 96 (17.08 %) 52 (9.25%) 19(3.38%) 121 (21.53 %)

In Table [3} we present the result of tweet categorization. In the overall data, the
major part of categorized tweets belongs to the Public Disorder incident type. It has
48.76 % of categorized tweets. Then we have Traffic Accident and Theft. Break-in has
very small percentage in the comparison to others. The Other type (tweets with not
categorized keywords) is 21.53 % of data.

H Public Disorder ~ ® Traffic Accident ® Theft ™ Break-in ™ Other

Schoneberg
Friedrichshain
Reinickendorf
Wedding
Kreuzberg

Pankow

Neukdlin

Spandau

Charlottenburg

Mitte

] B 10 15 20 EL 30 35 a0 as 50

Figure 1: Distribution of the incident types in top locations.

In the list below, we present the top 10 location names utilized in tweets. All
location names in the list are the names of the districts in Berlin.

1. Mitte 89 (9.95 %)
2. Charlottenburg 60 (6.71 %)
3. Spandau 59 (6.59 %)

Neukolln 52 (5.81 %)

+

5. Wedding 48 (5.36 %)
6. Kreuzberg 47 (5.25 %)
7. Pankow 38 (4.25 %)

18

4 Analysis — #24hPolizei Marathon

8. Reinickendorf 37 (4.13 %)
9. Lichtenberg 34 (3.80 %)
10. Friedrichshain 33 (3.69 %)

You can see that, in the first place, we have Mitte 89 (9.95 %), which is the city center
(Mitte reflects the city center if Mitte is only location name in the tweet). Then we
have Charlottenburg 60 (6.71 %), which is the very lively district in the western part
of the city. Next, we have Spandau, Neukélln, Wedding and Kreuzberg. Kreuzberg
and Neukolln are known for its large percentage of immigrants and descendants
of immigrants. Additionally, we need to mention that for the statistics we do not
consider Berlin as a location name because Berlin is the too broad area.

45

40 1

35 + X

30 + »
—Break-in

- , \‘ s\ ! \\ e \ —Public Disorder
’ - \ ! .
. / \ . ,- A ¢ —Traffic Accident
\ ! 1
20 v 7 e —Theft
\
/ \ Vo "\ ,' \ Other
15 \ T
/ \/\ . ‘ = = Overall
\
10 \ X

mﬁf/\/ \; :

19 20 21 22 23 O 9 10 11 12 13 14 15 16 17 18

Figure 2: The #24hPolizei marathon: distribution of incidents over the day.

Figure [1| presents the bar chart of the top 10 locations where incidents happen.
You can visually see the distribution of the incident types and the total number of
incidents in locations. Firstly, we can see that Mitte is in the first place by the number
of incidents and it dominates in the Theft type of incidents among other locations
in the chart. Charlottenburg has the second place and Charlottenburg dominates
in Traffic Accident over others locations with 10 incidents of that type. But it is
comparable with Spandau that has 9 traffic accidents during the marathon. Spandau
is in the third position with domination of the Public Disorder type of incidents and,
comparable to Charlottenburg, the number of traffic accidents. We can notice that
Break-in is the minor part of incidents. There are overall 52 incidents of that type
(Table[3) and the dominating location in thefts is Mitte.

Since the marathon covers 24 hours, we have a chance to build the chart to find
out the intensity of tweets by hours for different types of incidents. You can find this
chart in Figure |2, We have data starting from 19:00, which is the start time of the

19

Aragats Amirkhanyan: One Working Day of the Berlin Police

marathon. And immediately, we can see the dramatic increase of Public Disorder.
This type of the incidents dominates over others during almost the entire marathon
except for 8:00. We have the high intensity of incidents during the entire night and it
goes down only closer to the morning after 3:00. During this marathon, we have the
low number of break-ins and from 7:00 until 11:00 there are not Break-in tweets at
all. Then we can see that on the next day with coming the evening, Public Disorder
starts to increase again.

5 Conclusion and Future Work

Our analysis gives an initial overview of the safety situation in Berlin based on data
from the #24hPolizei Twitter marathon organized by the Berlin Police. The result of
this research study is the part of our research project (Section |2)) and one of the steps
towards achieving the main goal — providing situational and public safety awareness.
We presented the research design and gave the description of the normalization
process. This normalization gave us the possibility to analyze data from different
perspectives. We provided top locations, distribution of incident types in data and
distribution of incident types in concrete locations. Since during these marathon,
the police continuously publish tweets about incidents during 24 hours, we also
analyzed how the public safety situation changes in the city during the day. For that,
we provided the chart of the distribution of incidents per hours during the day of
the marathon. From that, we have seen the characteristic increase of incidents in the
evening time.

As with every study, there are limitations. Our limitation based on the normaliza-
tion task. Therefore, as future work, we plan to improve methods of location entity
recognition. One of the possible solutions is usage of DBpedia as the third additional
method for annotation and recognition of entities. Additionally, we plan to improve
tweet categorization. For that, we would like to apply machine learning approaches
for tweet classification. Also, we would like to integrate additional sources of relevant
data.

References

[1] A. Amirkhanyan, F. Cheng, and C. Meinel. “Real-time clustering of massive
geodata for online maps to improve visual analysis”. In: Innovations in Informa-
tion Technology (I1IT), 2015 11th International Conference on. Nov. 2015, pages 308—
313. DOI: |10.1109/INNOVATIONS.2015.7381559.

[2] A. Amirkhanyan and C. Meinel. “Visualization and analysis of public social
geodata to provide situational awareness”. In: 2016 Eighth International Con-
ference on Advanced Computational Intelligence (ICACI). Feb. 2016, pages 68-73.
DpoIr: 10.1109/ICACI.2016.7449805.

20

https://doi.org/10.1109/INNOVATIONS.2015.7381559
https://doi.org/10.1109/ICACI.2016.7449805

(4]

[7]

[8]

[10]

[11]

References

A. Amirkhanyan and C. Meinel. “Analysis of the Value of Public Geotagged
Data from Twitter from the Perspective of Providing Situational Awareness”.
In: Social Media: The Good, the Bad, and the Ugly: 15th IFIP WG 6.11 Conference
on e-Business, e-Services, and e-Society, I3E 2016, Swansea, UK, September 13-15,
2016, Proceedings. Edited by K. Y. Dwivedi, M. Méantymaéki, M. Ravishankar,
M. Janssen, M. Clement, L. E. Slade, P. N. Rana, S. Al-Sharhan, and C. A.
Simintiras. Cham: Springer, 2016, pages 545-556. ISBN: 978-3-319-45234-0. DOL
10.1007/978-3-319-45234-0_48.

C. Ehnis and D. Bunker. “The impact of disaster typology on social media use
by emergency services agencies: the case of the Boston Marathon bombing”.
In: 24th Australasian Conference on Information Systems (ACIS). RMIT University,
2013, pages 1-12.

C. Ehnis and D. Bunker. “Social media in disaster response: Queensland Police
Service-public engagement during the 2011 floods”. In: ACIS 2012: Location,
location, location: Proceedings of the 23rd Australasian Conference on Information
Systems 2012. ACIS, 2012, pages 1-10.

C. Ehnis, M. Mirbabaie, D. Bunker, and S. Stieglitz. “The Role of Social Media
Network Participants in Extreme Events”. In: Proceedings of the 25" Australasian
Conference on Information Systems. Publication status: Published. Auckland,
New Zealand, 2014.

T. Heverin and L. Zach. “Twitter for City Police Department Information Shar-
ing”. In: Proceedings of the 73rd ASIS&T Annual Meeting on Navigating Streams
in an Information Ecosystem - Volume 47. ASIS&T ’"10. Pittsburgh, Pennsylvania:
American Society for Information Science, 2010, 41:1—41:7.

M. Mirbabaie, C. Ehnis, S. Stieglitz, and D. Bunker. “Communication Roles in
Public Events”. In: Information Systems and Global Assemblages. (Re)Configuring
Actors, Artefacts, Organizations: IFIP WG 8.2 Working Conference on Information
Systems and Organizations, IS&O 2014, Auckland, New Zealand, December 11-12,
2014. Proceedings. Edited by B. Doolin, E. Lamprou, N. Mitev, and L. McLeod.
Berlin, Heidelberg: Springer, 2014, pages 207—218. 1sBN: 978-3-662-45708-5. DOI:
10.1007/978-3-662-45708-5_13.

A. Rickmann. Storfiy: Der erste Twitter-Einsatz der Berliner Polizei. URL: http://
andreasrickmann.de/2014/03/23/storfiy-der-erste-twitter-einsatz-der-berliner-polizei
(last accessed 2016-10-01).

Snowball Stemmer. URL: http://snowball.tartarus.org/| (last accessed 2016-10-01).

Stanford Named Entity Recognizer (NER). URL: http://nlp.stanford.edu/software/CRF-
NER.shtml (last accessed 2016-10-01).

Twitter Public API Documentation. last visited on 27.07.2016. URL: https://dev|
twitter.com/rest/reference/get/statuses/user_timeline (last accessed 2016-10-01).

21

https://doi.org/10.1007/978-3-319-45234-0_48
https://doi.org/10.1007/978-3-662-45708-5_13
http://andreasrickmann.de/2014/03/23/storfiy-der-erste-twitter-einsatz-der-berliner-polizei
http://andreasrickmann.de/2014/03/23/storfiy-der-erste-twitter-einsatz-der-berliner-polizei
http://snowball.tartarus.org/
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
https://dev.twitter.com/rest/reference/get/statuses/user_timeline
https://dev.twitter.com/rest/reference/get/statuses/user_timeline

Enhancing Decision Making for Business Processes

Ekaterina Bazhenova

Business Process Technology Group
Hasso-Plattner-Institut
Ekaterina.Bazhenova@hpi.de

Business process management is an acknowledged asset for running a company
in an efficient way. A firm’s value chain is directly affected by how well it designs
and coordinates enterprise decision making. In recent years, a number of decision
management frameworks have appeared in addition to existing business process
management systems. Coupled with the recent release of the Decision Model and
Notation aimed to be complementary to the Business Process Model and Notation
by the OMG group, it is evident that stakeholders need integrated business process
and decision management solutions. In order to highlight the existing gap, we
introduced a concept of integrated business process and decision lifecycle and
discussed the challenges related to the separation of concerns associated with
each step. The lifecycle is entered in the design phase, in which business processes
and decisions are identified and represented by corresponding models. Often in
practice, decision logic is either explicitly encoded in process models through
control flow structures, or it is implicitly contained in process execution logs. Our
work proposes an approach of semi-automatic derivation of DMN decision models
from process event logs with the help of decision tree classification. The approach
is demonstrated by an example of a loan application in a bank.

1 Introduction

The value of business processes management (BPM) has been acknowledged as an
essential asset to drive a company. One of the most important and challenging BPM
aspects is decision making. Adding decision management perspective improves the
process by focusing on both the way decisions are made and directing the process
that must carry out the decisions. Following the “separation of concerns” paradigm,
this allows to handle the compounding complexity of the business process mod-
els by externalizing the events, operational conditions and decisions in separate
decision models, e.g. which is supported by the recent Decision Model and Nota-
tion (DMN) [8]. As companies are interested in running effective and competitive
processes, they develop different decision support software (i.e., IBM Operational
Decision Management, SAP Decision Service Management). Whether companies
develop packaged decision management systems, adopt business rules, or apply
advanced analytics to their business, a thorough decision understanding, modelling
and execution is critical. The interest towards decision support in business processes
is indicated by a number of decision ontologies and notations [7, 8], as well as de-
cision service platforms [12]]. However, compared to the extensive stream of BPM
research, the decision perspective of business processes up to now has received by
far less attention.

23

mailto:Ekaterina.Bazhenova@hpi.de

Ekaterina Bazhenova: Enhancing Decision Making for Business Processes

In our work we aim at overcoming the existing gap by identifing the challenges of
decision modeling with respect to processes. To this end, we introduce in Section 2
the concept of a decision lifecycle at the enterprise with respect to business process
perspective. Then, for each stage we establish the challenges coming emerging from
theory and industrial experience. The lifecycle is entered in the design and analysis
phase, when processes and decisions are modelled. Often in practice, decision logic
is either explicitly encoded in process models through control flow structures, or it
is implicitly contained in process execution logs. Section 3 proposes an approach of
semi-automatic derivation of DMN decision models from process event logs with
the help of decision tree classification. The approach is demonstrated by an example
of a loan application in a bank. Extensions of the approach can be found in Section 4.
The report reflects our work conducted during the year of 2016 and is reflected by
the list of published and submitted papers in Section 5.

2 Challenges for the Integration of Business Process and
Decision Management

Whereas business process management and decision management have developed
over the last few decades into mature independent disciplines, little has been under-
stood about how to effectively apply these concepts complementary to each other.
Our work addresses a number of challenges required to reduce this gap. To this
end, we presented the concept of an integrated BPDM-lifecycle which further served
for scoping the challenges. It seems practical to view business process and decision
management within the frames of a corresponding Business Process and Decision Man-
agement lifecycle (BPDM-lifecycle) as shown in[Figure 1} The stages of the lifecycle in
correspond to the stages of a standard business process lifecycle presented,

e.g., by [11].

Evaluation:
Decision / Process Mining
Monitoring

Design:
Ensoument: | | pdminstiaion | | Secnmaiorens
Mgnitoring and Modeling
Maintenance Stakeholders Asrll n?lil);ﬁ:)i
Validation / Verification

Configuration:
System Selection
Implementation

Test and Deployment

Figure 1: Integrated Business Process and Decision Management Lifecycle.

24

3 Discovering Decision Models from Event Logs

The phases of the BPMD-lifecycle are organized in a cyclical structure showing
their logical dependencies. These dependencies do not imply a strict temporal order-
ing in which the phases need to be executed. Also, it is important to note that the
evolution of process and decision management at real enterprises is not necessarily
simultaneous.

In total, we identified 14 challenges relevant to each of the four stages, namely
design and analysis, configuration, enactment, and evaluation of interconnected
enterprise processes and decisions. For each challenge, we described an intrinsic
problem, explained how related work has addressed the challenges, and identified
the research gaps. The architecture and the challenges of integrated business process
and decision management are demonstrated on a real-life example of the debt collec-
tion process, through the BPMN model reflecting the process of interaction between
the company and the customer, and the DMN model representing the decision logic
for handling claims. Our list of challenges is designed to provide a roadmap for
future studies, whereby each challenge represents a research problem, the solution
of which could help companies exploiting the full potential of integrated business
process and decision management ultimately aimed at allowing enterprises to work
optimally and flexibly.

3 Discovering Decision Models from Event Logs

The BPDM-lifecycle is entered in the Design and Analysis phase, in which business
processes and decisions are identified, reviewed, validated and represented by cor-
responding models. To assist companies with successful automated decision man-
agement, knowledge about “as-is” decision making needs to be retrieved. This can
be done by analysing process event logs and discovering decision rules from this
information. Existing approaches to decision mining concentrate on the retrieval
of control flow decisions but neglect data decisions and dependencies that are con-
tained within the logged data. To overcome this gap, in [2] we extended an existing
approach to derive control flow decisions from event logs [9] with additional identifi-
cation of data decisions and dependencies between them. Furthermore, we proposed
an algorithm for detecting dependencies between discovered control flow and data
decisions. The output of this approach is a complete DMN decision model which
explains the executed decisions, which can serve as a blueprint for further decision
management.

3.1 Discovering Decision Models from Event Logs

For our work, we rely on notions of process model and execution as follows. A process
model is a tuple m = (N, C,«), where N = T U G is a finite non-empty set of control
flow nodes, which comprises sets of activities T, and gateways G. C C N x N is the
control flow relation, and function « : G — {xor,and} assigns to each gateway a
type in terms of a control flow construct. A process execution is a sequence of activity

25

Ekaterina Bazhenova: Enhancing Decision Making for Business Processes

instances t; ...t,, with n € IN and each ¢; is an instance of an activity in the set of
activities T of m.

Let E be the set of event instances and A a finite set of attributes. Each attribute
a € A is associated with the corresponding domain V(a), which represents a set of
either numeric or nominal values. Each event instance e € E has tuples (a,v), a €
A, v € V(a) assigned to it. A trace is a finite sequence of event instances ¢ € E such
that each event instance appears in the trace only once. An event log L is a multi-set
of traces over E.

To represent the knowledge about decisions taken in business processes, we use
the DMN standard, which distinguishes between two semantic levels: the decision
requirements and the decision logic. The first one represents how decisions depend
on each other and what input data is available for the decisions; these nodes are
connected with each other through information requirement edges. A decision require-
ment diagram DRD is a tuple (Dgy,,, ID, IR) consisting of a finite non-empty set of
decision nodes Dy,,, a finite non-empty set of input data nodes ID, and a finite non-
empty set of directed edges IR representing the information requirements such that
IR C Dy, UID X Dgy,, and (Dgy,, U ID, IR) is a directed acyclic graph. A decision
may additionally reference the decision logic level where its output is determined
through an undirected association. One of the most widely used representation for
decision logic is a decision table, which we utilize for the rest of the paper. Decision
table DT = (I; O; R) consists of a finite non-empty set I of inputs, a finite non-empty
set O of inputs, and a list of rules R, where each rule is composed of the specific
input and output entries of the table row.

In our work, we provided a formal framework enabling the extraction of complete
decision models from event logs on the examples of Petri nets and DMN decision
models. In particular, we extended an existing approach to deriving control flow
decisions from event logs with additional identification of data decisions and depen-
dencies between them. Furthermore, we proposed a modified approach to rebuilding
decision trees to identify the dependencies between discovered decisions and over-
came the problem of reusing attributes in a dependent decision. An assumption of
our approach was that the decisions do not appear within loops, which we plan
to investigate in future work. The extracted DMN decision model reflects the de-
cisions detected in the event log of a process model, which could be served as an
explanatory model used for compliance checks. Additionally, executing this model
complementary to the process model supports the principle of separation of con-
cerns by providing increased flexibility, as changes in the decision model can be
executed without changing the process model.

3.2 Running Example
Our example process represents a loan application in a bank, as shown in[Figure 2|

Although we used a Petri net for the model representation, our approach can be
applied to a wider class of notations, e.g., BPMN.

26

3 Discovering Decision Models from Event Logs

Amount;
Rate;
Premium; Full Risk
Duration check \
\ \ Send
- approval
@ Register Standard Evaluate
claim check claim
Start pl p2 p3 Senq End
rejection
No check

Figure 2: Process model of the loan application in a bank.

For analysing the example process, we created an event log with the help of the
simulation system CPN Tools[| This tool uses coloured Petri nets for models’ repre-
sentation which allow tokens to have data values attached to them, as in our example
process. We used the simulation parameters as presented in [Table 1

Table 1: Simulation parameters for generating the event log

Task/Attribute Name Simulation Parameters
Trace ID 1 to 200 (incrementing)
Amount discrete(2,99)
Premium random boolean
Duration discrete(2,30)
Rate Amount / Duration
Risk if Amount > 50 and Duration > 15 : Risk = 4
if Amount > 50 and Duration < 15 and Duration > 5: Risk = 3
if Amount > 50 and Duration < 5: Risk = 2
if Amount < 50 and Duration > 20: Risk = 3
if Amount < 50 and Duration < 20 and Duration > 10 : Risk = 2
if Amount < 50 and Duration < 10: Risk = 1
pl if Amount > 50 and Premium = false : Full check
if Amount < 50 and Premium = false: Standard check
if Premium = true: No check
p3 if Risk < 2: Send approval; if Risk > 2: Send rejection

Table 2| shows a fragment of the simulated event log for the process depicted in
Whereas the knowledge about the process decisions can be empirically
derived from the logged expert decisions depicted in in the form of credit
evaluation rules, the corresponding process model depicted in does not
allow for decision knowledge to be obtained. Moreover, simply applying these rules
for the development of credit scoring systems can lead to the unjust treatment of an
individual applicant. An advantage of using such a model is that the separation of
process and decision logic maximizes agility and reuse of decisions [4].

Yhttp://cpntools.org/ (last accessed 2016-10-20).

27

http://cpntools.org/

Ekaterina Bazhenova: Enhancing Decision Making for Business Processes

Table 2: An excerpt of the event log for the example process

EventID TraceID Name Other attributes
1 1 Register claim Amount = 84 [EUR], Rate = 2.8 [%], Duration = 30 [Mths], Premium = false
2 1 Full check —
3 2 Register claim Amount = 8o [EUR], Rate = 4.4 [%], Duration = 18 [Mths], Premium = true
4 2 No check —
5 1 Evaluate Risk=3
6 1 Sendrejection —

3.3 Application of the Approach on an Example Log

For evaluating our approach of the decision model discovery from the event log of
a process model, we implemented it as a plug-in for the ProM framework 5.2f| by
extending the existing plug-in “Decision Point Analysis” for the discovery of control
flow decision points [9] with our concepts. The ability of the tool to derive decision
models from event logs is shown in a screencastP| The input for the approach is an
event log of a process model simulated as discussed previously, from which we mine
the process model using one of the ProM process mining algorithms. As we have
now both process model in the form of Petri net (Figure 2)), and corresponding event
log, we can start the discovery of decisions. The screencast reflects our step-by-step
approach proposed for the discovery of decisions from event logs, which is described
below.

1. Discovery of control flow decisions According to our approach, the program
firstly identifies two control flow decisions: (1) p1 with decision alternatives Full
check, Standard check, and No check; and (2) p3 with decision alternatives Send approval
and Send rejection. A corresponding decision tree is constructed for p1 (omitted in
this report, but can be found in our paper [2]).

2. Discovery of data decisions Executing our algorithm further, the program finds:
(1) A rule-based decision Risk; (2) A functional decision Duration.

The aggregate of the decisions discovered by the program is presented schemati-
cally in[Figure 3a] Those are the elements which are used further for the construction
of the decision requirements diagram: (1) Data nodes (Premium, Amount, Rate); (2)
Data decisions (Duration, Risk); and (3) Control flow decisions (p1, p3). Additionally,
the plug-in creates the decision table for each decision found.

3. Discovery of decision dependencies Further, the program mines the depen-
dencies between the discovered decisions from [Figure 3a} and it outputs the fully
specified DMN decision model as depicted in [Figure 3b| Thus, the program finds

Zhttp://www.promtools.org/| (last accessed 2016-10-20).
3https://bpt.hpi.uni-potsdam.de/foswiki/pub/Public/WebHome/DMNanalysis.mp4 (last accessed
2016-10-20).

28

http://www.promtools.org/
https://bpt.hpi.uni-potsdam.de/foswiki/pub/Public/WebHome/DMNanalysis.mp4

4 Work in Progress

Data nodes ‘ pl ‘ ‘ Duration ‘

,,,,, |,,'?}Jf'fi3?,,|,|,,,,B,i,s,lf,,,J,,,,,,,,Qq§q4€d§éq'1§
,,,,, |,,,,,P,l,,,,,J,l,,,,f’,s,,,,,J,,C,qrztf,qlﬂgwdgdﬁqrﬁ

(a) Discovered decisions (b) Discovered decision requirements dia-

gram

Figure 3: The discovered decisions and the DMN model for the example process.

the trivial dependencies between the decisions Duration and Risk, as well as between
Risk and p3, also, the non-trivial dependency between the decisions p1 and Risk. In
case of circular dependencies, a random decision is kept.

The extracted decision model shows explicitly the decisions corre-
sponding to the process from and thus, could serve for compliance checks
by explaining the taken decisions. Also, the derived decision model can be executed
complementary to the process model, thereby supporting the principle of separation
of concerns.

4 Work in Progress

In this report we presented a short overview of our earlier work on challenges in
modeling decisions complementary to business processes, and discovery of decision
models from event logs. The extension of the presented work and corresponding
planned activities are presented below:

1. Fuzzy Decision Mining Often decisions are not taken based on boolean logic but
on manual and automatic assessment of inputs. This behavior can be represented
more accurately by fuzzy rules than by traditional boolean logic. In fuzzy rules
probabilities are used to map values to so called linguistic literals [10]. Linguistic
literals are strings, that in general encode the semantic meaning behind a value
range e.g. that a certain value is considered high or low. Since the meaning can be
derived directly from the representation, it improves the interpretability for human
users. Moreover, using literals across multiple rules allows a simple and consistent
adaptation of all rules by adjusting the underlying mappings.

DMN offers extensive capabilities to model decisions and their dependencies, but
it does not support fuzzy decisions yet. Furthermore, many corporations do not
model their decisions explicitly, therefore decision model mining [2] has been intro-
duced. While there are approaches to mine fuzzy decisions [5], there are no methods
to mine Decision Requirement Diagram with a fuzzy rule base. Thus, our plan is to
investigate an approach, which would combine the mining of fuzzy decisions with
Decision Requirement Diagram to close this gap.

29

Ekaterina Bazhenova: Enhancing Decision Making for Business Processes

2. Optimal Acquisition of Input Data for Decision Taking in Processes Once
processes and decisions are designed, they need to be executed. There exist real-
world situations, when a set of information inputs is available, and acquisition of
only a subset of it might be enough to make a decision. For example, in a process of
assessment of a credit or an insurance application, depending on the case, there may
be questions to an applicant which could be asked firstly in order to make a decision
faster. With that, the existing literature on modeling and executing decisions com-
plementary to business processes, including the Decision Model and Notation [8],
do not provide guidelines on how to optimally acquire the inputs needed for deci-
sion making. Thus, prioritization of inputs acquisition for enabling efficient decision
execution remains an open question in the context of processes.

To address the described problem, we investigate the question of acquisition of
decision inputs utilizing DMN decision tables, acknowledged as one of the most
powerful tools for representing decision logic [8]]. In particular, we propose an ap-
proach for executing a decision model during instantiation of the associated process
model aimed at (1) reducing the number of inputs to be acquired; (2) finding an opti-
mal order of acquisition of decision inputs. We firstly propose to exclude pre-existing
process instance data from the set of inputs to be acquired during decision execu-
tion. Next, we present an algorithm for constructing a decision tree which stores an
optimal ordering of acquisition of inputs needed for decision execution. Thereby, as
optimization criteria we use costs associated with inputs acquisition, and predictions
about decision outcomes.

5 Publications 2016

Published:

¢ E. Bazhenova, S. Buelow, and M. Weske. “Discovering Decision Models from
Event Logs”. In: Business Information Systems: 19th International Conference, BIS
2016, Leipzig, Germany, July, 6-8, 2016, Proceedings. Edited by W. Abramowicz, R.
Alt, and B. Franczyk. Cham: Springer International Publishing, 2016, pages 237-
251. ISBN: 978-3-319-39426-8. DOI: 10.1007/978-3-319-39426-8_19.

e L. Janssens, E. Bazhenova, J. De Smedyt, J. Vanthienen, and M. Denecker. “Con-
sistent Integration of Decision (DMN) and Process (BPMN) Models”. In: Pro-
ceedings of the CAiSE’16 Forum, at the 28th International Conference on Advanced
Information Systems Engineering (CAiSE 2016), Ljubljana, Slovenia, June 13-17,
2016. 2016, pages 121-128.

Under review:

¢ E. Bazhenova and M. Weske. Optimal Acquisition of Input Data for Decision Taking
in Business Processes. Submitted to the 32nd ACM Symposium on Applied
Computing.

30

https://doi.org/10.1007/978-3-319-39426-8_19

References

e E. Bazhenova, K. Batoulis, L. Janssens,]J. Vanthienen,]J. De Smedt, and M.

Weske. Research Challenges for the Integration of Business Process and Decision
Management. Submitted to the Information Systems Research Journal.

References

[1]

[2]

[6]

[7]

[8]

[10]

[11]

E. Bazhenova, K. Batoulis, L. Janssens,]J. Vanthienen, J. De Smedt, and M.
Weske. Research Challenges for the Integration of Business Process and Decision
Management. Submitted to the Information Systems Research Journal.

E. Bazhenova, S. Buelow, and M. Weske. “Discovering Decision Models from
Event Logs”. In: Business Information Systems: 19th International Conference, BIS
2016, Leipzig, Germany, July, 6-8, 2016, Proceedings. Edited by W. Abramowicz,
R. Alt, and B. Franczyk. Cham: Springer International Publishing, 2016,
pages 237-251. ISBN: 978-3-319-39426-8. DOI: 10.1007/978-3-319-39426-8_19.

E. Bazhenova and M. Weske. Optimal Acquisition of Input Data for Decision Taking
in Business Processes. Submitted to the 32nd ACM Symposium on Applied
Computing.

B. von Halle and L. Goldberg. The Decision Model: A Business Logic Framework
Linking Business and Technology. Taylor and Francis Group, 2010.

F. Hoffmann, B. Baesens, C. Mues, T. Van Gestel, and]. Vanthienen. “Inferring
descriptive and approximate fuzzy rules for credit scoring using evolutionary
algorithms”. In: European Journal of Operational Research 177.1 (2007), pages 540—
555-

L. Janssens, E. Bazhenova, J. De Smedt, J. Vanthienen, and M. Denecker. “Con-
sistent Integration of Decision (DMN) and Process (BPMN) Models”. In: Pro-
ceedings of the CAiSE’16 Forum, at the 28th International Conference on Advanced
Information Systems Engineering (CAiSE 2016), Ljubljana, Slovenia, June 13-17,
2016. 2016, pages 121-128.

E. Kornyshova and R. Deneckere. “Decision-making Ontology for Information
System Engineering”. In: ER. Springer-Verlag, 2010.

OMG. Decision Model And Notation (DMN), v. 1.1. 2016.

A. Rozinat and W. van der Aalst. “Decision Mining in ProM”. In: Business
Process Management, 4th International Conference, BPM 2006, Vienna, Austria,
September 5-7, 2006, Proceedings. 2006, pages 420—425. DOI: (10.1007/11841760_33.

J. Vanthienen, G. Wets, and G. Chen. “Incorporating fuzziness in the classical
decision table formalism”. In: International journal of intelligent systems 11.11
(1996), pages 879-891.

M. Weske. Business Process Management - Concepts, Languages, Architectures, 2nd
Edition. Springer, 2012, pages I-XV, 1-403. 1sBN: 978-3-642-28615-5.

31

https://doi.org/10.1007/978-3-319-39426-8_19
https://doi.org/10.1007/11841760_33

Ekaterina Bazhenova: Enhancing Decision Making for Business Processes

[12] A. Zarghami, B. Sapkota, M. Z. Eslami, and M. van Sinderen. “Decision as
a Service: Separating Decision-making from Application Process Logic.” In:
EDOC. IEEE, 2012. 1SBN: 978-1-4673-2444-1.

32

Runtime data-driven software evolution in enterprise
software ecosystems

Runtime models for self-adaptive monitoring

Thomas Brand

System Analysis and Modeling
Hasso-Plattner-Institut
thomas.brand@hpi.uni-potsdam.de

There are several reasons for changing and thus adapting the configuration for
monitoring of a software system, for example if the setup of the system itself was
changed. This report will look at self-adaptive monitoring in the context of the evo-
lution of an enterprise software product. In doing so the interrelationship between
the quality of knowledge about software systems and the required resources to
obtain it shall be considered as the driver for self-adaptive monitoring. This report
deals with runtime models as knowledge stores for self-adaptive monitoring and
introduces a tool for related experiments.

1 Introduction

The reasons for adapting the monitoring configuration of an enterprise software sys-
tem can be manifold. Monitoring can for example be intensified when investigating
incidents and anomalies. An approach how self-adaptive monitoring can be applied
for this purpose is described in [3]. Also changed information demands or an altered
system setup can make an adaptation of the monitoring configuration necessary. An
approach how to automatically adapt the monitoring to changing requirements is
described in [7].

Another scenario for adaptive monitoring is the situation when the number of
possible measurement points is larger than the number of measurements that can or
shall be performed in parallel. In this case the measurements need to be performed
sequentially in order to cover all measurement points and to gain an overall mea-
surement result. Additional information about the measurement points and suitable
algorithms for deciding where to measure when and how may help to increase the
quality of the measurement result.

The report at hand will closer look into the just mentioned scenario. The hypnosis
behind the effort is, that focusing the activity of intensive monitoring to alternating
parts of running software systems can save resources and yield similar results com-
pared to those from thoroughly monitoring of the system. This requires controlling
the focus sensibly. Software system runtime models can allow such controlling to
be performed in a computer-aided or automated way. An idea on how to build-up
such a runtime model from runtime data is further discussed in this report.

Knowledge about how customers actually use the products of a software manu-
facturer and its ecosystem partners is a valuable input for well-grounded software

33

mailto:thomas.brand@hpi.uni-potsdam.de

Thomas Brand: Runtime data-driven software evolution in enterprise ecosystems

evolution decisions. The gathered information can be used to validate assumptions
and over time detect changes in the users’ behavior. But the effort that can be allowed
for obtaining this information is likely limited as in the scenario described above.
Thus related data might not be obtained and processed continuously and simulta-
neously for the entire software system or across the whole population of software
product installations.

This report also contains a description of a simulator for later experiments in this
research field. The tool allows simulating a population of enterprise application
installations. Those simulated software systems may differ in the configuration of
the software product and in the users’ behavior.

2 Runtime model for self-adaptive monitoring of enterprise
software systems

The Merriam-Webster’s Dictionary defines the verb to monitor as “to watch, keep
track of, or check usually for a special purpose” [6]. In order to do this in an auto-
mated fashion some sort of controllable sensors are required. The controlling entity
needs to be aware of the measurement points, where those sensors are or can be
placed as well as of the sensors’ status. This knowledge can be captured in a specific
runtime model which represents this aspect of the running software system. The
controller may for example use the model as input for decision making.

A definition of runtime models is given in [1]. The following two subsections
contrast this definition with the characteristics that at least some installations of
major enterprise software products show. This allows illustrating challenges with
runtime models for this type of software system and why those systems might need
to be treated as black boxes when creating or maintaining their runtime models. The
third subsection will than point out the importance of the runtime model accuracy
for the measurement results of self-adaptive monitoring. The fourth subsection will
indicated how augmenting runtime models with additional information might lead
to better measurement results.

2.1 Creating a runtime model

The runtime model of a software system might not be intrinsically tied to the mod-
els produced as artifacts from the Model Driven Engineering (MDE) process as
requested in [1]. Not for every part of an enterprise application such models might
be available or contain the necessary information, especially if the system is com-
posed of components from different parties of the software ecosystem. This then has
the implication that the sensors runtime model needs to be created without models
or other artifacts from the software development process.

34

2 Runtime model for self-adaptive monitoring of enterprise software systems

2.2 Maintaining a runtime model

The runtime model might not be a causally connected self-representation of the
associated system as defined in [1] — at least not bi-directionally. The challenge is
to recognize changes in the software system without a corresponding notification
mechanism. An Enterprise Java Beans (E]JB) specific example of such an advanta-
geous notification mechanism is described in [2]] and [8]]. It propagates notifications
about changes in the EJB-application when they occur and thus they can promptly
be reflected in the runtime model. But such a change notification mechanism might
not be available for example due to historic, technological or economical reasons.
Then changes have to be detected by observing the system to reflect them in the
runtime model, for example by analyzing the runtime data of the system.

This implies that the runtime model might represent the related software system
less accurate. Either because not every change was detected or the detection requires
time and thus the model is only updated with a delay. The quality of the model as
representation of the system depends on the effort spent to keep it up-to-date.

That implication might be an issue for most use cases of runtime models. But there
might be also several cases where a vague runtime model is sufficient. In such cases
the benefits of controllable and moderate costs for validating the model against the
status of the underlying system outweigh the disadvantages of uncertainty. This is
for example the case when the purpose of monitoring is usage measurement for
software evolution decisions. Because in this case the uncertainties about a software
system get leveled out by the duration of the observation and the aggregation of the
measurement results across the population of observed software product installa-
tions.

2.3 Runtime model and measurement result quality

Knowledge about the available measurement points and their status is required
in order to control and adapt monitoring. Such knowledge can be captured in a
runtime model. The accurateness and up-to-dateness of the knowledge and thus
of the runtime model may also impact the quality of the monitoring measurement
results. For example if the monitoring controller is not aware of a measurement point
through the runtime model it cannot activate it to measure. Or if a sensor has been
removed by a third party but remains enlisted as active in the runtime model then
the controller might not utilize all available resources for monitoring as it could have
already activated another measurement point instead.

2.4 Augmented runtime models

Assuming it is not feasible to measure at all known and required measuring points
continuously and in parallel then decisions need to be made about where to mea-
sure when and how. Coincidence is one way of selecting measurements points in
space and points in time when to measure. But especially if the measured object
has more and less dynamic parts or also intermediary measurement results matter

35

Thomas Brand: Runtime data-driven software evolution in enterprise ecosystems

Reconfirming phase

Space
dimerfsion 4 Learning phase (yielding a more accurate result with
(sensors measure constantly the same monitoring effort - less wrong
alternating = red estimates)

)
sstibees © 101 © 101 0 ICICIDI 01D
Sensor with
mm$@@@@@@@@@@¥

t1 . t10 Time
Measurements and estimates dimension

Legend . .
Estimated value / Estimated value / Actually
actual value actual value measured value
@ (not matching)

Figure 1: Depicts a scenario where at a point of time only one sensor out of two can
measure, while for the other sensor an value needs to be estimated. If additional in-
formation about previous measurements is provided through the sensors runtime
model then the manager for adaptive monitoring can improve the measurement
result during the reconfirming phase by activating the sensors sensibly and thus
reduce the number of wrong estimates.

then considering additional information might yield better monitoring results. A
runtime model might be augmented or linked to such additional information for
more sophisticated decision making.

This information may for example comprise insights from earlier measurements,
such as the correlation of measured values. An interesting relationship in the space
dimension might be for example that the measured values from multiple measuring
points usually change proportionally. In the time dimension an interesting infor-
mation might be that the measured values of a particular measurement point are
usually stable and not very fluctuating. This information would allow substituting
some actual measurements with well estimated values as illustrated in [Figure 1}

Comparatively little monitoring resources would then be required to reconfirm
the correlations from time to time once they had been discovered. This would free
resources for more reasonable monitoring tasks.

3 Enterprise Application Simulator

The research effort related to this report focuses on the evolution of enterprise soft-
ware products. M. Fowler describes such enterprise applications in [4] as being about
the display, manipulation, and storage of large amounts of often complex data and
the support or automation of business processes with that data. He also emphasizes

36

3 Enterprise Application Simulator

concurrency caused by multiple users, the integration with other applications and a
heterogeneous technology mix as well as a complex business logic.

In this section a lightweight simulator for enterprise applications is presented be-
cause using actual software systems for conducting first experiments is impractically.
For example software customers may not want to share their data due to privacy
reasons. For the experiments regarding self-adaptive monitoring it is also necessary
to have control over the monitoring configuration of the software systems and to be
able to continuously change it according to the requirements of the experiments.

Setting up and operating diverse configurations of an enterprise software product
in a laboratory environment would required product specific skills and compara-
tively many hardware resources. Also it might be cumbersome to simulate specific
scenarios during the experiments when using a function rich and complex software
product. Those circumstances led to the implementation of the Enterprise Applica-
tion Simulator (EAS).

The tool allows simulating a population of enterprise software systems. Those
systems shall represent customer specific installations of software products, which
consist of software components provided by the software manufacturer or third
party software ecosystem partners as symbolized at the top of [Figure 2| As depicted
at the bottom of this figure each system shall possess an individualized configura-
tion comprising a set of software components. The configurations shall be diverse —
similar to how they would be in reality.

Continuous software evolution

Software products provided by the
software manufacturer and ecosystem partners

L . o) / R '
‘ ‘ ,/ | Detected anomalies in runtime data
y y / from multiple systems are indicators

for software evolution potential.

/
—4
Runtime data for EE
Control <> Handle feedback purpose %f\\ 2 !

\
\

é \
\
\
L) (T (T ... —-arﬁ
Observed software component

Customers’ software systems with diverse configurations instances

Continuous individual system adaptation

Figure 2: Population of simulated software systems for researching how to control,
handle and analyze runtime data. The configurations of the systems shall repre-
sent diverse sets of software components provided from different parties of the
software ecosystem.

37

Thomas Brand: Runtime data-driven software evolution in enterprise ecosystems

3.1 Simulator foundation

In order to ease simulator logic development and operation, the EAS is based on
the IBM Integration Bus (IIB) and IBM MQ (IMQ) middleware. Both IBM software
products are usually used for enterprise application integration and for dealing
with large amounts of complex data. The software is available for research purposes
through the IBM Academic Initiative [5].

IMQ formally called WebSphere MQ and MQSeries provides a transport mech-
anism for program intercommunication based on messaging. It supports reliable
and asynchronous message exchange using message queues with support for trans-
actions. Messages can also be distributed to multiple consumers using the publish
subscribe messaging pattern. Employing messaging for the simulator allows for
example to easily observe, pause and manipulate the communication.

Logic to route messages, for example by moving them between message queues
can be implemented using the IBM Integration Bus formally known as WebSphere
Message Broker. Besides routing it provides support for message validation and
transformation. Its visual modeling capabilities make it easy to implement simulator
logic as well. It also supports operating multiple server instances on which different
simulated enterprise applications can be executed.

Furthermore the IIB provides comprehensive extension possibilities, which addi-
tionally qualify it as a foundation for the EAS.

3.2 Simulator capabilities

Support for development and operation The IIB Toolkit allows to visually model
so called message flows. For the EAS this capability is utilized to model the behavior
of software product components with a UML activity diagram-like notation. In [Fig}
ure 3lan example of such a model is pointed out by the green marker A. The available
notation elements are marked with a B. They are a simulator specific extension to
the IIB.

Once the components of a software product have been modeled, the individual
enterprise software system configurations need to be created. For this purpose the
EAS utilizes the concept of subflows supported by the IIB. The modeled software
product components can be added as such subflows to a component diagram which
represents the configuration of a particular software system. An example of such a
diagram is pointed out with the green marker C in[Figure 3|

After completing a software system configuration it can be packaged and deployed
as an IIB application on a so called integration server. Those servers are runtime envi-
ronments for message flows and other logic. In the context of the EAS they represent
a software system. Such a server is depicted in close to the marker D. The
IIB Toolkit also provides comprehensive debugging support.

Support for traceability Traceability is required to understand what actually hap-

pened during the execution of the EAS and to contrast those insights with the moni-
toring and runtime data processing results of the conducted experiments. The EAS

38

3 Enterprise Application Simulator

1 |
a Integration Development - prt.app01/de/hpi/sam/eas/cmp02.msgflow - IBM Integration Toolkit - C_job\Workspaces\iib\prototyping

. T |

(=] 6)

CrEEeiEisi == ol

IS Application Devel... 32 & Patterns Explorer = B

File Edit Flow View Palette Mavigate Search Project Run Window Help

R R

EHE *flw01.msgflow 52

U e e e 100%

g
o

O ofi g0 o
T

MR
Quick Access 3

m
[5, Integration Development %5 Debug mm..:mf_m

=
EEg/ q 4% Palette Flow Exerciser: & ® 8 i
~
Application Development a / L} - s =
[Favarit
L.H_unm_u_uc_. - Favorites %
4 2 H2 Flows ﬁ:ﬂin_um_u_._n_m MQ = e
me de hpi.sam.eas (8 MQTT @)=
& cmp0l.msgflow s M5 =
i emp02.msgflow [HTTP Component 3 ==
[empl03.msgflow = U@
5 fiwdLmsgflow (2 Web Services |
[@ Independent Resources mmJo sCA Component 1 &
[WebSphere Adapters \ o
[+ Routing Component 2 @
73 NET << implements >>
(75 Transformation = \ - g
<< tuns on >> Graph | User Defined va_um_..:mm_ \ W
FE
EHE empOl.msgflow B *emp02.msgflow §3 = 0 o=
4 53 Palette Flow Exerciser: Ha 11 @ 8
s VIS A A
[Validation i
HW Security
e =
Inte... Yo lnte.. %5 Data WfData. = B User-defined
& Inte.. 52 nte ata.] [Data Ca : S Action11
= B (= Enterprise Application Simulator <
4 {22 Integration Nodes @ Initial Decision /@
< Customerl @ Activity Final
& Customer 2 O Action ° U@ o Action1.2 HU UEU
‘ AW Un”oﬁuqﬂ.,:m @ <k Fork Initial Fork Join Activity Final
4 gz server b Join I
a 5 prtappll - Decision £
HEl dehpi.sam.eas.flwll i+ Merge Action 2
) Enterprise Application Simulatorlava
) User-defined NodesLib 23 Component % i
Graph | User Defined Properties
Writable

IBM Integration Bus (IIB) Toolkit used to visually model and operation
39

Enterprise Application Simulator (EAS) logic.

Figure 3

Thomas Brand: Runtime data-driven software evolution in enterprise ecosystems

uses a chain of messages to simulate the workflow of a business transaction. Each
node which is used to model the behavior of a simulated software component creates
a copy of the message it received from the preceding node. Examples of those nodes
can be seen in in the subelements compartment of Component n. The full
list of nodes is available in at marker B. Besides other potential message
changes, a node always appends an entry to the history list of the new message about
the passage of the workflow before the node forwards the message to the next node.
All messages with the same workflow ID are related to the same business trans-
action. Thus the final output message of a simulated business transaction contains
the complete protocol of the related workflow.

Once a simulated software component has finished its work, it then publishes a
message about the event to a topic, please see the Activity Final node in
Other components interested in the event can thereupon start their processing, for
example Component n+1 in the same figure. For tracing purposes the Event Detector
archives all events in the Event Store and thus keeps track about every component
intercommunication.

Furthermore regular logging is supported, such as logging in Java classes.

’\»1 Y ‘Messagei i+1

workflowlD=k | |-workflowID=k workflowID=k workflowID=k
historyList - historyList historyList historyList
— A ~ A ~ A ~ AL ~—
,.|Component n

.9{ @ IActionm H @ IActionm+1}9@-~ <

v
A
= ‘ Log = ‘ Event Store

-logEntryList -publicationList
Legend Action Component = Data Store

" Component with Message at the current ~ ——Control Flow—>
. Initial fcf i
+| subelements point in time

@ — (=] Publish / Subscribe Message at a previous Message Scope
clvily Fina - Topic L - | or future point in time —

Figure 4: The traceability support of the Enterprise Application Simulator (EAS)
is depicted in a simplified manner. It comprises logging, storing events from the
intercommunication of the simulated software components and keeping a history
protocol for each business transaction workflow, which is maintained and passed
on with the corresponding messages. The figure also indicates implementation
details about the publish/subscribe- and thus topic-based intercommunication
between the simulated software components.

40

4 Brief summary and outlook

Support for concurrency Concurrency in the context of the EAS means that parts
of a workflow can be processed in parallel. A workflow shall mean an instance of a
business process to handle one business transaction. To enable concurrency inside
a simulated software component the Fork and Join message flow nodes can be used
in the activity diagram as depicted in markers A and B. The Fork causes
two threads to be created which work independently. The Fork and Join nodes must
not be confused with the Decision and Merge nodes which enable alternative routes
through a business process. Another way to cause concurrency is to connect more
than one component to an output terminal of another component in the component
diagram as depicted in marker C. In this example the components 2 and 3
are connected to the output terminal of component 1. Thus both receive the event
that component 1 completed its work via the publish subscribe mechanism and start
their processing independently.

Support for structural adaptation during runtime Structural adaptation shall al-
low simulating architectural changes of a software system during runtime. Struc-
tural adaptation is currently enabled by allowing to change during runtime how
components are wired together. The initial configuration gets specified through the
component diagram, which is shown in marker C. During runtime it is
possible to change this configuration and alter which other components get triggered
by a work-completed-event published by a component. For this and parameter adap-
tation purposes an EAS extension creates typically one IIB user-defined configurable
service for each simulated software component. Accessing those configurable ser-
vices through IIB APIs or its web user interface allows altering the corresponding
configuration for each component at runtime.

Support for changing behavior during runtime Changing the behavior can be
achieved through parameter adaptation during runtime, for example by altering
a threshold for a routing decision. Parameters are accessible via IIB user-defined
configurable services, which have already been described above. The parameter
values can be modified through IIB APIs or its web user interface.

Support for complex simulation logic The IIB supports manipulating and han-
dling messages in various ways and thus allows implementing very sophisticated
simulation logic for the software components. After this logic has been implemented
for example with the Java Standard Edition and the IIB related Java APIs it could
be triggered through the Action nodes depicted in the activity diagram in
marker A.

4 Brief summary and outlook
In its first part this report points out how adaptive monitoring might be useful for

efficient usage measurement, which itself can serve as a basis for sound software
evolution decisions. It explains the benefit of a runtime model as knowledge store for

41

Thomas Brand: Runtime data-driven software evolution in enterprise ecosystems

adaptive monitoring and the idea to mine the required runtime model from runtime
data produced by the observed software system. To elaborate further on those ideas
experiments about adaptive monitoring shall be conducted with the EAS presented
in the second part of the report.

References

[1]

[2]

[8]

G. Blair, N. Bencomo, and R. B. France. “Models@Run.Time”. In: Computer
(2009). por: 10.1109/MC.2009.326.

J. Bruhn and G. Wirtz. “mKernel: A Manageable Kernel for E]B-based Sys-
tems”. In: Proceedings of the 1st International Conference on Autonomic Comput-
ing and Communication Systems. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2007. 1sBN: 978-963-9799-
09-7.

J. Ehlers, A. van Hoorn,]. Waller, and W. Hasselbring. “Self-adaptive Software
System Monitoring for Performance Anomaly Localization”. In: Proceedings of
the 8th ACM International Conference on Autonomic Computing. ACM, 2011. por:
10.1145/1998582.1998628.

M. Fowler. Patterns of Enterprise Application Architecture. Addison Wesley, 2002.
ISBN: 0-321-12742-0.

IBM Academic Initiative. Program details. URL: https://developer.ibm.com/academi
c/programdetails| (last accessed 2016-10-01).

Merriam-Webster’s online dictionary. Defintion of the verb to monitor. UrL: http:
//www.merriam-webster.com/dictionary/monitoring (last accessed 2016-09-22).

N. M. Villegas, G. Tamura, H. A. Miiller, L. Duchien, and R. Casallas. “DY-
NAMICO: A Reference Model for Governing Control Objectives and Context
Relevance in Self-Adaptive Software Systems”. In: Software Engineering for Self-
Adaptive Systems II. Springer-Verlag Berlin, Heidelberg, 2013. por: 10.1007/978:
3-642-35813-5_11.

T. Vogel and H. Giese. “Adaptation and Abstract Runtime Models”. In: Pro-
ceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems. ACM, 2010. por: 10.1145/1808984.1808989.

42

https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1145/1998582.1998628
https://developer.ibm.com/academic/programdetails
https://developer.ibm.com/academic/programdetails
http://www.merriam-webster.com/dictionary/monitoring
http://www.merriam-webster.com/dictionary/monitoring
https://doi.org/10.1007/978-3-642-35813-5_11
https://doi.org/10.1007/978-3-642-35813-5_11
https://doi.org/10.1145/1808984.1808989

Power of Greediness on Real World network

Ankit Chauhan

Algorithm Engineering
Hasso-Plattner-Institut
ankit.chauhan@hpi.uni-potsdam.de

Large real-world networks typically follow a power-law degree distribution. To
study such networks, numerous random graph models have been proposed. How-
ever, real networks are not drawn at random. In fact, the behavior of real-world
networks and random graph models can be completely opposite. Brach, Cygan,
Facki, and Sankowski [SODA 2016] introduced two natural deterministic condi-
tions: (1) a power-law upper bound on the degree distribution (PLB-U) and (=2)
power-law neighborhoods, that is, the degree distribution of degrees of neighbors
of each vertex is also upper bounded by a power law (PLB-N). They showed that
many real-world networks satisfy both deterministic properties and exploit them
to design faster algorithms for a number of classical graph problems like transitive
closure, maximum matching, determinant, PageRank, matrix inverse, counting
triangles and maximum clique.

We complement the work of Brach et al. by showing that a number of well-
studied random graph classes exhibit both aforementioned PLB-properties and
additionally also a power-law lower bound on the degree distribution (PLB-L). In
this work we study three classical NP-hard combinatorial optimization problems
on deterministic PLB networks. It is known that on general graphs with maximum
degree A, a greedy algorithm, which chooses nodes in the order of their degree,
only achieves a Q}(In A)-approximation for Minimum Vertex Cover and MiNiMum
DoMINATING SET, and a Q)(A)-approximation for Maximum INDEPENDENT SET. We
prove that the PLB-U property suffices such that the greedy approach achieves
a constant-factor approximation for all three problems. We also show that a PTAS
cannot be expected, even if all three PLB-properties hold. For all three combina-
torial optimization problems we prove APX-completeness for graphs with PLB-U,
PLB-L and PLB-N property.

1 Overview

A wide range of real-world networks exhibit a degree distribution that resembles
a power-law [3} |20]. This means that the number of vertices with degree k is pro-
portional to k~#, where B > 1 is the power-law exponent, a constant intrinsic to the
network.This applies to Internet topologies [11], the Web [5, 17], social networks [1],
power grids [21], and literally hundreds of other domains [19]. Networks with a
power-law degree distribution are also called scale-free networks and have been
widely studied.

To capture the degree distribution and other properties of scale-free networks, a
multitude of random graph models have been proposed. These models include Pref-
erential Attachment [5]], the Configuration Model [2]], Chung-Lu Random Graphs [8]

43

mailto:ankit.chauhan@hpi.uni-potsdam.de

Ankit Chauhan: Power of Greediness on Real World network

Figure 1: Graph generated by Chung-Lu Model vs. the Snippet of the DBLP net-

work .

and Hyperbolic Random Graphs [16]]. Despite the multitude of random models, none
of the models truly has the same set of properties as real world networks.

This motivates studying deterministic properties of scale-free models, as these de-
terministic properties can be checked for real-world networks. To describe the proper-
ties of scale-free networks without the use of random graphs, [2] define (&, B)-Power
Law Graphs. The problem of this model is that it essentially demands a perfect
power-law degree distribution, whereas the degree distributions of real networks
normally exhibit slight deviations from power-laws. Therefore, («, §)-Power Law
Graphs are too constrained and do not capture most real networks). To
allow for those deviations in the degree distribution [6] define buckets containing
nodes of degrees [2/,2"*1). Now we define these properties formally,

Definition 1 (PLB-U [6]]). Let G be an undirected n-vertex graph and ¢1 > 0 be a universal
constant. We say that G is power law bounded (PLB-U) for some parameters 1 < p = O(1)
and t > 0 if for every integer d > 0, the number of vertices v, such that deg(v) € [27,271)

is at most
2d+1 -1

an(t+ 1)1 Y (i+1)7F.
i=21
Definition 2 (PLB-L). Let G be an undirected n-vertex graph and c; > 0 be a universal
constant. We say that G is power law bounded PLB-L for some parameters 1 < p = O(1)
and t > 0 if for every integer [logd iy | < d < |logA|, the number of vertices v, such that
deg(v) € [27,29%1) is at least

2d+1 1

con(t+1)F 1 Y (i+1)7P
i=21
Since PLB-U property alone can capture a much broader class of networks, for
example empty graphs and rings hence this lower-bound is important to restrict
networks to real world power-law networks. In definition of PLB-L d,,;,, is necessary
because in real world power law network minimum degree is not always 1.

44

2 Approach

PLBDegree Distribution(log-log plot)

-
o
G

~— Network (DBLP)
«— PLB UpperBound
~— PLB LowerBound |}

-
o
™

-
o
3

PLBDegree Distribution(log-log plot)

Frequency
= =
(=) (=)
2 %

-
o
>

10| = Network (Amazon)
+— PLB UpperBound
10° ~— PLB LowerBound

10° 10" 100l
Degree Degree

Figure 2: PLB-U and PLB-L properties in real world networks.

Definition 3 (PLB-N [6]). Let G be a PLB (multi-)graph with parameters p > 2 and t > 0,
and let c; > 0 be an universal constant. We say that G has PLB neighborhoods (PLB-N)
if for every vertex v of degree k, the number of neighbors of v of degree at least k is at most

€3 max (log n, (t+1)P 2 i+ t)7ﬁ>~

2 Approach

In this section we will take a glance at the techniques and useful lemma needed for
proving our main lemma 5| From it we will be able to derive bounds on the size of
solutions of covering problems as well as better approximation guarantees for the
greedy dominating set algorithm.

Definition 4. A greedy algorithm is an a-approximation for problem P if it produces a
solution set S with & > L if P is a minimization problem and with & > ‘T;"T‘ if Pisa

|opT]
maximization problem.

Now we state our main lemma,

Lemma 5 (Potential Volume Lemma). Let G be a (multi-)graph with the PLB-U property
for some B > 2, some constant ¢y > 0 and some constant t > 0. Let S a solution set for which
we can define a function ¢: R — R continuously differentiable and h(x) := g(x) + C for
some constant C such that

(i) g non-decreasing,

(it) g(2x) < c-g(x) for all x > 2 and some constant ¢ > 0,

(iii) '(x) < 84,

45

Ankit Chauhan: Power of Greediness on Real World network

then it holds that y_ g h(deg(x)) is at most

1
(cwz) (iﬁ_(lt);)l_ﬁ)g <<Clgm RGNS ﬁ_2> " C) o

t+1

where M(n) > 1 is chosen such that)5 deg(x) > M.
2.1 Minimum Dominating Set
The idea for lower-bounding the size of a dominating set is essentially the same as

the one by [23] and by [13] in the context of («, §)-Power-Law Graphs.

Corollary 6. For a multigraph without loops and isolated vertices and with the PLB-U prop-
erty with parameters B > 2, c; > 0and t > 0, every dominating set has an approximation
factor of at most

1
y TR (.Y (b1 2 (b4 1) ‘“) +1
s-2(-(H)) (af 27)

2.1.1 The Greedy Algorithm

Corollary|f]says that simply taking all nodes already gives a constant approximation
factor, but now we want to show that using the classical greedy algorithm actually
guarantees an even better approximation factor. To understand what happens, we
shortly recap the algorithm.

Algorithm 1: Greedy Dominating Set

Require: undirected graph G = (V,E)

1 C+ QO

2 D+ Q@

3 while |D| < |V]| do

s w4 argmax,.) (N*(2)\ D)
5 C«+CuU {M}

6 D+ DUNT(u)

7 end

8 return C

The following is an adaptation of the proof for the greedy Ser Cover algorithm to
the case of unweighted DoMINATING SET.

Theorem 7 ([15]). Let S the solution of the greedy algorithm and opt an optimal solution
for DOMINATING SET. Then it holds that

|C| < Z Hdeg(x)-H/

X€EOPT

46

2 Approach

Table 1: Comparison of the approximation ratios achieved by greedy algorithms on
networks with an upper bound on the power-law degree distribution (PLB-U) and
on general graphs. While on general graphs, greedy achieves only a logarithmic
or polynomial approximation, greedy achieves a constant-factor-approximation
on graphs with PLB-U.

Problem General Graph Graphs with PLB-U
Minimum Dominating Set O(InA) [15] ©,(1)
Minimum Vertex Cover O(InA) ©,(1)
Maximum Independent Set O(A) o] 0,(1)
Minimum Connected Dominating Set O(InA) [22] O,(1)

where Hy is the k-th harmonic number.

Corollary 8. The greedy algorithm gives a Ha1-approximation for DOMINATING SET,
where A is the maximum degree of the graph.

Also, we can use similar argument to prove the corollary below.

Corollary 9. The greedy algorithm gives a Ha-approximation for VERTEx COVER, where A
is the maximum degree of the graph.

Proof of corollary[@ Let opT denote an arbitrary minimum dominating set. It holds
that
Y deg(x)+1>n

X€EOPT

and since we assume that there are no nodes of degree 0, it also holds that

Y deg(x) > 1,
XEOPT 2
giving us (iv) with M := 5. We can choose h(x) := x + 1 with g(x) = x. Now g
satisfies (i), (i) with ¢ = 2 and (iii). With lemma[5| we can now derive

n<) deg(x)+1=) h(deg(x))

XEOPT XE€OPT

(-1 p-1 1\ F
< (2([32)(1(”2)1ﬁ> <<c1ﬁ_-25 S(t+1)P 1)) —|—1) - |opT] O

t+1
Since every vertex cover is also a dominating set hence following corollary follows:

Corollary 10. For a multigraph without loops and isolated vertices and with the PLB-U
property with parameters B > 2, c1 > 0and t > 0, every vertex cover has an approximation
factor of at most

(517" B=1 B . p-1)F2
2(‘5,2) (17(%)17,5) <<C1 B—2 2 (t + 1)) > + 1.

47

Ankit Chauhan: Power of Greediness on Real World network

2.2 Hardness of Covering Problems on PLB-(U,L,N) Graphs

Brach et al. [6] showed that in the graphs with PLB-U and PLB-N properties where
B = 3 finding maximum clique is polynomial time solvable. This proved that the
finding maximum clique is not NP-hard for all the power-law graphs as proved in
[12]]. This arises the question whether this property helps for the covering problem.
Unfortunately, answer for this is no. We give the embedding technique of cubic
graphs to PLB-(U,L,N) graphs proving that the covering problems are not just NP-
hard, they are APX-hard.

Table 2: Comparison of the approximation lower bounds for polynomial-time algo-
rithms (assuming P # NP) on networks with an upper (PLB-U) and lower (PLB-L)
bound on the power-law degree distribution and with PLB neighborhoods (PLB-N)
with the approximation lower bounds on general graphs. Even with the additional
properties of PLB-L and PLB-N the problems on graphs with PLB-U remain APX-
hard, i.e. these problems cannot admit a PTAS. Better lower bounds for each
problem are in respective theorem, ()(1) hides the PLB-L parameters B, t and
constant ¢».

Problem General Graph Graph with PLB-(U,L,N)

Minimum Dominating Set (MDS) Q(InA) [7] 1+ Q(1)
Minimum Vertex Cover (MVC) > 1.3606 [9] 14+0(1)
Maximum Independent Set (MIS) Q(A)) [4] 1+ Q(1)

Definition 11 (Embedded-Approximation-Preserving Reduction [23]). Given an op-
timal substructure problem O, a reduction from an instance on graph G = (V,E) to an-
other instance on a (power law) graph G' = (V', E’) is called embedded approximation-
preserving if it satisfies the following properties:

(1) G is a subset of maximal connected components of G';

(2) The optimal solution of O on G', orr(G'), is upper bounded by C-op1(G) where C is a
constant correspondent to the growth of the optimal solution.

Having shown an embedded-approximation-preserving reduction, we can use the
following lemma to show hardness of approximation.

Lemma 12 ([23]). Given an optimal substructure problem O, if there exists an embedded-
approximation-preserving reduction from a graph G to another graph G', we can extract
the inapproximability factor & of O on G’ using e-inapproximability of O on G, where ¢ is
lower bounded by ﬁ when O is a maximization problem and by # when O is a

minimization problem.

48

2 Approach

We will use this framework as follows: First, we show how to embed cubic graphs
into graphs with PLB-U, PLB-L and PLB-N. Then, we derive the value of C as in
lemma 12| for each problem we consider. Last, we use lemma [12 together with the
known inapproximability results for the considered problems on cubic graphs to
derive the approximation hardness on graphs with PLB-U, PLB-L and PLB-N.

We start by showing the embedding of cubic graphs into multigraphs with PLB-U,
PLB-L and PLB-N. In the embedding, we will use the following gadget to fill up the
degree sequence of our multigraphs.

Definition 13 (c?—Regular cycle RC,‘;T [23]). Given a degree sequence d=(dy, -, dy),a
tf-regular cycle RCY is composed of two cycles. Each cycle has n vertices and the two it"
vertices in each cycle are adjacent to each other by d; — 2 multi-edges. That is, a d-regular

cycle has 2n vertices and the two i*" vertices have degree d;.

Lemma 14. Any cubic graph G can be embedded into a multigraph Gpy g having the PLB-U,
PLB-L and PLB-N properties for any B > 1 and any t > 0.

Proof. Suppose we are given and t. We now want to determine ¢; and ¢, of PLB-U
and PLB-L respectively. Let n be the number of nodes in graph G and let N = cn be
the number of nodes in Gp; g for some constant ¢ to be determined. Also, we have
to ensure that N — 1 is even to get a graphical degree sequence since our gadgets
always have an even number of nodes. To hide a cubic graph in the respective bucket
of Gprg, we need

3 1 1
-1V (i1)P — p-1
aN(t+1) i;(z%—t) =cN(t+1) ((2+t)5 + (3+t)5> >n. (1)

Also, we have to ensure to choose c¢q big enough so that the bucket containing the
maximum degree A can hold two vertices. Otherwise we could not hide an appro-
priate IJT-Regular cycle in that bucket, resulting in an empty bucket, which violates
the PLB-L property for ¢, > 0. This second condition implies

ollogA|+1_q
aN(t+1)P1 Y (i+nF =2 (2)

j=2llogA]

As we will see, we can choose the constant ¢; arbitrarily large, so the former condi-
tions are no real restrictions. Then we choose the maximum degree A such that

1
dm‘lx(GPLB) = <Cn) 1.

In our embedding we just fill the buckets until they reach their respective lower
bounds, except for bucket 1 which might get up to n nodes. Bucket 1 might get filled

with a cycle of {CzN(t +1)a-1 ((zjt)“ + (3J1t)“ ﬂ — nnodes. By filling a bucket (other

than bucket 1) we might deviate by at most two from the lower bound of that bucket.
Then, we add additional gadgets of size two until we have exactly N nodes. To ensure

49

Ankit Chauhan: Power of Greediness on Real World network

that this is possible we need the following inequality to hold true

L]OgA 2d+1_1
n+ Z (Z—I—CzN t+1F Y (i+t)ﬁ>
i=24
N . -1 Cz
<?+2logNﬁH+czN(t+l) +,B—1N

1 C2
<N

(+’7+t+1+ﬁ—1)
<N,

i.e. after filling all buckets to their lower bound, there is still some slack until we
reach N. From this last condition we can derive

77—1—62(”%1-1—%) 1T B
Crma (e) e (e)

since 7 can be arbitrarily small. We choose 7 = ¢, (% ﬁL) to obtain

c=>1+

262 (1 + 1)
1 1)’
1-— 2C2 (m + ﬁ)
Now we can essentially choose c; arbitrarily large and c; arbitrarily small, guaran-
teeing a large enough gap to have a graphical degree sequence and to guaranteec > 1.
At the same time our choice of ¢ guarantees that we can fill the graph with exactly

N nodes. Furthermore, since every node has a constant number of neighbors, Gprp
also fulfills PLB-N, which always allows us at least c3 log N many neighbors. O

c=1+

3 Related Work

Maximum Independent set and minimum dominating set have been studied widely
on power law graphs. Ferrante et al. [12] proved that these problems remain NP-hard
on power law graphs for § > 0. Also, in [23], Shen et al. proved that MIS, MDS are
APX-hard for § > 1. Shen et al. also proved that for g > 1 thereisno 1 + W —e

for MIS and 1 + W for MDS problem on power law graphs. Later Gast et al.
in [13] proved that M DS give logarithmic approximation bound on the power law
graph when B < 1. Then Hauptmann et al. in [14] give first non constant bound on
approximation ratio of MIS for B < 1. Then analyse greedy algorithm for positive
influence dominating sets on power law graph 2 < B < 3 and proved greedy
gives 1 + (ﬁ +1In/B— 2%)(1 — @)Pﬁ approximation ratio. Wang et
al. proposed greedy algorithm [24]] for positive influence dominating sets on social
networks and showed that In(A) approximation ratio for the greedy algorithms,

where A is the maximum degree of the input graph. It is to be noted that all the
result are proved on the (&, §)-power law model defined by Aiello et al. [2].

50

4 Future Work

4 Future Work

As the deterministic property helped to identify why greedy algorithms good but
it is still not known why the greedy algorithms give very good approximation than
the our proved lower bound hence one of the direction in which I want to proceed,
is to identify such more deterministic properties and analyse the algorithms. As,
nobody have asked the questions of parameterized problems on the PLB-(U,L,N)
graphs which seems very interesting to me and approaches I have tried for the
parameterized problems have shown some positive results hence I will be working
in this direction for a while. Also, after proving hardness I will try to give faster
algorithms for real world networks by exploiting PLB properties.

References

[1] L. A.Adamic, O. Buyukkokten, and E. Adar. “A social network caught in the
Web”. In: First Monday 8.6 (2003). por: 10.5210/fm.v8i6.1057.

[2] W. Aiello, F. Chung, and L. Lu. “A random graph model for massive graphs”.
In: 32nd Symp. Theory of Computing (STOC). Portland, Oregon, USA, 2000,
pages 171-180. I1SBN: 1-58113-184-4. DoOI: 10.1145/335305.335326.

[3] R. Albert and A.-L. Barabdasi. “Statistical mechanics of complex networks”. In:
Reviews of modern physics 74.1 (2002), page 47. por: 10.1103/RevModPhys.74.47.

[4] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. “Derandomized Graph
Products”. In: Computational Complexity 5.1 (1995), pages 60—75. por: 10.1007/
BF01277956.

[5] A.-L. Barabasi and R. Albert. “Emergence of Scaling in Random Networks”.
In: Science 286 (1999), pages 509-512. DOI: [10.1126/science.286.5439.509.

[6] P. Brach, M. Cygan, J. Lacki, and P. Sankowski. “Algorithmic Complexity
of Power Law Networks”. In: 27th Symp. Discrete Algorithms (SODA). 2016,
pages 1306-1325. ISBN: 978-1-61197-433-1. DOL: 10.1137/1.9781611974331.ch91.

[7] M. Chlebik and J. Chlebikova. “Approximation hardness of dominating
set problems in bounded degree graphs”. In: Inf. Comput. 206.11 (2008),
pages 1264-1275. por: 10.1016/).ic.2008.07.003.

[8] F.Chungand L. Lu. “Connected Components in Random Graphs with Given
Expected Degree Sequences”. In: Annals of Combinatorics 6.2 (2002), pages 125—
145. DOI: |10.1007/PL00012580.

[9] L Dinur and S. Safra. “On the hardness of approximating minimum vertex
cover”. In: Annals of Mathematics 162 (2005), pages 439—485. por: 10.4007/annals|
2005.162.439.

[10] D.-Z.Du, K.-I. Ko, and X. Hu. Design and Analysis of Approximation Algorithms.
Springer, 2011. 1sBN: 978-1-4614-1700-2. DOI: 10.1007/978-1-4614-1701-9.

51

https://doi.org/10.5210/fm.v8i6.1057
https://doi.org/10.1145/335305.335326
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1007/BF01277956
https://doi.org/10.1007/BF01277956
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1137/1.9781611974331.ch91
https://doi.org/10.1016/j.ic.2008.07.003
https://doi.org/10.1007/PL00012580
https://doi.org/10.4007/annals.2005.162.439
https://doi.org/10.4007/annals.2005.162.439
https://doi.org/10.1007/978-1-4614-1701-9

Ankit Chauhan: Power of Greediness on Real World network

M. Faloutsos, P. Faloutsos, and C. Faloutsos. “On Power-law Relationships of
the Internet Topology”. In: Symp. Communications Architectures and Protocols
(SIGCOMM). 1999, pages 251—262. poI: 10.1145/316194.316229.

A. Ferrante, G. Pandurangan, and K. Park. “On the hardness of optimization
in power-law graphs”. In: Theoret. Comput. Sci. 393.1-3 (2008), pages 220-230.
ISSN: 0304-3975. DOI: 10.1016/j.tcs.2007.12.007.

M. Gast, M. Hauptmann, and M. Karpinski. Inapproximability of Dominating
Set in Power Law Graphs. 2012. arXiv: 1212.3517 [cs.CC].

M. Hauptmann and M. Karpinski. On the Approximability of Independent Set
Problem on Power Law Graphs. 2015. arXiv:|1503.02880 [cs.DS].

M. Kao. Encyclopedia of Algorithms. Springer, 2008. 1sBN: 978-0-387-30770-1. DOIL:
10.1007/978-0-387-30162-4.

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguna. “Hy-
perbolic geometry of complex networks”. In: Physical Review E 82.3 (2010),
page 036106. Dpor: 10.1103/PhysRevE.82.036106.

R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. “Trawling the Web
for Emerging Cyber-Communities”. In: Computer Networks 31.11-16 (1999),
pages 1481-1493. por: 10.1016/51389-1286(99)00040-7.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collec-
tion. June 2014. URL: |http://snap.stanford.edu/datal (last accessed 2016-10-01).

M. E.]. Newman. “Random graphs as models of networks”. In: Handbooks of
Graphs and Networks. Wiley-VCH, 2003, pages 35-68. por: 10.1002/3527602755|
ch2.

M. E. J. Newman. “The Structure and Function of Complex Networks”. In:
SIAM Review 45.2 (2003), pages 167—256. Dor: 10.1137/S003614450342480.

A. G. Phadke and]. S. Thorp. Computer Relaying for Power Systems. John Wiley
& Sons, Ltd, 2009. 1sBN: 978-0-470-05713-1. DOI: (10.1002/9780470749722.

L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko. “A greedy approximation for
minimum connected dominating sets”. In: Theoret. Comput. Sci. 329.1-3 (2004),
pages 325-330. ISSN: 0304-3975. DOI: 10.1016/].tcs.2004.08.013.

Y. Shen, D. T. Nguyen, Y. Xuan, and M. T. Thai. “New techniques for approxi-
mating optimal substructure problems in power-law graphs”. In: Theoret. Com-
put. Sci. 447 (2012), pages 107-119. DOI: 10.1016/j.tcs.2011.10.023.

F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, and S. Shan. “On positive
influence dominating sets in social networks”. In: Theoretical Computer Science
412.3 (2011). Combinatorial Optimization and Applications, COCOA 2009,
pages 265-269. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2009.10.001.

52

https://doi.org/10.1145/316194.316229
https://doi.org/10.1016/j.tcs.2007.12.007
http://arxiv.org/abs/1212.3517
http://arxiv.org/abs/1503.02880
https://doi.org/10.1007/978-0-387-30162-4
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1016/S1389-1286(99)00040-7
http://snap.stanford.edu/data
https://doi.org/10.1002/3527602755.ch2
https://doi.org/10.1002/3527602755.ch2
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1002/9780470749722
https://doi.org/10.1016/j.tcs.2004.08.013
https://doi.org/10.1016/j.tcs.2011.10.023
https://doi.org/10.1016/j.tcs.2009.10.001

Towards the Interactive Rendering
of Dynamic 3D Point Clouds

Soren Discher

Computer Graphics Systems Group
Hasso-Plattner-Institut
soeren.discher@hpi.de

Advances in 3D scanning technology allow for the creation of increasingly detailed,
discrete, digital models of real-world surfaces in ever-shorter amounts of time. To
explore, inspect, and interact with those 3D point clouds, specialized spatial data
structures, level-of-detail-concepts, and client-server-based rendering techniques
need to be combined. Typically, the involved data structures and level-of-detail-
concepts are optimized for a specific point distribution, expecting the data set to
remain static. Hence, they are not per se applicable to data sets that may change
dynamically (e.g., based on user input). This report discusses the weaknesses of
state-of-the-art point-based rendering approaches with respect to dynamic data
sets and develops concepts for a real-time rendering system supporting static and
dynamic 3D point clouds of any given size.

1 Introduction

Using today’s in-situ and remote sensing technology, buildings, cities, or complete
countries can be captured at minimal time and cost. The resulting 3D point clouds,
i.e., discrete, digital representations of real-world surfaces, grant precise and up-to-
date information about objects and structures within an area. Thus, they have become
a fundamental data type for a variety of geospatial applications, facilitating, among
others, urban planning and development [20]], the documentation and preservation
of cultural heritage [16], as well as homeland security [1]. Geospatial applications
handling 3D point clouds are typically faced by an ever-increasing density (e.g.,
several hundred points per m?) and capturing frequency (e.g., several times a year)
while at the same time being limited by processing strategies that do not scale as
well as limited storage capabilities. As a remedy, they frequently have to sacrifice
precision and density of the data [12]. To overcome these limitations, out-of-core
or external memory algorithms have to be applied. As an example, arbitrarily large
3D point clouds can be visualized by only rendering the most relevant points for
the current view frustum and rendering technique [13]. Thus, an efficient access to
subsets of the data based on different attributes — especially a point’s spatial position
—1is required. This is usually achieved by combining spatial data structures and level-
of-detail concepts. Combined with client-server-based rendering approaches these
external memory algorithms are applicable to a multitude of platforms, ranging
from high-end desktop computers and virtual reality systems to low-end mobile
devices [19].

53

mailto:soeren.discher@hpi.de

Soren Discher: Towards the Interactive Rendering of Dynamic 3D Point Clouds

Figure 1: Raw 3D scans of cultural heritage may include unwanted objects that are not
supposed to be part of the final model. Typically, those objects have to be identified
and removed manually.

Real-time rendering systems for massive 3D point clouds typically apply several
preprocessing steps that optimize the involved data structures for each data set
individually:

¢ To minimize data consumption and data traffic, point based compression tech-
niques may be applied.

* To ensure a highly-efficient selection of subsets of the 3D point cloud based on
their spatial position, points have to be sorted into a spatial data structure that
corresponds to the given point distribution.

* To support the selection of subsets based on additional per-point attributes
(e.g., thematic data, temporal information), it may be necessary to combine
several spatial data structures and to balance them accordingly (i.e., so-called
multi-layered spatial data structures).

Usually, a 3D point cloud is expected to remain static after that initial prepro-
cessing, as any subsequent changes to the data may necessitate a time-consuming
re-balancing of the underlying spatial data structures. However, modifying the data
might be unavoidable depending on the application scenario:

Streaming 3D Point Clouds 3D point clouds are traditionally created in a sequen-
tial process, i.e., the area in question first has to be captured completely, before
the resulting raw data can be visualized and checked for potential errors (e.g.,
noise or insufficient point density). Such errors can be identified and fixed
way more efficiently by streaming and visualizing points immediately upon
their creation. However, that requires the underlying spatial data structures to
support the constant integration of additional points in real-time.

54

1 Introduction

Documenting Cultural Heritage Applying 3D scanning technology to document
cultural heritage usually involves some manual, interactive editing of the raw
point data: Some objects — albeit being scanned correctly — aren’t supposed to
be part of the actual model and thus have to be removed manually (Figure 1).
At times, color values of surfaces can be inconsistent across consecutive scans
(Figure 2). Harmonizing those color values correctly tends to require user input
and thus needs to be conducted interactively.

Figure 2: Inaccuracies in the capturing process may lead to color values being incon-
sistent across consecutive scans. Harmonizing them often requires recompressing
the corresponding subsets of the data.

With respect to those application scenarios, existing rendering concepts and tech-
niques for static 3D point clouds need to be expanded to support (1) the interactive

55

Soren Discher: Towards the Interactive Rendering of Dynamic 3D Point Clouds

addition and removal of points as well as (2) the interactive modification of per-point
attributes (e.g., color values). If the point data is compressed, the latter requires the
decompression and re-compression of arbitrary subsets of the data in real-time. In
the following, state-of-the-art point based rendering approaches for static data sets
are presented, before concepts and techniques are discussed that allow for the real-
time rendering of arbitrary large dynamic 3D point clouds.

2 Background

A general overview of point-based rendering techniques is given by Gross and Pfister.
Several techniques focus on the appearance of a 3D point cloud, typically aiming for a
photorealistic and, thus, hole-free visualization [11} 18], which can be accomplished
by applying an adequate size and orientation to each point. These attributes can
be calculated in a preprocessing step [21] or on a per-frame basis [14]. While the
former approach provides a better rendering performance, it’s only applicable to
static data sets. Meanwhile, non-photorealistic rendering techniques [5] highlight the
inherent fuzzyness of a 3D point cloud. Thus, they are less dependent on a hole-free
visualization and provide an acceptable image quality even for inaccurately sized
and oriented points [22].

2.1 Out-of-Core-Rendering

To make point-based rendering techniques applicable to arbitrary large data sets,
out-of-core or external memory algorithms have to be applied. Out-of-core render-
ing approaches for 3D point clouds [8, 15] use spatial data structures and level-of-
detail concepts to aggregate or generalize points, usually based on spatial attributes.
Depending on the application scenario as well as the overall structure and spatial
distribution of the data, different spatial data structures may prove to be the most
efficient:

Uniform Grid A uniform grid is the simplest form of a spatial data structure as it
simply divides a space into a fixed number of equally size grid cells. Individ-
ual cells — or voxels in the case of a three-dimensional grid — are accessed via
indices; level-of-detail concepts are not applied. Due to their simple character-
istic, uniform grids can be expanded and regressed very efficiently. However,
varying point densities are not taken into account, making that data structure
inefficient for non-uniformly distributed data since a large number of cells will
remain empty and unused.

Quadtree A quadtree is defined as a recursive subdivision of a two-dimensional area
into equally sized quadrants until a minimal number of points for each cell
is reached. That data structure is most efficient when the data is primarily
distributed horizontally, which is typically true for aerial data, such as airborne
laser scans. Points can be added to and removed from a quadtree with minimal

56

2 Background

performance overhead as long as the points are located within the bounds
defined by the tree’s root node.

Octree In contrast to a quadtree, an octree is a recursive subdivision of a three-
dimensional space into equally sized octants (Figure 3). Again, the recursion
stops once a minimal number of points for given a cell is reached. Octrees
are prefarable to quadtrees whenever the data is non-uniformly distributed
both horizontally and vertically, as it’s usually the case for terrestrial data (e.g.,
mobile mapping).

Kd-Tree As a generalization of quadtrees and octrees, kd-trees are binary trees, that
organize points in a k-dimensional space. The splitting planes can be positioned
freely alongside the respective coordinate axes, thus allowing to create perfectly
balanced tree structures independently of the data’s spatial distribution. While
this minimized tree traversal times during rendering, kd-trees come with the
trade-off of a more complex construction and update process compared to
quadtrees or octrees. Thus, using them to organize dynamic data sets is not
encouraged.

(Multi-)Layered Data Structures Depending on the use case, a combination of mul-
tiple spatial data structures might be favorable. For example, multiple terres-
trial laser scans within a larger region may be organized most efficiently by
combining separate octrees with an overlaying grid or quadtree. As another
example, multi-layered data structures may be used to organize points based
on multiple per-point attributes: Richter et al [15] demonstrate this by splitting
semantically rich 3D point clouds based on each point’s surface category (e.g.,
building, vegetation); for each surface category a separate kd-tree is maintained

(Figure 4).

2.2 Client-Server-based Rendering

While being applicable to arbitrary large data sets, out-of-core rendering algorithms
usually require a direct access to the data, which generally restricts their application
to high-end desktop computers. To visualize massive 3D point clouds even on low-
end mobile devices, such algorithms have to be combined with existing client-server-
based approaches that limit workload and data traffic on client-side by using a central
server infrastructure to maintain and distribute the data.

Rendering directly on the server and only transferring the rendered images to
the client is commonly referred to as a thin client approach [3]. As an alternative,
rendering can be delegated to the client-side (thick client approach). In that case, the
server is responsible for selecting and configuring the data before transferring it to
the client — ideally in a format optimized for rendering purposes [19]. While a thin
client approach notably reduces the minimal hardware requirements on client side,
a thick client approach is usually more feasible when massive amounts of clients
have to be served due to the lower workload inflicted on server side. Furthermore, a

57

Soren Discher: Towards the Interactive Rendering of Dynamic 3D Point Clouds

Figure 3: Octrees recursively subdivide a three-dimensional space into a number
of equally sized octants. They are most efficient if the data is distributed non-
uniformly along all three coordinate axes.

s : - 2
Rendering Engine
L —[Interaction T >
e Poit Cloug [¢——_Hander et §
Lovelof-Detail & ——»{ Renderer | —amage |+
Memory Manager jq— «———- Compositer q——
\ _J
SR S C—
3 =S|
Vegetation g ®
N— in
3 —
Terrain P G ouer &
Iy
5 —
Bulding g [& Screen
Iy

'> G-Buffer “
N~ H
Main GPU Memory GPU Memory
Memory (VBO) (FBO)

Figure 4: Example of a multi-layered rendering approach for massive, semantically
rich 3D point clouds introduced by [15]. Depending on their surface category,
points are sorted into a set of separately rendered spatial data structures.

58

3 Interactive Rendering of Dynamic 3D Point Clouds

thick client approach tends to be more resilient to poor network conditions since the
visualization can still be adjusted to user interactions when connection to the server
has been lost (albeit some relevant data might be missing).

When it comes to handling dynamic data sets, differences between both approaches
are minimal: Constantly streaming newly captured points may require changes to
the underlying spatial data structures (see but does affect the amount of
data that has to be transferred between server and clients only slightly (thick client)
or not all (thin client). On the other hand, interactively editing point clouds in a
client-server-based environment is a lot more complex to implement, as it requires
to reliably synchronize user-made changes to the data across several clients. While
that challenge will not be further discussed in this report, it should be considered in
future work.

2.3 Point Cloud Compression

To minimize overall data consumption and to speed up data transmission, 3D point
clouds need to be compressed. State-of-the-art approaches provide good compres-
sion ratios at little [9]] to none [10] information loss. A popular strategy is the use of
height-map based encoding over planar [2] or non-planar domains (e.g., spheres or
cones) [7] to encode point positions; another group of authors proposes to utilize
spatial data structures [4} 17]. However, when handling dynamic 3D point clouds,
arbitrary large subsets of the data need to be compressed and decompressed in real-
time, which is not supported by most compression techniques. One approach, that is
real-time capable, while also being applicable locally and incrementally, was recently
introduced by Golla and Klein [6].

3 Interactive Rendering of Dynamic 3D Point Clouds

Visualizing massive 3D point clouds requires organizing points in a way that facili-
tates the selection of the most relevant subsets of the data for a given view. This can be
achieved by applying specialized spatial data structures and level-of-detail concepts.
However, those are typically focussed on static data sets. Integrating, removing, and
repositioning points might necessitate a time consuming and inefficient rebalancing
of the corresponding spatial data structure. Thus, state-of-the-art rendering concepts
and techniques for static point clouds are not directly applicable to dynamic data
sets but need to be modified first. Generally, those modifications follow one of the
strategies listed below.

3.1 Update-optimized data structures
As opposed to spatial data structures that are heavily optimized towards a specific

point distribution (e.g., kd-trees), one strategy relies on using less optimized spatial
data structures that in return can be modified more efficiently, ideally in real time. In

59

Soren Discher: Towards the Interactive Rendering of Dynamic 3D Point Clouds

its simplest form, that could refer to a fixed sized queue of recently captured points
that is regularly cleared in first-in-first-out order, thus, allowing for the real-time
visualization of point cloud streams, albeit more in the sense of an automatically
updated video with minimal user-based interaction. Another example for such a
spatial data structure is a uniform grid, that allows to efficiently integrate, remove,
or reposition points during rendering. As discussed in[section 2.1} this comes at the
cost of a significantly higher memory consumption as well as a notably worse tree
traversal time and, thus, rendering performance. Depending on the use case however,
those negative aspects can be minimized by artificially restricting the maximum point
density applied during rendering since the full resolution might not be required.

3.2 Hybrid Rendering

A more flexible strategy is a so-called hybrid rendering approach that combines
highly optimized spatial data structures for static point clouds with the strategy dis-
cussed above (Figure 5): Newly captured points are not immediately integrated into
the primary spatial data structure (e.g., a kd-tree) but rather added to a temporary,
update-optimized data structure (e.g., a queue or uniform grid) of fixed size that
is stored in main memory. While points managed by the temporary data structure
are tested against the current view frustum, no level-of-detail calculations are neces-
sary, thus, speeding up the selection of points to render. When the temporary data
structure reaches its maximum capacity, it is cleared and the corresponding points
are transferred to secondary storage. In regular intervals, the primary spatial data
structure is updated to incorporate points that have been recently removed from the
temporary data structure.

The frequency in which these updates are conducted, can be adjusted dynamically
with respect to the overall performance and workload of the rendering system, thus
improving the scalability and efficiency of the proposed strategy. Such a hybrid ap-
proach also allows for the interactive removal of points by (1) labeling the respective
points accordingly to exclude them from being rendered and (2) removing them
from the spatial data structure during the asynchronous update process. Finally,
points can be repositioned by removing and immediately re-adding them.

4 Conclusion and Outlook

State-of-the-art real-time rendering systems for 3D point clouds are typically de-
signed with static data sets in mind: They achieve high frame rates and minimal
memory consumption even for massive data sets due to being highly optimized
towards a specific point distribution and data characteristic. However, even small
changes to the data—such as integrating, removing, and repositioning points or
modifying per-point attributes—initiate a time-consuming update process during
which an interactive visualization of the data is not possible. As discussed in this
report, real-time rendering concepts and techniques that are applicable to both static
and dynamic data sets, require a tradeoff between an optimal rendering performance

60

5 Acknowledgements

Rendering Engine

Level-of-Detail & |——& | PointCloud |—— | Interaction |[4—
Memory Manager | <—— Renderer — Handler Y~

[l & 1
Overall /_$
®<. scanned data | > Screen < _
7\
*EN oo > o
Recently
captured points GPU
Memory

Figure 5: Overview of a hybrid rendering approach: Recently scanned points are
stored in a fixed sized, update-optimized data structure. In regular intervals points
are transferred into the primary spatial data structure enabling level-of-detail and
external memory based rendering.

and memory efficiency on the one side and a highly efficient update process on the
other side. For instance, alternative spatial data structures that can be updated more
efficiently come at the cost of an increased traversal time. Alternatively, smaller
changes to the data can be aggregated before being applied in bulk in regular inter-
vals; however, that requires the introduction of additional data structures to cache
incoming changes.

Regarding data compression, existing approaches for static data sets are only ap-
plicable if they allow for the local compression and decompression of arbitrary parts
of the data in real-time. As for visualizing dynamic 3D point clouds in client-server-
based architectures, additional challenges arise if a collaborative editing of the data
should be supported, as that requires the synchronization of editing operations
across all involved clients.

5 Acknowledgements

This work was funded by the Federal Ministry of Education and Research (BMBEF),
Germany within the InnoProfile Transfer research group “4DnD-Vis”. I would like
to thank the Zamani Project group within the Geomatics Division of the University
of Cape Town, virtualcitySYSTEMS, and the Faculty of Architecture at the Cologne
University of Applied Sciences for providing data sets.

61

Soren Discher: Towards the Interactive Rendering of Dynamic 3D Point Clouds

References

[1]

[2]

6]

[7]

[8]

J. Coutinho-Rodrigues, A. Simao, and C. H. Antunes. “A GIS-based multicri-
teria spatial decision support system for planning urban infrastructures”. In:
Decision Support Systems 51.3 (2011), pages 720-726. ISSN: 0167-9236.

J. Digne, R. Chaine, and S. Valette. “Self-similarity for accurate compression
of point sampled surfaces”. In: Computer Graphics Forum. Volume 33. 2. 2014,
pages 155-164.

J. Déllner, B. Hagedorn, and J. Klimke. “Server-based rendering of large 3D
scenes for mobile devices using G-buffer cube maps”. In: 17th International
Conference on 3D Web Technology. 2012, pages 97—100. ISBN: 978-1-4503-1432-9.

Y. Fan, Y. Huang, and J. Peng. “Point cloud compression based on hierarchi-
cal point clustering”. In: Signal and Information Processing Association Annual
Summit and Conference (APSIPA), 2013 Asia-Pacific. 2013, pages 1-7.

M. Goesele, J. Ackermann, S. Fuhrmann, C. Haubold, R. Klowsky, D. Steedly,
and R. Szeliski. “Ambient point clouds for view interpolation”. In: ACM Trans-
actions on Graphics 29.4 (2010), 95:1—-95:6. ISSN: 0730-0301.

T. Golla and R. Klein. “Real-time point cloud compression”. In: International
Conference on Intelligent Robots and Systems. 2015, pages 5087-5092.

T. Golla, C. Schwartz, and R. Klein. “Towards efficient online compression
of incrementally acquired point clouds”. In: Vision, Modeling & Visualization.
2014, pages 17—22. ISBN: 978-3-905674-74-3.

P. Goswami, F. Erol, R. Mukhi, R. Pajarola, and E. Gobbetti. “An efficient multi-
resolution framework for high quality interactive rendering of massive point
clouds using multi-way kd-trees”. In: The Visual Computer 29.1 (2013), pages 69—
83. ISSN: 1432-2315.

E. Hubo, T. Mertens, T. Haber, and P. Bekaert. “The quantized kd-tree: Efficient
ray tracing of compressed point clouds”. In: 2006 IEEE Symposium on Interactive
Ray Tracing. 2006, pages 105-113.

M. Isenburg. “LASzip: lossless compression of LIDAR data”. In: Photogrammet-
ric Engineering & Remote Sensing 79.2 (2013), pages 209—217.

H.-J. Kim, A. Cengiz Oztireli, M. Gross, and S.-M. Choi. “Adaptive surface
splatting for facial rendering”. In: Computer Animation and Virtual Worlds 23.3-4
(2012), pages 363-373.

F. Lafarge and C. Mallet. “Creating large-scale city models from 3D-point

clouds: a robust approach with hybrid representation”. In: International journal
of computer vision 99.1 (2012), pages 69—85. ISSN: 1573-1405.

S. Nebiker, S. Bleisch, and M. Christen. “Rich point clouds in virtual globes
— A new paradigm in city modeling?” In: Computers, Environment and Urban
Systems 34.6 (2010), pages 508—517. ISSN: 0198-9715.

62

[17]

[18]

[19]

[20]

[21]

[22]

References

R. Preiner, S. Jeschke, and M. Wimmer. “Auto Splats: Dynamic point cloud
visualization on the GPU”. In: Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization. 2012, pages 139-148. 1sBN: 978-3-905674-35-4.

R. Richter, S. Discher, and J. Dollner. “Out-of-Core visualization of classified
3D point clouds”. In: 3D Geoinformation Science: The Selected Papers of the 3D
Geolnfo 2014. 2015, pages 227-242.

H. Riither, C. Held, R. Bhurtha, R. Schroeder, and S. Wessels. “From point

cloud to textured model, the zamani laser scanning pipeline in heritage docu-
mentation”. In: South African Journal of Geomatics 1.1 (2012), pages 44-59.

R. Schnabel and R. Klein. “Octree-based Point-Cloud Compression.” In: SPBG
6 (2006), pages 111-120.

M. Schiitz and M. Wimmer. “High-quality point-based rendering using fast
single-pass interpolation”. In: 2015 Digital Heritage. Volume 1. 2015, pages 369—
372.

M. Schiitz and M. Wimmer. “Rendering large point clouds in web browsers”.
In: Proceedings of CESCG (2015), pages 83—90.

L. Tomljenovic, B. Hofle, D. Tiede, and T. Blaschke. “Creating large-scale city
models from 3D-point clouds: a robust approach with hybrid representation”.
In: Remote Sensing 7.4 (2015), pages 3826—3862. 1SSN: 1573-1405.

J. Wu and L. Kobbelt. “Optimized sub-sampling of point sets for surface splat-
ting”. In: Computer Graphics Forum 23.3 (2004), pages 643-652.

H. Xu, M. X. Nguyen, X. Yuan, and B. Chen. “Interactive silhouette rendering
for point-based models”. In: Proceedings of the First Eurographics conference on
Point-Based Graphics. 2004, pages 13-18. ISBN: 3-905673-09-6.

63

Coverage Considerations for Software Fault Injection

Lena Feinbube

Operating Systems and Middleware
Hasso-Plattner-Institut
lena.feinbube@hpi.uni-potsdam.de

Software fault injectors insert failure causes into a running program, to test its
fault tolerance. The fault injection experiments should be representative of real-
world faults and cover the space of potential failure causes adequately. Coverage
criteria can assess the quality of a set of fault injection experiments, and direct
the testing process. This article discusses how to assess the coverage of software
fault injection testing from a theoretical perspective, and at the example of a highly
available OpenStack.

1 Introduction

Software fault injection (SFI) is an acknowledged approach to experimentally assess
the dependability of software systems. SFI tools generally insert potential failure
causes — such as software and hardware faults, and error states — into a program
during runtime. The resulting behavior can be observed to either evaluate the ef-
fectiveness of fault tolerance mechanisms, or to measure the severity of the failing
outcomes. As a dynamic approach, SFI offers several advantages over static verifica-
tion tools: It can be implemented in a scalable fashion. SFI works also for arbitrarily
complex programs, where static methods fail due to state space explosion. The input
space of possible failure causes can be explored incrementally.

Nevertheless, SFI, due to its experimental nature, arguably lacks the absolute
guarantees of formal methods. While formal methods promise exhaustiveness by
checking the entire state space and an entire fault model, SFI is rather used as an
ad hoc tool. Therefore, the quality of a set of SFI experiments needs to be examined
critically. Research questions include: What implications regarding the dependability
do the outcomes of SFI experiments have? Can these implications be quantified as
dependability metrics? How can we measure and compare the effectiveness and
efficiency of different SFI tools? To what extent does a set of tests and fault injection
experiments cover the space of potential behaviors?

In this article, we will discuss existing coverage criteria for software, how the
notion of coverage can be extended to fit SFI, and implications for the development
of new fault injectors.

1.1 Why Coverage Measures?
When testing software, we need to “ensure that prior to the start of testing the ob-

jectives of testing are known and agreed upon and that the objectives are set in
terms that can be measured.” Test objectives should be “quantified, reasonable, and

65

mailto:lena.feinbube@hpi.uni-potsdam.de

Lena Feinbube: Coverage Considerations for Software Fault Injection

achievable”. [18] When testing software, also by means of fault injection, there is an
inherent trade-off between increased confidence in the correctness of the system, and
cost in terms of time and effort. [13]] For instance, when hardware faults are injected,
not all faults have the potential of actually disturbing the system. Faults injected into
unused memory regions or registers which are about to be overwritten, for example,
will probably not have an effect on the program’s behavior. Several methods for
reducing the fault space, while maintaining similar levels of significance, have been
proposed. They based either on pre-injection analysis or post-injection analysis. [1]

A coverage measure, also referred to as coverage metric or “test adequacy criterion’
[6], is a measure of quality for software testing which can be used to quantify the
mentioned confidence-effort trade-off. It describes how well a set of experiments, a
test suite, or a set of fault injection runs, covers the space of possible behaviors.

Generally, higher coverage means that greater confidence can be placed on the
test results. If a set of experiments with high coverage indicates program correctness,
that is probably the case. To improve coverage, the tests can be improved or tests for
yet uncovered program parts can be added.

7

Our goal, then, should be to provide enough testing to ensure that the
probability of failure due to hibernating bugs is low enough to accept.
“Enough” implies judgement. [8]

Coverage measures are important in risk management, because they provide the
testers with an empirical assessment of the adequacy of their verification activities.
They can also play a central role in process assurance and provide exit criteria for
when sufficient testing has been done.

2 Related Work

A broad variety of coverage measures have been discussed in different contexts of
the software development process. On a low level of abstraction, well-established
coverage criteria for the injection of hardware faults (implemented in software —
software-implemented (hardware) fault injection (SWIFI) — or hardware) exist. On
the software level, the term “coverage” usually relates the coverage of a program by
(unit) test cases. It is measured for instance as code, model, or feature coverage.

2.1 Test Coverage

Software testing literature has defined a broad spectrum of test coverage metrics.
These metrics quantify to which extent a test suite “covers” the program under
consideration. Some coverage criteria include:

* Function Coverage requires that each function is called at least once during
testing. Analogously, module or source code line coverage can be defined.

¢ Condition Coverage requires that each condition, i.e., each leaf-level boolean
expression, must evaluate to both true and false. Decision Coverage requires

66

2 Related Work

that each decision, or branch, in the program has taken all outcomes at least
once.

* A stricter combination of condition and decision coverage, Modified Condi-
tion/Decision Coverage (MC/DC) requires that each condition be shown to
independently affect the outcome of the decision. For a statement suchas if (A ||
B) { C = true; } else { C = false; },atleastthree assignments of A
and B need to be tested: (true, false), (false, true) — which will make C evaluate
to true, and (false, false) — which will make C evaluate to false. Since MC/DC
requires a large amount of test cases, it is assured mainly in safety-critical
scenarios, and required by aviation standard DO-178C [14] and automotive
standard ISO 26262 [15]. [

Function, module and source code line coverage can be seen as structural coverage
criteria — they are measured with regards to the static structure of the program and
are not susceptible to state space explosion. The number of necessary test cases grows
linearly with the program size. On the other hand, condition and decision coverage
are here denoted as state-based coverage criteria.

Code-level coverage criteria are optimized by test case selection and generation
techniques such as symbolic execution [12] and concolic execution [17].

2.2 Fault and Failure Space Coverage

The term “fault coverage” has been used both as a dependability measure, and as a
measure of the quality of dependability assessment.

For a number F failed experiments out of a total of N experiments, the fault coverage
factor is estimated as follows: [4]]

Cost = 1 — % ~ 1 — P(Failure|Fault) = P(Recovery) (1)
Intuitively, it describes the probability of an injected fault resulting in an externally
observable failure. [16] The converse probability is the probability of a recovery from
the error state before a failure occurs.

Due to technical as well as resource limitations, the number N can be much lower
than the entire space of conceivable injection points. Therefore, fault coverage is
merely a statistical estimate of the actual recovery probability. To derive the overall
system reliability from this estimate, the probability of fault existence would also
need to be known. This is rarely the case, especially in software. [2]

However, the fault coverage factor is not primarily a measure of fault injection
quality, but rather of the reliability of the system under test.

™MC/DC is among the strictest coverage criteria actually measured in real-world appli-
cations. Even stricter criteria, such as Multiple Condition Coverage are conceivable: this
criterion requires all combinations of conditions within a decision point to be tested,
resulting in 2" test cases for decisions with n variables.

67

Lena Feinbube: Coverage Considerations for Software Fault Injection

Hudak et al. present a study of hardware and software fault injection, where
coverage was evaluated using three empirically determined probabilities: The proba-
bility of detection — Pr{detecting an error | a fault is active}, the probability of recovery
— Pr{recovering success fully | an error is detected}, and the probability of aborting —
Pr{aborting | successful recovery is not possible}.

Ghosh et al. [7] present an assessment of the fault injection testing they imple-
mented in a distributed, component-based system.

Their coverage metric is based on the two-dimensional classification of [5], which
views fault and code coverage as two orthogonal dimensions.

Fault injection has been motivated as a means for increasing test coverage [3].

2.3 Research Gap

Various coverage measurement, test case selection and assessment tools exist for
both low-level hardware fault models, and success-space software testing. But what
about failure-space software fault injection testing, based on software fault models?
The research on coverage criteria for the injection of software faults remains sparse. Here,
we explore potential approaches to such coverage criteria.

3 Coverage Criteria for SFI: Theory

2:fail

Failing behaviours

T
Covered by test cases \\

Possible behaviours

Figure 1: Coverage in relation to the overall space of possible behaviors. A behavior
in this context is a state trace leading from an input to a final program output. This
definition can be extended to include timing, which plays a role in several failure
classes.

68

4 Case Study: Highly Available OpenStack

Coverage metrics, especially in the context of software, are usually controversial
and can only approximate the actual coverage: ideally, the metric would reflect the
proportionate coverage of the state space of the program — which means that any per-
fect coverage computation would soon have to surrender to the state space explosion
problem.

Figure[t]visualizes the space of possible system behaviors with regard to theoretical
coverage metrics. In this abstraction,

. Zg‘” is correlated with the failure rate. It does not approximate or accurately
describe the failure rate, unless a uniform distribution of behavior probability
can be assumed, which is unrealistic.

o Test case coverage ~ ¥

e Fault injection coverage ~ £
¢ T denotes the behaviors which are covered by both the code coverage and the
fault coverage metric.

* F denotes the set of behaviors which we try to maximize by applying testing
and fault injection with high coverage.

Actually computing any of the depicted metrics is close to impossible — for X ¢4
and X, it would require enumerating the entire state space of the program, which
is usually hindered due to complexity or non-determinism; for X and ® we have
already discussed that coverage metrics are usually approximate numbers; finally,
for F and T, the overlap between the covered behaviors needs to be determined. This
overlap describes to what degree tests and fault injection experiments cover the same
cases. If the fault injection only takes place while running the test suite, then ® C X.
Even in this case, a program run may fail simply because it does not fulfil the test
requirements, or because fault injection also took place. In the more general case, the
overlap and thus the target metric F are even harder to compute theoretically.

4 Case Study: Highly Available OpenStack

Here, we will discuss the proposed coverage metric at the example of a highly avail-
able OpenStack setup. OpenStackf]is often referred to as the “operating system of
the cloud”, and constitutes an open source implementation of a cloud management
stack, broken down into different services. Prior and ongoing research by the author
addresses potential fault injection points into the OpenStack cloud management
stack. [9]

2https://www.openstack.org/ (last accessed 2016-10-20).

69

https://www.openstack.org/

Lena Feinbube: Coverage Considerations for Software Fault Injection

Figure [2] depicts the exemplary OpenStack setup we will use in this case study. It
has been described by Brian Seltzer in his blogP|and has been chosen here as it in-
corporates representative, state of the art fault tolerance features, while maintaining
simplicity.

keepalived

Swift Swift
Proxy Proxy

rsync

Figure 2: Example OpenStack architecture.

Controller Controller
keystone keystone
glance glance
cinder cinder

nova nova

horizon horizon
rabbitmq rabbitmq

OpenStack is exemplary of real-world systems in the sense that it consists of di-
verse software modules which are based on individual codebases and have different
dependability traits. Each codebase might have its own testing strategy and test cov-
erage, so the overall test case coverage discussed in the previous section is already
non-trivial to determine.

Here, we focus on the fault injection coverage, i.e., on the failure space. Based
on a typical implicit fault model, where physical nodes may fail, network links can
be unreliable, and computation can become slow due to CPU load, we assume the
following fault injection experiments are run:

1. A script kills each physical host once (8 experiments);

2. Within each single virtual machine, the CPU quota are artificially throttled (8
experiments);

3. The management network is artificially partitioned between the controller
nodes (1 experiment).

The first observation is that this fault model is composed of different layers at
which dependability can be threatened. Under some assumptions, mappings between
the layers might be possible, for example, a network partition might be equivalent to

3http://behindtheracks.com/2014/04/openstack-high-availability-controller-stack/| (last accessed
2016-10-20).

70

http://behindtheracks.com/2014/04/openstack-high-availability-controller-stack/

4 Case Study: Highly Available OpenStack

the outage of one isolated controller node —but this is speculative, as the fault toler-
ance against network partitions requires sophisticated detection mechanisms as well
as proper isolation and hence needs to be implemented differently from crash fault
tolerance. Therefore, coverage needs to be considered at each layer. This is somewhat
different from software test coverage criteria, which are computed at the source code
layer only, abstracting away the execution environment.

In the following paragraphs, we will discuss how the overall amount of necessary
fault injection experiments can be computed and how fault injection can be guided
by coverage considerations.

State-based coverage computations To evaluate coverage with regards to state, the
overall set of possible combinations of faults needs to be considered. For example,
with N nodes this would naively correspond to the size of the power set, 2V. Even
under the one-fault-at-the time assumption, multiple components can move from the
operational to the failed state one after another. Therefore, the power set computation
is realistic only if the fault distributions are assumed to be memoryless, and so are
the fault tolerance mechanisms: In this case only the ordering of faults does not
matter. Otherwise, for each member of the power set, each possible sequence of
faults occurring would need to be considered — the combinatorial explosion here
may be hard to handle.

The above mentioned experiments obviously do not cover the entire state space,
because they do not include multiple faults occurring at the same time.

Structural coverage computations In order to evaluate the coverage of fault injec-
tion in a structural manner, an understanding of the logical dependability structure
of the system is needed. A structural dependability modelling language can visu-
alize this understanding. For example, a reliability block diagram (RBD) [11] of the
system could look like Figure 3| In this simple case, each OpenStack service needs
to work for the overall system to fulfil its specification, but each service is internally
dually redundant.

In RBDs, as long as a path from the start to the end exists, the system can be
assumed operational. Therefore, one coverage criterion could be that each independent
path through the RBD should be interrupted by fault injection. Interrupting each parallel
structure at each possible place covers each path. In our case, this means that4 2 = 8
experiments are necessary. The experiments sets mentioned above at the node and
virtual machine layers satisfy this requirement.

O—|: HAProxy 1 H Controller 1 :|_|: MysQl 1 :|_|: Swift 1]_O

HAProxy 2 Controller 2 MysQl 2 Swift 2

Figure 3: Reliability block diagram (RBD) of the example OpenStack setup. As long
as one path from start to end exists, the system is assumed operational.

71

Lena Feinbube: Coverage Considerations for Software Fault Injection

Another, stricter criterion could be that for each independent path through the RBD,
all other paths but this one should be interrupted by fault injection. In our case, there
are 2* = 16 paths to success through the RBD, which corresponds to the minimal
number of fault injection experiments.

The structural considerations outlined here work well for the first two assumed
sets of experiments, but a different structural model would be required for the third
experiment, which includes network partitions. Here, structural coverage would be
based on the detailed network topology, and the available redundant paths in it.

5 Discussion

We have discussed the estimation of coverage criteria for SFI from a theoretical
point of view and at the example of a highly available OpenStack system. The main
conclusion is that while quantification of coverage has many benefits, it is challenging
to compute and can only approximate the truth, even more so for complex multi-
layered systems whose failure behavior is not understood.

Fault models need to be defined at each layer of the software stack, and the cover-
age of fault injection should be evaluated in a likewise differentiated manner. Because
fault tolerance is implemented in different ways, it needs to be exercised with fault
injection at each layer. For example, crash failures at the node level may be survivable
using a simple active-passive failover, network partitions can be tolerated with quo-
rum devices, virtual machine failures require detection and handling in the VMM.
In our considerations, we have only discussed software layers and so far neglected
the hardware, which again has different fault models (e.g. single or multiple bit flips
in various locations) and tolerance mechanisms (e.g. error correcting codes).

The OpenStack example has shown that structural considerations are more realistic
than state-based ones. Dependability modelling can yield a structure of the system
based on which the SFI experiments can be evaluated.

References

[1] R. Barbosa, J. Vinter, P. Folkesson, and]. Karlsson. “Assembly-level pre-
injection analysis for improving fault injection efficiency”. In: European
Dependable Computing Conference. Springer. 2005, pages 246—262.

[2] B. Beizer. “Software is different”. In: Annals of Software Engineering 10.1 (2000),
pages 293-310.
[3] J. M. Bieman, D. Dreilinger, and L. Lin. “Using fault injection to increase soft-

ware test coverage”. In: Software Reliability Engineering, 1996. Proceedings., Sev-
enth International Symposium on. IEEE. 1996, pages 166-174.

72

(4]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

References

W. Bouricius, W. C. Carter, and P. Schneider. “Reliability modeling techniques
for self-repairing computer systems”. In: Proceedings of the 1969 24th national
conference. ACM. 1969, pages 295-309.

R. A. DeMillo, T. Li, and A. P. Mathur. “A Two Dimensional Scheme to Evaluate
the Adequacy of Fault Tolerance Testing”. In: Third Int’l Workshop on Integrating
Error Models with Fault Injection. IEEE. 1994, pages 54—56.

W. Du and A. P. Mathur. “Vulnerability testing of software system using fault
injection”. In: Purdue University, West Lafayette, Indiana, Technique Report COAST
TR (1998), pages 98—02.

S. Ghosh, A. P. Mathur, J. R. Horgan, J. J. Li, and W. E. Wong. “Software Fault
Injection Testing on a Distributed System — A Case Study”. In: Proc. of the 1st
International Quality Week Europe, Brussels, Belgium (1997).

K.J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson. A practical
tutorial on modified condition/decision coverage. 2001.

L. Herscheid, D. Richter, and A. Polze. “Experimental Assessment of Cloud
Software Dependability Using Fault Injection”. In: Doctoral Conference on Com-
puting, Electrical and Industrial Systems. Springer. 2015, pages 121-128.

J. Hudak, B.-H. Suh, D. Siewiorek, and Z. Segall. “Evaluation and comparison
of fault-tolerant software techniques”. In: IEEE Transactions on Reliability 42.2
(1993), pages 190-204.

M. C. Kim. “Reliability block diagram with general gates and its applica-
tion to system reliability analysis”. In: Annals of Nuclear Enerqy 38.11 (2011),
pages 2456—2461.

J. C. King. “Symbolic execution and program testing”. In: Communications of
the ACM 19.7 (1976), pages 385-394.

A. Petrenko, G. Bochmann, and M. Yao. “On fault coverage of tests for fi-

nite state specifications”. In: Computer Networks and ISDN Systems 29.1 (1996),
pages 81-106. 1ssN: 0169-7552. DOI: http://dx.doi.org/10.1016/50169-7552(96)00019-0.

Radio Technical Commission for Aeronautics (RTCA). Software Considerations
in Airborne Systems and Equipment Certification. Standard DO-178C. European
Organisation for Civil Aviation Equipment (EUROCAE), 2012.

Road vehicles — Functional safety. Standard ISO 26262. International Organisa-
tion for Standardization, 2011.

H. Schirmeier. Efficient Fault-Injection-based Assessment of Software-Implemented
Hardware Fault Tolerance (Doctoral dissertation). 2016.

K. Sen. “Concolic testing”. In: Proceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engineering. ACM. 2007, pages 571—
572.

H. Zhu, P. A. Hall, and J. H. May. “Software unit test coverage and adequacy”.
In: ACM computing surveys (csur) 29.4 (1997), pages 366—427.

73

https://doi.org/http://dx.doi.org/10.1016/S0169-7552(96)00019-0

Improving Self-Healing by Estimating the Impact of
Adaptation Rules on the Utility at Runtime

Sona Ghahremani

System Analysis and Modeling Group
Hasso-Plattner-Institut
sona.ghahremani@hpi.uni-potsdam.de

Rule-based self-adaptation approaches prescribe the adaptation to be executed if
the system or environment satisfy certain conditions. In contrast, utility-driven
approaches often enable optimal decisions by searching the possible space of adap-
tations to find the optimal one. We propose a combination of rule-based and utility-
driven approaches to achieve the beneficial properties of each of them. With our
combined approach we target the architecture-based self-healing of software sys-
tems.

1 Overview

There are various ways how self-adaptation can be realized. On the one hand rule-
based approaches [5, 9] prescribe the adaptation to be executed for specific events
and under specific conditions by adaptation rules and usually result in a scalable
solution, however, often only with at most sufficient adaptation decisions. On the
other hand utility-driven approaches [4, 11] often enable optimal decisions.

Therefore, we propose to combine rule-based and utility-driven approaches to
achieve the beneficial properties of each of them in such a manner that the drawbacks
can be avoided targeting in particular the architecture-based self-healing of software
systems. Defining the utilities as well as the adaptation rules in a pattern-based way at
the architectural level allows us to combine both in an incremental scheme to estimate
the impact of each rule application on the overall utility and its cost at runtime.
Based on these estimations, we select at runtime the most promising sequence of
rule applications for execution at runtime. The approach enables a scalable solution
and further results in good adaptation decisions with respect to the resulting utility
if certain restrictions apply.

The concrete benefits of the approach are that the improvement concerning the
utility is maximized in case alternative repair rules have a different impact for a
concrete repair needs, that the cost for reestablishing the utility is minimized in case
alternative repair rules have the same impact on utility but different costs for a con-
crete repair need, and that the loss of utility over time (lost reward) for reestablishing
the utility is minimized in case of multiple concrete repair needs. We demonstrate
these benefits of the approach in a comparative study with a static approach which
does not compute the adaptation impact on the utility at runtime but uses static
estimates.

75

mailto:sona.ghahremani@hpi.uni-potsdam.de

Sona Ghahremani: Improving Self-Healing

2 Architectural Self-Adaptation and Runtime Models

To realize self-adaptation, a software system is equipped with a feedback loop that
monitors and analyzes the system and if needed, plans and executes adaptation to
the system. For this purpose, the feedback loop uses knowledge (cf. MAPE-K [10]). To
achieve architectural self-adaptation, the feedback loop maintains a runtime model [2],
as part of its knowledge, which represents the architecture of the system under adap-
tation. As the running example for the system under adaptation, we use mRUBIS [12],
a component-based system realizing an online marketplace that hosts an arbitrary
number of shops. Each shop consists of 18 components and runs isolated from the
other shops on the marketplace.

Therefore, we equip mRUBIS with a MAPE-K feedback loop that uses a runtime
model representing the mRUBIS architecture. This model conforms to the metamodel

shown in

[0..%] required [0..%] <<enum>>
Architecture ® ComponentType \ / ComponentLifeCycle
name : String DEPLOYED
’ ? reliability : double InterfaceType STARTED
. UNDEPLOYED
[0..%] [1..1]) [1.1] [1.1] REMOVED
Shop provided [1..] - 8 NOT_SUPPORTED
utility : double 0.7] [0..%]
- component [0.%] [1..1]
Q [0..7] Component @ | —— Requiredinterface

[0..1] [0..%] [0..1]

state : ComponentLifeCycle [0.7]
Annotations criticality : double @ Providedinterface 1.A] =

Connector

affectedComponent|[1..1] component
. issues|[0.."] [0..7] Failure
[0.7] Issue

[0..1] name : String
Rule utilityDrop : double message : String
[1..1]handles
costs : double handledBy
utilitylncrease : double [0.4]

i

‘ RestartComponent ‘

LwRedeployComponent ‘ ‘ HwRedeployComponent

‘ ReplaceComponent ‘ ‘ RecreateConnector ‘

Figure 1: Simplified Metamodel of the Runtime Model.

76

3 Pattern-Based Architectural Utility

3 Pattern-Based Architectural Utility

Desirable or undesirable issues for a dynamic architecture can be expressed as posi-
tive respectively negative model patterns such that concrete issues relate to occur-
rences of these patterns in a runtime model G. We denote that an occurrence as a
match m for a pattern P in the runtime model G exists by G |=,, P. Therefore, we pro-
pose defining a utility function for a dynamic architecture represented in a runtime
model with patterns.

For any utility function for a dynamic architecture must hold that (i) the optimal
architectural configuration where all the system goals are optimally fulfilled must
gain the maximum utility and that (ii) if any constraint or goal is violated, it must
lead to a decrease of the utility. Thus, we employ positive architectural utility patterns
Pa® = {P{",..., P/} and capture their impact on the utility accordingly using utility
sub-functions U;" to address case (i). Similarly, we employ negative architectural utility
patterns Pa~ = {P;,...,P; } and capture their impact on the utility accordingly
using utility sub-functions u; to address case (ii). It has to be noted that the im-
pact of each pattern occurrence on the overall utility, which is captured by a utility
sub-function, may vary for each occurrence depending on the specific characteristics
of the context (e.g., for self-healing, the attributes of a failing component may indi-
cate the criticality of this component or the severity of the observed failures, which
determines the negative impact on the utility).

As an example, we use mRUBIS [12], a component-based system realizing an on-
line marketplace that hosts an arbitrary number of shops. Each shop consists of 18
components and runs isolated from the other shops. We are particularly interested
into self-healing, that is, the automatic repairing of runtime failures by architectural
self-adaptation. Therefore, we equip mRUBiS with a MAPE-K loop that uses a run-
time model representing the mRUBIS architecture. The model captures the hosted
Shops, their structuring into Components (with Providedinterfaces and Requiredinterfaces)
and Connectors linking required and provided interfaces, as well as runtime Failures.
Thereby, each Component is of a specific ComponentType.

For the example, shows the positive architectural utility pattern P,” with
its utility sub-function U, . For each started (i.e., running) component of a shop,
the utility of the shop is increased by U;". We may define U;" as the product of
the criticality of the specific component, the reliability of the component type, and
the connectivity of the component (i.e., the number of associated connectors). This
pattern is applied to all shops on the marketplace to obtain the total positive impact
on the overall utility of the marketplace.

shop component
:Shop :Component

utilty = utility + Us* [self.state = STARTED]

criticality

Figure 2: Positive Architectural Utility Pattern P;".

77

Sona Ghahremani: Improving Self-Healing

shop component providedInterface
:Shop 1 :Component 1 :ProvidedInterface

[self.state = STARTED]

utility := utility - Uy [self failures->size() >= 5]

criticality

Figure 3: Negative Architectural Utility Pattern P, .

Similarly, presents the negative architectural utility pattern P;” with its
utility sub-function U, for the example. This pattern matches if the usage of a pro-
vided interface of a started component in a shop has caused five or more failures
(exceptions), which decreases the utility of the shop by U, . We may define U, simi-
lar to U;" and apply this pattern for all shops to obtain the total negative impact on
the overall utility.

In general, we define multiple positive and negative patterns, that is, Pa™ =
{P,...,P/}and Pa~ = {P,..., P, }. All matches of these patterns determine the
overall utility U(G) for the current architecture represented in the runtime model
G. We define the set of all matches for the positive pattern P in G as M (G) =
{m|P;" |=, G} and the set of all matches for the negative pattern P~ in G as

M; (G) = {m|P; |=u G}. Given these sets, the overall utility U(G) can be defined

and computed as follows:
k n
U(G) := Z Z UG, m;) — Z Z U]-_(G,mj) (1)

Hence, the overall utility is the sum of all U;" for each match in M;' (G) accumulated
over all k positive patterns in Pa™ minus the sum of all u; for each match in M (G)

accumulated over all 7 negative patterns in Pa™. As discussed previously, the impact
of a match on the overall utility is influenced by the specific context of the match.
Thus, the utility sub-functions U;" and U; are paramterized by the runtime model
G and the specific match m, which capture the context of the match.

In general, matches of positive and negative patterns result from changes of the
environment. While existing matches of positive patterns are usually not affected
by the adaptation rules (i.e., the adaptation does not do any harm to the system),
matches of negative patterns should be addressed by the rules (i.e., the adaptation
repairs the system).

Finally, the kind of utility functions as presented here is restricted to linear func-
tions, which are often used for optimization (cf. [77]).

4 Utility-Driven Rule-Based Adaptation
The outlined manner insection 3to define the utility functions for architectural run-

time models in principle allows to compute the utility for each possible architectural
configuration and build an optimization based approach by searching the configu-

78

4 Utility-Driven Rule-Based Adaptation

ration space. However, such a solution would be rather wasteful if the utility would
have to be computed for each configuration completely anew.

In contrast the suggested incremental rule-based approach suggest for a restricted
case to estimate the impact on the utility of each rule application at runtime and
derive in a greedy manner from this a good sequence of rule applications concerning
the adaptation decisions.

Monitor During the Monitoring phase, the observed details regarding the changes
of the model are collected form the adaptable software. The monitoring activity
aggregates and filters the gathered data to determine a symptom that needs to be
handed to the analysis activity [13].

For our example with the runtime architecture of mRUBiS (cf. metamodel in [Fig}
[ure 1)), we may observe the life cycle state of a component (e.g., to monitor whether a
component has stopped, crashed, or even been removed) as well as Failures such as
exceptions that occur when using a provided interface.

Analyze In the analysis phase the observed changes are analyzed to update the
known set of negative patterns. New matches are determined through applying an
event-property-change mechanism and all old matches have to be checked if they
are still valid.

As a first step we can compute the utility incrementally rather than for each config-
uration anew. Given a former runtime model G and an updated version G, the set
of new occurrences for the negative patterns are M, "* = M; (G')\M; (G) and for
positive patterns are M;"“ = M (G')\M;" (G). Similarly, M; ' = M (G)\M; (G')
and M:“dd = M;"(G)\M;" (G') capture the matches for patterns that are no longer
valid. We can thus define the changes of a utility function U(G) accordingly by a
utility change function Ux(G’, G) as U(G') — U(G) as:

k k
-y Y urGm)+Y, Y uf(G, m) (2)

=1 mem; ! =1 mem; "
n n
— — /
=1 mem; ! =L meM; e

describes an analysis phase that checks for and detects the negative pat-
tern introduced in such that the annotation CF2 pointing to the affected
component is created by an in-place model transformation. The occurrence of the
negative pattern results in a drop in the utility of the shop by U;” which is stored in
the issue CF2 as utilityDrop to be used later for ordering the issues. Here we omit the
details to exclude multiple annotations for the same negative pattern in the model
transformation for the purpose of simplicity.

Plan Based on the marking for any new or remaining issues in form of matches

m for negative patterns, the approach incrementally proceeds during the planning
phase by (1) computing the set of all possible rule applications, (2) selecting for each

79

Sona Ghahremani: Improving Self-Healing

- N
Analyze for CF2
shop component providedInterface
:Shop = :Component =1 :Providedinterface

[self.state = STARTED]

utility := utility - U4 [self failures->size() >= 5]

criticality

<<create>>
affectedComponent

- <<create>>
annotations issues

:Annotations cf2:CF2

<<create>>

utilityDrop := Uy
L ybrop 1)

Figure 4: Marking a Negative Architectural Utility Pattern.

(" N (A
Plan restart to handle CF2 Plan replace to handle CF2
cf2:CF2 annotations cf2:CF2 annotations

:Annotations :Annotations
<<create>> <<create>>
handledBy <<create>> handledBy <<create>>
rules rules
<<create>> <<create>>
restartComponent replaceComponent
:RestartComponent :ReplaceComponent
costs := estRestartCost() costs := estReplaceCost()
utilitylncrease := U;" utilitylncrease := Uy’
= J o J
(a) (b)

Figure 5: Rules for Planning an Adaptation.

issue the best rule application based on estimates for the impact on utility and cost,
and (3) finally ordering the best rule application for all issues to minimize the lost
reward.

Based on these assumptions we can also compute all matches for rules incremen-
tally, if for the related negative pattern P;” the set of new matches M; " is given.

illustrates a simplified view of a planning rule for the example to repair
the issue CF2.

Execute The execute phase takes over the ordered list of adaptation rule matches
from the planning phase and executes them in the given order.

5 Experimental Evaluation

To evaluate the proposed approach we use a component-based system realizing an
online marketplace mRUBIS that hosts 100 shops each including 18 components with
different criticality and connectivity. We employ an alternative approach to compare to
our rule-based utility-driven approach.

8o

5 Experimental Evaluation

17010

17000 | — Static _ ;
- - - - Dynamic S e
' ' [' !
! '

16990
16980
16970
16960
16950

216940

5 16930
16920
16910
16900
16890
16880
16870

Adaptation Runs

Figure 6: Utility Changes During the System Life Cycle.

Static Approach: In this approach the cost and utilityincrease attributes of the rules
are defined at design time, hence, for each CF the repair rule is selected off-line. The
utilityDrop caused by each issue CF is also estimated at design time which leads to a
fixed order in which the issues are addressed.

Dynamic Approach: The proposed dynamic approach, estimates the impact of
the different adaptation plans at runtime and selects the one with largest impact.
The order in which CFs are addressed is decided based on the runtime observations
regarding the affectedComponent and the drop in the overall utility caused by the issue.

To evaluate the general performance of the proposed rule-based utility-driven
approach we tested it on mRUBIS for 12 adaptation cycles (MAPE cycles) against
the static approach. The experiment was conducted under similar circumstances in
which during each adapt cycle both approaches face the same issues. The measure-
ments where done and averaged for 1000 rounds for each approach. As presented
in in each cycle, occurrences of CF issues result in utility drop for both
approaches followed by a MAPE loop during which the adaptation takes place. Ap-
plication of adaptation rules causes an increase in the utility, the system life cycle
continues with the same utility until the next failure occurs and the utility drops
again. We distinguish between applying an adaptation rule on the runtime model
E’ during the execute and executing it on the running system underneath E” such
that E:= E' + E".

confirms that our approach achieves higher utility values compared to
the static approach.

As argued earlier, the overhead of the dynamic approach is quite negligible con-
sidering the required time to apply the adapt rules on the running system rather
than the runtime model. Therefor this feature is skipped in[Figure 6

shows the difference between the overhead caused by our MAPE phases
and the one of static approach compared to applying the rules on the system. The
difference between the computation time for the dynamic approach compared to the
static one is approximately 1.32 ms and thus only 0.04 % and therefore is negligible
regarding the benefits of the approach. Note that also the time required for MAPE’

81

Sona Ghahremani: Improving Self-Healing

Il VAPE "
(e
3500 |

3000 -

2960.95

2960.19

Dynamic Static

Figure 7: Overhead of the Static and Dynamic Approaches Compared to the Time
for Applying the Rules on the System.

phase in the dynamic approach is approximately 6.8 % of the time E” requires to
make changes on the running system.

6 Related Work

There have been several approaches which are more flexible regarding runtime
changes. Such approaches do not explicitly describe all the possible configurations
of the system a priori, the runtime reasoning has to calculate utility values for all of
them, thus encountering scalability and efficiency issues [6]. There have been plenty
of research on utility functions and utility-driven decision-making policies [1} 7, 8]
The outlined utility-driven approaches pursue a search-based optimization in the
solution space that often do not scale well for complex systems with large solution
spaces. Such approaches manage to find the optimal configuration but there is no
guarantee to reach the result within a reasonable time in case of the need for a quick
adapt plan. The proposed approach estimates the utility for each potential adaptation
strategy in an incremental scheme taking into account the current change events that
affect the archived reward. We transform the definition of utility values form utility
of each configuration to the utility per change event and this allows us to scale well
for large systems.

On the other end of the spectrum there are rule-based adaptation approaches with
a set of predefined adaptation strategies which apply off-line planning determined
and developed at design time regardless of the runtime data. The adaptation logic
is coded as an event-condition-action policy. They employ the predefined rules to
achieve a predefined goal configuration and the adaptation policy is embedded
into the system [5, g]. Change events trigger the adaptation rules and they result
in changes in system configuration [9]. Every rule-based adaptation methodology
includes a set of adaptation rules, each attributed to a specific event or context and
become applicable as the related event occurs [3].

82

7 Discussion

The rule-based strategies basically predefine the whole adaptation process and
they are recognized to be efficient and stable in predictable domains and support
the early validation [6]. These approaches provide quick recovery from the goal
violation however they often result in sub-optimal solutions since they ignore the
unforeseen scenarios at design time.

The proposed approach is distinguished from the existing work as it is fast and
efficient since it benefits from a rule-based adaptation and does not struggle with
scalability issues and the lack of optimality in a rule-based approach is compensated
for through combining it with a utility-driven approach which optimized decisions
at runtime. However, unlike the optimization-based approaches, the incremental
manner of estimating the utility function over the patterns makes the approach
suitable for large complex systems.

7 Discussion

We proposed a novel approach to improve self-healing reward by combining utility-
driven and rule-based adaptation at the architectural level in order to achieve the
benefits of each of them. The approach addresses the requirements of scalability
and optimality regarding the utility. The overhead of our approach is approximately
0.04 % compared to the static alternative, which is negligible considering the pro-
vided improvements in the overall utility. By defining the utility functions over
architectural patterns, our approach is able to look for an optimal solution at run-
time where adaptation rules handle the scalability issue. Here we define linear utility
functions for dynamic architectures and link them to the adaptation rules as future
work, we plan to investigate non-linear utility functions.

References

[1] M. Amoui, M. Derakhshanmanesh, J. Ebert, and L. Tahvildari. “Achieving
dynamic adaptation via management and interpretation of runtime models”.
In: Journal of Systems and Software 85.12 (2012), pages 2720-2737.

[2] G.Blair, N. Bencomo, and R. B. France. “Models@run.time”. In: Computer 42.10
(2009), pages 22—27. por: 10.1109/MC.2009.326.

[3] S.-W. Cheng. “Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation”. PhD thesis. School of Computer Science, Carnegie Mellon
University, Pittsburgh, USA, 2008.

[4] N. Esfahani, A. Elkhodary, and S. Malek. “A Learning-Based Framework
for Engineering Feature-Oriented Self-Adaptive Software Systems”. In: IEEE
Transactions on Software Engineering 39.11 (2013), pages 1467-1493.

83

https://doi.org/10.1109/MC.2009.326

Sona Ghahremani: Improving Self-Healing

[5]

(6]

[7]

[8]

[9]

[10]

F. Fleurey, V. Dehlen, N. Bencomo, B. Morin, and].-M. Jézéquel. “Modeling
and Validating Dynamic Adaptation”. In: Models in Software Engineering. Vol-
ume 5421. LNCS. Springer, 2009, pages 97—-108.

F. Fleurey and A. Solberg. “A Domain Specific Modeling Language Supporting
Specification, Simulation and Execution of Dynamic Adaptive Systems”. In:
MoDELS’ 09. Volume 5795. LNCS. Springer, 2009, pages 606-621.

J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven. “Using
Architecture Models for Runtime Adaptability”. In: IEEE Software 23.2 (2006),
pages 62—70.

S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. “Using Product Line Tech-
niques to Build Adaptive Systems”. In: SPLC’06. IEEE, 2006, pages 141-150.

J. Keeney and V. Cahill. “Chisel: A Policy-Driven, Context-Aware, Dynamic
Adaptation Framework”. In: POLICY “03. IEEE, 2003, pages 3—14.

J. O. Kephart and D. Chess. “The Vision of Autonomic Computing”. In: Com-
puter 36.1 (2003), pages 41-50.

J. O. Kephart and W. E. Walsh. “An Artificial Intelligence Perspective on Auto-
nomic Computing Policies”. In: POLICY04. IEEE, 2004, pages 3-12.

T. Vogel. Modular Rice University Bidding System (mRUBIS). 2013. URL: http

//www.mdelab.de (last accessed 2016-10-01).

T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker. “Model-
driven Architectural Monitoring and Adaptation for Autonomic Systems”. In:
ICAC’09. ACM, 2009, pages 67-68.

84

http://www.mdelab.de
http://www.mdelab.de

Programming Models for Consistent Memory Access in
Shared Something Architectures

Andreas Grapentin

Operating Systems and Middleware
Hasso-Plattner-Institut
andreas.grapentin@hpi.uni-potsdam.de

Recent generations of large-scale computing systems generally fall into one of two
categories, in respect to memory access. On one end of the spectrum, there are
tightly-coupled multiprocessor systems, where the entire physical address space
is byte-addressable by all processing units, and on the other side, there are dis-
tributed systems, where individual self-contained systems are grouped together
by network interconnects, and memory access beyond system boundaries needs
to be implemented through message passing. Future generations of large-scale
systems promise to break this pattern by introducing a shared something architec-
ture, in which memory is attached to the processing units via network interfaces,
and is made accessible by all processing units in its entirety, albeit with limited
cache coherence. While programming models for cache coherent shared memory
systems as well as distributed memory systems are well understood, the possible
benefits of a shared something architecture, as well as the challenges posed to ap-
plications in terms of correctness and performance on such platforms need further
investigation, in order for suitable programming models to be found.

1 Memory Access Overview

Memory access is a central aspect of computing. Over the course of its life cycle, a
typical computer program will issue many thousand read and write instructions in
order to process data from the machines main memory. Recent developments in sys-
tem architecture have coined the phrase Memory-centric Computing, or Memory-centric
Architecture, indicating that the importance of data and memory in computing is only
going to grow. While the process of reading from and writing to cells in memory
sounds straightforward, there are two aspects in modern computing architectures
that complicate things significantly. Firstly, the concurrent nature of modern Sym-
metric Multiprocessing (SMP) systems may lead to interleaved read and write access
from independently running processing units to the same memory cell. The order
in which concurrent reads and writes are executed may, depending on the appli-
cation, alter the result of the program if not guarded correctly by the programmer.
Secondly, the integration of multiple levels of caches, while providing a significant
performance boost to applications through decreased memory latency, creates a hi-
erarchy of redundant information that the processing units need to keep maintained.
If one processing unit in the system changes a piece of information in main memory,
then another processing unit that still may have that piece of information stored in
its local cache needs to invalidate their version of the information in order for all pro-

85

mailto:andreas.grapentin@hpi.uni-potsdam.de

Andreas Grapentin: Prog. Models for Consistent Memory Access in Shared Smth. Arch.

cessing units on the system to have a consistent view of the main memory. Without
that mechanism, a read of that memory cell would yield a wrong result, as it would
be fetched directly from the cache holding the outdated value, instead of from the
main memory. This behavior would break the systems expectations for strict con-
sistency. Maintaining a strict consistency across the views of the main memory for
the processing units of a system is achieved by special cache coherence protocols
and interprocess communication. While necessary, this interprocess communication
poses a significant overhead to the overall performance of a system and is one of
the factors detrimental to the scaling of modern centralized SMP systems, the other
ones being the latency and throughput of far memory access in Non-uniform Mem-
ory Access (NUMA) architectures and bottlenecks in the communication to shared
resources and buses.

This situation is different on distributed systems. Distributed systems are clusters
of independent smaller computing systems that are connected via network inter-
connects. These kinds of systems do generally not expose native shared memory
interfaces to all the connected machines. Instead, individual machines may com-
municate via Message Passing Interface (MPI) or distribute the workload in a way
that communication between the machines is eliminated, apart from an initial setup
phase, and a finalization phase. One standardized approach for such a workload
distribution is MapReduce. These approaches are most effective for highly parallel
computing workloads, which also benefit the most from the almost limitless par-
allelism of distributed systems. Accessing remote memory from one node in the
distributed system to another or establishing a shared memory region across all
nodes is possible, but needs to be implemented as an additional software layer. In
that case, concurrency problems analogous to SMP systems arise. However, as all the
remote memory access interfaces used are implemented in software, custom locking
mechanisms can be implemented and used to maintain strict consistency, or weaker
consistency levels as described by Nitzberg et al. [9], depending on the requirements
of the application. The overhead of such approaches is significant though, as locking
and synchronization mechanisms for strict consistency across the nodes introduces
network latency to the memory access.

2 Shared Something Architecture

The notion of a Shared Something architecture lies conceptually between an SMP,
or shared memory architecture and a distributed, or shared nothing architecture, and
promises to mitigate the scaling problem of the shared memory architecture while
being more tightly coupled than shared nothing systems. These systems are generally
understood to be composed of numerous processing units with a small amount of
local memory each, all of which share a byte-addressable pool of global memory. The
communication between the processing units as well as access to the shared memory
is realized through high speed network interconnects. This architecture is similar to
that of an SMP system in that there is a pool of globally shared, byte-addressable
memory. The key difference is, that in order to improve the scaling behavior of the

86

2 Shared Something Architecture

A B
1 1

A
| | Caches | |

Figure 1: False sharing may lead to data corruption in shared something architectures,
as cache lines may be altered and written back to memory concurrently, without
strict consistency enforcement.

system, there is no transparent cache coherence enforced among the processing
units, which removes the need of interprocess communication on memory access.
Additionally, the memory hierarchy is flat, which eliminates NUMA characteristics
from the behavior of the system.

This architecture also behaves very similarly to a distributed system in that each
of the processing units could be interpreted as a node in a distributed system, con-
taining a certain amount of dedicated local memory, behaving independently of the
other nodes and being connected to the system via high speed network interconnects.
The key difference to a distributed, or shared nothing system is that there is a large
globally shared memory. However, since that shared memory is byte addressable
directly via the hardware instructions provided by the processing units, there is no
possible way to implement a strict consistency protocol in software, allocations can
be made freely and reads and writes are not governed by a software layer. Also, con-
trary to SMP systems, there is no transparent cache coherence protocol to maintain
strict consistency. Consequently, dedicated programming models need to be utilized
by the software developer on the system, in order for programs to behave correctly
while accessing shared memory under strict consistency requirements.

The shared something architecture promises to circumvent the issue of the scaling
barrier for SMP systems, while being a lot more compact in design than distributed
systems, by outsourcing the task of maintaining a consistent view on shared memory
regions to the developer, instead of the system. While this allows the developer to
fine tune how much synchronization and consistency is really needed, and hence
gain a significant performance boost, it also poses challenges to the correctness of
shared memory access. Depending on the currently unknown specifics of the actual
hardware, there are several situations where unguarded memory access could lead
to errors in application behavior, and even data corruption. One such scenario is
outlined in [Figure 1} Two unrelated values A and B are stored close to each other in
memory, such that they are placed in the same cache line upon being accessed by a
processing unit. Two processing units now access this cache line concurrently, where
one processing unit changes A to A’, and the other changes B to B'. The cache lines

87

Andreas Grapentin: Prog. Models for Consistent Memory Access in Shared Smth. Arch.

Listing 1: Pseudocode description of the out, in and read function of the tuple spaces
interface.

def out(N, P2, ..., Pn):
t = n—tuple (N, P2, ..., Pn)
insert t into the tuple space
return

def in(N, P2, ..., Pn):

t = find matching tuple (blocking)
remove t from tuple space
return t

def read(N, P2, ..., Pn):
t = find matching tuple (blocking)
return t

have now diverged and will be written back to memory sequentially, resulting in
one of the writes to be lost. This scenario is more generally known as false sharing [2].
In SMP systems, false sharing is a problem for performance, as cache coherence
protocols will ensure strict consistency across memory writes, such that the cache
line will be invalidated before the write operation can take place, but in shared some-
thing systems it becomes a problem for correctness, because no strict consistency
is enforced, and incorrect data may be written back to memory. Consequently, in
order for concurrent global memory access to behave correctly, programmers writing
applications for the shared something architecture need to ensure the required level
of consistency manually, or need to utilize a suitable programming model for shared
memory on the shared something architecture that guarantees the required level of
consistency.

3 Programming Models for Distributed Shared Memory

In the world of distributed systems, there are a number of different approaches to em-
ulate shared memory for distributed programs. This is done mostly for convenience,
as most developers are very familiar with the shared memory abstraction. Nitzberg
et al. have compared several of these approaches [9] in respect to the granularity
of allocations, coherence semantics and the underlying synchronization primitives,
and found them to be viable mechanisms for distributed communication.

One of the distributed memory systems Nitzberg et al. evaluated is Tuple Spaces. Tu-
ple Spaces, as formally specified in the context of the LINDA programming language
by Gelernter [5], is an interface definition for a distributed storage of immutable n-
tuples. Arbitrary tuples can be produced into the storage, and can then be retrieved
at a later time, where the retrieval of a tuple can be parametrized in a way that al-

88

3 Programming Models for Distributed Shared Memory

Listing 2: Pseudocode of a producer / consumer queue based on tuple spaces.

def produce(value):
out((’queue’, value))

def consume():
t = in(’queue’, None)
value = t[1]
do_something(value)

lows efficient filtering. The basic functions defined in this interface are described in
pseudocode in

The out function in this context is used to produce tuples into the tuple space.
An n-tuple in this context can be thought of as a composite with n elements. The
out call should not block the programs execution. The in and read calls are very
similar, both search for a tuple in the space that matches their list of parameters,
there is a distinction that is made here in respect to formal and actual parameters.
When retrieving a tuple from the tuple space, actual parameters passed to the in and
read functions must match the values present in the tuple, while formal parameters
can be thought of as wildcards, or variables that will be filled with the values read
from the tuple upon retrieval. The in and read calls will block if no matching tuple
can be found. If a matching tuple is found, both functions will, depending on the
programming language, either assign values to the given formal parameters, or
return the found tuple. The in function will additionally delete the matched tuple.
An example of a simple distributed producer/consumer queue using these functions
is outlined in

The described functions can now run concurrently in a distributed system. The
library that implements this interface is then responsible to maintain the pool of
tuples across the distributed system and to synchronize the calls to out such that the
information remains consistent and no tuples are lost. An additional requirement
is, that tuples may not be retrieved twice, so calls to in and read must be guarded
as well to maintain consistency. This model can be applied to the shared something
architecture in order to hand control of the memory access synchronization back
to the library developer and relieving some responsibilities from the application
developer. The tuple spaces library would be responsible to synchronize calls to out
on the concurrently working processing units on the shared something architecture,
such that strict consistency is guaranteed and no data corruption is caused by false
sharing. The overhead introduced through this amount of synchronization is ex-
pected to be less than the overhead of a fully fledged cache coherence protocol, while
not sacrificing correctness. This should allow for better scaling of tightly coupled
shared something systems, as opposed to SMP systems. Several implementations
for tuple spaces exist, the most notable ones being JavaSpaces, Linda and PyLinda.

The author would like to address, that the names of the functions of this interface
seem poorly chosen, as they, in the case of out and in, do not properly reflect what

89

Andreas Grapentin: Prog. Models for Consistent Memory Access in Shared Smth. Arch.

the intent of the function is, and in the case of read, conflict directly with the POSIX
function of the same name. More widely accepted names for these functions would
have been, due to the inherent similarities to stack datastructures, push, pop and
peek respectively.

4 Experimental Evaluation

At the time of this writing, the underlying hardware of the shared something archi-
tecture is not yet publicly available. However, there are projects dedicated to the em-
ulation of certain aspects of the architecture, for example the Fabric Emulation project
provided directly by HPE on GitHub. This project provides an automated setup of
virtual machines where each of the machines has access to a common shared memory
device. It is currently not clear how similar reads and writes to this shared memory
device are compared to access to the real hardware. Nevertheless, the architecture is
laid out similarly to the proposed hardware. A set of independent processing units,
each with a set of local resources, having access to a shared memory pool where
consistency is not enforced.

ARM ARM
Cortex Cortex
Al5 A7

Figure 2: The architecture of the embedded shared something emulator. Separate
virtual machines are executed on heterogeneous cores to balance a shared work-

load.

In addition to the fabric emulation, I have worked on leveraging heterogeneous
embedded such as the Odroid XU4. This particular board contains two processing
units, which are binary compatible but differ in computing power. The original idea
of this platform was to provide a system that would be able to migrate the complete
workload to the stronger or weaker set of cores, to optimally accommodate the total
system load. However, when all cores are active simultaneously, and virtual machines
are deployed and assigned to mutually exclusive processing units, it resembles an
architecture where heterogeneous processing units have access to a shared memory
pool that would allow very efficient migration of workload. This setup is illustrated
in However, the focus on heterogeneous systems has diminished in the

90

5 InstantLab integration

context of the shared something architecture, so this thread of thought has not been
followed further yet.

Beyond that, HP has claimed to have a cycle exact simulator for their The Machine
project, which implements the shared something architecture, and which could
help in determining the performance of shared memory management tools on these
architectures. We are currently in the process of discussing access to this simulator
with HP.

5 InstantLab integration

In order to make experiments on the shared something architecture repeatable and
more accessible, they can be integrated into the InstantLab platform. InstantLab is an
Infrastructure as a Service (InaS) platform developed and designed to be able to provide
access to predefined test environments for specific lab experiments by Neuhaus et
al. [8]. The platform is still under active development and is used to provide the
infrastructure for the steadily growing historic operating systems gallery maintained
by the operating systems and middleware chair, as well to support the exercises in
the operating systems lectures. The underlying virtualisation techniques used by
InstantLab and the Fabric Emulation tool are very similar in nature, which allows an
integration of the Fabricl Emulation infrastructure as a predefined test environment
into InstantLab.

created for n| Infrastructure n 4| <<enum>> InfrastructureState Ne " rivk
L pend/resume (is it n
stop_and_delete() PENDING, RUNNING, DELETED > infrastructure layc 2en frontends?
created by n| 1] 1]
based on
n
1 runs n M
L InfrastructureLayout SSHKeyCredentials
n -
User description LoginCredentials
description adapter_specific_id username
unique_id public_ip u:gr\)vaor?; private_key
create_infrastructure(AbstractCloudAdapter) P public_key
il o n| stop_and_delete() 1 allows accgss with
ased on T
requires controllable via
1] n| 1 1 1
forf AbstractCloudAdapter
Frontend VMimage -
name description 1) default_config AbstractCredentials
web_api_key create_vm(VMImage)
create_vm(AbstractCloudAdapter) stop_and_delete_vm(VM)

1 T
uploaded version of

1
1
1
nl 1

UploadedVMImage

Comprised of code, not data (cannot be written to DB)
Instead of Foreign Keys, use adapter name as reference

adapter_specific_id

VM images are considered to be so platform specific, that
automatically uploading them is not possible. This is a manual
processs instead

Figure 3: The data model of InstantLab. A shared something architecture lab would
be set up as an InfrastructureLayout, where the separate virtual machines are at-
tached as dormant instances of VMImage.

91

Andreas Grapentin: Prog. Models for Consistent Memory Access in Shared Smth. Arch.

Architecturally, InstantLab is separated into three tiers. The first tier consists of
frontends, which stand separate from the infrastructure providing service. These
frontends communicate via a web-based API to a middleware. The middleware
then employs a set of cloud stack adapters, to allow maximum flexibility in the
management of the infrastructure resources. One of these cloud stack adapters is a
gemu/kmv adapter that we developed specifically for optimized configurability. We
have integrated support for shared memory devices into this adapter, which will
allow the setup of lab experiments for this emulated shared something architecture
in the future. The data model of InstantLab is outlined in[Figure 3|

6 Future Work

The next steps of my work will include implementing a naive version of tuple spaces
on the shared something architectures using separate memory regions and interpro-
cess communication to achieve strict consistency across the machines. This imple-
mentation will then be tested on the fabric emulation infrastructure for correctness
and performance. Afterwards, I will need to leverage the properties of the shared
memory to improve the performance of the synchronization without sacrificing
correctness or strict consistency properties of the approach. The properties of the
naive and shared memory implementations compared might allow an estimate of
the performance that the approach would be able to achieve on the real hardware.

Afterwards, I want to look into additional shared memory abstractions for dis-
tributed systems, and implement these with optimizations for the shared something
architecture, and compare how different levels of consistency semantics are suited
for the architecture and what kind of overhead they produce. These results will allow
for a model of overhead per consistency level on the architecture and a guideline for
programmers to follow and optimize for. Examples for shared memory implementa-
tions I want to evaluate in this context are vy [7]] for strict consistency, Munin [1] for
weak consistency and Dash [6] for an example for a hardware based approach.

Additionally, I would like to look into other distributed programming models to
evaluate their relevance for my thesis. One example of such a programming model is
split c [3], a parallel extension to the C language that emulates a shared global address
space for distributed programs. This model shows the potential of being useful in
the context of managing an existing global address space while not sacrificing the
power and familiarity of the memory allocation methods of C. A second example
is Partitioned Global Address Space [4]], as a different way to manage large amounts
of shared memory by making most of that memory local to single processes. This
introduces an explicit semantics to memory sharing that may be useful in mitigating
the challenges of the shared something architecture.

The InstantLab Integration will also need to be realized. This could then be used to
offer a programming environment of the shared something architecture to students,
in order to evaluate how programmers approach the challenges of this architecture,
and how well the implemented memory management approaches hold up in practice.

92

References

An integration of an exercise on this platform into the Operating Systems lecture, or
an accompanying seminar might also be thinkable.

Finally, once the systems implementing shared something architecture are publicly
available, we can start implementing and evaluating these concepts on real machines
and measure the performance of the theorized approaches. We will compare the
performance of the theorized approaches against direct ports of shared memory
approaches for distributed systems on the same hardware, in the hope of showing a
significant performance boost, while reducing the memory footprint due to reduced
duplication.

References

[1]

[2]

[7]

[8]

J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared memory
based on type-specific memory coherence. Volume 25. 3. ACM, 1990.

W. J. Bolosky and M. L. Scott. “False sharing and its effect on shared mem-
ory performance”. In: Proceedings of the Fourth symposium on Experiences with
distributed and multiprocessor systems. 1993.

D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. Von
Eicken, and K. Yelick. “Parallel programming in Split-C”. In: Supercomputing’93.
Proceedings. IEEE. 1993, pages 262—273.

M. De Wael, S. Marr, B. De Fraine, T. Van Cutsem, and W. De Meuter. “Parti-
tioned global address space languages”. In: ACM Computing Surveys (CSUR)
47.4 (2015), page 62.

D. Gelernter. “Generative communication in Linda”. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 7.1 (1985), pages 80-112.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and]J. Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor. Volume 18.
2SI. ACM, 1990.

K. Li. “IVY: A Shared Virtual Memory System for Parallel Computing.” In:
ICPP (2) 88 (1988), page 94.

C. Neuhaus, F. Feinbube, A. Polze, and A. Retik. “Scaling Software Experi-
ments to the Thousands.” In: CSEDU (1). 2014, pages 594—601.

B. Nitzberg and V. Lo. “Distributed shared memory: A survey of issues and al-
gorithms”. In: Distributed Shared Memory-Concepts and Systems (1991), pages 42—
50.

93

Metamaterial Mechanisms

Alexandra Ion

Human Computer Interaction group
Hasso-Plattner-Institut
alexandra.ion@hpi.uni-potsdam.de

Recently, researchers started to engineer not only the outer shape of objects, but
also their internal microstructure. Such objects, typically based on 3D cell grids,
are also known as metamaterials. Metamaterials have been used, for example, to
create materials with soft and hard regions.

So far, metamaterials were understood as materials — we want to think of them
as machines. We demonstrate metamaterial objects that perform a mechanical
function. Such metamaterial mechanisms consist of a single block of material the
cells of which play together in a well-defined way in order to achieve macroscopic
movement. Our metamaterial door latch, for example, transforms the rotary move-
ment of its handle into a linear motion of the latch. Our metamaterial Jansen walker
consists of a single block of cells — that can walk. The key element behind our meta-
material mechanisms is a specialized type of cell, the only ability of which is to
shear.

In order to allow users to create metamaterial mechanisms efficiently we im-
plemented a specialized 3D editor. It allows users to place different types of cells,
including the shear cell, thereby allowing users to add mechanical functionality to
their objects. To help users verify their designs during editing, our editor allows
users to apply forces and simulates how the object deforms in response.

1 Introduction and Background

Researchers in human-computer interaction have explored the use of personal fabri-
cation tools, such as 3D printers [14] to help users design the external shape of 3D
objects [15]. In order to add functionality to 3D printed objects, researchers integrated
electronics, even printed optics [16], or loudspeakers [6].

Researchers also started to design the inside of 3D objects by changing the structure
of the 3D printed object itself. Initial projects optimized only a single parameter, such
as the object’s strength-to-weight ratio [7] or the position of the object’s center of
mass [12].

Recently, researchers started to push internal structures even further and created
objects that consist internally of large numbers of 3D cells organized on a regular
grid [13]. Since these objects allow each cell to be designed differently, the resulting
objects literally offer thousands of degrees of freedom. These types of structures
have also been referred to as metamaterials. Metamaterials are artificial structures
with mechanical properties that are defined by their usually repetitive cell patterns,
rather than the material they are made of [11].

Based on this concept, researchers have created objects with unusual behaviors,
such as metamaterials that collapse abruptly when compressed [9], that shrink in

95

mailto:alexandra.ion@hpi.uni-potsdam.de

Alexandra Ion: Metamaterial Mechanisms

two dimensions upon one-dimensional compression [2], or objects that mix layers
of soft and hard cells in order to emulate different materials [[1]].

So far, metamaterials have been understood as materials. The main contribution
of this paper is that we want to think of them as machines.

In this paper, we push the concept of metamaterials further by creating objects that
allow for controlled directional movement. This allows users to create objects that
perform mechanical functions. Our objects thereby implement devices that transform
input forces and movement into a desired set of output forces and movement — also
known as mechanisms.

2 Metamaterial Mechanisms

shows an example of a metamaterial mechanism: a door latch mechanism.
Its interior is a regular grid of 3D cells; however, the cells are of different types.
shows how applying a force causes the cells to deform in a controlled way,
thereby performing the intended mechanical function. In the example, rotating the
door handle causes cells inside of the object to deform, ultimately pulling the latch
towards the left and thereby unlocking the door.

While most of the object consists of rigid cells (cells that are reinforced with a
diagonal), the object also contains several rectangular regions of cells that lack such
a diagonal reinforcement. As shown in[Figure 2} these are the key to creating mech-
anisms, as they are able to deform in a very specific way: when subjected to an
external force, these cells shear and thereby apply a force to their neighboring cells.
Our recent paper [5] details how this basic principle allows creating mechanisms.

Metamaterial mechanisms are simple. While the traditional door latch mechanism
consists of several parts, including an axle, bearings, springs, etc., the metamaterial
door latch in consists of a single block of material, as it is groups of cells
inside the object that perform the mechanical function.

While in previous work metamaterials were typically generated by scripts [9, 11],
creating mechanisms requires a dedicated design/engineering process that we argue
is best performed by means of an interactive editor. shows a preview of
the custom 3D editor we created specifically to allow users to create and modify
metamaterial mechanisms. It contains a range of functions that help users assemble
specialized cells into basic mechanisms and to assemble such basic mechanisms into
more complex mechanisms and simple machines.

Using this editor, we have created a series of demo objects shown in[Figure 3| Addi-
tionally to the door latch from [Figure 1} we demonstrate a Jansen walker, a functional
pair of pliers, and a pantograph. Our examples were printed on an Ultimaker 2 3D
printer using NinjaFlex filament (in pink).

96

2 Metamaterial Mechanisms

ojz
“siif%nésﬁs’ f\."}.’ ‘] o

100% 80% 60% 40% 20%

2 Vatmeed
< 7 deformationsimultion

Figure 1: (a) This door latch is implemented as a metamaterial mechanism; it con-
sists of a single block of material based on a regular grid of cells that together
implement handle, latch, and springs. (b) Turning the handle causes the central
hinge array to deform and to pull the latch inward, which unlocks the door. (c)
We created this mechanism in our custom editor. Here, we placed two hinge ar-
rays that mechanically couple the handle to the latch, and cells that couple to the

doorframe.

Figure 2: When a shear cell in this 2 x 2 block is subject to compression forces, it
complies by shearing on a circular trajectory until its members are packed tightly.

97

Alexandra Ion: Metamaterial Mechanisms

O

pencil follows —/ user's pencil

Figure 3: We demonstrate the concept of metamaterial mechanisms at the example
of (a) a functional pair of pliers, (b) a pantograph that copies drawings, and (c) a
Jansen walker.

3 Contribution, Benefits, and Limitations

Our main contribution is the concept of metamaterial mechanisms. Our main soft-
ware contribution is a specialized editor that allows users to create them.

We extend the research field of metamaterials by contributing a general purpose
approach to creating mechanisms. Mechanisms are a new genre of metamaterial
structures that is of higher complexity and that exploits more degrees of freedom
than previous work in this field, and that allow metamaterials to tackle problems
they have traditionally not been able to address.

Compared to traditional multi-part mechanisms, metamaterial mechanisms offer
several benefits. (1) The resulting devices consist of a single part. They can thus be
created using particularly simple fabrication processes, such as single-material 3D
printers (e.g., fused deposition modeling printers). (2) As they consist of a single
piece, they require no assembly. (3) Since the movement is performed by deformation
there is virtually no friction, no need for lubrication, and thus for maintenance [4].

However, the resulting designs are also subject to limitations. Adding more cells
increases the stiffness, and as a result, metamaterial mechanisms are not suitable
for mechanisms that are to be operated with very small forces. Furthermore, our ap-
proach is unable to produce continuous rotation. Objects such as the Jansen walker,
for example, thus require a separate axle. Also, cell designs are limited by the quality
of the 3D printer. In particular, shear cells work best if their internal hinges are thin,
which requires high-resolution 3D printers. Finally, while our editor vastly simpli-
fies the creation of metamaterial mechanisms, any type of mechanical engineering
requires experience — and metamaterial mechanisms are no exception here.

98

4 Metamaterial Mechanism Editor

4 Metamaterial Mechanism Editor

To allow users to design, fabricate, and test metamaterials containing mechanisms
we implemented the specialized editor shown in[Figure 1.

The main intent behind it is not only to make the editing process more efficient
than the more traditional script-based editing, but also to provide users with an
overview of their design, encouraging design by trial-and-error.

Our editor is based on interaction techniques known from voxel editors (such
as [3]). However, in addition our software also offers specific supports for creating
mechanisms, such as tools for drawing hinge arrays, etc. In order to allow users to
validate their designs, the editor also allows them to apply forces and see how the
object deforms in order to then refine their design directly inside the editor, before
exporting to the 3D printer.

4.1 Walkthrough

illustrates how we created the door handle.

Figure 4: Walkthrough of the creating door latch mechanism. The Ul elements on
the right show the active tools for the respective interaction steps.

(a) We start by creating a block of rigid cells using the add brush (we can remove
cells using the delete brush). Here we use the tool in cuboid mode, which allows
us to draw a filled rectangular region at once by just drawing the diagonal. (b) By

99

Alexandra Ion: Metamaterial Mechanisms

adding another two cuboids on top, we create the handle. (c) We select the shear
brush. Still in cuboid mode, we paint the central hinge array using a single drag
interaction, which causes rigid cells to turn into shear cells. Even though the block
of material we painted on is two cells high, the shear brush paints cells all the way
through — as we can tell from the sidewall now being all green. This is one of the
features of this brush: since shear cells backed by rigid cells would still be rigid, thus
have no effect, the shear brush always cuts shear cells through the entire object.

We now verify our design directly from within the editor, as illustrated by
(a) We select the anchor tool and use it to place a few anchor points at the bottom,
indicating that the door latch is here rigidly connected to the doorframe. (b) Now
we use the force tool to apply a force to the door handle. We attach a force arrow
to one of the handle’s cell vertices. As we are building up the force by dragging the
force tool the system already responds by showing the resulting deformation of our
door latch.

(@) o=
~LZLT

Figure 5: To simulate the deformation in real-time in the editor, (a) users set anchor
points and (b) adjust forces using the force tool.

4.2 Multiple Dimensions

While the door latch mechanism actuates in only two dimensions, our editor also
supports placing mechanisms in 3 dimensions. The latch mechanism shown in [Fig}
for example, combines a horizontal hinge array (blue) and a vertical hinge
array (green) in order to create a mechanism that users operate by pressing down,
sliding over, and releasing.

Our editor color-codes mechanisms automatically according to their orientation in
space. This is intended to provide users with a fast overview of the main dimensions
of action in their devices and to help recognize hinge arrays from odd viewing angles.
In the latch example, green denotes “shearing on the x/z plane” and blue stands
for “shearing on the x/y plane”. Analogously, red stands for “shearing on the y/z
plane”.

100

4 Metamaterial Mechanism Editor

Figure 6: This latch requires the ability to shear on two planes, i.e., on the x/z plane
denoted in green, and on the x/y plane indicated in blue.

Note that hinge arrays can overlap. In this case, cells at the intersection bear the
combination of all holes. These cells are rendered as the additive mixture of the
involved colors, such as yellow, for cells at the intersection between green and red.

4.3 Integration with Other Metamaterial Systems

The shear cell is the main element that enables metamaterial mechanisms. However,
to allow for the integration with metamaterials by other researchers, the editor can
be extended to allow for other cell types. In order to allow users to explore their own
cell types, we offer the advanced panel shown in [Figure 7} Users compose cells from
individual edges by selecting the respective edges. The editor automatically adds all
custom cells used in the current model to the cells panel for quick re-use.

A advanced

- Ll

% __;l.~__'.|

I'N 201N 721N 7

.

201N 20N 7
x

72 N1 /2 N1/ Ny VAN VRN
’ A R4 A R4 N, ’ A R4 A
F__I+__I+__IS .\._ Q__l+__l*
IS 201N 721N 7 1N 21N 7

Figure 7: Users compose custom cells by adding individual edges in the “advanced”

panel.

Furthermore, users can also create and store groups of cells, for example to create
auxetic materials , as shown in Since metamaterial mechanisms adhere
to the standard structure of 3D cell grids that is common for metamaterials, they
integrate with earlier research [10}[13].

101

Alexandra Ion: Metamaterial Mechanisms

- — ————7 7 | | | —

S S S T — [1 s .'Q' (j soft
/ S SR S T 1 \

VA—_ | R S N - s B 0% A% %

T |

- ._X‘ X‘ o °
: , B) -
/ g I ’ ~ 3 ~ 14.
P
NilEeR

>us

| | deformation simulation ~
edit anchors apply force

Figure 8: Users add groups of cells, here they create an auxetic material [8] from
a 4 x 2 group of cells.

5 System Implementation

In the following, we provide details on the internal processes implemented in our
metamaterial mechanisms editor.

5.1 Import

Users can import mesh geometries directly into our editor. We voxelize the meshes
using binvox{|according to the cell size that the user defined.

5.2 Editor

Our 3D editor is based on WebGL and uses three.js. Internally, the editor creates a
dictionary of cells that can be accessed using their position on the grid. Each cell is
defined by the 8 vertices making up its bounding box by and the edges that define
how the vertices are connected. Note that not all 8 vertices need to be connected by
edges.

All vertices lie on our uniform 3-dimensional grid. To generate the 3D cells’ struc-
tures, i.e., to generate 3D beams from 1D edges, we apply an offset to the vertices’
positions on the GPU. Since WebGL does not offer geometry shaders, we use a vertex
shader and pass the offset direction and the cell’s position with each vertex. The 8
vertices that form a beam are offset uniformly from the two edge vertices on the GPU.
To pass additional information about the color and thickness of beams to the shader,
we generate a texture where each pixel holds these data for one cell. The color maps
directly and the thickness is encoded in the alpha component. In the shader, every
vertex looks up its thickness in the texture and calculates the offsets for the new
vertices that render a beam from an edge. This enables us to emulate a geometry
shader in WebGL and perform all geometry processing on the GPU, which keeps
the user experience of our editor smooth.

Thttp://www.cs.princeton.edu/~min/binvox/ (last accessed 2016-10-20).

102

http://www.cs.princeton.edu/~min/binvox/

6 Conclusions and Future Work

5.3 Simulation

For simulating the deformation of the user’s cell structure, we use the finite elements
solver karambaf] which is a plugin for Grasshopper/Rhinoceros. We implemented a
custom C#-Grasshopper-component that receives the mesh data (vertices and edges)
and the data for the simulation (anchored vertices, force and vertex where the force
applies) via a web socket connection. When the simulation is complete, a second
custom component receives the transformed mesh vertices and sends them back to
the editor. The vertices are kept in the same order within the array as they were
received from the editor. We run the simulation on a separate machine to keep the
editor running smoothly.

Maintaining the order of the vertices is important to enable geometry processing
on the GPU. In the editor, we generate another texture and store the transformed
vertices, where XYZ is mapped to RGB. The shader knows the vertex” undeformed
position on the grid and looks up the deformed position in the texture.

Depending on the size of the object that is simulated, solving for the deformation
can lead to perceivable delays. To compensate for this, our editor interpolates the
deformation while the response from the simulation is pending. To do so, we pass
the last force where we received the transformation from the server, and the current
force that was submitted to the simulation and interpolate the vertex transformation
linearly.

5.4 Export

We generate an .stl file for the user that is ready to be 3D printed. Our export is
based on OpenJSCAD. In this step, we refine the cell structure from the simplified
editor view to our beams with stiff members and thin living hinges. For every edge
that belongs to a shear cell, we create a beam with a thick part in the middle. Edges
that are part of rigid cells are generated as simple straight beams. Finally, we use
OpenJSCAD’s built-in render engine, which we invoke directly from our 3D editor
to perform the union operations and generate the .stl file.

6 Conclusions and Future Work

In this paper, we introduced metamaterial mechanisms. While metamaterials so far
had been understood as materials, the main contribution of this paper is that we
think of them as machines.

On the most basic level, it was the shear cell that allowed us to implement this new
perspective on metamaterials. The shear cell allowed us to redirect forces and thus to
create basic mechanisms, compound mechanisms, and ultimately simple machines.

Zhttp://www.karamba3d.com/| (last accessed 2016-10-20).

103

http://www.karamba3d.com/

Alexandra Ion: Metamaterial Mechanisms

While our approach offers tangible benefits for users (e.g., it solves mechanical
problems in a single part, thereby eliminates the need for assembly), we see the main
promise of this work in that it allows us to achieve a deeper integration between the
structural and the mechanical functions of materials.

For future work, we plan to continue on this path by investigating how to integrate
logical functions into material.

6.1 Acknowledgements

We want to thank all the co-authors of this paper [5]: Johannes Frohnhofen, Ludwig
Wall, Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen,
and Patrick Baudisch.

We thank David Lindlbauer for his insights and for printing many of our pro-
totypes. We also thank Louis Kirsch, Moritz Hilscher, David Stangl, Arthur Silber,
Friedrich Horschig and Noel Danz for their contribution to earlier versions of this
work.

References

[1] B.Bickel, M. Bacher, M. Otaduy, H. R. Lee, H. Pfister, M. Gross, and W. Matusik.
“Design and fabrication of materials with desired deformation behavior”. In:
ACM Transactions on Graphics 29.4 (2010). ISSN: 0730-0301. DOL: |10.1145/1833351]
1778800.

[2] J.C. A.Elipe and A. D. Lantada. “Comparative study of auxetic geometries
by means of computer-aided design and engineering”. In: Smart Materials and
Structures 21.10 (2012), page 105004. ISSN: 0964-1726.

[3] J. Hiller and H. Lipson. VoxCAD. Sept. 2016. URL: https://sites.google.com/site/
voxcadproject/| (last accessed 2016-10-20).

[4] L.L.Howell,S.P.Magleby, and B. M. Olsen. Handbook of Compliant Mechanisms.
John Wiley and Sons, 2013.

[5] A.Ion,]. Frohnhofen, L. Wall, R. Kovacs, M. Alistar, J. Lindsay, P. Lopes, H.-T.
Chen, and P. Baudisch. “Metamaterial mechanisms”. In: Proceedings of UIST"16.
2016. DOI: |10.1145/2984511.2984540.

[6] Y.Ishiguro and I. Poupyrev. “3D printed interactive speakers”. In: Proceedings
of CHI'14. 2014, pages 1733—1742. ISBN: 978-1-4503-2473-1. DOL 10.1145/2556288|
2557046.

[7] L.Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-
Or, and B. Chen. “Build-to-Last: Strength to Weight 3D Printed Objects”. In:
ACM Transactions on Graphics 33.4 (2014). ISSN: 1557-7333. DOL 10.1145/2601097
2601168.

104

https://doi.org/10.1145/1833351.1778800
https://doi.org/10.1145/1833351.1778800
https://sites.google.com/site/voxcadproject/
https://sites.google.com/site/voxcadproject/
https://doi.org/10.1145/2984511.2984540
https://doi.org/10.1145/2556288.2557046
https://doi.org/10.1145/2556288.2557046
https://doi.org/10.1145/2601097.2601168
https://doi.org/10.1145/2601097.2601168

[8]

References

M. Mir, M. N. Alj, J. Sami, and U. Ansari. “Review of Mechanics and Applica-
tions of Auxetic Structures”. In: Advances in Materials Science and Engineering
(2014), pages 1—17. 15sN: 1687-8434. DOI: 10.1155/2014/753496.

T. Mullin, S. Deschanel, K. Bertoldi, and M. Boyce. “Pattern transformation
triggered by deformation”. In: Physical Review Letters 99.8 (2007), pages 1—4.
ISSN: 0031-9007. DOI: |10.1103/PhysRevLett.99.084301.

J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, and D. Zorin. “Elastic
Textures for Additive Fabrication”. In: ACM Transactions on Graphics 34.4 (2015).
DOI:10.1145/2766937.

J. Paulose, A. S. Meeussen, and V. Vitelli. “Selective buckling via states of self-
stress in topological metamaterials”. In: arXiv preprint (2015), page 12. arXiv:
1502.03396.

R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung. “Make It Stand:
Balancing Shapes for 3D Fabrication”. In: ACM Transactions on Graphics 32.4
(2013). 15SN: 0730-0301. DOI: 10.1145/2461912.2461957.

C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross. “Mi-
crostructures to control elasticity in 3D printing”. In: ACM Transactions on
Graphics 34.4 (2015). 1SSN: 0730-0301. DOI: 10.1145/2766926.

J. G. Tanenbaum, A. M. Williams, A. Desjardins, and K. Tanenbaum. “Democ-
ratizing technology: pleasure, utility and expressiveness in DIY and maker
practice”. In: Proceedings of CHI'13. 2013, pages 2603—-2612. ISBN: 978-1-4503-
1899-0. DOI: |10.1145/2470654.2481360.

C. Weichel, M. Lau, D. Kim, N. Villar, and H. W. Gellersen. “MixFab: A Mixed-
reality Environment for Personal Fabrication”. In: Proceedings of CHI'14. 2014,
pages 3855—3864. 1sBN: 978-1-4503-2473-1. DOI: |10.1145/2556288.2557090.

K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev. “Printed optics: 3D
printing of embedded optical elements for interactive devices”. In: Proceedings
of UIST 12. 2012, pages 589—598. 1sBN: 978-1-4503-1580-7. DOI: 10.1145/2380116
2380190.

105

https://doi.org/10.1155/2014/753496
https://doi.org/10.1103/PhysRevLett.99.084301
https://doi.org/10.1145/2766937
http://arxiv.org/abs/1502.03396
https://doi.org/10.1145/2461912.2461957
https://doi.org/10.1145/2766926
https://doi.org/10.1145/2470654.2481360
https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/2380116.2380190
https://doi.org/10.1145/2380116.2380190

Profiling the Web of Data

Anja Jentzsch

Information Systems Group
Hasso-Plattner-Institut
anja.jentzsch@hpi.uni-potsdam.de

The Web of Data contains a large number of openly-available datasets covering a
wide variety of topics. In order to benefit from this massive amount of open data
such external datasets must be analyzed and understood already at the basic level
of data types, constraints, value patterns, etc.

For Linked Datasets such meta information is currently very limited or not avail-
able at all. Data profiling techniques are needed to compute respective statistics
and meta information. However, current state of the art approaches can either not
be applied to Linked Data, or exhibit considerable performance problems. This
paper presents my doctoral research which tackles these problems.

1 Problem Statement

Over the past years, an increasingly large number of data sources has been published
as part of the Web of Data. This trend, together with the inherent heterogeneity of
Linked Datasets and their schemata, makes it increasingly time-consuming to find
and understand datasets that are relevant for integration. The true value of Linked
Data becomes apparent when datasets are analyzed and understood already at the
basic level of data types, constraints, value patterns etc. For Linked Datasets and
other Web data meta information is currently quite limited or not available at all. Such
data profiling is especially challenging for RDF data, the underlying data model on
the Web of Data. In comparison to other data models, e.g., the relational model, RDF
often lacks explicit schema information that precisely defines the types of entities
and their attributes.

Existing work on data profiling often can not be applied to Linked Datasets due
to their different nature. To overcome this gap we introduce a comprehensive list of
data profiling tasks which compute the most important statistical properties along
different groupings.

Finding information about Linked Datasets is an open issue on the constantly
growing Web of Data. While most of the Linked Datasets are listed in registries as
for instance at the Data Hub (datahub.i0), these registries usually are manually
curated. Existing means and standards for describing datasets are often limited in
their depth of information. We present approaches and challenges for cataloging
Linked Datasets and retrieving basic metadata.

Data profiling often exhibits considerable performance problems. We introduce
three common techniques for improving performance, and present an approach that
relies on parallelization and adapts multi-query optimization for relational data to
optimize execution plans of Linked Data profiling tasks [5].

107

mailto: anja.jentzsch@hpi.uni-potsdam.de

Anja Jentzsch: Profiling the Web of Data

As Linked Datasets are usually sparsely populated, key candidates often consist
of either multiple low-density properties or cannot be found at all. We present two
approaches for key discovery, a traditional unique column combination adaption
and an approach that tackles the sparsity on the Web of Data by combining the
uniqueness and density of properties [8]. Furthermore, since ontologies are topically
clustered by their underlying ontologies, we analyze how to retrieve key candidates
per topic cluster.

As Linked Datasets grow on the web, their entities and links among them form
intricate graphs, and intrinsic patterns emerge. While graph patterns and pattern
mining are known concepts with many methods, we propose an explorative and vi-
sual approach to engage in and understand the semantics of Linked Datasets. To this
end, we formally define a set of frequent patterns based on our initial observations.
We then propose an extensible algorithm to efficiently extract such patterns and
their variations from very large Linked Datasets [7]. Interestingly, we observe many
re-occurring motifs across various heterogeneous datasets, suggesting an underlying
regularity of how data accretes.

All presented approaches are evaluated thoroughly on real-world datasets, and
are implemented in the interactive Linked Data profiling suite ProLop++ [1].

2 Related Work

While many general tools and algorithms already exist for data profiling, most of
them cannot be used for graph datasets, because they assume a relational data struc-
ture, a well-defined schema, or simply cannot deal with very large datasets. Nonethe-
less, some Linked Data profiling tools already exist. Most of them focus on solving
specific use cases instead of data profiling in general.

One relevant use case is schema induction, because the lack of a fixed and well-
defined schema is a common problem with Linked Datasets. One example for this
field of research is the ExpLOD tool [10]. ExpLOD creates summaries for RDF graphs
based on class and property usage as well as statistics on the interlinking between
datasets based on owl:sameAs links.

Li describes a tool that can induce the actual schema of an RDF dataset [12]. It
gathers schema-relevant statistics like cardinalities for class and property usage, and
presents the induced schema in a UML-based visualization. Its implementation is
based on the execution of SPARQL queries against a local database. Like ExpLOD, the
approach is not parallelized. Both solutions still take approximately 10h to process a
10 million triples dataset with 13 classes and go properties. These results illustrate
that performance is a common problem with large Linked Datasets.

An example for the query optimization use-case is presented in [11]. The authors
present RDFStats, which uses Jena’s SPARQL processor to collect statistics on Linked
Datasets. These statistics include histograms for subjects (URIs, blank nodes) and
histograms for properties and associated ranges.

Others have worked more generally on generating statistics that describe datasets
on the Web of Data and thereby help understanding them. LODStats computes

108

owl:sameAs

3 Large Scale Data Profiling

statistical information for datasets from the Data Hub [2]. It calculates 32 simple
statistical criteria, e.g. cardinalities for different schema elements and types of literal
values (e.g. languages, value data types).

In [3] the authors automatically create VoID descriptions for large datasets us-
ing MapReduce. They manage to profile the BTC2010 dataset in about an hour on
Amazon’s EC2 cloud, showing that parallelization can be an effective approach to
improve runtime when profiling large amounts of data.

3 Large Scale Data Profiling

The process of running data profiling tasks for large Linked Datasets can take hours
to days, depending on the complexity of task and the size of the respective datasets.
Data set characteristics highly influence the profiling task runtime. As an example,
our Property Cooccurrence by Resource script runs 16 hours for only 1 million triples of
the Web Data Commons RDFa dataset in contrast to 5 min on Freebase and 9 min
on DBpedia.

We have compiled a list of 56 data profiling tasks implemented in Apache Pig to be
executed on Hadoop. At this point Apache Pig only applies some basic logical opti-
mization rules, like removing unused statements [6]. We present Lobop, a framework
for executing, optimizing, and benchmarking such a set of profiling tasks, highlight
reasons for poor performance when executing the scripts sequentially, and develop a
number of optimization techniques. In particular, we developed and evaluated three
multi-script optimization rules for combining logical operators in the execution plans
of profiling scripts.

3.1 Multi-query optimization for Apache Pig

A prevalent goal for relational database optimization is to reduce the amount of
required full table scans, which for file-based database systems effectively means
reducing the amount of disk operations. Sellis introduces Multi-Query Optimization
for relational databases as the process of optimizing a set of queries which may
share common data [13]. The goal is to execute these queries together and reduce the
overall effort by executing similar parts only once. The optimization process consists
of two parts: identifying shared parts in multiple queries and finding a globally
optimal execution plan that avoids superfluous computation.

Apache Pigfl|is a platform for performing large-scale data transformations on top
of Hadoop clusters. It provides a high-level language (called Pig Latin) for specifying
data transformations, e.g. selections, projections, joins, aggregations and sorting
on datasets. Pig Latin scripts are compiled into a series of MapReduce tasks and
executed on a cluster.

*http://pig.apache.org/ (last accessed 2016-10-20).

109

http://pig.apache.org/

Anja Jentzsch: Profiling the Web of Data

The main goals for our multi-query optimization rules for Pig are the following
two: First, we attempt to minimize the dataflow between operators. In our evaluation
we identified the dataflow between MapReduce jobs as a reasonable indicator for
the performance of Pig scripts, as it is closely related to the amount of required
HDFS operations. Second, we try to avoid performing identical or similar operations
multiple times. The idea behind this is to free up cluster resources for other tasks.
All optimization rules presented in this section, are based on optimizing the logical
plans of Pig scripts.

Three optimization rules have been implemented: Rule 1 merges identical oper-
ators in logical plans of different scripts, Rule 2 combines FILTER operators, and
Rule 3 combines aggregations, i.e. FOREACH operators. Rule 1 is a prerequisite for the
other two rules, which work on pairs of siblings operators, i.e. operators that have
the same parent operator in a respective logical plan. For all optimization rules, it
was important to make sure that their usage does not affect the intended output of
scripts.

Rule 1 — Merge identical operators In order to better utilize cluster resources, it
makes sense to submit jobs to Hadoop in parallel. Lobor supports this by merging
logical plans of different scripts into a single large plan. In our experiments, executing
scripts in parallel as part of one large plan cuts execution time down to 25 % to 30 %
of the time required to execute scripts sequentially. Once all plans have been merged
together, it’s possible to also merge identical operators. For 52 of our Pig scripts, this
reduces the number of operators from 365 to 267.

Rule 2 — Combine filters FILTER operators reduce the amount of data that needs
to be processed in later steps of the execution pipeline. This optimization rule aims to
avoid iterating over large sets multiple times. From our selection of profiling scripts,
25 scripts perform filtering operations on the full initial dataset.

First, we identify all suitable sibling filters, i.e. all FILTER operators that have
the same parent operator. Second, a combined filter is created and we attach it to
the same parent operator. This combined filter contains all boolean expressions of
existing filters concatenated via OR. The expression of the combined filter is cleaned
up by transforming it into disjunctive normal form. Finally, we re-arrange all previous
filters and move them after the combined filter.

Rule 3 — Combine aggregations FOREACH operators can be used for projections
and aggregations. Some instances perform identical aggregations, but project differ-
ent properties. This can happen, e.g. if the aggregation itself is only a preprocessing
step to another aggregation. These operators are not exactly identical, so the rule for
merging identical operators will not be able to merge them. However, these cases
can be optimized by separating the aggregation from the projection, i.e. performing
the aggregation only once with all projected columns, and then projecting the exact
columns afterwards. For our set of scripts, this rule can be applied in seven different
cases and combines varying numbers of FOREACH operators from the minimum of
two to a maximum of eleven siblings operators.

110

4 Uniqueness, Density, and Keyness of Data

While our goal is to optimize the performance of profiling tasks, the optimization
rules can be applied on any Pig script.

3.2 Evaluation

The number of MapReduce jobs and the amount of dataflow in the operator pipeline
are good indicators for the performance of Apache Pig scripts. Our evaluation shows
that improving only on these factors does not necessarily improve overall perfor-
mance. Merging identical operators reduces both the total number of operators and
the number of MapReduce jobs. It comes at the cost of less parallelism. Combining
filter operators was shown to reduce the execution time of map/reduce functions
(i.e. CPU time). Combining aggregations can reduce the amount of HDFSI/O, and
improves overall execution time for certain combinations of scripts and datasets.
shows execution times when optimizations are applied for all scripts. Overall
in our experiments, executing scripts in parallel and applying all optimization rules
cuts execution time down to 25 % to 30 % of the time required to execute scripts
sequentially.

B Sequential plan [l Merged plan (parallel execution) Identical operators merged
M Filter operators combined [l Aggregations combined [l All optimizations applied

DBpedia 1M

Freebase 1M

Dataset

WDC-RDFa 1M

EUNIS 1M

Omin 40min 80min 120min

Excecution Time

Figure 1: Execution time for all optimizations (52 scripts).

4 Uniqueness, Density, and Keyness of Data

As Linked Datasets are usually sparsely populated, minimal unique property com-
binations (key candidates) often consist of either multiple low-density properties or
cannot be found at all. Novel property attributes, such as the uniqueness, density,
and keyness of a property are needed to discover the set of properties that likely
identifies an entity, the key candidates. Furthermore, since ontologies are topically
clustered by their underlying ontologies, these attributes can be determined per clus-

111

Anja Jentzsch: Profiling the Web of Data

ter and give some detailed insights into the properties that serve as key candidates
per topic.

A Linked Dataset’s class hierarchy is the taxonomy defined by its ontology and
therein the rdfs:subClassOf relations between the classes. A cluster C, for a class ¢
consists of all the entities e that are of rdf:type ¢, which includes all subclasses of c.

C. = {ele rafitype, c}

Clusters can contain entities e that are not in any of its subclusters d. We cluster these
entities separately and call the resulting clusters unspecialized clusters, denoted as C,.

Cé —C, \ {6 | 0 rdf:tylﬂe\ 4 d rdfs:subClassO f C}

We omit the ¢ subscript where it is irrelevant in the context. As an additional compli-
cation, properties on the Web of Data can have multiple property values. E.g., in the
DBpedia dataset we find the following four values for the property dbpedia:birthPlace
for the entity of Albert Einstein:
dbpedia:Albert_Einstein dbpedia:birthPlace dbpedia:Ulm,
dbpedia:Kingdom_of_Wuerttemberg,
dbpedia:German_Empire
dbpedia:Baden-Wuerttemberg .

We denote the set of property values of an entity e and property p as V (e, p). To
count the number of entities in a cluster C that have at least one value for p, we define
V(C,p) ={e||V(e,p)| > 0,e € C}.Property values of a property p and two entities
el and e2 are equal if V(el, p) = V(e2, p), i.e., if the two sets are identical. With this
definition we further define the set of unique value sets as V,,,(C, p) = {V (e, p) |e € C}.

We are now ready to define the three attributes, uniqueness, density, and keyness,
of a property. The uniqueness uq of a property p for a cluster C is the number of unique
value sets V;,;(C, p) per number of total value sets V(C, p) for the given property.

Vi (C,
Uniqueness: uq(C,p) = M

The density d of a property p for a cluster C is the ratio of entities in C that have p to
the overall number of entities in C.

(1)

V(G p)

] (2)

Density: d(C,p) =

We call a property full key candidate if its density and uniqueness are both 1. For

cases where they are not both 1 we define its keyness as a useful attribute. The keyness

k of a property p for a cluster C is the harmonic mean of its uniqueness and density.

The harmonic mean emphasizes that both parameters must be high to achieve an
overall high keyness:

2-uq(C,p)-d(C,p)
Keyness: k(C,p) = ug(C,p) +4d(C,p)

(3)

112

5 Graph Structures in Linked Datasets

We call a property key candidate if its keyness is above some threshold.

We investigate the three attributes of an RDF property, uniqueness, density, and
keyness, for the given cluster types C, and C’. Determining uniqueness, density, and
keyness for a property p in a cluster C. requires analyzing all property value sets for
all entities in the given cluster. We observe all kinds of specificities of properties for
clusters and their subclusters that allow for a fine-grained, cluster-based retrieval of
key candidates.

Our evaluation shows that the property keyness can help discovering key candi-
dates for Linked Datasets. It also highlights the advantages of analyzing the class
hierarchy in order to observe property behavior for classes along it and make better
choices when identifying key candidates for specific classes.

5 Graph Structures in Linked Datasets

Graph patterns are of interest to many communities, e.g. to understand protein
structures, to analyse network traffic, to support crime detection, to model object-
oriented data, and to query Rpr data.

We propose GraphLop, a system for general-purpose explorative and visual re-
search on Linked Dataset graphs to find frequent graph patterns, common graph
patterns for specific schema classes, and we give a uniform definition of interesting
patterns for Linked Datasets.

Frequent pattern mining is the essence of graph mining. The objective is to extract
all the frequent subgraphs (patterns, motifs) in a given graph, whose occurrence
counts are above a specified threshold. If there are common graph patterns amongst
multiple and many Linked Datasets, we can define a core set of graph patterns for
the Web of Data. Furthermore, we are interested in common patterns for specific
classes and class combinations.

Having these basic graph patterns at hand allows for various data management
tasks, namely data amendment, data cleansing, neighborhood prediction, and data
integration.

A number of frequent subgraph mining algorithms has been introduced since the
1990s, the most popular ones being gSpan [14] and GraMi [4]]. While these are useful
in certain application domains, such as the life sciences, the graph patterns we mined
from Linked Datasets with those methods proved to be neither representative nor
interesting as our evaluation shows later. We discuss both algorithms in more detail
as related work in the next section. Jiang et al. already note the absence of a pattern
mining approach for “compact and meaningful set of frequent subgraphs instead of
a complete set of frequent subgraphs [...] There is no clear understanding of what
kind of frequent subgraphs are the most compact and representative for any given
application” [9]. In fact, for our use case of analyzing Linked Datasets, we observe
re-occurring motifs across the datasets that often show a high similarity but are not
necessarily isomorphic. While there are e.g. 13,576 windmill graphs in DBpedia,
their size ranges between 5 and 453.

113

Anja Jentzsch: Profiling the Web of Data

Due to the different nature of Linked Datasets and the incompatibility of existing
pattern mining algorithms, we are defining a core set of patterns based on patterns
that we originally observed in the easy-to-visualize satellite components of the evalu-
ated datasets.

To not only mine the data but to also allow users to interactively explore the results,
we have significantly extended our prototype ProLop++, which features many basic
as well as specific profiling tasks for a given Rpr dataset, and allows easy extension
by further techniques. It is available at http://prolod.org. We implemented and added
the GraphLop library, which provides the following functionality:

* Basic graph statistics, such as the number of connected components and strongly
connected components, their corresponding diameter, chromatic number, and
node degree distribution.

* Visualization of connected components and their isomorphic groups.
¢ Three graph pattern mining algorithms.

* Visualization of frequent graph patterns with class coloring and their color-
isomorphic groups.

¢ Interactive graph structure exploration in a faceted fashion.

Overview Graph Analysis Properties Inverse Properties Association Rules Synonyms Key Discovery

- Graphs / Pattern 1

® (¢}
» DailyMed (11,271) 6 o ® [5) O
> Dl.Spedia (4,222,586) @ @ ° <y [S
¥ Diseasome (9,047) o °
v W diseases (4,213 o @
v W genes (9,743)
» DrugBank (19,694)
) LinkedMDB (631,003 o)
o (o)
[°] o 0.0
oL . o) e)
() O
(&}
*—9® °
°
(&) e}
(e}
= ° —® @ O 4
Statistics: Class distribution:
Pattern: M) diseases

B genes
unknown
Nodes: 5

Edges: 5

Diameter: 2

Figure 2: Class-colored instances of a pattern (antenna) in Diseasome visualized by
ProLop++.

is a screenshot of ProLop++ showing all occurrences of a selected pattern
and their class distribution along with some statistical information.

114

http://prolod.org

6 Reflections and Conclusion

Our approach to first define the compact pattern and then mine for the exact as
well as larger representations takes into account the variability and repetition that
occur in Linked Datasets. Grouping the patterns by their class combinations allows
for a more fine-granular analysis of the underlying patterns in the data and patterns
that are specific for certain class combinations.

Our evaluation on five representative Linked Datasets reveals a high number of
pattern occurrences among all of them. We show how graph patterns can support
various data management tasks. Furthermore, we discuss how graph pattern mining
can highlight the benefits of dataset integration.

6 Reflections and Conclusion

The main difference in my approach with existing work on Linked Data profiling is
to address the shortcomings mentioned in [section 2} in particular gathering compre-
hensive metadata in an efficient way. Within my research I am building on existing
profiling techniques for relational data and adapting them according to the different
nature of Linked Datasets.

This paper has presented the outline and preliminary results of my doctoral re-
search, in which I am focussing on profiling the Web of Data.

We have specified and implemented a comprehensive set of Linked Data profiling
tasks and illustrated the Web of Data’s diversity with the results for four different
Linked Datasets. Furthermore we introduced three common techniques for improv-
ing performance of Linked Data profiling and implemented three multi-query opti-
mization rules, reducing profiling task runtimes by 70 %.

We have introduced the concept of keyness (and therein uniqueness and density)
of a property to address the sparsity on the Web of Data and thus create the possibil-
ity to find key candidates where traditional approaches fail. Our approach has been
implemented in ProLop++ and provides users with the uniqueness, density, and
keyness for all properties. Having these profiling results at hand helps users in find-
ing key candidates and analyzing the relevance of properties along class hierarchies
in Linked Datasets.

We presented the GraphLop extension for ProLop++, which offers Ror graph anal-
ysis features. It allows for interactively exploring the graphical structures of Linked
Datasets by visualizing the connected components and the graph patterns mined
from them. Furthermore it offers basic graph statistics as node degree distribution,
pattern diameter, and more. Furthermore we defined a set of graph patterns that
can be considered the core of most Linked Datasets.

115

Anja Jentzsch: Profiling the Web of Data

References

[1]

[2]

[7]

[8]

[10]

[11]

[12]

Z. Abedjan, T. Griitze, A. Jentzsch, and F. Naumann. “Mining and Profiling
RDF Data with ProLOD++". In: Proceedings of the International Conference on
Data Engineering (ICDE). Demo. 2014.

S. Auer, J. Demter, M. Martin, and J. Lehmann. “LODStats — an extensible
framework for high-performance dataset analytics”. In: Proceedings of the Int.
Conf. on Knowledge Engineering and Knowledge Management (EKAW). 2012.

C.B6hm, J. Lorey, and F. Naumann. “Creating VoiD Descriptions for Web-scale
Data”. In: Journal of Web Semantics 9.3 (2011), pages 339—345.

M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. “GRAMI: Frequent
Subgraph and Pattern Mining in a Single Large Graph”. In: PVLDB 7.7 (2014),
pages 517-528. IssN: 2150-8097.

B. Forchhammer, A. Jentzsch, and F. Naumann. “LODOP — Multi-Query Opti-
mization for Linked Data Profiling Queries”. In: ESWC Workshop on Profiling
& Federated Search for Linked Data (PROFILES). 2014.

A. Gates, J. Dai, and T. Nair. “Apache Pig’s Optimizer”. In: IEEE Data Engineer-
ing Bulletin 35.1 (2013), pages 34—45.

A. Jentzsch, C. Dullweber, P. Troiano, and F. Naumann. “Exploring Linked
Data Graph Structures”. In: Proceedings of the ISWC 2015 Posters & Demonstra-

tions Track co-located with the 14th International Semantic Web Conference (ISWC-
2015), Bethlehem, PA, USA, October 11, 2015. 2015.

A. Jentzsch, H. Miihleisen, and F. Naumann. “Uniqueness, Density, and Key-
ness: Exploring Class Hierarchies”. In: Proceedings of the 6th International Work-
shop on Consuming Linked Data (COLD 2015). 2015.

C. Jiang, F. Coenen, and M. Zito. “A survey of frequent subgraph mining
algorithms”. In: The Knowledge Engineering Review 28.1 (2013), pages 75-105.
ISSN: 1877-0509. DOI: 10.1017/50269888912000331.

S. Khatchadourian and M. P. Consens. “ExpLOD: Summary-Based Exploration
of Interlinking and RDF Usage in the Linked Open Data Cloud”. In: Proceedings
of the Extended Semantic Web Conference (ESWC). Heraklion, Greece, 2010. 1sBN:
978-3-642-13489-0.

A.Langegger and W. Wofs. “RDFStats — An Extensible RDF Statistics Generator
and Library”. In: Proceedings of the International Workshop on Database and Expert
Systems Applications (DEXA). Los Alamitos, CA, USA, 2009, pages 79-83.

H. Li. “Data Profiling for Semantic Web Data”. In: Proceedings of the International
Conference on Web Information Systems and Mining (WISM). 2012. 1sBN: 978-3-
642-33469-6.

T. K. Sellis. “Multiple-query optimization”. In: ACM Transactions on Database
Systems (TODS) 13.1 (1988), pages 23—-52. ISSN: 0362-5915.

116

https://doi.org/10.1017/S0269888912000331

References

[14] X. Yan and J. Han. “gSpan: Graph-Based Substructure Pattern Mining”. In:
Proceedings of the IEEE International Conference on Data Mining (ICDM). 2002,

pages 721-724.

117

Creating Structurally Sound Truss Structures
on Desktop 3D Printers

Robert Kovacs

Human Computer Interaction group
Hasso-Plattner-Institut
robert.kovacs@hpi.uni-potsdam.de

We present TrussFab, an integrated end-to-end system that allows users to fabri-
cate large scale structures that are sturdy enough to carry human weight. TrussFab
achieves the large scale by complementing 3D print with plastic bottles. It does not
use these bottles as “bricks” though, but as beams that form structurally sound
node-link structures, also known as trusses, allowing it to handle the forces result-
ing from scale and load. TrussFab embodies the required engineering knowledge,
allowing non-engineers to design such structures and to validate their design us-
ing integrated structural analysis. We have used TrussFab to design and fabricate
tables and chairs, a 2.5 m long bridge strong enough to carry a human, a functional
boat that seats two, and a 5 m diameter dome.

1 Introduction

Personal fabrication tools, such as 3D printers have become popular in HCI, where
they have been used for fast prototyping [16] as well as to fabricate interactive ob-
jects [10]], optical elements [26]], or kinematic characters [4]]. Since 3D printers today
are available in a desktop form factor, they have been able to spread to the maker
community [23] and are now increasingly reaching the consumer market [20].

In contrast, the fabrication of large objects still has remained a privilege of industry,
which has access to specialized equipment, such as concrete printers that allow
making houses [12] or robotic arms capable of 3D printing [17]. The owners of the
widespread desktop devices, in contrast, cannot participate in this evolution, because
the underlying technology does not scale. Even techniques that break down large
models into printer sized parts [14] ultimately do not scale, as large models consume
material and time proportional to their size, which quickly renders 3D printing and
related techniques intractable for larger-than-desktop-scale models.

As an alternative approach, fabrication enthusiasts have created large objects by
combining 3D print with ready-made objects, such as plastic bottles [9]. In their
simplest form, such objects wrapped in 3D print can serve as 3D voxel collages that
approximate the volume of an object [28].

Going larger, however, is not only about scale and print volume. For large objects,
the main design objective is typically to withstand large forces, as forces grow cubed
with the size of the object. Also, large objects afford substantial external loads; furni-
ture, bridges, and vehicles, for example, all must be engineered to hold the weight
of a human. Designing for large forces, however, requires substantial engineering

119

mailto:robert.kovacs@hpi.uni-potsdam.de

Robert Kovacs: Creating Structurally Sound Truss Structures on Desktop 3D Printers

skill [6] from envisioning appropriate structures in the first place to verifying their
structural integrity.

In this paper, we present TrussFab, an integrated end-to-end system that allows
users to design large structures that are sturdy enough to carry human weight
[ure 1). TrussFab achieves this by taking a different perspective on bottles. Unlike
previous systems that stacked bottles as if they were “bricks”, TrussFab considers
them as beams and uses them to form structurally sound node link structures based
on closed triangles, also known as trusses. TrussFab embodies the required engi-
neering knowledge, allowing non-engineers to design such structures. TrussFab also
allows users to validate their designs using integrated structural analysis (Figure 4).
Our main contribution is this end-to-end system.

® st - o x “ "-

truss

HP G

tetra octa | beam | biock

facade

\Aﬁ

single | triangle | fil

modify

* b X
el
grow shrink deform delete

add-ons convert
g s
pod cover surface volume

stability check

&

addtest| check
load | | stability

Figure 1: (a) TrussFab’s editor allows users to fabricate large structures sturdy enough
to carry human weight. (b) TrussFab considers bottles as beams that form struc-
turally sound node-link structures also known as trusses, allowing it to handle
the forces resulting from scale and load.

120

2 Related Work

2 Related Work

TrussFab builds on previous efforts in the following branches: large-scale personal
fabrication, design with existing objects and construction kits, and tools for creating
structurally sound objects.

2.1 Large-scale personal fabrication

Architects and engineers have made efforts to scale up the additive manufacturing
process for constructing large-scale structures, such as houses or sculptures. These
efforts mostly involve a scaled-up version of the common machinery, like concrete
printers [12], or breaking down the objects into smaller parts to print on desktop
machines [14]. Another approach to fabricating architectural-scale objects is the
use of mobile printing robots, which move on the ground [11] or fly [27] around
the printed object. Yet another approach is to use human assisted devices, such as
Protopiper [1]. Similarly, Yoshida et al. [29] proposed a computer-assisted fabrication
method for large-scale architecture that combines a handheld chopstick dispenser
with a projector-based guiding system.

2.2 Construction kits

Construction kits are popular for fast prototyping and fabrication. They offer a reper-
toire of prefabricated elements which can be combined in various ways. Henrik and
Kobbelt [30] developed a system to accurately approximate complex shapes using
the Zometool mathematical modeling kit. Skouras et al. [21] created an interactive
editor to computationally combine interlocking elements into a desired shape.

2.3 Designing with ready-made objects

MixFab [25], and Encore [3] allow users to integrate existing objects into their design.
For creating objects enclosing electronic components Ashbrook et al. [2]] developed
an augmented fabrication system. Devendorf and Ryokai [5] proposed a human-
assisted fabrication system that helps users incorporate everyday objects into 3D
print. Gellért assembled wooden boards combined with 3D printed connectors in
node-link structure [8]. Combining carbon tubes with 3D printed metal has been
proposed for creating functional cars [6]. Skilled individuals have stacked or tied
plastic bottles in order to make art pieces, furniture, rafts or houses [9]. Yamada et
al. [29] proposed a system for arranging ready-made objects into 3D shapes using
3D printed connectors.

2.4 Tools for creating structurally sound objects
Smith et al. [22] developed a system that automatically generates truss structures

using nonlinear optimization. Makris et al. [15] proposed a design tool that gener-
ates parametrically defined, semi-automatically analyzed, and visualized structures.

121

Robert Kovacs: Creating Structurally Sound Truss Structures on Desktop 3D Printers

Figure 2: (a) Large objects involve large levers, causing them (b) to break under load.
(c) TrussFab instead affords structures based on closed triangles, here forming
a tetrahedron. Such structures are particularly sturdy. (d) TrussFab extends this
concept to tetrahedron-octahedron trusses of arbitrary size.

Wang et al. [24] developed an automated method that minimizes material cost by
converting solid 3D models into a skin-frame structure. SketchChair [19] is an inter-
active chair design system that allows users to validate the structural integrity of
their design by subjecting it to the weight of a human rag doll.

3 Creating structurally sound structures using TrussFab

The key ideas behind TrussFab are (1) to employ bottles in their structurally most
sturdy way;, i.e., as beams from bottom to bottleneck and (2) to afford sturdy “closed
frame structures”, also known as trusses [13]]. While freestanding bottles tend to
break easily (Figure 2p/b), truss structures essentially consist of triangles. In such an
arrangement, it is the structure that prevents deformation, not the individual bottle.
The main strength of trusses is that they turn lateral forces (aka bending moments)
into tension and compression forces along the length of the edges (aka members).
Bottles make great members: while they buckle easily when pushed from the side,
they are very strong when pushed or pulled along their main axis. (c) The resulting
structures, such as this tetrahedron, are strong enough to bear the weight of one or
more humans. (d) TrussFab affords building trusses by combining tetrahedra and
octahedra into so-called tetrahedral honeycomb structures.

The main design rationale behind the TrussFab editor is to afford this kind of
stable structures. We achieve this by starting any design with primitives that already
are miniature trusses, i.e., tetrahedra and octahedra; additional functions then allow
users to extend and tweak the structure while maintaining the truss property at all
times. Once the main truss structure has been created, users may add facades and
decorative details.

122

3 Creating structurally sound structures using TrussFab

Figure 3: (a) Pavilion created using the beam and block tools. (b) The roof is freely
deformed by pulling upwards using the deform tool. (c) The load-bearing structure
of the tipi is best made from trusses; (d) its sides can be filled using single layer
facades.

3.1 Editing truss structures efficiently

To create larger objects, TrussFab offers a number of tools that create larger trusses
in a single interaction, thus resulting in a more efficient design process. The beam
tool creates entire beams in one go. The legs of the pavilion in[Figure 3h were created
this way. The block tool creates a tetra-octa plane in one go. We used it to create the
roof of the pavilion in . It can also serve, for example, as a stage.

The deform tool allows users to deform trusses. In[Figure 3b we applied this tool
in order to obtain a curved roof. Using the tool, we grabbed a hub located in the
middle of the roof and dragged it upwards. The tool accommodates this by growing
and shrinking members throughout the truss (see section “Implementation”).

To support building with layered architecture, TrussFab complements its truss
tools with specialized facade tools. The editor offers facade tools for filling large
opening with facades. /d illustrates this. Users start by creating a load-
bearing structure in the form of trusses (Figure 3f). Users then fill in the non-load-
bearing sides as facades (Figure 3d). The benefit of this two-stage process is that
facades are particularly efficient. First, they are single-layer, thus require fewer bottles.
Second, the hubs that form a facade are flat; this allows TrussFab to fabricate such
hubs using a laser cutter, which is very fast (40x faster than 3D print).

3.2 Verifying stability

To demonstrate how TrussFab verifies the stability of the created objects, we use the
example of a chair design (Figure 4). First, TrussFab checks if the created structures
are structurally sound, TrussFab is checking if there are parts that are not completely
locked in place by other members and are subject to shearing forces. If found, the
software suggests placing additional stabilizing members. Our chair, however, is
rigid, so there are no warnings. For detailed description of the algorithm, see section
“Rigidity check”.

Second, to verify if the created structures can withstand the desired load, we select
the add weight tool and place virtual load on the impact points. illustrates
this on the example of a chair. We add 25kg weight on each of the three corners of

123

Robert Kovacs: Creating Structurally Sound Truss Structures on Desktop 3D Printers

the sitting plate. A click at the backrest adds another 10 kg pushing load into the
backrest. Clicking the check stability icon causes TrussFab to compute the effect of
these weights onto the structure using finite element analysis. As show in[Figure 4,
TrussFab shades all members accordingly. The six vertical members of the octahedron
now appear in shades of red, suggesting that these are experiencing compression.
So does the chair’s “backbone”. All other members are tinted blue, suggesting that
these are subject to tension. TrussFab compares these forces with the maximal load
members and hubs can hold. It warns the user if the limits are exceeded. This is not
the case here, so we now know that our chair model is structurally sound.

Figure 4: (a) To verify the chair’s structural stability we add the load forces expected
during use. The system now calculates internal compression and tension forces.
Here, no forces are exceeding the limit; thus no warnings are displayed. (b) As
predicted, the fabricated chair holds the human weight.

4 Implementation
4.1 TrussFab editor

We implemented TrussFab as an extension to the 3D editor SketchUp. It is written in
Ruby and JavaScript. It allows users to create 3D models, verify stability, and to trigger
the TrussFab Hub Generator. The grow and shrink tools affect the lengths of members
and consequently the angles between members. TrussFab restores the consistency of
the 3D model by running a dynamic relaxation algorithm, i.e., neighboring members
start to push-pull each other until they find the position that accommodates the
change. TrussFab iterates up to 10,000 cycles or until 0.1 mm accuracy has been
reached.

124

5 Conclusion

4.2 Finite element analysis

TrussFab uses karamba3 as its finite element engine [7]. This method models
each edge as a spring of particular stiffness and calculates the displacement of the
nodes under the given force. TrussFab treats all hubs as ball joints, allowing for
deformations without breaking. The bottle members are modelled as filled cylinders,
which are rigid in shear. The pods touching the ground are considered anchor points.
TrussFab sends the geometry of the model together with the specified load forces to
Karamba3sD in JSON format, which returns the resulting compression and tension
forces for each member.

4.3 Rigidity check

To check rigidity [18], TrussFab represents the 3D model as a node-link diagram.
From this graph G TrussFab forms a rigidity matrix. If the rank of this matrix is
equal 3n — 6 where n is the number of vertices in G TrussFab considers the structure
rigid. To shortly explain this, consider a movement of the vertices given by specifying
a velocity ;(t) for each vertex v; at every point in time t. Let p; be the initial position
of v;. Then the movement preserves the length of an edge v;v}, if and only if

(i(8) = () (pi —pj) =0

holds for every point in time. Thus, to check G for rigidity, we can instead test whether
velocities satisfying this equation for every edge exist. As each equation is linear, we
obtain a system of linear equations. This system can be written as A = 0 where . is
the vector of all velocities and each row of the matrix A corresponds to one equation.
The matrix A is the above mentioned rigidity matrix. Note that has dimension 3n
as we have one velocity for each vertex and each velocity is 3-dimensional. Thus, if
rank(A) = 3n — 6 then the solution space of A = 0 is 6-dimensional, which covers
exactly the trivial movements of rotating (in three dimensions) and translating (in
three dimensions) the whole graph. Hence, if rank(A) = 3n — 6, no other edge-
length preserving movement can exist, i.e. G is rigid.

5 Conclusion

TrussFab is an integrated end-to-end system that allows users to fabricate large
structures that are sturdy enough to carry human weight on desktop 3D printers.
Unlike previous systems that built on up-cycled plastic bottles combined with 3D
print, TrussFab considers bottles not as “bricks”, but as beams that form structurally
sound node link structures also known as trusses, allowing users to handle the
forces resulting from scale and load. TrussFab embodies the required engineering
knowledge, allowing non-engineers to design such structures and allows users to

Thttp://karamba3d.com (last accessed 2016-10-20).

125

http://karamba3d.com

Robert Kovacs: Creating Structurally Sound Truss Structures on Desktop 3D Printers

validate their designs using integrated structural analysis. In the future, we plan on
creating kinematic machines based on TrussFab structures.

References

[1]

(4]

[6]

[7]

[8]

[10]

H. Agrawal, U. Umapathi, R. Kovacs, J. Frohnhofen, H.-T. Chen, S. Mueller, and
P. Baudisch. “Protopiper: Physically Sketching Room-Sized Objects at Actual
Scale”. In: Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology. UIST "15. Daegu, Kyungpook, Republic of Korea: ACM,
2015, pages 427-436. Dor: 10.1145/2807442.2807505.

D. Ashbrook, S. S. Guo, and A. Lambie. “Towards Augmented Fabrication:
Combining Fabricated and Existing Objects”. In: Proceedings of the 2016 CHI
Conference Extended Abstracts on Human Factors in Computing Systems. CHI EA
"16. Santa Clara, California, USA: ACM, 2016, pages 1510-1518. por: 10.1145/
2851581.2892509.

X.”. Chen, S. Coros,]. Mankoff, and S. E. Hudson. “Encore: 3D Printed Aug-
mentation of Everyday Objects with Printed-Over, Affixed and Interlocked
Attachments”. In: Proceedings of the 28th Annual ACM Symposium on User In-
terface Software & Technology. UIST “15. Daegu, Kyungpook, Republic of Korea:
ACM, 2015, pages 73-82. DoI: 10.1145/2807442.2807498.

S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R. W. Sumner, W.
Matusik, and B. Bickel. “Computational Design of Mechanical Characters”. In:
ACM Trans. Graph. 32.4 (July 2013), 83:1-83:12. por: 10.1145/2461912.2461953.

L. Devendorf and K. Ryokai. “Being the Machine: Reconfiguring Agency and
Control in Hybrid Fabrication”. In: Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems. CHI "15. Seoul, Republic of Korea:
ACM, 2015, pages 2477-2486. 1sBN: 978-1-4503-3145-6. DOIL: (10.1145/2702123|
2702547.

Divergent3D: The World First 3D Printed Super Car. urL: http://www.divergent3d|
com/| (last accessed 2016-10-01).

J. Fish and T. Belytschko. A first course in finite elements. John Wiley & Sons,
2007. ISBN: 0-470-03580-3.

O. Gellért. Print To Build, 3D printed joint collection. URL: https://www.behance|
net/gallery /27812109 /Print-To-Build - 3D - printed - joint - collection| (last accessed
2016-10-01).

Homes Made from Plastic Bottles. URL: http://www.inspirationgreen.com/plastic-
bottle-homes| (last accessed 2016-10-01).

S. E. Hudson. “Printing teddy bears: a technique for 3D printing of soft in-
teractive objects”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM. 2014, pages 459—468. por: |10.1145/2556288.2557338.

126

https://doi.org/10.1145/2807442.2807505
https://doi.org/10.1145/2851581.2892509
https://doi.org/10.1145/2851581.2892509
https://doi.org/10.1145/2807442.2807498
https://doi.org/10.1145/2461912.2461953
https://doi.org/10.1145/2702123.2702547
https://doi.org/10.1145/2702123.2702547
http://www.divergent3d.com/
http://www.divergent3d.com/
https://www.behance.net/gallery/27812109/Print-To-Build-3D-printed-joint-collection
https://www.behance.net/gallery/27812109/Print-To-Build-3D-printed-joint-collection
http://www.inspirationgreen.com/plastic-bottle-homes
http://www.inspirationgreen.com/plastic-bottle-homes
https://doi.org/10.1145/2556288.2557338

[16]

[17]

[18]

[19]

[20]

[21]

[22]

References

S. Jokic, P. Novikov, S. Maggs, D. Sadan, S. Jin, and C. Nan. “Robotic position-
ing device for three-dimensional printing”. In: arXiv preprint arXiv:1406.3400
(2014).

B. Khoshnevis. “Automated construction by contour crafting-related robotics
and information technologies”. In: Automation in construction 13.1 (2004),
pages 5—19. por: 10.1016/j.autcon.2003.08.012.

T. T. Lan. “Space frame structures”. In: Handbook of Structural Engineering, CRC
Press, Boca Raton, FL (2005), pages 24-1.

M. Lau, A. Ohgawara, J. Mitani, and T. Igarashi. “Converting 3D furniture
models to fabricatable parts and connectors”. In: ACM Transactions on Graphics
(TOG). Volume 30. 4. ACM. 2011, page 85.

M. Makris, D. Gerber, A. Carlson, and D. Noble. “Informing Design through
Parametric Integrated Structural Simulation: Iterative structural feedback for
design decision support of complex trusses”. In: eCAADe 2013: Computation
and Performance — Proceedings of the 31st International Conference on Education and
research in Computer Aided Architectural Design in Europe, Delft, The Netherlands,
September 18-20, 2013. Faculty of Architecture, Delft University of Technology;
eCAADe (Education and research in Computer Aided Architectural Design
in Europe). 2013.

S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guimbretiére, and
P. Baudisch. “WirePrint: 3D printed previews for fast prototyping”. In: Proceed-
ings of the 27th annual ACM symposium on User interface software and technology.
ACM. 2014, pages 273—280. DOI: [10.1145/2642918.2647359.

P. Novikov and S. Jokié¢. Mataerial. urL: http://mataerial.com (last accessed
2016-10-01).

B. Roth. “Rigid and flexible frameworks”. In: The American Mathematical
Monthly 88.1 (1981), pages 6—21.

G. Saul, M. Lau, J. Mitani, and T. Igarashi. “SketchChair: An All-in-one Chair
Design System for End Users”. In: Proceedings of the Fifth International Conference
on Tangible, Embedded, and Embodied Interaction. TEI"11. Funchal, Portugal: ACM,
2011, pages 73-80. DOI: |10.1145/1935701.1935717.

R. Shewbridge, A. Hurst, and S. K. Kane. “Everyday Making: Identifying Fu-
ture Uses for 3D Printing in the Home”. In: Proceedings of the 2014 Conference
on Designing Interactive Systems. DIS "14. Vancouver, BC, Canada: ACM, 2014,
pages 815-824. por: 10.1145/2598510.2598544.

M. Skouras, S. Coros, E. Grinspun, and B. Thomaszewski. “Interactive Surface
Design with Interlocking Elements”. In: ACM Trans. Graph. 34.6 (Oct. 2015),
224:1—224:7. DOI:|10.1145/2816795.2818128.

J. Smith,]J. Hodgins, I. Oppenheim, and A. Witkin. “Creating Models of
Truss Structures with Optimization”. In: ACM Trans. Graph. 21.3 (July 2002),
pages 295—301. DOI: 10.1145/566654.566580.

127

https://doi.org/10.1016/j.autcon.2003.08.012
https://doi.org/10.1145/2642918.2647359
http://mataerial.com
https://doi.org/10.1145/1935701.1935717
https://doi.org/10.1145/2598510.2598544
https://doi.org/10.1145/2816795.2818128
https://doi.org/10.1145/566654.566580

Robert Kovacs: Creating Structurally Sound Truss Structures on Desktop 3D Printers

[23]

[26]

[27]

[28]

J. G. Tanenbaum, A. M. Williams, A. Desjardins, and K. Tanenbaum. “Democ-
ratizing technology: pleasure, utility and expressiveness in DIY and maker
practice”. In: Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. ACM. 2013, pages 2603—2612. 1SBN: 978-1-4503-1899-0.

W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen, and
X. Liu. “Cost-effective Printing of 3D Objects with Skin-frame Structures”. In:
ACM Trans. Graph. 32.6 (Nov. 2013), 177:1-177:10. DOL: 10.1145/2508363.2508382.

C. Weichel, M. Lau, D. Kim, N. Villar, and H. W. Gellersen. “MixFab: A Mixed-
reality Environment for Personal Fabrication”. In: Proceedings of the 32Nd An-
nual ACM Conference on Human Factors in Computing Systems. CHI "14. Toronto,
Ontario, Canada: ACM, 2014, pages 3855-3864. DoI: 10.1145/2556288.2557090.

K. Willis, E. Brockmeyer, S. Hudson, and 1. Poupyrev. “Printed Optics: 3D
Printing of Embedded Optical Elements for Interactive Devices”. In: Proceed-
ings of the 25th Annual ACM Symposium on User Interface Software and Technology.
UIST "12. Cambridge, Massachusetts, USA: ACM, 2012, pages 589—598. por:
10.1145/2380116.2380190.

J. Willmann, F. Augugliaro, T. Cadalbert, R. D’Andrea, F. Gramazio, and M.
Kohler. “Aerial robotic construction towards a new field of architectural re-
search”. In: International journal of architectural computing 10.3 (2012), pages 439—
459. por: [10.1260/1478-0771.10.3.439.

S. Yamada, H. Morishige, H. Nozaki, M. Ogawa, T. Yonezawa, and H. Tokuda.
“ReFabricator: Integrating Everyday Objects for Digital Fabrication”. In: Pro-
ceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems. CHI EA "16. Santa Clara, California, USA: ACM, 2016,
pages 3804-3807. por: 10.1145/2851581.2890237.

H. Yoshida, T. Igarashi, Y. Obuchi, Y. Takami, J. Sato, M. Araki, M. Miki, K.
Nagata, K. Sakai, and S. Igarashi. “Architecture-scale Human-assisted Addi-
tive Manufacturing”. In: ACM Trans. Graph. 34.4 (July 2015), 88:1-88:8. por:
10.1145/2766951.

H. Zimmer, F. Lafarge, P. Alliez, and L. Kobbelt. “Zometool shape approxima-
tion”. In: Graphical Models 76.5 (2014), pages 390—401. ISSN: 1524-0703.

128

https://doi.org/10.1145/2508363.2508382
https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/2380116.2380190
https://doi.org/10.1260/1478-0771.10.3.439
https://doi.org/10.1145/2851581.2890237
https://doi.org/10.1145/2766951

Theoretical Analyses of Evolutionary Algorithms with a
Focus on Estimation of Distribution Algorithms

Martin Krejca

Algorithm Engineering
Hasso-Plattner-Institut
martin.krejca@hpi.de

Evolutionary Algorithms (EAs) are randomized search heuristics and general-
purpose solvers that mimic behavior seen in natural evolution, such as mutation
or crossover. They are most often used, due to their flexibility, when there is little
problem-specific knowledge or when there is too little budget to implement or set
up highly specific solvers.

Our focus lies on theoretically analyzing EAs to gain insights into their key
features, with the aim to answer important questions, such as how to overcome
noise or when crossover is beneficial. We especially consider so-called Estimation
of Distribution Algorithms (EDAs), which are EAs in a broader sense. EDAs keep
a probability distribution over the space of all possible solutions and modify said
distribution by an update scheme specific to the algorithm. For this purpose, we
introduced a general framework that subsumes many EDAs of interest, trying to
state general results — that is, not only run time results — about properties that
make these algorithms succeed or fail.

1 Introduction

When facing real-world optimization problems, it is sensible to use state-of-the-art
solvers. Due to the NP-hard nature of many of these problems, one does not neces-
sarily expect to get optimal results but a fair approximation. However, if the problem
cannot (easily) be transformed into the form that the solver accepts, if there is no
good solver for the problem, or if one is interested in a fast (and hopefully good) pre-
liminary solution, one may consider using alternative approaches like randomized
search heuristics. One class of such heuristics are Evolutionary Algorithms (EAs) [2],
which can produce good solutions in little time. A recent result even shows that an
EA can outperform two popular solvers for integer linear programs on an industrial
problem containing over 50 000 variables [8].

In the traditional sense, an EA is an algorithm that maintains a (multi-)set (the
population) of candidate solutions (so-called individuals) over the space of all po-
tential solutions of the problem it should optimize. In an iterative fashion, the EA
creates new individuals by modifying the existing ones and then discarding bad
individuals, creating a new population. Operations that only modify a single indi-
vidual are called mutation, and operations that use more than one individual are
called crossover (or recombination). The act of choosing the best individuals for the
next iteration is referred to as selection. This scheme is also sketched in Figure

129

mailto:martin.krejca@hpi.de

Martin Krejca: Theoretical Analyses of Evolutionary Algorithms

Iteration

/\
O 0a®
o6 .. K068 I Pe®
OR2=0P0-0¢ =0 0
0500 OxoLe@ 5 Ce

—_
Population Offspring

(a) The schematic view of a classical EA. The population first increases through variation
(i.e., mutation or crossover) and then gets reduced by selection.

Iteration

Distribution Offspring

(b) The schematic view of an EDA. The algorithm samples offspring from a distribution and
then performs an update.

Figure 1: A comparison of the main differences between classical EAs and EDAs.
An EA (Figure works with an explicit population, whereas an EDA (Figure
uses a probability distribution instead. Both algorithms create offspring from their
population and update it afterward.

Now, all that is needed for an EA to work is a problem-specific quality measure
that says how good or bad each individual is, i.e., an objective function, also called
fitness function in this context. All of the other operators (mutation, crossover, and
selection) only depend on the encoding of an individualf| This makes EAs vastly
applicable, as they are basically problem-agnostic.

In theoretical computer science, when modeling algorithms that have no infor-
mation about the problem they are optimizing besides the results of the objective
function, a black-box model is used. Theoretical analyses then follow black-box com-
plexity, that means, only the number of function evaluations — the supposedly most
costly operation — is considered. In this model, it is well known that NP-hard prob-
lems can be solved in polynomial time by expensive offline computations that do

*Of course, the fitness function can also be problem-independent, but in that case, opti-
mization does not make any sense.

130

1 Introduction

not count toward the complexity [32], even by EAs [9]. In such a case, the function
evaluations are not necessarily the most expensive operations. To avoid unrealistic
scenarios like these, we always assume that the offline computations of an EA only
involve cheap mutation, crossover, and selection operators and nothing else.

One of the fundamental questions in the field of EAs that has been stated since
they emerged is how these algorithms benefit from crossover more than just from
mutation [19]. Since every algorithm is as bad as any other when looking at a uniform
distribution over all problems possible (known as the no free lunch theorem [21]), it
makes sense to focus on certain problem classes that appear in real-world scenarios.
On the other hand, these classes should be general enough to get widely applicable
statements on EAs. This proves to be hard, as the theoretical analysis of EAs is rather
challenging. Thus, compromises have to be made.

Usually, in the theoretical analysis of EAs, the solution space is modeled as {0,1}",
that is, all bit strings of length n [21]. This way, there exist 2" different solutions, and
a brute force or uninformed search approach would end up with an exponential
run time (in expectation). The most common mutation operator is standard bit flip
mutation, and the most common crossover operator is uniform crossover. The former
takes one individual and flips each bit independently with a probability of 1/#, that
is, it flips 1 bit in expectation. The latter takes two individuals and creates a new
one by choosing each bit uniformly at random from one of the input’s bit at each
position.

The most common functions that are analyzed in theory are OneMax (Equation 1),
which represents a simple hill climbing task by yielding the number of 1s in a bit
string, and LeadingOnes (Equation [2), which represents the search for a random
permutation by yielding the number of leading 1s in a bit string:

OneMax(x) =) _x;, (1)

noi
LeadingOnes(x) =) []x;. (2)
i=1j=1

Both of these functions have been heavily analyzed in different scenarios (see, e.g., [11,
18, 23] or [3} 10, 12], respectively), and investigating them allows for insights into
fundamental properties of EAs that are, for instance, necessary to climb a hill or the
cope with dependencies.

Looking at the general EA scheme mentioned earlier, one can abstract and speak
of EAs in a wider sense when considering algorithms that store solutions in an ar-
bitrary way, create samples, and then update their storage. When we exchange the
population (i.e., the explicit set of solutions) of a classical EA with a probability
distribution over {0, 1}", we arrive at a class of algorithms called Estimation of Dis-
tribution Algorithms (EDAs) (see [20] for a nice survey). The general EDA scheme is
depicted in Figure[1b| and the comparison to classical EAs is explained in Figure
Our main focus is on theoretically analyzing EDAs, because there are only few re-
sults; but there has been some recent interest in the theoretical analysis of EDAs [4,

6, 33

131

Martin Krejca: Theoretical Analyses of Evolutionary Algorithms

Since storing an arbitrary probability distribution over {0,1}" means storing up
to 2" different values, allowing for arbitrary distributions in EDAs would potentially
result in exponential memory space. Thus, many EDAs only store a vector p € R" of
n real numbers, where each component represents the probability to sample a 1 at
said position (called incremental, univariate EDAs in [20]). Mathematically speaking,
these algorithms maintain a Poisson binomial distributions.

We now proceed by stating some notation in Section [2| that we need to explain
our results presented in Section [} We conclude with an overview on future work in
Section|[4]

2 Preliminaries

We start by presenting the (y + 1)-GAF]|(Algorithm[1): one of the simplest classical
EAs using crossover. This algorithm has a population size of 4 € N and creates
every iteration a single new individual by either mutation or crossover (followed by
mutation). Its parameter p. — the crossover probability — determines which action of
the former two to choose when creating a new individual.

The crossover operator used in Algorithm[i]is the uniform crossover, but the name
(u + 1)-GA is not exclusive for that crossover operator. In one of our papers [15], we
actually consider another kind of crossover, called majority vote crossover, which
actually uses three instead of the usual two parents to create a new individual. The
offspring takes the bit according to the majority of its parents’ bits at each position.

In another paper of ours [16], we consider the (u + 1)-EA, which is the (y + 1)-GA
without crossover, i.e., with a crossover probability p. = 0.

As can been seen in line [6|of Algorithm [i} the termination criterion is not specified.
In run time analysis, we are interested in the time an algorithm needs to find an
optimum for the first time. This means that the termination criterion could also say
until optimum found. However, since this is a piece of information the algorithm does
not have, we assume that it keeps iterating forever, and we just stop all further consid-
erations, once the optimum is found. Formally, we are interested in the expected first
hitting time of the algorithm finding an optimum. For that, let O C {0,1}" denote
the set of all optimal solutions for the fitness function the algorithm is optimizing,
and let

T =inf{t | P N0 # @},

i.e., the first time that the population contains an individual that is optimal.

Note that T - the first hitting time — itself is a random variable because the P(*) are
random variables, due to the random nature of the algorithm. The most valuable
piece of information about a random variable is of course its distribution. However,
determining the exact distribution of such a complex random variable like T is ba-
sically impossible. Therefore, the standard approach is to calculate its expectation,
i.e., E[T]. We also call this value the expected run time of a randomized algorithm.

2GA stands for Genetic Algorithm, where genetic implies the use of crossover.

132

3 Results

Algorithm 1: The (i + 1)-GA with crossover probability p., maximizing f, using
standard bit flip mutation as mutate, uniform crossover as crossover

1140

2 P(t))

3 forie{1,...,u} do

4 P®) « P® U {x}, where x € {0,1}" is chosen uniformly at random (u.a.r.)

5 end

6 while termination criterion not met do

7 p € [0,1] chosen u.a.r.

8 if p < p. then

9 z < mutate(crossover(x,y)), where x,y € P(!) are chosen u.a.r.
10 else
11 z < mutate(x), where x € P() is chosen u.a.r.
12 end

13 PUD « (PO U {z})\{r}, wherer € argmin,c po) (5, f(0)
14 t—t+1
15 end

If possible, we extend results to concentration bounds, that is, we bound the prob-
abilities of T not getting too large (or too small) with high probability, where with
high probability means with a probability of 1 — o(1). These bounds serve as a fair
approximation of the real distribution of T.

For the EDAs, we introduced a general framework in [14] that captures incremen-
tal, univariate EDAs, as already discussed in Section 1} We call this framework the
n-Bernoulli-A-EDA (Algorithm [2). It maintains a Poisson binomial distribution via
a so-called frequency vector p. Every iteration, it samples A offspring according to
p and then updates its frequency vector with respect to an algorithm-specific up-
date scheme ¢. This update scheme is at the core of the framework, as it can be
an arbitrary function (with the interface seen in line [g). The idea behind ¢ is that
it takes the old frequency vector as well as all of the sampled offspring and their
respective fitness. It then yields a new frequency vector. Our main interest lies in
analyzing this framework, that is, we want to understand which properties of ¢ lead
to which behavior of the n-Bernoulli-A-EDA. For this, we are trying to be as general
as possible.

3 Results

We are not going to discuss our results on noise [34} |35] that we already presented
in great detail in last year’s report [30], but we do have published another paper in
that context [16]]. In contrast to our previous papers on noise, this paper exclusively
considers the (u + 1)-EA.

133

Martin Krejca: Theoretical Analyses of Evolutionary Algorithms

Algorithm 2: n-Bernoulli-A-EDA with a given update scheme ¢, optimizing f

1t 0

2> foreachi € {1,...,n} do ngt) — %

3 repeat

4 D+®

5 forje{1,...,A} do

6 x + offspring sampled with respect to p(*
7 D+ DU{x}

8 end

p(tH) = (P(p(t)' (xrf(x))xeD)
10 F—t+1
11 until termination criterion met

o

There are already some results on population-based EAs under noise, e.g., [17,
31|, but none of them aim at showing differences between noise settings. Our paper
considers two general noise models: a more general version of a uniform distribu-
tion and a distribution that declines exponentially from its mean. The idea is that
the former noise model is lower-bounded (it basically has an infinitely steep tail),
whereas the latter has a tail that is exponentially steep. We show that this difference
of steepness in the tail determines whether the algorithm is successful or not, i.e.,
whether its expected run time is polynomial or superpolynomial with high proba-
bility. The (+ 1)-EA is able to optimize OneMax under the first noise model if the
population size is large enough. It can do so in polynomial time if the variance of the
noise is at most a polynomial (but maybe far larger than the actual dimension size)
and without knowing the variance! The algorithm, however, fails under the second
noise model, once the variance is in orders of w (nz), i.e., once the noise dominates
the signal from the fitness. Unfortunately, our results only hold for OneMax so far.
Hence, a generalization would desirable.

Our Results on classical EAs [5, 7, [15] all involve crossover but are mainly about
population diversity. In [5], we look at the (x + 1)-GA, but we add different so-
called diversity mechanisms to line [13|in Algorithm 1 These mechanisms do not
delete a random individual with worst fitness but one with criteria specific to the
mechanism, e.g., we prioritize deleting individuals that occur multiple times in
the population. Our function of interest is a function similar to OneMax but with a
plateau of local optima in-between: Jump [22]. We do consider the expected run time
of the (u + 1)-GA using different diversity mechanisms. Of course, there are already
some results on the (u + 1)-GA on Jump, e.g., [22, 24|, but they use a very low
crossover probability p., leaving all of the diversity work to the mutation operator.
Our work is the first in that area that uses a realistic crossover probability of a constant
less than 1 for many different diversity operators. This way, we show what kind of
speed-up can be achieved using different approaches to selecting individuals when
stuck in local optima.

134

3 Results

Our setting in [7] is similar to the one before, but we use the (¢ + 1)-GA as pre-
sented in Algorithm [1] this time, that is, we use no explicit diversity operator. Hence,
this setting is even closer to [22} 24]. The main difference is that we show how diver-
sity emerges naturally through an interplay of crossover and mutation. As mentioned
in the previous paragraph, prior analyzes always chose a very small crossover prob-
ability to let mutation do all the work. In our paper, we do not have this restriction
and actually benefit from crossover occurring quite often, that is, with constant prob-
ability. This approach is a novelty in this kind of setting. Further, we also consider
different mutation rates that only differ by a constant factor. For lower mutation
rates, this is harmful with respect to the optimization time, whereas higher mutation
rates can actually even compete with variants of the (i + 1)-GA that use explicit
diversity mechanisms (as analyzed in [5]). This means that the interplay of crossover
and mutation with well-chosen crossover probability and mutation rate leads to the
same sufficient diversity like when using explicit external routines to force diversity!

In [15], we also look at the (y 4 1)-GA on Jump, but we use mutation operators that
only flip a single bit every time, and we consider the majority vote crossover instead
of the uniform crossover; the former has not been theoretically analyzed before. We
extend our analyzes to specific VertexCover instances, as they are considered in [13,
26|, where the majority vote crossover leads to a significant speed-up when compared
to the uniform crossover, because the majority vote crossover easily fixes wrong bit
values if they are distributed uniformly at random, i.e., if the majority is more likely
to be correct, the result as a whole will be as well. We exploit this observation by
providing a general scheme (following probability amplification) for Monte Carlo
algorithms with a failure probability of less than 1/2 that makes use of the majority
vote crossover and decreases the failure probability drastically.

The last work we discuss in this report is our paper on EDAs [14]. As already men-
tioned in Section 2} we introduce the theory-driven n-Bernoulli-A-EDA framework
(Algorithm [2) in this paper. This is not the first EDA framework proposed (other
frameworks can be seen, e.g., in [27, 28]), but this is the only one that subsumes all of
the (and only the) incremental, univariate EDAs, which are described in [20]]. Note
that our algorithms considered in our prior noise papers [34,35] also fall into this
framework. In [14], we look at a fundamental property of the n-Bernoulli-A-EDA:
whether the update scheme changes a single probability of the frequency vector p in
expectation if there is no signal from the fitness function. Many EDAs (also the ones
we considered in our noise papers) do not change such a probability in expectation
if there is no clear input. However, we could show that this behavior implies that the
probability’s variance will increase over time if possible. This leads to the undesired
behavior that certain frequencies that do not get a fitness signal for a long time will
end up at one of the extreme points, making it hard or even impossible to recover
from that. We suggested an alternative approach that was able to overcome this
problem, and we proposed an algorithm that optimizes LeadingOnes in O(n log n)
in expectation, whereas many common randomized search heuristics need a time of
@(nz) [1]. Unfortunately, this alternative approach seems to be highly specific. Thus,
further research is necessary to investigate the true limits of our results. Also, the

135

Martin Krejca: Theoretical Analyses of Evolutionary Algorithms

main result is not as general as it can be. We do have a more general version (that
applies to random processes in general!), but we did not publish it yet.

We also contributed to two other papers, which are, at present, not published. One
of them considers the SSWM algorithm [29] — an algorithm that also accepts worse
solutions with a certain probability — in dynamic environments of changing threats.
The other paper proves a lower bound of a specific EDA that falls into our framework
on OneMax. Unfortunately, this result is not very general, but the proof methods
used have just been proposed [33]], hence, we hope that we can learn from specific
results to end up with a generalization eventually.

4 Future Work

We already mentioned some improvements to our results in Section |5} Our latest pa-
per on noise [16]] is very specific up to now. However, there are only a few places that
are that specific. Generalizing these would generalize all of the results immediately.
This seems to be a reasonable next step.

Regarding our work on crossover, we did run some experiments as well, and we
could see that our theoretical bounds are not very tight. Since our proof ideas are
novel in that area, this is not surprising. However, improving the theoretical results
to match the experiments is of course an ambition we have.

We plan to dedicate most of our efforts to investigating n-Bernoulli-A-EDAs. Right
now, we are working on unbiasedness (as investigated in [25]), which has not been
formally defined in the context of these EDAs yet. The idea is to show which proper-
ties are necessary and sufficient for such an EDA to not value 1s over Os or the other
way around when looking at its update scheme. Unbiasedness implies invariance
of the optimization process with respect to inverting or permuting the bits in the
fitness function. That means that the results on unbiased EDAs can be generalized
to far greater function classes at no extra cost. Another goal of ours is to get more
lower bounds, since that is an area that has not been considered besides [33]. At last,
general results on EDAs to noise also seem reasonable. Our prior work [34} 35] hints
at some similarities of the different algorithms considered. Finding and exploiting
these could lead to a general statement about robustness of EDAs to noise.

References

[1] P. Afshani, M. Agrawal, B. Doerr, C. Doerr, K. Larsen, and K. Mehlhorn. “The
Query Complexity of Finding a Hidden Permutation”. In: Space-Efficient Data
Structures, Streams, and Algorithms. 2013, pages 1—11. ISBN: 978-3-642-40273-9.

[2] T. Back. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evo-
lutionary Programming, Genetic Algorithms. 1996. 1SBN: 978-0-19-509971-3.

136

[6]

[7]

[8]

References

S. Bottcher, B. Doerr, and F. Neumann. “Optimal Fixed and Adaptive Mutation
Rates for the LeadingOnes Problem”. In: Proc. of PPSN. 2010, pages 1-10. ISBN:
978-3-642-15844-5.

T. Chen, K. Tang, G. Chen, and X. Yao. “Analysis of computational time of
simple estimation of distribution algorithms”. In: IEEE TEVC (2010). 1ssN:
1089-778X.

D.-C. Dang, T. Friedrich, M. S. Krejca, T. Kétzing, P. K. Lehre, P. S. Oliveto,
D. Sudholt, and A. M. Sutton. “Escaping Local Optima with Diversity Mech-
anisms and Crossover”. In: Proc. of GECCO. 2016, pages 645—652. ISBN: 978-1-
4503-4206-3.

D.-C. Dang and P. K. Lehre. “Simplified Runtime Analysis of Estimation of
Distribution Algorithms”. In: Proc. of GECCO. 2015, pages 513-518. 1SBN: 978-1-
4503-3472-3.

D.-C. Dang, P. K. Lehre, T. Friedrich, T. Kétzing, M. S. Krejca, P. S. Oliveto,
D. Sudholt, and A. M. Sutton. “Emergence of Diversity and its Benefits for
Crossover in Genetic Algorithms”. In: Proc. of PPSN. 2016, pages 890—900.
ISBN: 978-3-319-45823-6.

K. Deb and C. Myburgh. “Breaking the Billion-Variable Barrier in Real-World
Optimization Using a Customized Evolutionary Algorithm”. In: Proc. of
GECCO. 2016, pages 653-660. 1sBN: 978-1-4503-4206-3.

B. Doerr, C. Doerr, and T. Kétzing. “The unbiased black-box complexity of
partition is polynomial”. In: Artificial Intelligence (2014). 1SsN: 0004-3702.

B. Doerr and C. Winzen. “Black-Box Complexity: Breaking the O(nlogn) Bar-
rier of LeadingOnes”. In: Computing Research Repository (2012).

B. Doerr and C. Winzen. “Memory-restricted black-box complexity of One-
Max”. In: Information Processing Letters (2012). ISSN: 0020-0190.

C. Doerr and J. Lengler. “The (1+1) Elitist Black-Box Complexity of Leading-
Ones”. In: Proc. of GECCO. 2016, pages 1131-1138. ISBN: 978-1-4503-4206-3.

T. Friedrich,]. He, N. Hebbinghaus, F. Neumann, and C. Witt. “Approximating
Covering Problems by Randomized Search Heuristics Using Multi-objective
Models”. In: Evolutionary Computation (2010).

T. Friedrich, T. Kétzing, and M. S. Krejca. “EDAs cannot be Balanced and
Stable”. In: Proc. of GECCO. 2016, pages 1139-1146. ISBN: 978-1-4503-4206-3.

T. Friedrich, T. Kétzing, M. S. Krejca, S. Nallaperuma, F. Neumann, and M.
Schirneck. “Fast Building Block Assembly by Majority Vote Crossover”. In:
Proc. of GECCO. 2016, pages 661-668. 1sBN: 978-1-4503-4206-3.

T. Friedrich, T. Kétzing, M. S. Krejca, and A. M. Sutton. “Graceful Scaling on
Uniform Versus Steep-Tailed Noise”. In: Proc. of PPSN. 2016, pages 761—770.
ISBN: 978-3-319-45823-6.

C. Gielen and T. Kétzing. “Robustness of Populations in Stochastic Environ-
ments”. In: Proc. of GECCO. 2014, pages 1383-1390. ISBN: 978-1-4503-3472-3.

137

Martin Krejca: Theoretical Analyses of Evolutionary Algorithms

[18]

[19]

[20]

[21]

[22]

C. Gieflen and C. Witt. “Optimal Mutation Rates for the (1+1) EA on OneMax”.
In: Proc. of GECCO. 2016, pages 1147—-1154. ISBN: 978-1-4503-4206-3.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
1989. 1SBN: 978-0-201-15767-3.

M. Hauschild and M. Pelikan. “An Introduction and Survey of Estimation of
Distribution Algorithms”. In: Swarm and Evolutionary Computation (2011). 1SSN:
2210-6502.

T. Jansen. Analyzing Evolutionary Algorithms: The Computer Science Perspective.
2013. ISBN: 978-3-642-17338-7.

T. Jansen and I. Wegener. “The Analysis of Evolutionary Algorithms — A Proof
That Crossover Really Can Help”. In: Algorithmica (2002). 1ssN: 1432-0541.

T. Kétzing, A. Lissovoi, and C. Witt. “(1+1) EA on Generalized Dynamic One-
Max”. In: Proc. of FOGA. 2015, pages 40—51. ISBN: 978-1-4503-3434-1.

T. Kotzing, D. Sudholt, and M. Theile. “How Crossover Helps in Pseudo-
Boolean Optimization”. In: Proc. of GECCO. 2011, pages 989—996. ISBN: 978-1-
4503-0557-0.

P. K. Lehre and C. Witt. “Black-Box Search by Unbiased Variation”. In: Algo-
rithmica (2012). 1SSN: 1432-0541.

F. Neumann, P. S. Oliveto, G. Rudolph, and D. Sudholt. “On the Effectiveness
of Crossover for Migration in Parallel Evolutionary Algorithms”. In: Proc. of
GECCO. 2011, pages 1587-1594. ISBN: 978-1-4503-0557-0.

Y. Ollivier, L. Arnold, A. Auger, and N. Hansen. Information-Geometric Opti-
mization Algorithms: A Unifying Picture via Invariance Principles. 2013. arXiv:
1106.3708v3.

T. Paixdo, G. Badkobeh, N. H. Barton, D. Coriis, D.-C. Dang, T. Friedrich, P. K.
Lehre, D. Sudholt, A. Sutton, and B. Trubenova. “Toward a unifying framework
for evolutionary processes”. In: Journal of Theoretical Biology (2015), pages 28—
43. ISSN: 0022-5193.

T. Paixao,]. Pérez Heredia, D. Sudholt, and B. Trubenova. “First Steps Towards
a Runtime Comparison of Natural and Artificial Evolution”. In: Proc. of GECCO.
2015, pages 1455-1462. 1SBN: 978-1-4503-3472-3.

Proceedings of the 9th Ph.D. retreat of the HPI Research School on service-oriented
systems engineering. 2015. 1SBN: 978-3-86956-345-9.

A. Priigel-Bennett, J. Rowe, and]. Shapiro. “Run-Time Analysis of Population-
Based Evolutionary Algorithm in Noisy Environments”. In: Proc. of FOGA.
2015, pages 69—75. ISBN: 978-1-4503-3434-1.

R. Pruim and I. Wegener. Complexity Theory: Exploring the Limits of Efficient
Algorithms. 2005. 1SBN: 978-3-540-21045-0.

D. Sudholt and C. Witt. “Update Strength in EDAs and ACO: How to Avoid
Genetic Drift”. In: Proc. of GECCO. 2016, pages 61—68. 1sBN: 978-1-4503-4206-3.

138

http://arxiv.org/abs/1106.3708v3

References

[34] T. Friedrich, T. Kotzing, M. S. Krejca, and A. M. Sutton. “Robustness of Ant
Colony Optimization to Noise”. In: Proc. of GECCO. 2015, pages 17—-24.

[35] T. Friedrich, T. Kotzing, M. S. Krejca, and A. M. Sutton. “The Benefit of Recom-
bination in Noisy Evolutionary Search”. In: Proc. of ISAAC. 2015, pages 140—
150. ISBN: 978-3-662-48971-0.

139

Understanding “Bad Code” Using Qualitative Methods

Kateryna Kuksenok

Software Architecture Group
Hasso-Plattner-Institut
Kateryna.Kuksenok@hpi.uni-potsdam.de

In what situations is code that is recognized as “bad”, and code production mech-
anisms that are recognized as producing bad code, kept without improvement,
and why? This report describes a study of such code that uses qualitative methods.
The concept of “bad code” itself is described and motivated based on a conceptual
framework of deliberate individual change. The particular qualitative approach of
this study is related to empirical methods in general, and qualitative methods in
particular, in software engineering research. An initial characterization connects
to literature on code smells and technical debt, as well as to research in mining code
repositories.

1 Introduction

Software development involves many different tools depending on the problem, and
spans different social structures depending on the organization. Additionally, the act
of writing code is inescapably situated in time. Time is a resource that is pervasively
and overwhelmingly lacking; the passage of time reveals new tools and possibilities
not visible previously. Literature on debugging, fault localization, and testing aims
to improve the means for programmers to write and maintain good code, and to
identify and address bad code.

This report argues that there are situations in which code is recognized as “bad”
but allowed to persist. Depending on the context of the program and who is making
the judgment, “bad” can mean inelegant or inefficient implementation, as well as
faulty behavior, wrong output, or security holes. The judgment and reality may not
align; something may be considered merely ugly, but in the end result in errors. The
aesthetic claims of beauty and ugliness are connected to material judgments through
familiarity and expertise [12], and though an expert may decide for good reasons
that ugly code is permissible, not everyone who permits ugly code is an expert. Time
pressures in real-world projects mean that self-described bad code is inevitable.

Are there kinds of understood bad code that can be made useful? Is there a pat-
tern of programmer behavior that produces bad code easy to identify? Beck and
Fowler’s 1999 list of “bad smells” in code, for example, is intended to help navigate
the difficult task of deciding how and when to refactor code [1], and have since
been studied as a means to help programmers write more maintainable and less
error-prone code. Some of the code smells “intrinsically characterized by how code
elements change over time” so using change history in addition to structural informa-
tion improves the identification some of the smells with 60 % to 80 % accuracy [15].
An approach for analyzing the evolution of code smells, and their impact and fre-

141

mailto:Kateryna.Kuksenok@hpi.uni-potsdam.de

Kateryna Kuksenok: Understanding “Bad Code” Using Qualitative Methods

quency, has also been attempted on a case-study basis [13]]. These approaches focus
on the code and its history; but can the reflective moment of calling something “bad”
be identified and, for example, used as a point from which to prompt to articulate
tacit information?

Less visible than bad smells in code are the bad practices that precipitate in such
code: actions that are actively recognized as bad but not remedied. Section [2] describes
the particular case of scientific software development, which was studied in depth in
prior dissertation work [10]. That study used a qualitative, ethnographic approach
to understand how researchers not formally trained in software engineering were
adopting and adapting programming tools. The outcome was a conceptual frame-
work for deliberate individual change, which articulates the antecedents for deciding
to implement a better practice, or try a better tool.

Section [3|argues that this qualitative approach, which has considerable precedent
in the landscape of empirical research in software engineering, provides an important
capability central to the novelty of this study. In particular, this approach supports
maintaining both the emic (internal) terminology of the informant population and
the etic (outsider-looking-in) terminology of software engineering. Section |4 intro-
duces a preliminary categorization of “bad code” that is situated in programming
as a sociotechnical practice in time, and outlines the next steps. The preliminary
categorization uses qualitative methods, and the next steps articulate how to relate
this approach to existing work, particularly in mining code repositories for patterns.

2 Deliberate Individual Change

Increasingly, programming and coding is done by individuals who learned the rele-
vant skills piecewise, in a “workshop” or “hackathon” model. In the natural and
social sciences, Software Carpentry Workshops are one very popular example of
such a workshop, and aim explicitly to teach “best practices” for a growing body of
computational tools and skills within those domain disciplines [19]. Much of what
is written about scientific software practice emphasizes that the reluctance to adopt
better practices results in software that is slower and more error-prone, and with less
of the desired capability. Heaton and Carver provide a 2005 systematic literature
review of claims about software engineering practices [5].

Less normative perspectives on scientific programming include Kelly’s knowledge
acquisition model [7]. This model challenges the view of scientific programmers as
“end users” of complex tools. Instead, Kelly views the programmer in this context
not as following a series of tasks from a software engineering method paradigm,
but rather “interacts with the software to fill in gaps in his or her knowledge” and
these interactions are driven by the knowledge acquisition needs of the individual
or group. This allows Kelly to explain why in scientific teams, individuals have
roles tied to their area of scientific interest or expertise, rather than software task,
reflecting “cradle to grave” kind of ownership in scientific software. Furthermore,
the model explains how a “risk-averse” scientist continually verifies the software
through inspection, review, and repeated purposeful testing. In the climate science

142

2 Deliberate Individual Change

context, the use of visualization as a means for consistent testing is described by
Easterbrook and Johns as adapting some agile development processes [2].

The following conceptual framework of deliberate individual change in program-
ming tools and skills aims to reconcile these three views of the scientific program-
mer as an enthusiastic learner and advocate for new computational techniques; a
programmer with processes that work against the production of better code; and
risk-averse and centered on the scientific problem.

¢ The Working Environment is the set of resource available to an individual,
composed of components belonging to one or more of the following categories:

— The technical corresponds to those things that the individual “sets up”
immediately after getting a new workstation, or starting a major new
project. This decision intentionally includes not only the essential tools
needed for a task, but also the arguably aesthetic modifications.

— Personal components which are, likewise, able to accommodate all prior
experiences that suddenly become relevant in a task, and which are wholly
peculiar to individuals, and are enabled by the personalization of the
technical components.

— Social components which include not only the resources available through
formal or project-oriented means, but past colleagues, significant others,
friends, roommates, and so forth.

¢ The working environment is subject to (1) evaluation and (2) change relative
to the Perfect World.

¢ Deliberate change is possible in many small Moments of Flux. Four things
are necessary for an individual to choose to pursue a change, in the following
order:

— awareness — “I have heard of it and know what it is.”
— normative framing — “I should probably be using it.”
— momentum — “If only I already knew it, I would use it!”

— opportunity — “A clear course of action is available to begin to use it.”

All of the above are preconditions for change, which is associated with uncertainty
of cost: “how much time, energy, and money will I, or my team, spend before deciding
this was the wrong choice?” Rather than a scarcity, there is an embarrassment of
riches in terms of available tools or skills, which all have different complex costs
and benefits associated with them. As a result, the orientation to change — which
is sometimes characterized as taking a plunge, or going down a rabbit hole - is,
by default, relatively conservative. On the other hand, popularity of workshops
on teaching scientists to program in the span of days, weeks, or months becomes
unsurprising if we recognize how these create opportunity for change by limiting the
uncertainty of commitment using time limits and structure.

143

Kateryna Kuksenok: Understanding “Bad Code” Using Qualitative Methods

3 Qualitative Methods in Software Engineering Research

The previous section summarized a conceptual framework grounded in an 18-month
qualitative study of programming in science, and particularly oceanography, where
code work is done largely by people with minimal or no shared or formal program-
ming background [10]. The study included four very different groups of scientists
who were working with code. Some researchers were beginning to use R or Python
scripts instead of Excel operations. Others not only used a self-made data analysis
pipeline, but also contributed to an externally-facing visualization dashboard. Differ-
ent forms of version control (including ad-hoc and file-based, as well as formalized
and multi-contributor open-source) were used. Some of the conducting analyses that
required working with relatively recent “big data” from instrumentations, which
was sometimes made available from APlIs, databases, or simply text files. Some of
the analyses included the transformation and comparison of such data relative to
the output of internationally-used models written in FORTRAN, demanding not
only learning new programming skills but maintaining continuity with historical
practices. Edwards provides an overview of this history in the area of climate mod-
eling [4].

The use of qualitative methods provides a valuable complement to quantitative
methods [16] because they enable answering how and why questions which are too
broad to be addressed by experimentation in absence of comprehensive theory [8].
Though controlled experiments can produce robust knowledge about cause-effect
relationships, there are many threats to internal and external validity in practice [17,
18]].

The challenge in the exploitation of the full potential of quantitative methods is the
relative lack of a broad, coherent theory of human behavior with regard to software
engineering as a sociotechnical practice. Theories serve three functions in software
engineering: (1) to define terms enough to identify them in the wild, (2) to explain
the choices that people make around the subject of study, and, to the extent plausible
in context, (3) predict qualities of what people do based on certain factors identified
as relevant by the theory; qualitative methods provide a systematic approach to
theory-building, in turn enabling the hypothesis testing demanded by empirical
studies [3].

Easterbrook et al. [3] and Wohlin et al. [20] provide in-depth advice for the costs
and benefits of different empirical methods. Qualitative methods appear in some
form in a variety of SE research methods. Though detailed and useful, case stud-
ies (exploratory or confirmatory) are not generalizable, but allow only for claims
of theoretical replication: that other cases are expected to be the same, or they are
expected to differ in predictable ways described by the theory [3]]. These data col-
lection methods can be used also in post-mortem analyses, which are distinct from
case studies in that they are done regarding a project (or part of a project) that has
been completed, and therefore capture chiefly reflections [20]. Similar methods are
also useful in ethnographies which (unlike case studies) involve a longer-term expo-
sure to study subjects or informants and are focused on understanding the internal
meanings of a community’s cultural practices in order to build local theories [3].

144

4 Bad Code

Finally, in action research, the researcher is an intentional agent of change, unlike
in an ethnography, but may undertake similar methods during design process for
potentially an extended period of time [3].

In the study of oceanographers described in the beginning of this section, the
choice of the word “code,” rather than “software,” “program,” or “script” is inten-
tionally inclusive. “Code” refers to the programmatic instructions written in the
course of software production (and sometimes software use), programming, and
scripting. The primary context of this work is code that is experimental, in develop-
ment, or “in permanent beta,” rather than infrastructural or essential code, using the
distinction articulated by Kelly [7]. The strength of the qualitative methods here was
the focus on participants” own terminology (emic terms), in addition to interpreting
their actions through the lens of software engineering or computer science termi-
nology (etic terms). The use of etic (“outsider looking in”) terminology allows the
researcher to see parallels in practice — e.g., to identify when certain development
or debugging practices appear, despite not being recognized or named as such by
study participants. The use and interpretation of emic terms, however, is crucial to
the construction of the kind of conceptual framework presented in

The terms “bug” and “debugging”, for example, were practically non-existent;
most participants said that their code “is not working” or is “being weird.” Rather
than “debugging code,” they would re-examine the code as well as look over the
data (if any) in plain-text or in an overview visualization, or re-do the math (if any)
with pencil-and-paper or on a whiteboard. In most cases, the bug had to do with
assumptions in parsing and formatting of dates; unit conversion; or a divide-by-zero
error arising from the current coder making assumptions different from the previous
coder on the range of some variable(s). In other words, the bug turned out to be a
code bug (rather than a conceptual or mathematical error), despite not being referred
to as such. The non-use of the terminology is meaningful in that it reflects a common
claim about software engineering in science: that the implementation is understood
and expected to be so close to the concept that even in more complex programs,
design, debugging, and testing are not distinguishable processes with respect to the
code itself [5]. It is possible to identify aspects of agile practice (to take one example)
in observing the programming practices, or to ask about “testing” directly, but this
obscures an essential aspect of how the programmer understands code and coding.

4 Bad Code

The qualitative study which was used to construct the conceptual framework in
involved observation of indidivuals coding: the observer was present for
several hours (between 4 hours and the full day) in the office or lab, and worked
alongside the informant. When the informant came to natural stops — like leaning
back and sighing deeply, or exclaiming “it works!” — the observer asked questions
about what was problematic or exciting; how unexpected behavior came to be ex-
posed; and what the next steps were. Analyzing these observations again, in light of

145

Kateryna Kuksenok: Understanding “Bad Code” Using Qualitative Methods

the deliberate change framework from revealed two kinds of “bad” code
that persists:

* Type 1, recognized at production: “I know it’s bad, but I'm doing it anyway.”

* Type 2, recognized in retrospect: “It’s ugly, but it has historical reasons, and I
am not changing it.”

A common example of Type 1 bad code in scientific practice observed was copying
and pasting. This is the Number 1 “code smell” that suggests something is bad [1],
as well as a top target for constructive criticism among scientific programmers them-
selves [19]. Nevertheless, in practice, this happened most often and obviously with
code used to generate figures, either in short scripts or in interactive environments
like Jupyter Notebook. In this case, the main thing that makes copy and past bad
in the first place (duplicated a functionality which then becomes inconsistent over
time, undermining anything that depends on it) does not really apply because figure
code is:

* not library code but rather “kleenex” [5] code, and even if re-used, does not in
this case constitute a dangerous dependency problem,

* used more often as a reference: indeed, the code for a figure acts itself as a kind
of documentation for that figure, and having quick access to it is useful.

The example of “documenting” figures with copy-pasted code is particular to the
scientific domain. However, Type 1 code can serve a social role in the maintenance
of the codebase: as material embodiments of a scaffolding necessary for the interme-
diate and experimental stages of development [14]. Returning to the role of social
resources in development, we can also see that “developers spend vast amounts of
time gathering precious, demonstrably useful information, but rarely record it for
future developers” [11]. So when does the Type 1 code, accompanied by a comment
like “TODO: fix this...”, conceal legitimate expert judgments and prioritisations?
How often are these fixed and/or documented in practice, and how often they are
neither fixed, not documented, but have to be re-explained?

A common example of Type 2 bad code was the use of libraries or tools that
provided continuity within the field or within the group, such as having to do with
how data was stored and formatted. In this example, too, the code is not “bad” so
much as it is the result of an unsatisfying balancing of real constraints, both historical
and current, for which no other compromise is imagined that is so much better as
to justify a complete overhaul of everything dependent on it. When Type 1 code
is intended as a “temporary hack” but end up being less temporary than initially
hoped, it becomes the kind of Type 2 hack that constitutes “technical debt” [9].

The above examples include bad code which: starts out as Type 1 but will not
become Type 2; ends up as Type 2 but does not start out as Type 1. This code may
be not perfect, but it is benign relative to more significant defects. Furthermore,
rather than being benign, some Type 2 bad code may conceal knowledge about
prioritization that had been lost. The problem is that it is unclear which kinds of

146

4 Bad Code

bad code occur with what frequency, and how many of them are benignly inelegant;
secretly informative; accumulating technical debt; or potentially catastrophic.

How does this anthropocentric typology of “bad” code relate to actual software
quality? To answer this question, the collections of scripts and data analysis pipelines
used by two of the four teams studied were inspected. These teams had made their
code available freely online, along with version control information. The preliminary
analysis was done wholly manually, for three reasons: there was a great deal of vari-
ation in how the version control tool was used over time by different individuals so
automation would have been more challenging; there was not a prohibitive quantity
of activity; the existing familiarity with the projects allowed the interpretation of
some of the more obscure comments or messages. Two patterns emerged:

¢ The phrase “cleaning up ...” in the commit message mapped onto relatively
substantial fixes of Type 2 bad code. This, incidentally, looks a lot like the
“Shotgun Surgery” code smell, which includes “mak[ing] a lot of different
changes to a lot of different classes” [1]. Interestingly, “clean up” seemed to
span both aesthetic improvements, documentation, major simplifications of
loops used in analysis, and in some cases, identifying and removing a source
of faulty behavior.

¢ Commits that claimed to fix some particular bug or address a particular issue
routinely had a small hanger-on fix, often a minor readability improvement.

What patterns would emerge from other open-source projects, that have a less
exploratory character in terms of software practice than the above? What are the
advantages and drawbacks of the framework described in this report, relative to
other typologies used in the literature (e.g., code smells)? The objective is to identify
some available projects for analysis: first by sampling and qualitatively annotating in
order to identify characteristic patterns, and if possible and appropriate, supplement
systematic manual inspection with automation.

Mining code is difficult because digital traces of software development are not
only incomplete, but incomplete in different ways for different groups of program-
mers. For example, Kalliamvakou et al. list eight potential dangers of using GitHub
data [6]], which can be explained by the deliberate individual change framework in
the following way:

* Working environments are unique to individuals; they embody and make use
of personal resources in ways that may mean not only adopting, but adapting
the tools at hand.

Matching perils from Kalliamvakou et al.:

I “A repository is not necessarily a project”
IT “Most projects have very few commits”
III “Most projects are inactive”
IV “A large portion of repositories are not for software development”

V “Two thirds of projects (71.6 % of repositories) are personal”

147

Kateryna Kuksenok: Understanding “Bad Code” Using Qualitative Methods

* Digital traces, constitute a partial view of a particular social/technical resource
of a developer or project’s working environment; other possible co-existing
social/technical resources are not represented.

Matching perils from Kalliamvakou et al.:

VI “Only a fraction of projects use pull requests. And of those that use them,
their use is very skewed”

VII “If the commits in a pull-request are reworked (in response to comments)
GitHub records only the commits that are the result of the peer-review,
not the original commits”

VIII “Most pull requests appear as non-merged even if they are actually merged”

IX “Many active projects do not conduct all their software development in
GitHub”

In other words, under this framework, there is no assumption that any two groups
would tooling in the same way. The notion of automated or semi-automated detection
of bad code is not without precedent, and not without major challenges. A proof
of concept would be either a fully automated approach, or an automated approach
that has particular requirements on data made available to it, such as manually-
prepared examples or test data. However, an initial qualitative-first approach can
help iterate on the typology, and determine whether it is valuable relative to other
existing typologies. Whereas existing approaches in identifying “code smells” have
considered the analysis of the technical components of the working environment,
this approach is distinct by including the social, both in identification of “bad code”
and in the opportunities for productive intervention.

5 Summary

The objective is to design and pilot a mixed-methods approach for investigating code
that is identified as somehow deficient, but which nevertheless persists. This report
describes a preliminary theory of bad code, describing this phenomenon and mak-
ing it discernible in the real world software projects as well as helping to explain the
choices made by the developers. This theory has so far been developed using quali-
tative interview and observation methods within the particular domain of scientific
software development, particularly oceanography. Though the qualitative approach
has notable strengths, the next steps emphasize identifying other code bases and
developing a productive combination of qualitative and automated methods for
further refining and interrogating this explanatory conceptual framework.

148

References

References

[1]

[2]

[6]

[7]

[8]

[10]

[11]

K. Beck and M. Fowler. Refactoring: Improving the design of existing code. Edited
by M. Fowler, K. Beck, J. Brant, and W. Opdyke. Addison-Wesley, 1999. Chap-
ter Bad smells in code, pages 75-88. 1sBN: 978-0-201-48567-7.

S. M. Easterbrook and T. C. Johns. “Engineering the software for under-
standing climate change”. In: Computing in Science & Engineering 11.6 (2009),
pages 64-74. por: 10.1109/mcse.2009.193.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. “Selecting empirical
methods for software engineering research”. In: Guide to advanced empirical
software engineering. Springer, 2008, pages 285-311. DOI: 10.1007/978-1-84800-044-
5_11.

P. N. Edwards. A Vast Machine: Computer models, climate data, and the politics of
global warming. MIT Press, 2010. 1sBN: 978-0-262-01392-5.

D. Heaton and J. C. Carver. “Claims about the use of software engineering
practices in science: A systematic literature review”. In: Information and Software
Technology 67 (2015), pages 207—219. DOI: 10.1016/j.infsof.2015.07.011.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D.
Damian. “The promises and perils of mining GitHub”. In: Proceedings of the
11th working conference on mining software repositories. ACM. 2014, pages 92—101.
DOI: 10.1145/2597073.2597074.

D. Kelly. “Scientific software development viewed as knowledge acquisition:
Towards understanding the development of risk-averse scientific software”.
In: Journal of Systems and Software 109 (2015), pages 50—61. por: 10.1016/j.jss.2015
07.027.

A. Ko. Making Software: What Really Works, and Why We Believe It. O’Reilly, 2010.
Chapter Understanding software engineering through qualitative methods,
pages 55-64. 1sBN: 978-0-596-80832-7.

P. Kruchten, R. L. Nord, and I. Ozkaya. “Technical debt: from metaphor to
theory and practice”. In: IEEE Software 6 (2012), pages 18-21. por: 10.1109/ms|
2012.167.

K. Kuksenok. “Influence apart from Adoption: How Interaction between Pro-
gramming and Scientific Practices Shapes Modes of Inquiry in Four Oceanog-
raphy Teams”. PhD thesis. University of Washington, 2016.

T. D. LaToza, G. Venolia, and R. DeLine. “Maintaining mental models: a study
of developer work habits”. In: Proceedings of the 28th international conference on
Software engineering. ACM. 2006, pages 492-501. DOI: 10.1145/1134285.1134355.

J. Leach, D. Nafus, and B. Krieger. “Freedom imagined: morality and aesthetics
in open source software design”. In: Ethnos 74.1 (2009), pages 51—71. DOIL: 10|
1080/00141840902751188.

149

https://doi.org/10.1109/mcse.2009.193
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1016/j.infsof.2015.07.011
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1016/j.jss.2015.07.027
https://doi.org/10.1016/j.jss.2015.07.027
https://doi.org/10.1109/ms.2012.167
https://doi.org/10.1109/ms.2012.167
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1080/00141840902751188
https://doi.org/10.1080/00141840902751188

Kateryna Kuksenok: Understanding “Bad Code” Using Qualitative Methods

[13]

[16]

[17]

[18]

[19]

[20]

S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka. “The evolution and impact
of code smells: A case study of two open source systems”. In: Proceedings of
the 2009 3rd international symposium on empirical software engineering and mea-
surement. 2009, pages 390—400. DOL: 10.1109/esem.2009.5314231.

W. J. Orlikowski. “Material knowing: the scaffolding of human knowledge-
ability”. In: European Journal of Information Systems 15.5 (2006), page 460. DO
10.1057/palgrave.ejis.3000639.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk.
“Detecting bad smells in source code using change history information”. In:
Automated software engineering (ASE), 2013 IEEE/ACM 28th international confer-
ence on. IEEE. 2013, pages 268-278. por: 10.1109/ase.2013.6693086.

C. B. Seaman. “Qualitative methods in empirical studies of software engineer-
ing”. In: IEEE Transactions on software engineering 25.4 (1999), pages 557-572.
DOI:10.1109/32.799955.

D. I Sjeberg, T. Dyba, and M. Jorgensen. “The future of empirical methods in
software engineering research”. In: 2007 Future of Software Engineering. IEEE
Computer Society. 2007, pages 358—378. por: 10.1109/fose.2007.30.

D.I. Sjeberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-K.
Liborg, and A. C. Rekdal. “A survey of controlled experiments in software en-
gineering”. In: IEEE transactions on software engineering 31.9 (2005), pages 733~
753. DOI:|10.1109/tse.2005.97.

G. Wilson, D. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T. Guy, S. H.
Haddock, K. Huff, I. M. Mitchell, M. D. Plumbley, et al. “Best practices for
scientific computing”. In: PLoS biology 12.1 (2014), €1001745. Dor: 10.1371/journal|
pbio.1001745.

C. Wohlin, M. Host, and K. Henningsson. “Empirical research methods in
software engineering”. In: Empirical methods and studies in software engineering.
Springer, 2003, pages 7—23. DOI: |10.1007/978-3-540-45143-3_2.

150

https://doi.org/10.1109/esem.2009.5314231
https://doi.org/10.1057/palgrave.ejis.3000639
https://doi.org/10.1109/ase.2013.6693086
https://doi.org/10.1109/32.799955
https://doi.org/10.1109/fose.2007.30
https://doi.org/10.1109/tse.2005.97
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1007/978-3-540-45143-3_2

Event Subscription

Sankalita Mandal

Business Process Technology
Hasso-Plattner-Institut
Sankalita.Mandal@hpi.uni-potsdam.de

Today, business process management is a key approach to organize work, and
many companies represent their operations in business process models. These
business processes are executable using process engines. The process engines
can produce and consume events for the completion of the processes. However,
to receive the external events, we must first subscribe to them. BPMN does not
specify concrete guideline about when the subscription should be made. Lack of
proper subscription and unsubscription can cause a process to get stuck or behave
incorrectly. In practice, the subscription for the events are generally done at process
deployment, although this is not always a smart solution. The work presented here
explores different phases a process goes through and evaluates the earliest and
latest subscription point for each event kind.

1 Introduction

These days, business processes are at the core of all operations in many organiza-
tions [6]. The process engines like Camunda[|or Activiti|support the deployment
and execution of process models. Also, in the recent years, we have seen that the
information that we can gather from external events can be very helpful to make our
processes more flexible and efficient in term of reacting towards the environmental
happenings [3]]. These external events are mapped to BPMN events [5] in the process
models. The process engine receives these external events either directly from the
event sources (e.g., an event of thunderstorm from a weather API) or from an event
processing platform (e.g., Unicornp|built in Business Process Technology Group) [4].

To receive the events, the process engines first need to subscribe to specific
event(s) [1]. This is generally done by registering an event query to the event platform.
On occurrence of the events, if the event platform finds a matching query, then the
subscriber is notified about the event(s). Since there exist different types of events
in a BPMN process (e.g., start, intermediate, boundary), the question lies when to
subscribe for which event. The common practice is to register the event queries at
the time of deployment of the process model. But this is not efficient enough as all
the events are not relevant for the whole duration of the model being deployed [2].
Therefore, we propose specific subscription points for each type of BPMN events that

Yhttp://camunda.de (last accessed 2016-10-20).
Zhttp://activiti.org (last accessed 2016-10-20).
3http://bpt.hpi.uni-potsdam.de/UNICORN (last accessed 2016-10-20).

151

mailto:Sankalita.Mandal@hpi.uni-potsdam.de
http://camunda.de
http://activiti.org
http://bpt.hpi.uni-potsdam.de/UNICORN

Sankalita Mandal: Event Subscription

describe when to subscribe to which events during process deployment, instantiation
and execution. The points of unsubscription are next on our research agenda.

2 Motivation

This section provides the rationale behind the work done. Let us consider the example
shown in The example describes the process of offering a seminar for a
semester in our institute. Before start of the semester, the student office sends an
email or publishes an website notification for the research groups saying it is time
to offer the seminar for next semester. The groups then prepares and publishes the
seminar topic. If an interested student applies for the seminar then it takes place.
Otherwise the seminar is dropped after the deadline for application is gone.

)

Register
seminar

Emall recelved Student request
A ! \)
\ received

Prepare Publish

seminar seminar Y —

{Drop seminar;

Website notlflcatlon Deadline

received -

Figure 1: Motivating example for the need of proper (un)subscription.

2.1 Benefits of the Approach

Now, to get this information that the semester is approaching, we need to subscribe
to the mailing list of student office and also to the website notification. Otherwise, we
miss the information and cannot offer any seminar, i.e., the process is never initiated
due to lack of subscription. On the contrary, if we think about the scenario that we
have already started preparing the seminar after receiving the email, but have not
unsubscribed to the website notification yet, then the website notification can start
another process instance, which is not expected. If we look further in the process,
after the deadline for application is past, we should not consider any student request
anymore for the proper completion of the process. Therefore, for the sake of correct
behavior of the process, we need to know at which point of time we need to subscribe
and unsubscribe to certain events.

Apart from the correct behavior, there is another very important aspect for which
the proper subscription is necessary, i.e. the performance enhancement of the process
engine as well as the event platform. If we can skip the subscription queries which
are not relevant at specific point in time then that decreases the overhead on the event
platform. In case the events are buffered in the event platform for further complex

152

2 Motivation

event processing, then proper subscription and unsubscription makes the storage of
events just as per need and makes the event platform work more efficiently. Also, if
we unsubscribe when the event is not expected any more, the process engine is not
bothered with receiving unnecessary event stream.

Therefore, to summarize, proper event subscription and unsubscription provide
us with the following benefits:

1. Correct behavior
* process is not stuck due to missing subscription
* unwanted instances are not started due to delayed unsubscription

* process instance can be completed properly

2. Performance enhancement
* events are not stored for indefinite time
* subscription query/notification overload is avoided

¢ irrelevant event streams are not processed

In the next section, we talk about the state transitions a process goes through. Fur-
ther, we specify the state transition for a process instance as well. Later, we introduce
the points of subscription based on them.

2.2 Lifecycle of Process Model and Instance

A process model can go through three phases. Once the process is modeled, it can
be deployed and then eventually can be undeployed as well. On the other hand, the
lifecycle of a process instance can only start if the process model is in deployed state.
Once the start event occurs, it is instantiated. Then it waits for further execution of
activities. The moment the next activity is started, the instance enters the running
state. When the end event is triggered or the instance is aborted otherwise, it reaches
the state terminated.

Based on the above mentioned stages a process or a process instance has to go
through, we define few points at which event subscriptions can be done. According
to the position and behavior, BPMN classifies the events in three categories: Start
Events, Intermediate Events and End Events. As we are concerned about the events
for which we need subscriptions, it is obvious that we consider only catching events
in the scope of our paper. Therefore, End Events and Intermediate Throwing Events
are out of scope. For the rest of the event kinds, we recommend the points of sub-
scription suitable for the kind. Furthermore, for each event kind, earliest and latest
subscription points are discussed. Based on the process context, engine and event
platform capacity and required process efficiency, the decision for earliest or latest
point of subscription for each kind of event should be considered.

153

Sankalita Mandal: Event Subscription

model deploy undeploy

| | |

| | |

Process | | |
instantiate execute terminate

Figure 2: State transition diagram of process model and process instance.

Process
Instance

instantiated

Process Model
is in state
[deployed]

2.3 Points of Subscription

As already mentioned, the events can be subscribed to at various points in time
during process deployment, instantiation and execution. gives an overview
of the possibilities of subscription. All the points of subscription are explained using
another example process which shows the process of preparing for a conference. We
discuss the variations of the process activities when it deems fit.

I
T
E Y

- = =

e
e =

deployment instantiation execution termination

subscriptions

Event Engine

Figure 3: Subscription points during different phases of process.

1. At process deployment. Subscription is created after the model is deployed.
If we consider the start events, then we see that they are needed for process
instantiation. Therefore, they must be subscribed before process instantiation,

154

2 Motivation

Prepare
Dienstreise
Antrag

Choose
Sessions to
Attend

At process At process
deployment instantiation

Figure 4: Point of Subscription: At process deployment and instantiation.

Choose
Sessions to
Attend

Prepare the
Trip

-
@
<
Check = A AL
. Conference x Ef,‘,i'.f"éi",&g?
Timeline
(=]
z

Continue

Re-think your
Working

Decision

Email from
Prof. Weske
Received

Figure 5: Point of Subscription: All in one.

) -
o Prepare the = Secsrs‘%;lsseto
rip N Attend
Conference
——p- N—- Program . J
Check Received
. Conference +
Timeline
o Rehearsethe | | o 725\ Update
Presentation) Presentation
Feedback from
J Prof. Weske
Received

Figure 6: Point of Subscription: All in all.

Submit Choose
‘;@ - Camera- Sessions to —DO
Ready Version Attend
Acceplance Conference
Received N / Program
- Feog! _—
Submit Paper
-
- Re-Submit
=\ m! Revisethe _.O
) —H@gj)—b the Updated
= Paper Pa%er
Rejection Another Conference
Received \) CPPReceived \ J

Figure 7: Point of Subscription: Only immediate.

155

Sankalita Mandal: Event Subscription

otherwise the process is never started. In such cases, the subscription point
should be at deployment.

In[Figure 4} the process starts once the conference confirmation is received, we
need to prepare Dienstreiseantrag or application for a business trip. Then
we wait to receive some money in advance. Once we receive the money we can
book the flight and the hotel with it. However, we still wait for the conference
program to choose the sessions we want to attend. Now, we need to subscribe
to the event Confirmation Received to getnotification about the conference.
This might be done by subscribing to the mailing list or the Tweets or may be
the newsletter. The first dotted line shows the point of time when the process
is deployed and the second one shows when the process is instantiated.

2. At process instantiation. Subscription is created at instantiation. As discussed
in Section 2.2} a process model is instantiated at the point of occurrence of the
start event or, in case of multiple start events, the occurrence of the first one
of its start events. Thus, the point of subscription lies after the start event has
occurred. The events that lie in the path of sequence flow and have to occur for
the completion of the instance should be subscribed at instantiation. Again, if
we look at[Figure 4] the events Advance Money Received and Conference
Program received can be subscribed at this point.

3. At gateway activation. Events are subscribed to after a specific gateway is
terminated and the token is passed to the control flow of one or more branches
following the gateway. Since the gateways determine the relevance of some
events, it is more efficient not to subscribe to all the events at deployment
or instantiation. Depending on the gateway type, there can be three ways of
subscription as described below.

¢ Allin one. If it is a data-based XOR split gateway, then only one branch of
the alternatives are chosen after the gateway is activated. In this case, only
the events situated in the chosen path are subscribed to. The events that
lie in the disabled paths are not subscribed during the course of execution
of this particular process instance. In our conference preparation process,
if we consider from a little before, then we might first check the conference
timeline and decide whether to attend it or not. Based on the decision
we either prepare for the trip or continue regular working. Now, only if
we choose to go, we are interested in the conference program. Therefore,
we subscribe to the event Conference Program received only when
the gateway is activated and control flow is routed to the branch yes, as

shown in

e All in all. The parallel split gateway, on the other hand, has different se-
mantics. If a parallel gateway is terminated, then all the outgoing branches
are activated. Therefore, subscriptions are created for all the events in all
the branches after the gateway. In a similar process like before, if we also
need to present a paper in the conference, then we might initiate the activi-
ties required for the preparation of the talk in parallel with the conference

156

2 Motivation

organization. In we need to subscribe to both the events Confer-
ence Program Receivedand Feedback from Prof. Weske once the
parallel gateway is activated.

* Only immediate. This applies for the event-based gateways. In case of
an event-based gateway, when the gateway is terminated, subscriptions
should be made for all the events which are immediate successors of the
gateway. Because we do not know at this point which path will be fol-
lowed, we do not subscribe to the events situated further in the outgoing
branches. For example, if we submit paper in a conference, then we either
receive an acceptance or a rejection. Based on the event we receive we
choose the next activities. So at this point we only subscribe to the events
Acceptance ReceivedorRejection receivedinthe example shown
in Figure 7

4. At activity termination. Here, subscription for an event is made after the pre-
ceding activity is terminated. This is consistent with the semantic of the flow of
token. When an activity terminates, the token is passed through the outgoing
edge and the following event is enabled. So, we subscribe to the event and the
state changes to enabled. Then the event occurs at some point and the token
is passed to the next node according to the sequence flow. In the example pro-
cess in[Figure 8| the event Advance Money Received can be done after the
previous activity terminates (shown by red dotted line).

5. At activity start. Subscription is created when certain activity is started. This
is a special case needed for specific kind of events, i.e., the boundary events.
They are only relevant once the adjacent activity is started. Thus, we subscribe
to them only when the associated activity starts. also depicts this. The
event Super Saver Offer Receivedisrelevant only when the activity Book
Hotel is started, again shown by red dotted line.

6. At event occurrence. Subscription is created after certain event has occurred.
This applies when the occurrence of the event determines the next path to
follow. For example, after an event based gateway, one of the expected events
occur and the branch following this event is taken thereafter. The events in
other branches are not relevant anymore. In such scenarios, we create the sub-
scription after the occurrence of the event that determines the course of the
process. In once we know that the paper is accepeted, we subscribe to
the event Conference Program Received as it becomes relevant only after
we get the acceptance.

2.4 Application on Event Kinds

So far, we have discussed different points when subscriptions can be created. In the
following we will see for each event kind, which should be the suitable point of
subscription. There can be an earliest and a latest point for each event subscription.
However, for specific events, the earliest and latest subscription points overlap.

157

Sankalita Mandal: Event Subscription

Choose
Sessions to
Attend

Check Offer }—b{ Revise Plan m

Prepare
Dienstreise
Antrag

Book Flight

Conference
Program
Recéived

Confirmation
Received

Figure 8: Point of Subscription: At activity start and termination.

~

Submit (Choose
=@'——P Camera- ;@—-ﬁ Sessions to —DO
Ready Version Attend

Acceptar Conference|
mﬂ.&e \ J Program
1 Received
. Submit Paper

. Re-Submit
Revise the _.O
—Pi)—lv Paper thepg%g?ted

Rejection Another Conference
Received CFP Received

Figure 9: Point of Subscription: At event occurrence.

* Start Events. Start events are required to instantiate the process. Therefore,
they must be subscribed at the time of deployment. In case the process has
multiple start events, if any of them happens then the process is instantiated.
The later required start events, if any, are correlated to the existing instance. in
this case, the earliest and latest point of subscription are same.

¢ Intermediate Events. BPMN intermediate events can be further classified de-
pending on their position in the process path. They are described below.

— Events outside gateway branch. These are the events that lie on the se-
quence flow before a split gateway or after a join gateway. The occurrence
of these events are anyways required for the process completion, i.e., they
must occur once the process is instantiated. Hence, the earliest point of
subscription for these events are at instantiation. On the other hand, sub-
scriptions for these events can also be created once the preceding activity
terminates. Therefore, the latest point of subscription for intermediate
events outside gateway branch is at activity termination.

— Events inside gateway branch. These events are placed in one of the
branches of a gateway. Depending on the type of the gateway, they may
or may not be required for the process instance. This can only be known
once the gateway is terminated and the token is routed to one or more
outgoing edges. Thus, they should use the earliest subscription point at
gateway activation depending on the semantic of corresponding gateway.
Again, the latest point of subscription can be at activity termination for
these events.

158

References

One exception should be pointed out here. The events that are the imme-
diate successors of an event based gateway also fall in this category. But
for them, there is no preceding activity. For them, both the earliest and
latest point of subscription are at gateway termination, only immediate
to be specific.

— Events attached to boundary. The boundary events are relevant only in

the scope of the activity it is attached to. Thus, it does not make sense to
subscribe to it before the activity starts. So we use the subscription point
at activity start here. Also, the earliest and latest points of subscription
are same for boundary events.

— Events in exceptional path. These are the events situated in the outgoing

branch of the boundary event. Be it an interrupting or non-interrupting
boundary event, the events in exceptional path are required only if the
boundary event is fired. Naturally, it is more efficient to subscribe to them
after the boundary event has occurred. Thus, the earliest point of sub-
scription for them is at event occurrence whereas the latest point remains
at activity termination.

The summary of the event kinds and the earliest and latest points of subscrip-

tion for them are shown inFigure 10

[EventKind___ Earliest POS Latest POS

Start events

Events outside
gateway branch

Events on XOR
gateway branch

Events on AND
gateway branch

Events immediately after

Event-based gateway branch

Events in exceptional path /
On event based gateway branch

Boundary events

At process deployment

At process instantiation

At gateway activation

At process instantiation

At process instantiation

At event occurrence

At process instantiation

At process deployment

At activity termination

At activity termination

At activity termination

At gateway activation

At activity termination

At activity start

Figure 10: Earliest and latest Points of Subscription.

References

[1] A. Barros, G. Decker, and A. Grosskopf. “Complex Events in Business Pro-

cesses”. In: Business Information Systems. Springer, 2007.

[2] G. Decker and J. Mendling. “Process instantiation”. In: Data Knowl. Eng. 68.9

(2009), pages 777-792. por: 10.1016/j.datak.2009.02.013.

159

https://doi.org/10.1016/j.datak.2009.02.013

Sankalita Mandal: Event Subscription

[3] O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Co.,
2010. ISBN: 978-1-935182-21-4.

[4] N. Herzberg, A. Meyer, and M. Weske. “An Event Processing Platform for
Business Process Management”. In: EDOC. IEEE, 2013.

[s] OMG. Business Process Model and Notation (BPMN), Version 2.0. Jan. 2011. URL:
http://www.omg.org/spec/BPMN/2.0/| (last accessed 2016-10-01).

[6] M. Weske. Business Process Management — Concepts, Languages, Architectures, 2nd
Edition. Springer, 2012. 1SBN: 978-3-642-28615-5.

160

http://www.omg.org/spec/BPMN/2.0/

Relying on Development Data
for Software Development Processes

Christoph Matthies

Enterprise Platform and Integration Concepts
Hasso-Plattner-Institut
christoph.matthies@hpi.de

The way that developers work together, manage tasks and organize themselves
impacts the software that is produced. There is thus the need to practice and up-
hold an effective software development process. When it comes to improving or
finding weaknesses in the executed process, teams often rely on self-improvement
sessions or mentoring by a knowledgeable third party. These methods rely on
subjective evaluations and their results are hard to quantify. After changes are im-
plemented it is difficult to assess their impact and whether an identified issue was
fully resolved. In order to tackle these challenges we propose an approach relying
on analysing data created by software development teams. Software developers
create more than just code during regular development activities. Development
artifacts, such as commits, tickets, wiki pages, code coverage statistics and build
logs, contain information on how a team worked together. By aggregating, linking
and analysing this already present data, insights into the development process of
teams can be generated.

1 Overview

Specialised software analysis tools are integral parts of modern software engineer-
ing. They allow insights into the created products where manual analyses would
be complex and costly. Examples for such programs include linters as well as code
coverage or formal verification analyses. Most of these common tools rely on static
program analysis, scrutinizing the produced source code and giving recommenda-
tions for code improvements. Data on the specifics of how the code was created is
not needed and is not evaluated. This is of benefit, as no additional overhead for
collecting development data is introduced, e.g. by surveying developers or making
them document their efforts.

We argue that existing development data can be used to gain insights into the
employed software development process. Adding administrative work is avoided,
as only artifacts created during regular development activity are considered. This is
enabled by the way that software engineers work: In contrast to many other engineer-
ing disciplines, software developers “self-document”, i.e. they frequently produce
artifacts that allow following their progress. For example, by committing code into
a common software repository and updating the corresponding issue, a software
engineer not only shares exactly what was done, but a variety of other information:

e Commit metadata, such as the commit author’s email address as well as the
date and time that the changes were made.

161

mailto:christoph.matthies@hpi.de

Christoph Matthies: Relying on Development Data for Software Development Processes

¢ Commit message, comprising the goal of the change, as well as the sentiment
of the developer while she was writing it. Furthermore, the commit message
can include structured information, such as an issue number (e.g. “Ref #123”).

* Issue information, including the motivation for the change, possibly in a semi-
structured “as a <user> I want to <goal> so that <benefit>" user story pattern.

¢ Issue metadata, including information on which developers were assigned or
reassigned to this ticket over time, when the ticket was created and by whom,
which priority it has, as well as other labels attached to it.

* Issue comments, made by other developers, clarifying uncertainties, request-
ing changes or discussing the merits of the issue’s goal or associated commits.

In most development teams, the created development data is shared openly. This
is especially true for open-source development. In most cases even data on the prob-
lems that occurred is readily available, through discussions in issues, wiki pages or
logs of broken builds. With this wealth of available information, we can build tools
that can help developers gain an overview of the implicit data they and their team
produce and allow them to identify possible problems in the executed process.

2 Approach

In order to develop effective data-driven tools for supporting development processes
access to software development teams is vital. Only with observations on how teams
interact, what existing development tools are used and what data is produced, can
tools be built that can attempt to be relevant.

2.1 University Courses for Data Mining

Software engineering 1I is a final year undergraduate software engineering course in
which multiple student teams, employing the Scrum methodology, develop a sin-
gle software system together. It provides a recurring opportunity to gather realistic
data and develop appropriate metrics for real development teams facing real-world
challenges. Especially analysis on frequent “beginner mistakes” are pertinent. Teams
with little experience applying agile methodologies are likely to make mistakes,
which can be quickly rectified by providing feedback or pointing to alternative prac-
tices. The course blends a hands-on development project, coaching by tutors as well
as minimal lectures on agile methodologies. Figure [tf depicts the Scrum process that
is being followed, including adaptations that account for the fact that students cannot
devote their entire work time to the project.

In order to be as close to real-world scenarios as possible, students are consciously
allowed to make mistakes and learn from them. One of the areas that is focused
on are the values of the Agile Manifesto, such as “individuals and interactions over
processes and tools”. Students are given authority and responsibility for decisions

162

2 Approach

Input from @) -Q
stakeholders Every Q
O Week Weekly Scrum
Meeting

O 0 o
Tutor 2-3 Week Q 3
Product Owner ® Sprint .Q

(student) . P Spr_int
1 Ranked ... Sprint Finished Review
Backlog

Z_ TG (e Increment

3 Backlog o O,

4 Sprint Planning ‘Qﬂ

S Meeting pwd

6 with Team print
\7) 4 iterations Retrospective

Figure 1: The modified Scrum process followed in Software Engineering II.

and role assignment and self-organize in their teams. These self-organizing teams are
one of the base concepts of agile methodologies [3] and have been identified as a
critical success factor for projects|1].

In order to ascertain what impact the focus on self-organizing teams that create
real development data has on the satisfaction with Scrum as well as the overall course
design, surveys were devised and analysed [8]. As the same survey as in a previous
study by Mahnic [7] was used, the results could be compared to those of Mahnic,
who employed a much stricter, more controlled course setup, featuring no explicit
self-organization by students. Figure [1] lists the topics and questions of the main
survey.

Both courses received consistently positive scores over all sprints for questions
relating to satisfaction with the performed work as well as the Scrum methodology.
These findings are in line with more extensive studies [10] on the subject.

However, the survey question directly relating to students’ satisfaction and expe-
rience with letting teams self-organize only received slightly above neutral average
results. Answers featured standard deviations of more than one point, a disparity
that was also evident in feedback by students. While some students looked fondly
on attending only a few lectures and focussing on self-organization, others would
have preferred more guided tutorials and stricter organization. Reconciling these
two sides in a software engineering course is an ongoing challenge. Even so, the
focus of the course on self-organizing teams did not hinder the perceived learning
results of students.

2.2 Data Collection

Once it is clear, which teams should be analysed and what their context is (e.g. what
tools they are using), as a first step, the development artifacts that they produce have
to be collected.

Modern development teams are supported by a variety of tools. These include pro-
grams which have become more or less standard, such as issue trackers and version
control systems, but also a variety of other solutions, e.g. continuous integration or
static code analysis.

163

Christoph Matthies: Relying on Development Data for Software Development Processes

Table 1: Main sprint survey adapted from Mahnic [7], which was filled out by stu-
dents at the end of every of the four sprints of the project. Questions could be
answered on a 5-point scale of “strong no” to “strong yes”.

Question

1 Clarity of requirements in the Product Backlog Were the user stories in
the backlog clear enough? Did the descriptions suffice to understand what
the Product Owner really wanted?

2 Effort estimation Were the estimates of required work (story points/man-
hours) of user stories adequate /realistic?

3 Maintenance of the Sprint Backlog Was it clear how to handle user sto-
ries? How to log performed work?

4 Administrative workload Does the administrative work called for by
Scrum (meetings, planning, reviews, maintenance of backlog, etc.) represent
a significant additional workload?

5 Cooperation with the Scrum Master Was the cooperation with the Scrum
Master adequate/satisfactory? Did the Scrum Master contribute to the team’s
success?

6 Cooperation with the Product Owner Was the cooperation with the Prod-
uct Owner adequate/satisfactory?

7 Cooperation with other Team members Was the cooperation with other
Team members satisfactory/adequate? Did the Scrum process encourage
cooperation?

8 Workload Was the amount of work required for the project adequate?
Satisfaction with work Are you satisfied with the work/the results of this
sprint?

10 Satisfaction with Scrum s the methodology useful? Would you recom-
mend Scrum to other software developers?

In order to perform analyses on the data within these systems an ETL process is
necessary. Data needs to be extracted, transformed into a unified data scheme and
loaded into a suitable database.

A major challenge in implementing this process is keeping up to date with the de-
velopment of new systems and the evolution of existing tools. Most current systems
that exist for collecting development data, such as SonarQube [2] rely on connection
plugins for each data source, which need to be updated when the source changes.
Furthermore, they define a rigid data scheme that custom data (e.g. extra fields on a
ticket) do not necessarily fit into. Lastly, it is of benefit to allow a selection of target
databases that the mined and connected data can be written to, depending on the
analysis use case. For example, if the social graph of developers is to be analyzed, a
graph database which includes graph analysis algorithms is best. However, when
text analysis is required, a document store might be superior.

164

2 Approach

DataRover [6] tackles these issues by reducing the implementation effort for ETL
workflows. The querying of the data source APIs and data storage are separated.
Figure|2|describes the architecture of the system. Explorers are each responsible for
querying a single data source and represent a minimalistic connector implementa-
tion.

Data Rover

Git R Git Repo |,
Repository Explorer >O\
JSON A
. over . i i
: . Translation "O‘ Persistence _"O" Neo4J

A 4

HTTP Module Module DBMS
4R

. > 4

Github GH Issue |,

Issues Explorer >O/
Mapping
Information

Figure 2: FMC block diagram of the architecture of the data rover.

The transformation step into a property graph, which has no previously defined
data scheme, is guided by user-defined mappings. These are created through a
graphical front end based on sample API JSON responses. For example, every com-
mit could be linked to its corresponding continuous integration build by its SHA
hash. A Neo4] graph database serves as an intermediate data sink that stores the
connected graph of development data. The graph can then be exported to a variety
of different databases to allow further analysis and the use of other tools.

Using DataRover, it is possible to create minimalistic data sets tailored to spe-
cific use cases, by using a graphical front end and only having to write querying
code in case of API changes. The system’s linking mechanisms further allow adding
additional data sources when needed and extending existing analyses.

2.3 Development Data Analysis

Once the data of all the tools that development teams use is collected, linked and
stored, it can be analysed. Our main use case, is to gain insights into the development
process of student teams, to find out how well Scrum and agile best practices are fol-
lowed in a team and allow targeted counteractive measures. To this end, we propose
a set of nine objective, automated conformance metrics which can perform this as-
sessment [9]], complementing proven, battle-tested techniques, such as assessments
by tutors or exams. We have split the developed metrics into three categories:

¢ XP Practices: Metrics measuring violations of Extreme Programming develop-
ment practices.

* Backlog Maintenance: Metrics measuring violations concerning entries in
both the product and sprint backlogs.

165

Christoph Matthies: Relying on Development Data for Software Development Processes

* Developer Productivity: Metrics dealing with topics such as the workload of
developers, how work is structured and how it is assigned.

Conformance metrics attempt to extract patterns in the collected data that do not
comply with the defined practices. In practice, these are processes recommended
by agile methodologies such as Scrum or XP. Furthermore, we included metrics
which students frequently had issues with in past instalments of the Software En-
gineering II course, that diminish process adoption and student engagement, and
are supported in the literature. For example, a user story that is overly long and
does not fit on an index card and should be split, can be identified. These viola-
tions can reveal problem areas in the executed process, that need special attention.
Metrics follow the iterative model de-
scribed in Figure adapted from

Zazworka et al. [12]. First, conformance ” ”

metrics are defined using a template,

containing the minimum of information ‘ Define conformance metric

that is needed in order to execute the

metric and interpret results. The tem- f i# N

plate is given in Figure [2| In a second _

step, metrics are executed and violations Cr;']'ﬁ?;f;”ﬁa'{;‘ “

are detected, down to the artifact level, I

i.e. the actual offending artifact is ex- Detect process

tracted. Third, the context of the de- violations

tected violations is researched, i.e. the Analyse%

how, what and why questions surround- context

ing the artifact are discussed with the

team or relevant stakeholders. [false positive] [process violation]
Lastly, measures are taken to prevent Y - rovj’ —

future violations. In the case of false pos- ‘{ Improve metric ’ ‘ Pexeattion }‘”

itives, i.e. artifacts that were detected as
violations but are not considered prob-
lematic, the metric needs to be adapted.
In the case of a correctly identified pro-
cess violation that is considered severe enough to tackle, steps to ensure that the
defined process is followed more closely in the future, e.g. by additional training or
additional software tools, can be taken.

Using the proposed conformance metrics, violations for all teams in all sprints
could be detected in the development data of the 2014 /15 instalment of Software
engineering Il with 38 participants. As the specific artifact that caused a violations
can be extracted by the metrics, additional research can take place to uncover the
root cause of an issue. These root causes can then be tackled with additional tutor
intervention. In some cases, severe violations were found that were missed by tutors,
who took part in meetings. For example, a very complex, wrongly prioritized user
story, that had been in the sprint backlog of all sprints. Being one user story among
hundreds in the issue tracker that was being used it was missed by manual analyses.

Figure 3: Activity diagram of the iterative
lifecycle of conformance metrics.

166

3 Related Work

Table 2: Conformance metric template. This template is filled for every metric that
is to be measured. It contains all the information needed for an executable metric
with interpretable results.

Name
Synopsis

Description

Data sources

Query

Rating function

Pitfalls
Categories

Effort

Severity

The unique, descriptive identifier of the metric.

A short description of the type of violations the metric measures,
e.g. “commits without tests”.

Overview of the expected process, i.e. the practice which should
be followed, and its advantages, with references to literature. A
description of what constitutes a violation of this process should
be included.

A list of data sources the metric requires and which the query is
based on, e.g. code repositories or issue trackers.

Steps needed to extract violations from the data sources. Ideally,
these steps can be automated, e.g. as a database query.
Function that maps detected violations into a numerical score,
indicating the degree of mismatch between the executed process
and the one detailed in the description.

Description of what the metric does not measure, e.g. limitations
or possible misconceptions about the results of the metric.
Topics in the domain of agile software development the metric
attempts at measuring, e.g. “XP practices.”

How much effort collecting violations and calculating a score
requires. Either low, medium or high, e.g. using an automated
process on existing data sources is “low” effort. Low effort met-
rics should be implemented first.

Importance in the context of the project’s agile development pro-
cess. How severe violations found by this metric are. Either in-
formational, very low, low, normal or high.

As such, we see this data-driven approach using the developed metrics as an effective
addition to the usually employed assessment techniques of agile teams.

3 Related Work

Due to the effort involved with analysing development data manually, multiple au-
tomatic tools, targeting specific areas, have been proposed. Examples include work
by Johnson et al.[4], who proposed Zorro, a tool for finding violations of Test-Driven-
Development practices or as well as tools for analysing development artifacts in
respect to the PSP (Personal Software Process) [5]. However, with the rise of Software-
as-a-Service solutions and a focus on web technologies, recent analysis tools, even
in research, have moved away from native desktop applications. A good example

167

Christoph Matthies: Relying on Development Data for Software Development Processes

of this, as well as a good example of how process metrics are gaining traction is Git-
lalfj|a collaborative git repository hosting service on the web. Over time, Gitlab has
included a full range of services, from issue tracking, code reviews, to continuous
integration and continuous delivery. This gives them access to a wealth of develop-
ment data for each process, along the deployment pipeline of a project. They used
this data to develop process metrics called Cycle Analytics?| These measure the time it
takes for an idea to pass through the different stages of a project, i.e. issue, plan, code,
test, review, review and staging, starting with an issue, until code that implements
the idea is deployed. These analysis are possible, as Gitlab has access to a variety of
development artifacts. Without this diversity and the knowledge to link them, e.g.
knowing that “Fixes#123” in a commit message relates to issue number 123, no times
relevant for projects could be measured. A different approach is taken by Commit
Guru by Rosen et al. [11]. The tool relies solely on version control information, taking
a git repository on GitHub as input. Every commit is assigned a rating, placing it
either in the “risky” or “not risky” categories. A risky commit is likely to contain
bugs and should be reviewed. Whether a commit is determined to be risky or not
is based on thirteen metrics that are calculated for each commit. These include very
simple ones, such as the amount of deleted lines (higher is considered riskier) or
the amount of commits the developer has recently made (less is riskier). However,
some more complex metrics, such as subsystem developer experience, measuring
the number of commits the developer made in the past to the subsystems touched
by current commit (higher is less risky), show that meaningful statistics can already
be generated from a single data source.

4 Future Work

Future work in the area of measuring process conformance by analysing develop-
ment artifacts includes iterating and refining the employed metrics. As every de-
velopment team is different and software development methodologies are meant
to be adapted to a team’s context, finding the differences in needed metrics is an
interesting field of study. The related work can give very good starting points for
own measurements, as these represent metrics that other teams deem relevant to
their processes. Furthermore, future work will focus on how developers can be no-
tified of possible violations. Providing a read-only web interface that needs to be
regularly visited for updates, might not be the ideal solution. Providing notifications
in a prompt fashion could allow new ways to interact with analysis tools, leading to
greater engagement with developers.

Thttps://gitlab.com/ (last accessed 2016-10-20).
2https://about.gitlab.com/solutions/cycle-analytics/ (last accessed 2016-10-20).

168

https://gitlab.com/
https://about.gitlab.com/solutions/cycle-analytics/

5 Publications

5 Publications

Three papers were accepted in conferences in 2016:

* C. Matthies, T. Kowark, and M. Uflacker. “Teaching Agile the Agile Way — Em-

ploying Self-Organizing Teams in a University Software Engineering Course”.
In: American Society for Engineering Education International Forum. New Orleans,
Louisiana: ASEE, 2016 [8].

T. Kowark, C. Matthies, M. Uflacker, and H. Plattner. “Lightweight Collection
and Storage of Software Repository Data with DataRover”. In: Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering. ASE
2016. New York, NY, USA: ACM, 2016, pages 810-815. 1sBN: 978-1-4503-3845-5.
DoTI:10.1145/2970276.2970286/ [6]].

C. Matthies, T. Kowark, M. Uflacker, and H. Plattner. “Agile Metrics for a Uni-
versity Software Engineering Course”. In: 46th Annual Frontiers in Education
Conference. Erie, PA: FIE, 2016 [9].

References

[7]

S. Augustine. Managing agile projects. Prentice Hall PTR, 2005.

G. Campbell and P. P. Papapetrou. SonarQube in Action. Manning Publications
Co., 2013.

T. Chow and D.-B. Cao. “A survey study of critical success factors in agile
software projects”. In: Journal of Systems and Software 81.6 (2008), pages 961—

971.

P. M. Johnson and H. Kou. “Automated Recognition of Test-Driven Develop-
ment with Zorro.” In: AGILE. Volume 7. Citeseer. 2007, pages 15-25.

P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang, A. Kagawa, and T. Yamashita.
“Practical automated process and product metric collection and analysis in a
classroom setting: Lessons learned from Hackystat-UH”. In: Empirical Software
Engineering, 2004. ISESE "04. Proceedings. 2004 International Symposium on. Aug.
2004, pages 136—144. por: 10.1109/ISESE.2004.1334901.

T. Kowark, C. Matthies, M. Uflacker, and H. Plattner. “Lightweight Collection
and Storage of Software Repository Data with DataRover”. In: Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering. ASE
2016. New York, NY, USA: ACM, 2016, pages 810-815. 1sBN: 978-1-4503-3845-5.
DoOI: 10.1145/2970276.2970286.

V. Mahnic. “Teaching Scrum through Team-Project Work: Students’ Percep-
tions and Teacher’s Observations”. In: International Journal of Engineering Edu-
cation 26 (2010), pages 96—110.

169

https://doi.org/10.1145/2970276.2970286
https://doi.org/10.1109/ISESE.2004.1334901
https://doi.org/10.1145/2970276.2970286

Christoph Matthies: Relying on Development Data for Software Development Processes

[8]

[10]

[11]

[12]

C. Matthies, T. Kowark, and M. Uflacker. “Teaching Agile the Agile Way — Em-
ploying Self-Organizing Teams in a University Software Engineering Course”.
In: American Society for Engineering Education International Forum. New Orleans,
Louisiana: ASEE, 2016.

C. Matthies, T. Kowark, M. Uflacker, and H. Plattner. “Agile Metrics for a
University Software Engineering Course”. In: 46th Annual Frontiers in Education
Conference. Erie, PA: FIE, 2016.

G. Melnik and F. Maurer. “A cross-program investigation of students” percep-
tions of agile methods”. In: Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005. May 2005, pages 481-488. por: 10.1109/ICSE.2005|
1553593.

C. Rosen, B. Grawi, and E. Shihab. “Commit Guru: Analytics and Risk Pre-
diction of Software Commits”. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ESEC /FSE 2015. New York, NY, USA: ACM,
2015, pages 966—969. ISBN: 978-1-4503-3675-8. DOI: |10.1145/2786805.2803183.

N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and K. Schneider. “Are
Developers Complying with the Process: An XP Study”. In: Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM. 2010, page 14.

170

https://doi.org/10.1109/ICSE.2005.1553593
https://doi.org/10.1109/ICSE.2005.1553593
https://doi.org/10.1145/2786805.2803183

Supporting Program Comprehension
Through Semantic Code Models

Toni Mattis

Software Architecture Group
Hasso-Plattner-Institut
toni.mattis@hpi.uni-potsdam.de

The source code of programs is written with a conceptual model in mind. To
understand and modify code, a developer needs to recover this model, which can
be a time-consuming task. We explore the use of recent data mining techniques that
provide high-level insights guiding the developer. In this report, we summarize
our current progress on using and improving probabilistic models for this task
and explore future directions of research.

1 Introduction

According to Naur’s notion of programming [13], programmers build a “theory of
how certain affairs of the world will be handled by, or supported by, a computer
program”. To review, use, or modify source code, another programmer needs to
re-enact the reasoning that lead to a particular implementation.

Programmers have several means to communicate their theory to other developers,
especially their future selves. The most powerful and obvious means are names. By
giving the name user to certain objects in the system, programmers simultaneously
group the entirety of attributes (e.g. name, email address, profile picture) into a
conceivable module (e.g. a class) and create an analogy to the real world, stating
that actual people using the system are represented by the user class in the program.
At the same time, naming is closely linked to the process of abstraction: Once a
compound data structure has been called rectangle and given an attribute width, the
program code can refer to rectangle.width rather than accessing the coordinates inside
the underlying data structure and computing the difference of their x-values.

In code, concepts and abstractions emerge as usage patterns of certain names: A
concept can be identified by co-occurring names (rectangle, width, height, origin, ...),
while abstractions tend to use vocabulary from one concept (e.g. origin) in their inter-
face and internally refer to concepts used for implementing the abstraction (point, x,
Y, ...). We will exploit these phenomena infsection 2and the following sections, where
we use and adapt models from natural language processing. Since the meaning of
code is not solely encoded in names, but also in the structure which relates these
names to each other, we will look into techniques to recover meaningful structural
relations and correlate them with concepts in The effectiveness of this
approach does not only rely on the underlying model, but also how we communicate
the recovered concepts to the programmer to evoke insight or guide attention. We

171

mailto:toni.mattis@hpi.uni-potsdam.de

Toni Mattis: Supporting Program Comprehension Through Semantic Code Models

discuss possible solutions in section 2.4, Finally, we discuss a number of research
questions for future work.

2 Code as Result of a Random Process

The observable data, such as names and structure in code and related artifacts, is the
result of a series of random decisions. Our aim is to find models of random processes
that generate the observed code with a high probability. If this is the case, our model
is said to “explain” an observation. Unexplained variability is considered to be noise.

We first focus on a process which generates names. Assume there is a finite set
of available names, i.e. the corpus of a language. A trivial random process would
draw each word from that corpus with uniform probability, however, our observed
data has no such distribution and therefore is unlikely under such model. Code
exhibits local variation in how names and identifiers are distributed; it is clear that
this variation is not just noise. It makes sense to explain this variation as the result of a
statistical factor, which we call concept for now. Every concept has its own distribution
of names, e.g. the geometry concept is likely to use “point”, “rectangle”, or “line”, but
less likely to use “password”. The concept of authentication however is very likely to
use “password”. Each module can be seen as mixture of such concept distributions,
a higher proportion of one concept biases the distribution of names for variables,
methods, classes, attributes, etc. towards this particular concept’s distribution.

A random process involving concepts could look like this:

* Generate C concepts, each concept ¢. being a vector of proportions over all
possible names n with), ¢ = 1, i.e. ¢, is a multinomial distribution.

¢ For each code module m;:

— For each concept ¢, sample a proportion 6, that states how much this mod-
ule is concerned with the respective concept. The vector 0; is multinomial
again.

— FPor each position of a possible name 7;; in the module:

* Sample a random concept indicator ¢;; = z with probability 6;..

* Sample a random name n;; = m with probability ¢y, i.e. the name
distribution of concept z.

In literature, the framework according to which this process is being constructed
is known as Latent Dirichlet Allocation (LDA) [7], as the involved multinomial dis-
tributions can itself be regarded as random samples from a Dirichlet distribution.
A graphical representation of the full LDA model including the Dirichlet priors is
given in

From only observing 7;; we cannot directly compute the values of ¢;;, ¢ and 6. We
must treat them as hidden variables and our objective is to optimize them in a way
that jointly maximizes the probability of our current observations #;;.

The process described above makes some assumptions:

172

2 Code as Result of a Random Process

Assumption 1 (Distributional Hypothesis): If a name occurs close to another name
(e.g. in the same method), they are likely part of the same concept. This is
expressed in step 2.a as the fact, that proportions of concepts 6; are shared
among all names inside a single module.

Assumption 2 (Conditional Independence): Names are conditionally independent given
their concept. This is a strong but useful simplification of how code actually
works. We will relax this assumption later.

2.1 Mining Concepts

An example algorithm assigning each name a concept and thereby representing each
module m; of the code as mixture of concepts ; is given as follows. In this example,
we consider a module being a single method in an object-oriented environment or
function in a functional environment.

Let n;; be the j-th name or identifier in the i-th method m;, and 1 < ¢;; < Cbe
the concept assigned to the j-th identifier in method m;. With |n — ¢| we denote
the overall number of times name 1 has been assigned to concept ¢, and |m <
c| the number of times concept ¢ has been assigned to any position in method m.
Consequently, |- — c| denotes how often ¢ has been selected overall, and |m| is the
number of identifiers in method m, N the total number of distinct names.

We start the algorithm with a fully random assignment and improve each assign-
ment regarding the criteria and assumptions stated above. For each improvement, we
randomly sample a new concept c¢;; from the available range of concepts according to
the following probability distribution over concepts. This is a so called Monte-Carlo
algorithm:
|mi<—z|+(x‘ |l’li]'—>Z‘—l—ﬁ

|mj| +Ca |- = z|+ NB

P (Cij = Z) X (1)
The first factor represents the relative proportion of the concept within a method,
8;. In accordance with assumption 1, more frequent concepts near a name are more
likely to be selected as a concept. The second factor is the relative representation
of the current name within each concept, thereby preferring concepts which have
been associated with the name more frequently. This reflects the fact that concept-
name-distributions ¢, are shared among all modules. The model parameters « and
B smooth the distribution, avoid division by zero and assignh non-zero probabilities
for concepts that have never been seen.

This sampling for each n;; should be repeated multiple times. After a few iterations,
the per-module proportions of each concept 6; = |m; < c|/|m;| converge.

A simple extension to this model allows the number of concepts C to grow to
best fit the code base. A practical implementation would allow a (C + 1)-th concept
to be sampled with non-zero probability, e.g. by discounting existing concepts by
factor |- — ¢|/(K +) and weighting the new concept v/ (K +), with K = Y_; |m;].
The parameter -y controls the rate at which new concepts are introduced and thus
inversely affects the number of identifiers assigned to each concept.

173

Toni Mattis: Supporting Program Comprehension Through Semantic Code Models

Relation to LDA and Dirichlet Processes [Equation 1]can equivalently be described
in terms of a Gibbs sampler [10] on the LDA model[]however we opted for a more
intuitive description here. A sound, probabilistic interpretation of a dynamically
growing number of concepts is given by a Dirichlet process (DP), which is a distri-
bution over infinitely many concepts of exponentially decreasing likelihood. A full
description of the DP-based model and training algorithm is beyond the scope of
this work, but similar schemes have been implemented as extensions to LDA-like
topic models [6} 19].

Feature Calibration In contrast to natural language, identifiers in code are sim-
pler features, since they are rarely inflected. However, they often appear in plural
form, e.g. user may refer to a single user object, while a variable users might hold
a list of user objects. In practice, removing the plural form has not had a signifi-
cant impact on model performance, since both singular and plural form often co-
occur. Most programming languages, however, form compound identifiers using
camel-casing (checkPassword) or underscores (check_password) in mainstream
languages, hyphens (check-password) in LISP-like languages, or selector parts
(checkPassword:ifInvalid:)in Smalltalk. It is desirable to split these into atomic
words.

Natural-language Context Often, code appears in the context of natural language,
e.g. in documentation, StackOverflow posts, or by being accompanied by code com-
ments. We can apply standard methods of NLP to obtain word features from this
context, such as stemming and stop-word elimination, and treat them like names
occurring in the code.

Temporal vs. Spatial Context We can easily change our definition of context from
co-occurrence within the same module to co-modification within the same time
frame. In this case, the above algorithm works on names that have been added
or removed within a coherent modification of the code base. Such modifications
typically have the form of patches or commits in a version control system like Git or
Mercurial. We can run the above algorithm on these commits rather than modules
from the latest version, and propagate hidden variables forwards if we can track the
identity of a name across several versions, see

Using temporal over spatial context is intuitively more effective when commits
have a finer granularity than just the modules in the latest version. Large commits
can be split into their respective modules, so that a balance between spatial and tem-
poral locality can be maintained. In any case, adding historical information increases
statistical support for the concepts while raising the time to analyze a legacy code
base significantly.

'For a more accurate estimate, the currently re-assigned concept should not be included in
the aggregate counts, hence the term |m;| should also be corrected to |m;| — 1.

174

2 Code as Result of a Random Process

4 4 \ 4
000 IO O]

module A module B

Figure 1: Two modules created over the course of three commits. Names introduced
in one commit retain their identity and hidden variables until they are removed
again. The hidden concept variables for each module are taken from the surviving
names of earlier commits.

2.2 Abstraction-aware Concept Allocation

Concerning the above model, we reproduced and validated existing research on the
LDA-framework and code. The simplicity of the underlying model does, however,
only explain the distribution of names across the code base and yield a very simple
notion of a concept. In ongoing research, we are extending the model to capture
abstraction.

Abstractions are usually in place to separate higher-level concepts from their lower-
level implementation. Externally, they manifest as interfaces that expose a domain-
specific concept (e.g. finding a route between two locations on a map) and use names
specific to this domain (“map”, “road”, “city”). Internally, they express parts of the
protocol in terms of different concepts, e.g. invoking a graph library and find a
shortest path, thereby using graph-specific names (“path”, “edge”, “vertex”).

Implementation code usually mixes both sides of the abstraction as it maps do-
main behavior and state onto implementation concepts. We introduced a new binary
factor v;; € {0,1} that states whether 7;; is an implementation detail (1) or just the
abstraction (0), and a translation matrix # of size C x C which captures for each ab-
stract concept the proportions of its implementing concepts, i.e. 77, is the probability
that concept ¢ uses concept y in its implementation.

Our random process is modified as follows:
* Generate ¢ and 0 as in the LDA model.

* For each position of a possible name 7;; in the module:
— Sample a random concept indicator ¢;; = z with probability 6;,.
— Sample a Bernoulli-distributed indicator v;; € {0,1}.

— If v;; = 0 (Name is from the abstraction)

175

Toni Mattis: Supporting Program Comprehension Through Semantic Code Models

~~ -~
(a) (a)
N N
[C
~~
O)) @)
I
~ \ (/ ~ \
(
. \B / n WY . \B /
ij c ij
n e @ abstractions n @
1) c 1) c
names concepts names concepts
modules modules
(a) LDA-based concept model (b) Proposed abstraction-aware concept model

from literature

Figure 2: The generative models in plate notation. Arrows indicate dependencies
between random variables, boxes indicate multiplicity, i.e. replicate the variables
for each name, module or concept respectively. Dashed circles represent Bayesian
priors.

* Sample a random name 7;; = m with probability ¢.,, as in the LDA
model.

— If v;; = 1 (Name is from the implementation)
* Sample a random implementation concept y with probability 7.,
* Sample a random name n;; = m with probability ¢y,

Fitting the hidden variables of this model results in interesting insights, because
the optimal allocation of the abstraction-implementation-matrix 7 now captures
how concepts relate to each other. Additionally, the concepts itself are “cleaned up”
compared to the LDA-like approach, since co-occurrence does not automatically
imply relatedness within the same concept, but also across abstraction barriers.

A limitation of our optimization procedure is that it does not optimize the v vari-
ables yet. We assume v = 0 for any name in the public interface of a class and
method arguments, v = 1 otherwise. A consequence is that 77 has a strong diagonal,
i.e. concepts often refer to themselves as their implementation.

Example Fitting the above model on the Smalltalk tool-building framework and
IDE Vivide [18], we can obtain the results outlined in two noisy concepts are
omitted from the table. Some important connections have been properly detected,
e.g. that the event system often refers to boxes (UI elements), which represent drop
targets but at the same time can be drawn on a canvas. Also, the source code editing
concept makes use of an underlying text and font rendering concept.

176

2 Code as Result of a Random Process

Table 1: Abstraction-aware concepts fitted on the Vivide tool-building framework.
C=10,a =10, =1.0,7 = 1.0, = 60,000 LOC. Implementation concepts with
ey < 0.08 omitted.

Concept Top 5 names Impl. concepts
1 color canvas bounds draw width
2 update box target emit drop 1
3 event mouse selector signal sut 2
4 form world context active vivide
5 text string edit label font
6 pane script source code service 5
7 next result size first all
8 dcon method [icons add toolbar 4

2.3 Code Structure beyond Names

A logical extension to the name-based approach is to consider structure of the un-
derlying code. Typically, programs can be represented as an abstract syntax tree (AST).
Our previous models can be interpreted as explaining a subset of leaf nodes in an
AST, e.g. variable and method-name nodes. In order to represent more than just leaf
nodes, we require a set of rules which generate structure. Such a rule set is given by
a context-free grammar of our language. If we attach probabilities to each alternative
rule, the resulting probabilistic context-free grammar (pCFG) is a generative process
for describing fully structured code.

However, a simple pCFG cannot express structures larger than a single rule applica-
tion. In natural language processing and pattern mining, this deficiency is addressed
by adding redundant rules to the pCFG which resolve to tree fragments [3, 17]. Such
a construction is called probabilistic Tree Substitution Grammar (pTSG). An example

E — CEAYY p=03

E — Literal p=0.6
E — (EAY) p=03 “E — ‘foo’ p =0.1*
E — Literal p=07 A = EA p=02
A — EA p=03 A — € p=203
A — € p=07 *A — E p = 0.5*

(a) A pCFG for LISP-like expressions (b) A pTSG including two redundant sub-
stitutions (*) with separate probabili-
ties.

Figure 3: A pCFG and a derived pTSG. E represents an expression, A a recursively
defined list of arguments.

177

Toni Mattis: Supporting Program Comprehension Through Semantic Code Models

can be seen in The decision which tree fragments should be substituted in
a single rule is equivalent to mining “interesting” subtrees in a training set of trees.
Such a process differs from frequent subtree mining, as it maximizes the probability of
the observed trees under the pTSG rather than just collecting frequently repeating
patterns, which tend to be rather small.

Finding subtrees Post and Gildea [17] have derived an algorithmic approach to
isolate probability-maximizing fragments from a set of trees. The idea is to place a
random split tokens z,, € 0,1 at every node n, which decide where the tree should be
split into fragments.

The algorithm tends to split trees and fragments into smaller fragments if the
isolated fragments are more probable or have been observed more often than the
joined tree. Otherwise, fragments get joined again. This is achieved by iteratively
visiting each node 7 and randomly re-sampling the split token z, according to the
following probability distribution:

P (Tjoin)
P(Tjoin) + P(Ts)P(T})
where Tjo;, is the tree that results if the parent tree fragment and the fragment origi-

nating at n are joined, while T; is just the parent fragment including n, and T is the
child fragment rooted at n. The probability over a tree fragment is given by:

P(z, =0) = (2)

_ #T + APy (T)

P(T) = s)

Where #T is the number of times fragment T has been seen over all trees, and #R1 how
often the root node of the fragment has been encountered. Py is a prior distribution,
which usually decreases for larger tree fragments, and A determines how much this
prior is valued during sampling. An illustration of the involved components can be
seen in

Technically, this algorithm can iterate forever, generating an asymptotically grow-
ing amount of tree fragments. However, as the algorithm runs, we can observe certain
fragments repeating more frequently than others, these are candidates to augment
our pTSG. Their relative frequency gives an estimate for the probability their respec-
tive rule would have assigned.

Concept-specific Subtrees The above mechanism only finds global idioms. When
we introduce our hidden variable for concepts again, we can explain local variation in
the frequency of certain tree fragments as mixture of concepts, each of them bearing
an own distribution of tree substitutions. Most variation is observed in the rules for
generating leaf nodes, especially those for method and variable names, but certain
concept-specific idioms also emerge.

This is a novel extension to LDA-like models as well as pTSG-based models. The
generalization of the abstraction-aware model to trees is yet unclear, as well as the
integration of natural language context.

178

2 Code as Result of a Random Process

©)

@ © (&
O O

Figure 4: State of the pTSG mining algorithm, black nodes have z = 1, white nodes
z = 0. For the choice whether z; should split the tree, we consider frequencies of
T; = {a,b,c,d}, Ts = {d,e, f} and Tj;, = {a,b,c,d,e, f}.

2.4 Applications

Models capable of explaining code in terms of concepts and their relations can sup-
port program comprehension in a multitude of scenarios.

Navigation and Recommendation Traditional code manipulation environments
support navigation by senders or implementors of a method or message, class hi-
erarchy and namespaces or packages. Concept-aware environments can provide
additional navigation directions to locate code that is related through a specific
concept, or code that is similar as it shares the same distribution of concepts.

General information needs, e.g. code completion and examples of how to use
certain API, can be answered with relevant results scoped to the current task of the
developer.

° Error: FileNotFound Concept: File I/0 - ° o
File read | }‘ into over | through | next related ‘
| + 3 system frames ‘
LevelFil d fileName | 'levels/Ivlil.xml'
SUElHlE L6 FileStream named:
Level » fromFile: aFile fileName
| + 8lines of code ‘

| + 4 framework frames

[]

close

Figure 5: A debugger in Squeak/Smalltalk fixed to a single concept. Relatedness
is displayed as green bars and highlighting, unrelated code is hidden from the
developer’s view until explicitly navigated. Debugging can step through related
code, e.g. halting at the close statement after opening the file.

179

Toni Mattis: Supporting Program Comprehension Through Semantic Code Models

Focus of Developer Attention Knowing which concept some code belongs to
enables tools to focus on exactly this concept, e.g. a debugger responding to a
FileNotFound exception can highlight file-related code while hiding code and stack
frames that have nothing to do with the file concept. Boilerplate code not relevant
for understanding certain core concerns can be grayed out to reduce distraction. A
prototypical example of a debugger that can be scoped to certain concepts can be

seen in[Figure 5

3 Related Work

A number of non-probabilistic techniques have been proposed to identify concepts,
mostly from the domain of aspect mining. These include clustering algorithms with
varying similarity measures [15], random walks [21], run-time data [} |20], version
history [8]], or formal concept analysis [16].

More recently, language models have been used for source code mining, notably
graph-based approaches [14] and n-gram models at large scale [2]]. They are success-
ful in explaining fine-grained structures in source code in terms of the surrounding
context.

Probabilistic code models have been constructed for a variety of tasks, such as find-
ing cross-project concepts on a large scale using LDA [5, 11], summarizing source
code using a hierarchical topic model [12], modularity assessment and refactoring
recommendations using the relational topic model (RTM) [4], learning coding con-
ventions using a log-bilinear model [1]], and mining language idioms using the pTSG
model [3].

4 Future Work

UI Integration So far, most work has been data-oriented and theoretical. The next
steps should be to explore how concepts can be linked to every-day tools and new
tools used by programmers. As a starting point, we currently investigate the work-
flow of reviewing student’s projects, where the reviewer is not familiar with the code
base but required to quickly identify the core concerns and their implementation
from scratch. For projects based on a legacy code base, a concept-level overview of
changes compared to a baseline is desirable. Relating authors to concepts hints at
the knowledge distribution among team members.

Expert Feedback A concept model still contains some noise and may not always
guess the correct allocation of concepts. Hence, we should explore ways to correct
the model’s propositions if the developer recognizes an error in the model. This also
raises the question of sharing the same model across different authors in a way that
inexperienced developers can immediately benefit from expert input.

180

5 Conclusion

Model Evaluation Code and concept models can be evaluated in two different
stages: The model itself yields a probability distribution over the code base, which
gives an indicator of how well the model explains code. We can see that this proba-
bility increases for previously unknown code when we add “meaningful” variables,
such as the differentiation between abstraction and implementation. However, we
also need to consider whether the resulting concepts benefit the user, which requires
both a well-designed Ul, a set of developer tasks and metrics and a user study set-up.

Scaling We currently have access to approximately 10 TiB of source code, including
history and process artifacts. Being in a phase of trial-and-error experimentation, we
are working with subsets of several thousands LOC up to a few millions, and history
of not more than 70,000 commits. We are facing a trade-off: The insightful tree-
based and abstraction-based models scale poorly because parsing and tree-based
operations are inherently expensive, while LDA-like models are easier to scale. Both
directions hold interesting research questions. A middle way worth investigating
is bootstrapping using a simple background model mined at scale, but using the
complex model for fine-grained analysis in a project-specific context.

5 Conclusion

Probabilistic models derived from either the LDA framework or the pTSG approach
are a good starting point for recovering concepts from source code. The structure
of these models allows them to be mined using iterative, at any time interruptible
Monte-Carlo algorithms. By addressing specific structural properties of code, we
can improve and combine both types of models. Apart from practical challenges,
like scaling issues, the impact on the developer workflow and the design space for
tools is yet to be explored.

References

[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. “Learning Natural Coding Con-
ventions”. In: Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. FSE 2014. New York, NY, USA: ACM,
2014, pages 281—293. ISBN: 978-1-4503-3056-5. DOI: 10.1145/2635868.2635883.

[2] M. Allamanis and C. Sutton. “Mining Source Code Repositories at Massive
Scale Using Language Modeling”. In: Proceedings of the 10th Working Conference
on Mining Software Repositories. MSR "13. Piscataway, NJ, USA: IEEE Press, 2013,
pages 207-216. 1sBN: 978-1-4673-2936-1.

[3] M. Allamanis and C. Sutton. “Mining Idioms from Source Code”. In: Pro-
ceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. FSE 2014. New York, NY, USA: ACM, 2014, pages 472—
483. 1sBN: 978-1-4503-3056-5. DOI: 10.1145/2635868.2635901.

181

https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2635868.2635901

Toni Mattis: Supporting Program Comprehension Through Semantic Code Models

(4]

[6]

[7]

[8]

[10]

[11]

[12]

G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. de Lucia. “Improv-
ing Software Modularization via Automated Analysis of Latent Topics and
Dependencies”. In: ACM Trans. Softw. Eng. Methodol. 23.1 (Feb. 2014), 4:1—4:33.
ISSN: 1049-331X. DOIL: 10.1145/2559935.

D. Binkley, D. Heinz, D. Lawrie, and J. Overfelt. “Understanding LDA in Source
Code Analysis”. In: Proceedings of the 22Nd International Conference on Program
Comprehension. ICPC 2014. New York, NY, USA: ACM, 2014, pages 26—36. ISBN:
978-1-4503-2879-1. DOI: 10.1145/2597008.2597150.

D. M. Blei, T. L. Griffiths, and M. I. Jordan. “The Nested Chinese Restaurant
Process and Bayesian Nonparametric Inference of Topic Hierarchies”. In: J.
ACM 57.2 (Feb. 2010), 7:1—7:30. 1SSN: 0004-5411. DOI: |10.1145/1667053.1667056.

D. M. Blei, A. Y. Ng, and M. I. Jordan. “Latent Dirichlet Allocation”. In: J. Mach.
Learn. Res. 3 (Mar. 2003), pages 993—1022. ISSN: 1532-4435.

S. Breu and T. Zimmermann. “Mining Aspects from Version History”. In: 21st
IEEE/ACM International Conference on Automated Software Engineering, 2006.
ASE "06. Sept. 2006, pages 221-230. DOI: 10.1109/ASE.2006.50.

S. Breu and J. Krinke. “Aspect Mining Using Event Traces”. In: Proceedings of
the 19th IEEE International Conference on Automated Software Engineering. ASE
‘04. Washington, DC, USA: IEEE Computer Society, 2004, pages 310—315. ISBN:
978-0-7695-2131-2. DOIL: 10.1109/ASE.2004.12.

T. Griffiths. Gibbs Sampling in the Generative Model of Latent Dirichlet Allocation.
2011. URL: https://people.cs.umass.edu/~wallach/courses/s11/cmpsci791ss/readings/
griffiths02gibbs.pdf (last accessed 2016-10-01).

E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. “Mining Con-
cepts from Code with Probabilistic Topic Models”. In: Proceedings of the Twenty-
Second IEEE/ACM International Conference on Automated Software Engineering.
ASE "07. New York, NY, USA: ACM, 2007, pages 461-464. ISBN: 978-1-59593-
882-4. por:|10.1145/1321631.1321709.

P. W. McBurney, C. Liu, C. McMillan, and T. Weninger. “Improving Topic
Model Source Code Summarization”. In: Proceedings of the 22Nd International
Conference on Program Comprehension. ICPC 2014. New York, NY, USA: ACM,
2014, pages 291—294. ISBN: 978-1-4503-2879-1. DOI: 10.1145/2597008.2597793.

P. Naur. “Programming as Theory Building”. In: Microprocessing and Micropro-
gramming 15.5 (May 1985), pages 253—261. IsSN: 0165-6074. DOI: 10.1016/0165-
6074(85)90032-8.

A. T.Nguyen and T. N. Nguyen. “Graph-Based Statistical Language Model for
Code”. In: Proceedings of the 37th International Conference on Software Engineering
- Volume 1. ICSE "15. Piscataway, NJ, USA: IEEE Press, 2015, pages 858-868. 1sBN:

978-1-4799-1934-5.

182

https://doi.org/10.1145/2559935
https://doi.org/10.1145/2597008.2597150
https://doi.org/10.1145/1667053.1667056
https://doi.org/10.1109/ASE.2006.50
https://doi.org/10.1109/ASE.2004.12
https://people.cs.umass.edu/~wallach/courses/s11/cmpsci791ss/readings/griffiths02gibbs.pdf
https://people.cs.umass.edu/~wallach/courses/s11/cmpsci791ss/readings/griffiths02gibbs.pdf
https://doi.org/10.1145/1321631.1321709
https://doi.org/10.1145/2597008.2597793
https://doi.org/10.1016/0165-6074(85)90032-8
https://doi.org/10.1016/0165-6074(85)90032-8

[16]

[17]

[18]

[19]

[20]

[21]

References

T. T. Nguyen, H. V. Nguyen, H. A. Nguyen, and T. N. Nguyen. “Aspect Rec-
ommendation for Evolving Software”. In: Proceedings of the 33rd International
Conference on Software Engineering. ICSE "11. New York, NY, USA: ACM, 2011,
pages 361-370. I1SBN: 978-1-4503-0445-0. DOL: 10.1145/1985793.1985843.

D. Poshyvanyk, M. Gethers, and A. Marcus. “Concept Location Using For-
mal Concept Analysis and Information Retrieval”. In: ACM Trans. Softw. Eng.
Methodol. 21.4 (Feb. 2013), 23:1-23:34. 1S5N: 1049-331X. DOI: 10.1145/2377656|
2377660.

M. Post and D. Gildea. “Bayesian Learning of a Tree Substitution Grammar”.
In: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers. ACLShort
‘09. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009,
pages 45-48.

M. Taeumel, T. Felgentreff, and R. Hirschfeld. “Applying Data-Driven Tool
Development to Context-Oriented Languages”. In: Proceedings of 6th Interna-
tional Workshop on Context-Oriented Programming. COP’14. New York, NY, USA:
ACM, 2014, 1:1-1:7. 1SBN: 978-1-4503-2861-6. DOI: |10.1145/2637066.2637067.

Y. W. Teh, M. L. Jordan, M. J. Beal, and D. M. Blei. “Hierarchical Dirichlet
Processes”. In: Journal of the American Statistical Association 101.476 (2006),
pages 1566—1581. ISsN: 0162-1459.

P. Tonella and M. Ceccato. “Aspect Mining through the Formal Concept Anal-

ysis of Execution Traces”. In: 11th Working Conference on Reverse Engineering,
2004. Proceedings. Nov. 2004, pages 112—121. DOI: [10.1109/WCRE.2004.13.

C. Zhang and H.-A. Jacobsen. “Efficiently Mining Crosscutting Concerns
Through Random Walks”. In: Proceedings of the 6th International Conference on
Aspect-Oriented Software Development. AOSD “o7. New York, NY, USA: ACM,
2007, pages 226-238. 1SBN: 978-1-59593-615-8. DOI: |10.1145/1218563.1218588.

183

https://doi.org/10.1145/1985793.1985843
https://doi.org/10.1145/2377656.2377660
https://doi.org/10.1145/2377656.2377660
https://doi.org/10.1145/2637066.2637067
https://doi.org/10.1109/WCRE.2004.13
https://doi.org/10.1145/1218563.1218588

Large graph exploration

Davide Mottin

Knowledge Discovery and Data Mining
Hasso-Plattner-Institut
davide.mottin@hpi.de

The increasing interest in social networks, protein-interaction, and many other
types of networks has raised the question how users can explore such large and
complex graph structures in an intuitive way. Nowadays, these networks count bil-
lions of nodes and relationships and are used to study complex phenomena, such
as social behaviors, marketing campaigns, and economic factors. Given this com-
plexity and size, interactive algorithms would assist the human in finding interest-
ing information in graphs easily. Interactive algorithms and exploratory methods
have been studied for more traditional data, such as relation, semi-structured, and
textual data, to allow intuitive data exploration. However, there is no counterpart
for graphs.

We propose graph exploration, a novel ground of research that includes the
user in the algorithms to allow interactive access to large and complex graphs. We
pioneer graph exploration to overcome the limitations of the previous work by
proposing efficient, interactive algorithms that cope with the big data volume.

1 Overview

Graph exploration refers to systematic approaches in which the user can understand
the data without issuing complicated queries. As opposed to previous research [6]
we focus on graphs for which no data exploration solution currently exists.

The work I have done in this area in the last year is articulated into three parts:

1. Discovering notable characteristics among nodes in knowledge graphs: This
work has been done during the last Summer Semester’s Master Project and
has been submitted for publication to the Web Search and Data Mining con-
terence. The purpose was the study of methods to compare nodes in a graph
for the automatic discovery of non trivial characteristics (differences in edge
labels, attributes) among nodes representing entities, such as persons, places,
organizations.

2. Graph exploration proposals: I submitted two proposals for graph explo-
ration. The first envisions the study of methods to interactively explore graphs
specifying a small set of nodes and explaining portions of it by means of re-
lationships and attributes. The second instead focuses on failing queries, i.e.,
queries in which the user specifies a need but the results are unsatisfactory.

3. Tutorial in graph exploration: I will present along with prof. Miiller and Anja
Jentzsch from the Information Systems group a tutorial on graph exploration,
showing the results of our literature review in the field of graph exploration.

185

mailto:davide.mottin@hpi.de

Davide Mottin: Large graph exploration

We propose a novel taxonomy of concepts to categorize the research in this area
and allow for a more natural positioning. Given the initial stage of research in
this area, most of the challenges are still open.

In this report, I describe in detail the work done in the Master Project regarding the
discovering of notable characteristics. I also briefly introduce the tutorial on graph
exploration and the proposals.

2 Discovering notable characteristics among nodes in
knowledge graphs

Consider the case in which a user wants to compare nodes in the graph and see
how they differ from their similars. This is the case of a student searching for dif-
ferences in two or more presidents, or a biologist looking at two microorganisms.
Traditionally, the user would look at the nodes, their relationships and attributes
and select those that are more interesting. However, this painful approach requires
a long time and would lead to scarce results or errors. In this work, we propose a
novel formulation to discover what we call notable characteristics given an initial set
of nodes. While the traditional comparison of nodes by means of node similarity
provides only a score with no explanation, we go one step further. We propose a solid
probabilistic approach that first retrieves nodes that are similar to the seed provided
by the user, and then exploits distributional properties to understand whether a par-
ticular attribute is interesting or not. We experimentally evaluate the effectiveness
of our approach and show that we are able to discover notable characteristics that
are indeed interesting and relevant for the user.

A knowledge graph is a directed graph in which nodes and edges have labels
or types. They are also known as information networks [14, 16] or simply labeled
graphs. We are given a set A of node labels and a set £ of edge labels. The term label
and type are used interchangeably.

Definition 1 (Knowledge graph). A knowledge graph is a quadruple G : (V, &, ¢,),
where)V is a set of nodes, £ C V x Visaset of edges, ¢ : V +— A, ¢ : £ — L are node and
edge labeling functions, respectively.

Recall that we are interested in discovering notable characteristics of the entities
mentioned in a set of input nodes in relation to their similars. This intuitive defini-
tion entails two questions: (1) what is the set of similars? (2) what are the notable
characteristics?

The set of input nodes is referred to as seed set (seeds in short). Formally, given a
knowledge graph G : (V, &, ¢, ¢) the set of seed nodes is any set S C V. The seed set
is manually provide by the user and therefore considered reasonably small (i.e., < 10
elements). Given any set of seed nodes, we need to define a set of similars or context
nodes. We assume the existence of a similarity function o : V x 2V +— R that assigns
a high score to nodes that are similar to those in the seed set and low otherwise.
Then, the context are the top-k most similar nodes.

186

2 Discovering notable characteristics among nodes in knowledge graphs

Definition 2 (Context set). Given a knowledge graph G : (V,E, ¢,), aseedset S C V,a
similarity function o : V x 2V + R, and a parameter k, the context set (or simply context)
isaset C C Vsuchthat S C C,|C| = k, and foreachn. € CAn € V\C,o(n,S) <
o(ne, S).

The second question concerns the notable characteristics. The characteristics are at-
tributes or relationships of a specific node since they implicitly represent a signature
of the node itself. As before, we assume the existence of a generic discrimination func-
tion, whose role is to return a score whether a specific characteristic is discriminative
or unexpected comparing two set of nodes. Formally, in the knowledge graph G, a
discrimination function § : £ x 2V x 2V IRSr assigns a discrimination value or o if
the value is not discriminative. We are now ready to define a notable characteristic.

Definition 3 (Notable characteristic). Given a knowledge graph G : (V, &, ¢,), a seed
set S C V, acontext C C V, and a discrimination function § : L X 2V x 2V lRaL a
notable characteristic is a relationship | € L|c such that §(1,S,C) # 0.

The notation £|c denotes the set of edge labels restricted to those that are found
in the edges directly connected to C, i.e.,, L|c = {I | 3x € C,y € Vst (x,y) €
ENY(x,y) =1}

The general problem we aim to solve is efficiently returning the notable character-
istics, given a seed set, a similarity function and a discrimination function.

Problem 1 (Finding notable characteristics). Given a knowledge graph G : (V, &, ¢,),
a seed set S C 'V, a similarity function o : V x 2V — R and a discrimination function
§: L x2Y x 2V — R{, find the set of notable characteristics.

The problem entails the definition of suitable functions ¢ and ¢ that are able to
retrieve and compare nodes.

2.1 Approach

We model the discrimination function in probabilistic terms, in order to better deal
with noisy settings and uncertainty. Therefore, we assume that a characteristic is
interesting if its distribution in the seed set deviates from the one in the context set.
In other words, the context represents the expected behavior of the population while
the seed is the hypothesis to be tested.

Given the seed set S, the first step requires the definition of a similarity function
o to retrieve a set of context nodes. Although many notions of similarity functions
have been developed, such as structural equivalence [15] and SimRank [8], none
seems suitable to our case. Existing similarity measures are either based on restricted
neighborhoods of the nodes [15], or they disregard edge and node labels [8]. We
propose an algorithm that takes into account the kind of connections between pairs
of nodes and combines the advantages of random walk and metapath approaches.

In the traditional random walk model, a random walker chooses one of the out-
going edges from a node with uniform probability. Instead of uniform probability,
we favor choices which are more informative in terms of edge label. Intuitively, an

18y

Davide Mottin: Large graph exploration

edge label is informative if it has low frequency. This intuition is supported by in-
formation theoretic notions, such as tf-idf and has been successfully used in graphs
as well [18]. As a shorthand notation, we define &; as the set of edges having label
1€ L ie, & = {(i,j) € €li,j € V,¥(i,j) = 1}. The frequency of a label [is the
fraction of [-labeled edges with respect to the total number of edges. We then define
the weighted adjacency matrix as a |V| x |V| square matrix, where the value A;;
between node i and j is defined as

M _{ (1)—\51|/|5\ if (i,j) € E o

v otherwise

The Personalized PageRank is defined as the vector
p=cxAxp+(l—c)xv, (2)

where Ajj = Aji/ i Aj, c is the damping factor, and v is vector called personal-
ization vector. In our experiments the damping factor is 0.8, in line with previous
works. We compute the PageRank starting from each node in the seed set to retrieve
the k nodes with the highest score. This is done by setting v, = 1 for eachn € S,
individually. We refer to this baseline as RaANboMWAaLk.

However, the RanpomWaLk baseline disregards common connections between
the seed nodes. This is an important information, since the tf-idf approach does
not consider the user’s similarity notion implicitly contained in the seed set. To this
end, we adopt the notion of metapath from [23] which generalizes the concept of
path. A metapath for a path (ny,...,n;),n; € V,1 <i < tis defined as the sequence
(p(n1),¥(n1,n2),..., p(ni—1,n¢), $(n;)) that alternates node and edge labels along the
path. We mine metapaths running PathMining [13] from the seed nodes. Differently
from the original PathMining, we start from several nodes with uniform probability
and consider only edge types. Our algorithm stops the exploration when another
seed node is encountered. The metapaths and the counts for each path are separately
stored to compute the similarity score.

Once the metapaths are computed, we compute a score for each node based on
the probability that some metapath starting from a seed node ends in this node.
Given the set of metapaths M obtained with our modified PathMining, we denote
as n <> ' any path from n to n’ € V'\ S matching metapath m € M. Therefore, the
score of anode n’ € V'\ S with respect to any seed node n € S is

o)~y =

meMnes |{n < n"|n” € V\ S}

Pr(m)

Pr(m) is the probability of choosing metapath m, which is the relative count com-
puted previously divided by the sum of the counts of all metapaths M. Intuitively,
o gives a higher score to nodes that are reachable through frequent metapaths con-
necting the seed nodes or connected through many of these metapaths. This means
that nodes that are reached from infrequent metapaths will have a low score. Once
we have computed the score for each node we return the k nodes with the highest
score as our context.

188

2 Discovering notable characteristics among nodes in knowledge graphs

Assume that we have computed the distribution of values for each characteristic
(i.e., edge label) for both seed nodes and context nodes found with the previous
method. Intuitively, for each characteristic, the distribution of the context represents
the expected, or normal behavior, the one to compare with. Therefore, the seed set
becomes the hypothesis to be evaluated against the “true” distribution of the context.

Formally, for each characteristic I € £, we consider two distributions in order to
evaluate its notability. The first evaluates the number of occurrences of a distinct
node label instance connected through a specific edge label (e.g., bornln, California).
This expresses information about the actual attribute values of the nodes and can
be used to identify cases where different attribute values are relevant. For instance,
most people in the seeds are born in the U.S., while those in the context are equally
born in the U.S. and Europe. We refer to these distributions as instance distributions.

Insts(1,C,S) = (x1,%x2, e, X)), Instc(1,C) = (Y1,Y2, o Ym)

where x; and y; are the number of occurrences of node i at the end of an edge labeled
| from a node in S and C, respectively. Note that both vectors have the same size, so
x; is zero if i appears only in the context. Similarly, a second distribution computes
aggregates over the number of occurrences of a specific edge type in the context. This
expresses information about the existence and cardinality of an attribute and can be
used to identify cases where attribute cardinality is relevant. For instance, people in
the seed all have a single child while in the context most have two children. Such
cases cannot evidently be modeled as instance distributions that take into account
distinct values. We refer to these distributions as cardinality distributions.

Cards(1,C,S) = (x1,x2, ..., Xm), Cardc.(1,C) = (Y1, Y2, o, Ym)

where x; and y; are the number of times a node in S and C respectively has i edges
labeled .

Both distributions can be built by iterating through the nodes in each set and
counting the respective occurrences. For a given | € £, this results in two scores
O1nst and O, for instance and count distributions. The final score ¢ is a maximum
aggregation score between 6,s; and d¢gpg.

5<Z,C, 5) = maX((SInst(l/Cz 5)15Card<ll C,S)) (3)

Many measures have been proposed in statistics to compare two distributions.
However, most of them draw specific assumptions, such as a minimum number of
samples or non-zero probabilities, that are not fulfilled in our case. In particular, Inst
and Card have no natural ordering and no distance-function between the values.
Additionally, we compare a m-sized distribution over our context, where m is the
size of the context, to a much smaller distribution over the seed-nodes. This leads to
many zero values in the seed-distribution.

We resorted to a more natural multinomial test that better expresses the relation-
ship between our distributions. The multinomial test assumes that a set of obser-
vations is drawn from a known multinomial distribution. Therefore, assuming the
context to be Multinomial distributed the observations are the values found in the

189

Davide Mottin: Large graph exploration

seed set. If the values observed in the seed sets are drawn from the Multinomial, than
the hypothesis cannot be rejected and the characteristic is marked as non-notable.
On the other hand, if the test succeeds, then the two distributions are significantly
different and the characteristic is notable.

Assume we have a random variable Xy ~ Mult(N,), with parameters N
and 7r. We normalize Inst. and Card, to express a probability distribution 7 =
normalize(y) = (71, 72, ..., k). For a given outcome x = (x1, X2, ..., X), the probabil-
ity, under the hypothesis of equality between context and sample, is

k %

Pr(Xng =x) = NIT] xl" ,
i=1 it

where N =) x;. In an exact multinomial test, the significance probability is

PrS<XN,7T = x) = Z Pr(XN/n- = y).
yPr(Xn =y) < Pr(Xn.=x)

Prq(71, x) is the probability of x or any equally or less likely outcome being drawn
from the probability distribution. In case of large N, the exact test is impractical, we
therefore perform a Montecarlo sampling to approximate the final result. A difference
in distributions is considered significant, if the hypothesis is rejected with probability
p > 0.95.

2.2 Related Work

Previous work mostly concerns the discovery of similar nodes or groups of individ-
uals sharing common interests (graph clustering). Among them node comparison
has a long history in graph analytics. Early methods include graph edit distance
(GED) [1], structural equivalence [15], SimRank [8]]. Random walk approaches, such
as Personalized PageRank [2] and HITS [11] can also be used to find nodes similar
to the input nodes. Node comparison measures can only return whether one node
is similar or different from another but they cannot readily adapt to the discovery of
notable characteristics, since the score provides no insight on the discovery process.
Additionally, these methods do not consider whether similarities or differences are
meaningful with respect to a “normal” state other than total equivalence.

Seed set expansion refers to methods that ask the user to provide an initial set of
entities or structures and retrieve similar nodes. In graphs, the seed set can be com-
posed of either structures (i.e., subgraphs) or nodes. Exemplar queries paradigm [18)
19| assumes that the user input is an example of the intended results. Similarly,
GQBE [77] considers entity tuples to find similar other tuples in a knowledge graph.

Seed nodes are used to discover groups of nodes with similar characteristics [12,
20||. These seed-based clustering algorithms exploit the specificity of each node in the
seed set to return ad-hoc communities. Although these methods provide multiple
groups of nodes they cannot properly explain the characteristics and the differences
among them; in general, they do not directly compare the seed nodes with the others.

190

3 Graph exploration (Tutorial)

3 Graph exploration (Tutorial)

The graph exploration tutorial has been accepted for presentation in the interna-
tional Conference on Information and Knowledge Management (CIKM). This report
provides an outline of the tutorial.

The continuously increasing interest in graphs and the growing amount of graph
data available on the web require a careful design of data analysis techniques. How-
ever, from the user perspective most of the existing techniques appear as a black
box that returns results without any explanation. For these reasons our community
has resorted to data exploration techniques. In particular, while a huge effort has
been devoted to text, relational, and semi-structured data [6], data exploration on
graphs (graph exploration in short) is still in its infancy. Although many techniques for
graphs have been studied in different domains, there is still lack of a unified graph
exploration taxonomy. We abstracted user-driven graph exploration properties from
techniques proposed in the literature and defined such a unified taxonomy. Our
taxonomy consists of three strategies that form the backbone of our presentation
along with relevant literature identified so far:

Exploratory Graph Analysis entails the process of casting an incomplete or imper-
fect pattern query to let the system find the closest match. Such exploratory analysis
may return a huge number of results, e.g., structures matching the pattern. Thus,
the system is required to provide intelligent support. One such strategy is the well
known query-by-example paradigm, in which the user provides the template for the
tuples and let the system infer the others.

Refinement of Graph Query Results is needed to deal with the overwhelming
amount of results that is typical in subgraph processing. It includes approaches
designed to present comprehensive result sets to the user or intermediate results
that can be refined further. Instantiations of this kind are graph summaries, top-k
methods, query reformulation, and skyline queries.

Focused Graph Mining guides the users to a specific portion of the graph they
are interested in. It requires the user to provide feedback in the process to restrict
the computation to some portion of the graph. Ego-networks mining belongs to this
strategy, since the user search is limited to a particular area of the graph and the
algorithms focus on that specific area.

4 Related Work

Graph exploration is a novel ground for research. We briefly survey the most impor-
tant previous research that have been proposed in this area. Exploratory analytics in
graphs include approximate search in which some research term is unspecified or
incomplete. Alternatives to subgraph isomorphism base on similarity search have
been proposed [10, 25, [26]. An alternative approach is the by-example paradigm in

191

Davide Mottin: Large graph exploration

which the input query is a tuple or an object of interest that is part of the intended
result set [[7, 18].

While exploratory analytics try to find results that are as close as possible to the
input query, the refinement of graph query results propose alternative queries to the
user. If the result set is excessively large refined queries are proposed [17} [24]. On the
other hand the query may be too restrictive and return no result. In this case the query
conditions have to be relaxed (i.e., removed) [24]. Orthogonal to query refinement
is the top-k approach, in which the k results closest to the query are returned. Many
approaches have considered diversification [3, 4] to return interesting results or user-
feedback [22]. In order to help the user in formulating the correct query feedback
might be provided in the process [9].

The exploration of graphs can also be done with focused analyses, in which the
user is proposed relevant portions of the graph. Clustering techniques can be influ-
enced by example nodes provided by the user [12, 20, 21]. The same can be done with
outlier detection, letting the user specify what is normal and what is exceptional [5,

27].

5 Collaborations within research groups

I successfully opened a collaboration with HCI group of prof. Baudisch on mecha-
nism mining, and advertised a thesis in that topic. Moreover, the graph exploration
tutorial will be presented with Anja Jentzsch from the Information Systems group.
Externally, I am collaborating with the University of Trento, the ISI foundation in
Turin and we are in contact with prof. Aris Gionis from Aalto University (Finland).

6 Future Work

We are currently working in the graph exploration area to produce significant results
quickly. One active direction is the study of faceted search for graphs in which a
query is decomposed in topics (facets) that are interesting for the user. Moreover,
we intend to explore further the discovery of notable characteristics with in a more
formal and fundamental way.

References

[1] R. L. Breiger, S. A. Boorman, and P. Arabie. “An algorithm for clustering rela-
tional data with applications to social network analysis and comparison with
multidimensional scaling”. In: Journal of mathematical psychology 12.3 (1975),
pages 328-383. I1SSN: 0022-2496.

[2] S. Chakrabarti. “Dynamic personalized pagerank in entity-relation graphs”.
In: WWW. 2007, pages 571-580. 1sBN: 978-1-59593-654-7.

192

[7]

[8]

[14]

[15]

[16]

References

W. Fan, X. Wang, and Y. Wu. “Diversified top-k graph pattern matching”.
In: Proceedings of the VLDB Endowment 6.13 (2013), pages 1510—1521. ISSN:
2150-8097.

M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han. “Top-k interesting subgraph
discovery in information networks”. In: IEEE 30th International Conference on
Data Engineering (ICDE). IEEE. 2014, pages 820-831.

M. Gupta, A. Mallya, S. Roy, J. H. Cho, and J. Han. “Local learning for mining
outlier subgraphs from network datasets”. In: Proceedings of the 2014 SIAM
International Conference on Data Mining. 2014, pages 73-81.

S. Idreos, O. Papaemmanouil, and S. Chaudhuri. “Overview of Data Explo-
ration Techniques”. In: Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data. ACM. 2015, pages 277—281. ISBN: 978-1-4503-
2758-9.

N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. “Querying knowledge
graphs by example entity tuples”. In: TKDE 27.10 (2015), pages 2797-2811.
ISSN: 1041-4347.

G.Jeh and J. Widom. “SimRank: a measure of structural-context similarity”.
In: KDD. 2002, pages 538-543. 1sBN: 1-58113-567-X.

J. Jin, S. Khemmarat, L. Gao, and J. Luo. “Querying web-scale information
networks through bounding matching scores”. In: Proceedings of the 24th Inter-
national Conference on World Wide Web. International World Wide Web Confer-
ences Steering Committee. 2015, pages 527-537. ISBN: 978-1-4503-3469-3.
A.Khan, Y. Wu, C. C. Aggarwal, and X. Yan. “Nema: Fast graph search with

label similarity”. In: Proceedings of the VLDB Endowment. Volume 6. 3. VLDB
Endowment. 2013, pages 181-192.

J. M. Kleinberg. “Authoritative sources in a hyperlinked environment”. In:
JACM 46.5 (1999), pages 604—632. ISSN: 0004-5411.

I. M. Kloumann and J. M. Kleinberg. “Community membership identification
from small seed sets”. In: Proceedings of KDD. 2014, pages 1366-1375. ISBN:
978-1-4503-2956-9.

S. Lee, S. Lee, and B.-H. Park. “PathMining: A Path-Based User Profiling Algo-

rithm for Heterogeneous Graph-Based Recommender Systems.” In: FLAIRS
Conference. 2015, pages 519—523.

S. Lee, S. Park, M. Kahng, and S.-g. Lee. “Pathrank: a novel node ranking
measure on a heterogeneous graph for recommender systems”. In: CIKM.
2012, pages 1637-1641.

F. Lorrain and H. C. White. “Structural equivalence of individuals in social
networks”. In: The Journal of mathematical sociology 1.1 (1971), pages 49-80.

C. Meng, R. Cheng, S. Maniu, P. Senellart, and W. Zhang. “Discovering
meta-paths in large heterogeneous information networks”. In: WWW. 2015,

pages 754-764. 1sBN: 978-1-4503-3469-3.

193

Davide Mottin: Large graph exploration

[17]

[18]

[19]

[20]

[21]

[22]

D. Mottin, F. Bonchi, and F. Gullo. “Graph Query Reformulation with Di-
versity”. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM. 2015, pages 825-834. IsBN: 978-1-
4503-3664-2.

D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. “Exemplar queries:
Give me an example of what you need”. In: PVLDB 7.5 (2014), pages 365-376.

D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and Y. Velegrakis. “A
holistic and principled approach for the empty-answer problem”. In: VLDB J.
(2016), pages 1—26. 1ssN: 0949-877X.

B. Perozzi, L. Akoglu, P. Iglesias Sanchez, and E. Miiller. “Focused clustering
and outlier detection in large attributed graphs”. In: KDD. 2014, pages 1346
1355. ISBN: 978-1-4503-2956-9.

P. I. Sanchez, E. Miiller, U. L. Korn, K. Bohm, A. Kappes, T. Hartmann, and
D. Wagner. “Efficient Algorithms for a Robust Modularity-Driven Clustering
of Attributed Graphs”. In: Proceedings of the 2015 SIAM International Conference
on Data Mining. 2015, pages 100-108. DOI: 10.1137/1.9781611974010.12.

Y. Su, S. Yang, H. Sun, M. Srivatsa, S. Kase, M. Vanni, and X. Yan. “Exploiting
Relevance Feedback in Knowledge Graph Search”. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM. 2015, pages 1135-1144. ISBN: 978-1-4503-3664-2.

Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. “Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks”. In: Proceedings of
the VLDB Endowment 4.11 (2011), pages 992—1003. ISSN: 0957-4174.

E. Vasilyeva, M. Thiele, C. Bornhévd, and W. Lehner. “Answering “Why
Empty?” and “Why So Many?” queries in graph databases”. In: Journal of
Computer and System Sciences 82.1 (2016), pages 3—22. ISSN: 0022-0000.

S. Yang, Y. Xie, Y. Wu, T. Wu, H. Sun, J. Wu, and X. Yan. “SLQ: a user-friendly
graph querying system”. In: Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. ACM. 2014, pages 893-896.

Y. Yuan, G. Wang, L. Chen, and H. Wang. “Efficient subgraph similarity search
on large probabilistic graph databases”. In: Proceedings of the VLDB Endowment
5.9 (2012), pages 800-811. 1ssN: 2150-8097.

H. Zhuang, J. Zhang, G. Brova,]. Tang, H. Cam, X. Yan, and J. Han. “Mining
query-based subnetwork outliers in heterogeneous information networks”.
In: Data Mining (ICDM), 2014 IEEE International Conference on. IEEE. 2014,
pages 1127-1132.

194

https://doi.org/10.1137/1.9781611974010.12

Optimizing Noisy Functions: Resampling vs. Recombination

Francesco Quinzan

Algorithm Engineering
Hasso-Plattner-Institut
francesco.quinzan@hpi.uni-potsdam.de

Noise is pervasive in real-world optimization, but there is still little understanding
of the interplay between the operators of randomized search heuristics and explicit
noise-handling techniques, such as statistical resampling. We build and report on
several statistical models and theoretical results that help to clarify this reciprocal
relationship for a collection of randomized search heuristics on noisy functions.

We consider the optimization of pseudo-Boolean functions under additive pos-
terior Gaussian noise and explore the trade-off between noise reduction and the
computational cost of resampling. We first perform experiments to find the optimal
parameters at a given noise intensity for a mutation-only evolutionary algorithm,
a genetic algorithm employing recombination, an estimation of distribution algo-
rithm (EDA), and an ant colony optimization algorithm. We then observe how
the optimal parameter depends on the noise intensity for the different algorithms.
Finally, we locate the point where statistical resampling costs more than it is worth
in terms of run time. We find that the EA requires the highest number of resam-
ples to obtain the best speed-up, whereas crossover reduces both the run time
and the number of resamples required. Most surprisingly, we find that EDA-like
algorithms require no resampling, and can handle noise implicitly.

1 Overview

We consider four algorithms, namely (p + 1)-EA, (1 + 1)-GA, cGA, and A-MMASib.
(4 +1)-EA and (i + 1)-GA are search heuristics that mimic the process of natural
selection (cf. Algorithm [1]and Algorithm [2).

Typically, they require as input a population of strings of fixed length n. After an
offspring is generated, a mutation factor is introduced, to ensure full objective space
exploration. The fitness is then computed, and the less desirable result is discarded.
The (1 + 1)-EA and the (p + 1)-GA differ in how the offspring is generated. In the
first case, the offspring is selected u.a.r. from the input population, while in the latter
case a crossover operation is performed on two u.a.r. chosen strings. We use uniform
crossover, which consists of assembling a new element by choosing coefficients of
one parent or the other with probability p = 0.5.

The cGA is a search heuristic similar to (4 + 1)-EA and (¢ + 1)-GA. As shown in
Algorithm 3} this process consists of sampling two individuals with given probability
distribution, and swapping them according to the fitness evaluation. At each step,
the distribution by which individuals are chosen is updated according to the fitness
gain, and proportionally to a parameter K. The offspring generation procedure of the
Compact Genetic Algorithm is equivalent to a concrete population with the same
allele frequencies engaging in gene pool recombination introduced by Miihlenbein and

195

mailto:francesco.quinzan@hpi.uni-potsdam.de

Francesco Quinzan: Optimizing Noisy Functions: Resampling vs. Recombination

Algorithm 1: (1 +1)-EA

1140

2 Choose a population Py C {0,1}" s.t. |Py| = p u.ar

3 while convergence criterion not met do

4 Select a parent x € P; u.a.r

5 Generate offspring y by flipping each bit of x u.a.r
6 Choose z € Py U{y} s.t. f(z) = maxyep, f(x)

7 Define population Py+1 < (P U {y}) \ {2z}

8 t<—t+1

9 end

Paaf3 [16]. In gene pool recombination, all members of the population participate as
parents in uniform recombination. The correspondence between EDAs and models
of sexually recombining populations has already been noted (cf. Miihlenbein and
Paa8 [15]). The A-MMASib is an ant colony optimization method (cf. Algorithm 4).
Algorithms of this kind can be described in terms of A ants exploring given paths,
which correspond to pseudo-Boolean arrays of length 7. The probability distribution
by which ants choose one path over another is called pheromone vector, and it is
updated at each step according to the fitness evaluation, and proportionally to a
parameter p. Both cGA and A-MMASib are an estimation of distribution algorithms
(EDAs).

Each algorithm depends on one or two parameters. The goal of parameter tuning
is to reduce the expected number of fitness evaluations until the optimum search
point is found. We refer to the optimal configuration by which the expected number
of fitness evaluations is minimal as the sweet spot. Figure 1a|shows the dependence
of the optimization time of the (¢ + 1)-EA and (u + 1)-GA on the parameter . Note
that both axes use a logarithmic scale. We see that optimization is slow for very
small population sizes y, quickly improves to best performance, and then slowly
worsens again. This is in contrast to the well-known fact that, in the absence of noise,
a choice of u = 11is optimal for the (3 + 1)-EA. In Figure[tb|we can see a similar trend
for the cGA. In this case, however, we observe a slightly different behavior. In fact,
higher K gives better worst-case and worse average-case. This observation has been
already framed theoretically (cf. Droste [7]). For the cGA without boundaries on the
distribution adjustment, there is a non-zero probability that the algorithm converges
in infinite time (p(+00) > 0). In our case, we put boundaries on the distribution
adjustment (cf. Algorithm [3), and we expect p(+o0) = 0. However, during some
runs the algorithm still may take a very long time to reach the optimum. The case of
A-MMASib is more involved, since we have to optimize two parameters in parallel.
As we can see in Figure|2a} an evaporation factor slightly below 0.05 with a number
of ants of around 5 is optimal.

In all cases there exists a sweet spot for the choice of parameters, at which the algo-
rithm performs best. The difference between the sweet spot and the optimal param-

196

1 Querview

Algorithm 2: (1 + 1)-GA

1+ 0

N

Choose population Py C {0,1}" s.t. |Py| = p u.ar

3 while convergence criterion not met do
4 Select parents x1,x; € Py u.a.r
5 Generate offspring y by recombining x; and x; u.a.r
6 Choosez € PrU{y} s.t. f(z) = maxyep, f(x)
7 Define population P11 < (P U {y}) \ {z}
8 t<—t+1
9 end
Algorithm 3: cGA
1t+0

2 Prp < Pop = pup < 0.5
3 while convergence criterion not met do

fori=1...ndo

4
5 x; < 1w/ prob. p;s, x; <~ 0w/ prob. 1 —p;;
6 yi < 1w/ prob. p;;, yi < 0w/ prob. 1 —p;,

end
if f(x1,...,x0) < f(y1,...,Yyn) then
9 Swap (x1,...,x,) with (y1,...,¥»)

10 end
11 fori=1...ndo

12 if x; > y; then

13 pir+1 ¢ min (max (pi + %, 1),1-1)

14 else if x; < Yi then

15 pit+1 <= min (max (pi¢ — g, 3) 1= 3)

16 else

17 Pit+1 < Pit

18 end
19 end
20 t+—t+1
21 end

197

Francesco Quinzan: Optimizing Noisy Functions: Resampling vs. Recombination

Algorithm 4: A-MMASib

1140

2 Prp < Pop < oo par < 0.5

3 while convergence criterion not met do

4 fori=1...Ado

5 Generate x; w/ prob. pr = (p1t, -+, Pat)

6 end

7 Choosez € {x1,...,x)} s.t. f(z) = min;{f(x;)}
8

9

fori=1...ndo

if z; = 1 then
1 Pigs1 < min (pri(1—p) +p,1—3)
11 else
; pisss = max (pii(1—p),)
13 end
14 end
15 t<—t+1
16 end

eter with absence of noise depends on the algorithm’s stability to fitness evaluation
errors.

For each algorithm we approximate the run time function in dependent on the
standard deviation and optimal parameter choice. The run time plot in Figure
shows that the (y + 1)-EA becomes quickly inefficient, when increasing posterior
noise standard deviation. In the case of the (y + 1)-GA, results seem to be slightly
better. However, we still can see that this algorithm significantly worsens with in-
creasing posterior noise standard deviation. In the case of the A-MMASib we see
further improvement. The results in Figure [2b| show that it reacts much better to
increasing posterior noise standard deviation. Still, we observe a polynomial trend,
with degree clearly greater than one (cf. Figure [2b). We see a similar trend for the
cGA.

We show that there exists a sweet spot for the resampling operator, as in the case
of the parameter tuning experiments.

We compare the run time trend of the (y + 1)-EA, with the run time trend of
(4 + 1)-GA, both given when the resampling operator is used and when it is not. For
both algorithms we observe improvement. However, for posterior noise standard
deviation o < 10, it seems that the (4 + 1)-EA with resampling still performs worse
than the (4 + 1)-GA without resampling. Additional experiments show that the re-
sampling sweet-spot for the cGA and A-MMASib is 7, = 1. In Figure|2b we compare
the (4 + 1)-EA and (u + 1)-GA with resampling, with the cGA, and A-MMASib
without resampling. We see that the cGA and A-MMASib perform better then the
(u+1)-EA and (p + 1)-GA with resampling. This confirms the fact that the benefit of
resampling is limited, and noticeable only with algorithms that perform particularly

198

Algorithm
10 EA
- GA

run time [sample mean]

6 10 16 25 40
N

(a) Number of fitness evaluations (run
time) for a given parameter choice (u)
for the (3 +1)-EA and (4 +1)-GA. The
shading is proportional to the sample
standard deviation.

1 Overview

25000

3 CGA run time
4| — Adjusted sample mean
Sample mean

20000

3 For K < 135 the algorithm
' | may exceed the maximal
i | number of steps.

15000

10000

run time [sample mean]

5000

63 100 158 251 398
K

(b) Number of fitness evaluations (run
time) for the parameter K for the cGA.
The shading is proportional to the sam-
ple standard deviation.

Figure 1: Sweet spot experimental trend.

Table 1: Run time for the four algorithms, with additive posterior gaussian noise

standard deviation ¢

algorithm runtimeno resampling run time w/
resampling sweetspot resampling

(h+1)EA OEF) O 0(?)

(1 4+1)-GA O(eV7) O(c?) 0O(c?)

cGA O(c?) O(1) O(c?)

A-MMASib O(0?) 0(1) O(c?)

bad under noisy environments. By means of model regression, we estimate the run
time with and without re-sampling for the four algorithms, as displayed in Table
These results are not in contrast with the experiments displayed in Figure |2b| In
fact, the resampling operator gives a faster run time for (¢ + 1)-GA and (i + 1)-EA,
but its effect is noticeable only for very large posterior noise standard deviation c.
In the case of ¢ < 10, the benefit of recombination overwhelms the effect of the
resampling operator. Nevertheless, for very large o, we expect the (4 + 1)-EA with
resampling to give better performance then the (4 + 1)-GA without resampling.

199

Francesco Quinzan: Optimizing Noisy Functions: Resampling vs. Recombination

(a

) Number of fitness evaluations (run
time) for a given pair of parameters
(A, p) for the A-MMASib. The shading
is proportional to the sample standard

Evaporation Algorithm
p=0.042 EA[no resampling] |:
p=0.044 EA[resampling]
5000 - p=0.046 - GA[no resampling]
— p=0.048 | GA[resampling]
0=0.05 264057 e cGA
5 \ T - MMASib
b3 \ 3
£ £
® 4000 R °
g \ g
[} X\ [
£ £
£ \ = 1e+057
2 3000 R\ = 2
A\ =
- 7
A L
2000 e
0e+00+

‘
75

;
5.0
noise standard deviation

(b) Number of fitness evaluations (run
time) for the(y +1)-EAand (p +1)-GA
with optimal resampling, and the cGA,
(u+1)-EA, (11 +1)-GA and A-MMASib

deviation. with no resampling, for a given poste-

rior noise standard deviation.

Figure 2: Sweet spot and run time experimental trend.

2 Approach

All tests are carried out by performing a global optimum search of the following
function:

n
OneMax: (xq,...,%,) —> in
i=1

with x; € {0,1} forall i = 1, ...n, and with objective space consisting of all pseudo-
Boolean strings of fixed size n. We add posterior Gaussian noise in order to simulate
an environment where errors of controlled standard deviation are produced. In some
cases we simulate a resampling operator: we compute the fitness function r times,
and take the average. Thus the test function in its generic form is:

% N(0,02)

Y (OneMax + N (0,0%)) = OneMax + %
=1 =1

r
j j=
for a given r > 0. The OneMax function has the advantage of being symmetric and
well-understood. The goal of the hereby presented experiments is to statistically infer
the asymptotic trend of some algorithms in view of a broader theoretical setting.

For each set of experiments we look at the sample mean, sample standard deviation,
and infer the trend toward asymptotic behavior via model regression. All samples
considered are of size N > 102%; the exact size and relevant information is given in
the description of each experiment. Statistical models with different properties are
considered:

e polynomial models: X ~ axk + ;

200

3 Related Work

* rational models: X ~ m;

e square-root models: X ~ a\/x + ;
* square-root exponential models: X ~ aePVr,
* any linear combination of the above.

In all cases, tests on the predictions made by the fitting models are performed. For
a given experiment described by pairs {(x;, y;) }ic;, denote with i the sample mean,
and let {f;}ic; be the predictions of a given model. We assume that the model is
valid if R? > 0.95, with R? the coefficient of determination. This choice is intuitively
motivated by the fact that R? is the “percent of variance explained” by the model.

We perform a Student’s t-Test on each model, to determine whether it outperforms
“random noise” as a predictor. We look at the corresponding p-value, and consider
the model valid only for p-value < 0.05. We accept variables such that the proba-
bilities p|; of obtaining a corresponding value outside the confidence interval are
Py < 107. Thus all variables have a very high level of significance.

All tests are carried out on MacBook Pro (13” Retina, Beginning 2015), with op-
erating system Mac OS X Version 10.11.1, processor 2.7 GHz dual-core Intel Core
i5 (Turbo Boost up to 3.1 GHz) with 3 GB shared L3 cache, and memory 8 GB of
1866 MHz LPDDR3. All algorithms are implemented in C++ on Xcode Version 7.3.1
(7D1014), and implemented as OSX command line executables. The fitting is per-
formed using least-square methods implemented by the ‘Im” command of R 3.2.2
GUI 1.66 Mavericks build (6996).

3 Related Work

The idea of statistical resampling to address noise in the context of genetic algorithms
has been studied as far back as 1988. In a paper by Fitzpatrick and Grefenstette [8],
it was argued that the implicit parallelism of a GA is a sufficient mechanism for
handling noise. They found that the amount of explicit resampling can be reduced
in a GA by increasing the population size. In the context of Evolution Strategies
(ES) Arnold and Beyer [3] also found that increased population sizes are prefer-
able to resampling as long as mutation strength is optimally adapted. Goldberg et
al. [11] studied the influence of GA population size in the presence of noisy functions,
but also with more general sources of noise (such as noisy operators). Arnold and
Beyer [4] also noticed that the same algorithm may react in different ways to different
types of posterior noise distributions.

The issue of resampling as a noise-handling technique has been approached from
many different perspectives over the last few decades. Aizawa and Wah [1] proposed
a detailed adaptive strategy for modelling the underlying noise, in order to determine
the appropriate number of samples to be drawn from each individual. Stagge [19]
recognized that noise can be reduced by repeated sampling, even at the cost of
a higher number of function evaluations. However, he argues that computational

201

Francesco Quinzan: Optimizing Noisy Functions: Resampling vs. Recombination

effort can be saved by focusing only on resampling for the best individuals in the
population. Many other detailed sampling frameworks have been proposed, such as
ones based on selection races from the machine learning community [13, 18]].

Branke and Schmidt [5, |6] also recognised that resampling strategies produce a
trade-off between noise reduction and computational effort. They consider a number
of different sampling procedures that attempt to characterize the error probability
during the selection step. They also raise the interesting point that sometimes noise
can be beneficial to stochastic search algorithms (e.g., for promoting objective space
exploration), and therefore attempting to eliminate noise completely may not always
be the best strategy. Akimoto et al. [2] explicitly study the run time effect of resam-
pling on various noise models to derive the extra cost incurred by performing enough
resampling to ensure the underlying optimization algorithm “sees” a noiseless func-
tion. For Gaussian noise, they show the existence of a resampling scheme such that
any optimization algorithm that requires r(J) function evaluations to optimize a
noise-free function f with probability 1 — & requires O(r(8) max{1,0?log(rs)/5})
evaluations to optimize f + N(0,0?) with probability (1 — §)? under their resam-
pling scheme.

Recently, Friedrich et al. [10] proved that an Estimation of Distribution Algorithm
(EDA) called the Compact Genetic Algorithm (cGA) can scale gracefully with noise:
its runtime on a noisy OneMax function is bounded by a polynomial in the vari-
ance, regardless of noise intensity. The cGA does not explicitly keep a population in
memory, but only an array of so-called allele frequencies that represent the product
distribution of alleles in an implicit population (cf. Goldberg et al. [12]). Offspring
are then generated by drawing from this product distribution, and this has the same
effect as gene pool recombination: all members of the population participate in recom-
bination (rather than, e.g., two) to produce an offspring. On the other hand, they
also proved that a mutation-only evolutionary algorithm exhibits superpolynomial
runtime due to its reliance on hill-climbing a gradient that becomes obscured in the
presence of heavy noise.

The array of allele frequencies employed by the cGA is similar to the pheromone
values stored by Ant Colony Optimization (ACO) algorithms. In the latter, the update
rule is distinct, but we should still expect similar protection against noise, which
has also been recently noted [9]. None of these cases employ resampling, but in-
stead rely on the implicit mechanisms of the GA/EDA / ACO to somehow “filter” the
noise. Priigel-Bennett, Rowe and Shapiro [17] proved that a generational evolution-
ary algorithm using uniform crossover finds the optimum in O (o> log2 (02)) fitness
evaluations, on OneMax with additive Gaussian noise of standard deviation ¢.

4 Future Work
In the context of Las Vegas algorithms, theoretical results have been presented to

address the problem of finding the optimal restart point. Particularly interesting is
a technique that finds this point by minimizing a function solely dependent on the

202

References

Algorithm 5: Luby universal strategy for an algorithm A

1 k+1
2 while convergence criterion not met do
foriin0:kdo

3

4 forjin0:ido

5 run A for 2/ steps
6 end

7 end

8 k< k+1

9 end

cumulative density associated to the probability of converging at a given time step
(cf. Luby et al. [14]).

More specifically, let A be any Las Vegas algorithm, p(t) the probability of conver-
gence at step t, and q(t) = Yy <; p(t) the probability of converging before step t—
i.e. the cumulative distribution function. The optimal restart strategy for A is the
repeating sequence S = (¢, ..., L, ...) with t, defined as

. 1 /
by = lrtlf{q(t) (t— tgq(t))} . (1)

Thus, t. is the first point in time that minimizes the probability of not converging
over the probability of converging at previous steps. We refer to this result as Luby
theorem. Luby et al. prove S to be optimal, both for ¢, a finite number, and t, =
-+o0o—in the latter case the optimal strategy being not restarting the process at all.
In most real world settings, however, p(t) is not known a priori, and a numerical
approximation of it is not feasible. Because of this, Luby et al. present a universal
method to simulate S when p(t) is unknown. This strategy is indicated by

SV —(1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,...)

Pseudo-code for an algorithm A running as indicated by S"™V is given in Algo-
rithm|5} We adapt the results presented above to the case of evolutionary heuristics
running with time budget constraints, or with solution quality constraints. We fo-
cus on finding an explicit relationship between the optimal restart point given in
Equation [} the total time budget, and the impact on overall performance.

References

[1] A. Aizawa and B. W. Wah. “Scheduling of Genetic Algorithms in a Noisy
Environment”. In: Evolutionary Computation 2.2 (1994), pages 97-122.

[2] Y. Akimoto, S. Astete-Morales, and O. Teytaud. “Analysis of Runtime of Op-
timization Algorithms for Noisy Functions Over Discrete Codomains”. In:
Theoretical Computer Science 605 (2015), pages 42-50.

203

Francesco Quinzan: Optimizing Noisy Functions: Resampling vs. Recombination

[3]

(4]

[6]

[7]

8]

[16]

[17]

[18]

D. Arnold and H. G. Beyer. “Efficiency and Mutation Strength Adaptation
of the (y, u1, A)-ES in a Noisy Environment”. In: Proceedings of PPSN. 2000,
pages 39-48.

V. D. Arnold and G. H. Beyer. “A General Noise Model and Its Effects on Evo-
lution Strategy Performance”. In: Evolutionary Computation, IEEE Transactions
on 10.4 (2006), pages 380-391.

J. Branke and C. Schmidt. “Selection in the Presence of Noise”. In: Proceedings
of GECCO. 2003, pages 766—777.

J. Branke and C. Schmidt. “Sequential Sampling in Noisy Environments”. In:
Proceedings of PPSN. 2004, pages 202—211.

S. Droste. “A Rigorous Analysis for the Compact Genetic Algorithm for Linear
Functions”. In: Natural Computing 5.4 (2006), pages 257—283.

M. J. Fitzpatrick and J. J. Grefenstette. “Genetic Algorithms in Noisy Environ-
ments”. In: Machine Learning 3.2 (1988), pages 101-120.

T. Friedrich, T. Kétzing, M. S. Krejca, and A. M. Sutton. “Robustness of Ant
Colony Optimization to Noise”. In: Proceedings of GECCO. 2015, pages 17-24.

T. Friedrich, T. Kotzing, M. S. Krejca, and A. M. Sutton. “The Benefit of Re-
combination in Noisy Evolutionary Search”. In: Proceedings of ISAAC. 2015,
pages 140—-150.

D. E. Goldberg, K. Deb, and]. H. Clark. “Genetic Algorithms, Noise, and the
Sizing of Populations”. In: Complex Systems 6 (1992), pages 333—362.

G.R. Harik, F. G. Lobo, and D. E. Goldberg. “The Compact Genetic Algorithm”.
In: Proceedings of IEEE. 1998, pages 523-528.

V. Heidrich-Meisner and C. Igel. “Hoeffding and Bernstein Races for Selecting
Policies in Evolutionary Direct Policy Search”. In: Proceedings of ICML. 2009,
pages 401—408.

M. Luby, A. Sinclair, and D. Zuckerman. “Optimal Speedup of Las Vegas Al-
gorithms”. In: Information Processing Letters 47 (1993), pages 173-180.

H. Miihlenbein and G. Paaf8. “From Recombination of Genes to the Estimation
of Distributions I. Binary Parameters”. In: Proceedings of PPSN. Springer-Verlag,
1996, pages 178-187. I1SBN: 3-540-61723-X.

H. Miihlenbein and H. Voigt. “Gene Pool Recombination in Genetic Algo-
rithms”. In: Meta-Heuristics. Springer US, 1996, pages 53-62.

A. Priigel-Bennett,]. Rowe, and J. Shapiro. “Run-Time Analysis of Population-
Based Evolutionary Algorithm in Noisy Environments”. In: Proceedings of Foun-
dations of Genetic Algorithms (FOGA). ACM, 2015, pages 69—75. ISBN: 978-1-4503-
3434-1.

P. Rolet and O. Teytaud. “Bandit-Based Estimation of Distribution Algorithms

for Noisy Optimization: Rigorous Runtime Analysis”. In: Proceedings of LION.
2010, pages 97—110.

204

References

[19] P. Stagge. “Averaging Efficiently in the Presence of Noise”. In: Proceedings of
PPSN. 1998, pages 188—200.

205

Active Expressions as a Basic Building Block for Reactive
Programming Concepts

Stefan Ramson

Software Architecture Group
Hasso-Plattner-Institut
Stefan.Ramson@hpi.uni-potsdam.de

Reactive programming simplifies the implementation of complex, interconnected
behavior by completely automating the propagation of changes. Researchers pro-
posed a huge variety of approaches to execute on this initial idea. Most approaches
present specialized solutions to maximize expressiveness and meet unique use
cases. But usually, they are not intended for reuse. Thus, when implementing novel
reactive concepts, developers often have to start from scratch.

We identify a class of reactive programming concepts, state-based reactive pro-
gramming, that incorporates a common underlying change notification mechanism.
Furthermore, we propose a reusable primitive, active expressions, to facilitate the
implementation of instances of this class of reactive concepts. Finally, we present
an implementation of active expressions along with multiple strategies for state
change monitoring.

1 Reactivity in Software

Many contemporary software systems are reactive. A Web application needs to react
to messages from the server. When editing a cell in a spreadsheet, other cells might
change as well if they depend on edited cell’s value. In signal processing, embedded
software might react to an external sensor that signals changing temperature and
has to monitor or compute on this data. In contrast to simple batch applications that
simply compute outputs from inputs according to an algorithm, reactive systems
have to react to changes in the input or state and act accordingly. Once a certain
event is detected, consequential state changes have to be propagated consistently
throughout the entire system.

The traditional, object-oriented way to handle reactivity is by employing the ob-
server design pattern [4]. According to the observer pattern, multiple observers can
subscribe to a subject. Then, whenever the subject’s state changes, it notifies its sub-
scribers about the change. While the observer pattern provides a useful functionality,
it also implies some disadvantages. First, it is not syntactically integrated into the
language. Second, it introduces additional complexity in your program. Third, it cou-
ples the subject with the notification mechanism, and cannot be employed without
access to the subject module [11].

Due to the disadvantages of the observer pattern, researchers developed more
dedicated mechanisms to support reactive behavior. These solutions are often inte-
grated into the underlying language to provide a clean abstraction for reactivity [12].

207

mailto:Stefan.Ramson@hpi.uni-potsdam.de

w

@

Stefan Ramson: Active Expressions

Additionally, they automate the updating of dependent modules without the need
for complex boilerplate code.

1.1 A Recurring Reactive Pattern

Monitored State || Dependent Signals Monitored State || Dependent Signals

=5
e FOr* e

(a) Signal implementations maintain a depen- (b) Changing a basic variable causes all sig-
dency network of signals as basic variables. nals in its convex hull to update.

ROYP
QO
()
.
e
(0

Figure 1: Reactive patterns with Signals.

In the past few years, reactive programming has become of particular interest for
researchers in the language design community due to its relevance for contemporary
software. Thus, many different kinds of reactive concepts have been proposed or are
still under active research. In the following, we present a subset of these approaches.

Signals Signals are time-varying values [1]. They can be declared like any other
variable by providing an expression:

var a 5;

var b 6;

signal c = a + b;
console.log(c); // 11
a = 10;

console.log(c); // 16

However, instead of performing the assignment once, the declaration of a signal
introduces a functional dependency. As a result, ¢ is recomputed according to its
production rule by the underlying runtime whenever a or b are changed. Thus, the
relation ¢ = a + b is always true.

To keep track of the functional dependencies in a program the signal runtime
maintains an acyclic dependency graph as exemplified in Figure 1} Additionally, all
normal variables referenced by a signal are continuously monitored. Whenever an
assignment to a monitored variable is detected in the signal runtime, the change of
this variable propagates through the dependency network, ultimately updating all
dependent signals.

208

1 Reactivity in Software

Monitored State || Constraints Monitored State || Constraints

Solver

+

)

O
)
o o

(@) Constraints maintain desired relations (b) Imperative code might invalidate certain
between variables. constraints by assigning new values to vari-
ables. This causes a constraint solver to ad-

just variables to keep the desired relations.

Figure 2: Reactive patterns with Constraints.

Constraints Constraint-imperative programming and object constraint pro-
gramming [2] aim to integrate constraints into imperative languages. Constraints are
relations between objects that should hold. When specifying a constraint, specialized
constraint solvers are used to adapt variables in a way to fulfill the given condition.
During further execution, imperative code might again invalidate the given condition
as shown in Figure 2| Thus, the variables referenced in the constraint are monitored
for changes by the underlying execution environment. When a change invalidates
a constraint, the system again uses the constraint solvers to maintain a consistent
system state according to the specified constraints.

Monitored State || Views Monitored State

\(Z@—‘\x\\ @_.
40

1 ! 1
e || M
(a) Views containing objects according to their (b) An underlying system detects changes to

properties those properties and adds objects to or re-

moves them from certain views in reaction
to these changes.

jio 1@

Figure 3: Reactive patterns with Object Queries.

209

Stefan Ramson: Active Expressions

Monitored State || Layer Composition Monitored State || Layer Composition
inactive active inactive active
'__Ialye_ra__j | layer a

C g2 - layer x g layer x

layer y layer y

@\ layer z @\ layer z
'geiﬁ_: ‘g@_:

(@) The layer composition stack determines (b) Changing the monitored state might alter
in which order active class extensions are the layer composition.
applied when calling a method. With im-
plicit layer activation, the activation state
of a layer depends on the program’s state.

Figure 4: Reactive patterns with implicit layers.

Reactive Object Queries Reactive Object Queries [7] apply reactivity to data struc-
tures, namely sets. Instead of manually constructing and maintaining a set of objects,
one can use a query to automatically construct a set of instances of a certain class
that fulfill a given condition. The resulting set acts similar to a view in conventional
databases: it automatically updates whenever the program state changes. As a result,
the set always maintains consistency with the underlying system state. To do so,
the underlying system monitors all class instances for changes that could affect the
given condition as shown in Figure [3l When relevant values change, the condition is
reevaluated and the set is updated accordingly.

Implicit Layer Activation In context-oriented programming, one can define multi-
ple class extensions in a single unit of modularity, called layer. During the execution
of a program this layer can be activated to dynamically apply the class extensions,
thus, adapting the behavior of a program. There are multiple means to activate a
layer [6]. One of those activation means, implicit layer activation [8], has fairly reac-
tive semantics. Using implicit layer activation, a layer is not activated or deactivated
at a fixed time, but instead is active while a given condition holds. While typically
implemented differently, an underlying system could monitor variables referenced
by the given condition as depicted in Figure |4t When such a variable changes, the
condition is reevaluated and the corresponding layer is adjusted accordingly.

&

Although each of the presented concepts works differently and tackles specific
use cases, they share a similar overall mechanism: they monitor certain parts of
the system’s state and, whenever a change is detected, react to this very change
in a concept-specific way. This recurring pattern is not limited to the presented
concepts, but also includes for example two-way data bindings and incremental

210

1 Reactivity in Software

lists [9]. Because all these concepts react to changes in the state of a program, we coin
this identified class of reactive concepts state-based reactive concepts.

Despite this common underlying pattern, when developing a new state-based
reactive concept, one can hardly reuse existing concepts. This is due to the fact that
existing implementations are typically highly focused on the specific use case of the
concept in question. As a consequence, state change recognizing mechanisms and
concept-specific reactive behavior are tightly coupled together to maximize perfor-
mance and convenience. As existing concepts are not intended for reuse, researchers
are forced to reimplement rather complicated behavior such as the state change
recognition every time they come up with a new reactive concept.

1.2 Designing the State-based Reactive Primitive

With the class of state-based reactive concepts, we identified a structure common to
reactive programming concepts. However, the existing instances of the class are not
intended for reuse, making the development of new state-based concepts difficult.
This is due to the fact that a common foundation for state-based reactive mechanisms
is still missing. In this work we aim to provide this common foundation which we
call active expressions. To form a suitable foundation for state-based reactivity, active
expressions have to fulfill multiple properties:

* The concept needs to represent the easiest instance of the class of state-based
reactive concepts.

¢ The concept needs to be highly customizable.

* The concept should be useful on its own.

To fulfill the first point, we support only the identified mechanisms that are most
essential and most common to state-based reactive concepts: monitoring certain parts
of the system state and reacting to detected changes. For state change recognition,
we choose to support expressions rather than variables as the unit of monitoring,
because expressions provide more convenience and can express variable values
as well. In general, one can monitor any expression as long as it follows certain
restrictions: the expression has to be deterministic, free of visible side effects, and
synchronous.

To make active expressions as customizable as possible, we assume no common
behavior for change reactions. Instead, treat the change reaction as a variation point:
users can subscribe to changes of a particular expression. Then, their specified call-
back is executed every time the result of the monitored expression changes. In ad-
dition to the new value of the expression, its old value as well as the reason for its
change is provided to the given callback. Using these information, one can build
rather specialized functionality on top of active expressions.

Active expressions provide an easy semantic and are highly configurable to act
as the low-level foundation of state-based reactive concepts. From that perspective,

211

Stefan Ramson: Active Expressions

they are similar to event listeners that are the basis of many event-based reactive con-
cepts. Therefore, we provide a simple interface based on well-known event listener
mechanisms: activeExpression(expression).onChange(callback) ;.

2 Implementation

In industry, JavaScript has become the de-facto standard for Web programming
with a rapidly growing amount of code that exists in the language. This fact, along
with JavaScript’s unique design and its execution environment in a Web browser,
also make it of great interest to the research community. Many researcher were
motivated to revise and adapt useful features of other languages to the domain of
Web programming [10, 13].

An implementation of active expressions has to solve 2 tasks: recognizing changes
in the system’s state, and notifying dependent functionality about these changes.
Our implementations reflect these two tasks with a two-part architecture.

The latter task is straight-forward to implement. Once a change in an expression
result of an active expression is recognized, we first compare the current expression
result with the last one, and, if they differ, invoke each callback associated with that
active expression with the new result. This type of notification resembles a typical
event emitter.

To solve the former task, we have to continuously monitor given expressions. In
order to achieve practical support for active expressions in JavaScript, we must not
rely on modifications of the underlying Virtual Machine (vm). Thus, we can run
active expressions in modern browsers and use them in a variety of practical Web
applications. However, because JavaScript does not provide rich meta programming
facilities by default, our implementation has to provide a custom mechanism to
hook into system state changes. We provide multiple recognition mechanisms that
detect and handle states changes in either push- or pull-based manner. Each active
expression uses exactly one of the mechanisms. These mechanisms are described in
detail in the following subsections.

2.1 Ticking

The first implementation strategy requires the user to explicitly specify at which
points during the execution the implementation should check for possible changes.
The user marks such a point in execution by calling the exposed check function. At
those user-defined points the ticking implementation notifies all active expressions
that there have been potential changes, and that now is a good time to check on the
new results. To do so, the ticking implementation maintains a global set of currently
enabled active expressions. Any active expression created by using this implementa-
tion’s activeExpression function is added to that global set. Optionally, you can provide
an iterable over active expressions as a parameter to check. If you do, only those active
expressions are informed about a potential change in their results.

212

2 Implementation

2.2 Interpretation

One possibility to track changes in the system’s state in JavaScript is through the use
of property accessors. Property accessors allow to intercept get and set operations on
member variables. To install appropriate property accessors, we first have to identify
all variables that contribute to the result of an active expression. To do so, we perform
an abstract interpretation for each active expression using Neil Fraser’s JavaScript
Interpreter}| which is also used for Google Blocklyf| The interpreter is customized
using means of context-oriented programming to intercept the access to properties.
Each property accessed during interpretation is wrapped in a transparent property
accessor. If the property is already wrapped, we add the currently interpreted active
expression to a set of active expressions depending on this property instead.

Once the interpretation is finished, whenever a new value is assigned to a wrapped
property, dependent active expressions are notified that their expression result might
have changed. Assignments of complex values might necessitate reinterpretation.

The used interpreter relies on explicit access to the local scope of the expression.
However, JavaScript does not support computational access to local scope by default.
To solve this issue, we provide a babe plugin that expands undeclared occurrences
of the identifier 1ocals to an object with all locally accessible references. The following
JavaScript source code exemplifies this process:

var alice;
var bob;

activeExpression(expression, locals);
// expands to:

activeExpression(expression, {
alice,
bob
s
As the majority of JavaScript projects is transpiled via babel as part of their build
process by the time of writing, developers can include this plugin to simplify the

process of providing the necessary references.
2.3 Rewriting

The third implementation strategy captures changes to the system'’s state by injecting
explicit hooks into the code itself using a source code transformation. In contrast
to the interpretation strategy which makes use of limited built-in language features
to detect changes to the system state, the rewriting strategy makes use of the vast
build tool environments for JavaScript that emerged over the last couple of years.
By the time of writing most new JavaScript projects include an additional transpi-

Thttps://github.com/NeilFraser/JS-Interpreter| (last accessed 2016-09-28).
Zhttps://developers.google.com/blockly/ (last accessed 2016-09-28).
3https://babeljs.io/ (last accessed 2016-09-29).

213

https://github.com/NeilFraser/JS-Interpreter
https://developers.google.com/blockly/
https://babeljs.io/

Stefan Ramson: Active Expressions

lation step to ensure compatibility to legacy environments while being able to use
newest standards and even experimental language features. Because of its current
prominence, the babel transpiler seems like the most viable option to implement our
source transformation plugin.

The state change recognition mechanism is threefold. We first inject hooks into
the source code at transpilation time. Then, when creating a new active expression
we identify on what part of the state this active expression depends on. Finally, we
notify active expressions once we recognize a change in the corresponding system
state.

Only a limited number of language concepts can actually alter program state rele-
vant to active expressions, among these concepts are assignments to object members
or variables. So, in order to capture changes to the program state, we have to make
these concepts computationally accessible through user code. Therefore, whenever
we encounter a state-modifying or -accessing node during AST traversal, we re-
place the nodes with appropriate function calls. In addition to providing the needed
hooks into program execution, these functions resemble the original semantics of the
programming concept, making the rewritten program unaware of the source trans-
formation. The required functions are automatically imported in a non-conflicting
manner.

The presented transformation step is done statically during compile time. One
downside of this approach is that we cannot determine upfront, which portion of the
source code will be relevant for active expressions. As a result, the user is in charge
to decide which modules should be rewritten and which should not be rewritten.
Rewritten code can interact seamlessly with non-rewritten code, because all wrap-
pers are completely transparent. However, the parts of the source code that are not
rewritten will not trigger active expressions.

With these hooks set up, we can now create the correct dependencies between
program state and active expressions during runtime. When a new active expression
is created, we analyze which parts of the program state affect the expression result.
To do so, we simply execute the expression with a special flag indicating its analysis.
During this analysis, whenever a read access is performed, we associate the object
along with its member with the current active expression. As a result, all parts of the
program state that might affect the result of the given expression are now associated
with the active expression.

Finally, during normal execution, we treat write accesses specially. In addition
to the normal behavior, we notify all dependent active expressions about the state
change, thus, achieving the desired semantics.

3 Future Work and Conclusion

In this work, we have identified a common underlying pattern in many reactive pro-
gramming concepts. For the resulting class, state-based reactive programming, we de-
signed and implemented a suitable primitive, active expressions. Active expressions
combine a clean and simple callback mechanism with powerful state-monitoring

214

References

capabilities. As such, active expressions can be used to implement other state-based
reactive approaches on top of it. The work reported here is quite recent, and we expect
to continue to evolve both the concept of active expressions and its implementation.
There are a number of directions for future work:

Comparison of Implementation Strategies Our work features multiple implemen-
tation strategies to choose from. To increase the usability of active expressions, we
have to make the choice of an appropriate implementation strategy simply and com-
municate the resulting implications clearly. Therefore, we have to clarify the strengths
and limitations of each implementation. Additionally, we will perform a quantitative
analysis to determine the runtime overhead in various cases.

Usability as a Basic Concept Active expressions are designed to act as a founda-
tion for other state-based reactive concepts. To check whether active expressions
fulfill this goal, we will implement several of the presented state-of-the-art reac-
tive concepts on top of active expressions. These implementations will highlight
strengths and weaknesses of the concept. Additionally, we will explore, whether
active expressions are useful as a language primitive by applying them to problem
domains beyond the reimplementation of existing concepts.

Integration with Event-based Concepts Besides the identified category of state-
based reactive concepts, another big family of similar mechanisms are event-based re-
active concepts. Due to the discovered common ground of state-based concepts, one
could use active expressions to represent state change as explicit events as required
from event-based concepts. Doing so would allow to apply event-based operators
on state-based concepts, which provides interesting, yet unexamined opportunities.

References

[1] C. Elliott and P. Hudak. “Functional Reactive Animation”. In: International
Conference on Functional Programming (ICFP). ACM, 1997, pages 263—273. DOL
10.1145/258948.258973.

[2] T Felgentreff, A. Borning, R. Hirschfeld, J. Lincke, Y. Ohshima, B. Freudenberg,
and R. Krahn. “Babelsberg/JS — A Browser-Based Implementation of an Object
Constraint Language”. In: European Conference on Object-Oriented Programming
(ECOOQP). Springer, 2014, pages 411—436. Do1: 10.1007/978-3-662-44202-9_17.

[3] B.N. Freeman-Benson. “Kaleidoscope: Mixing Objects, Constraints and Im-
perative Programming”. In: Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA). ACM, 1990, pages 77-88. por:
10.1145/97945.97957.

[4] E.Gamma. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

215

https://doi.org/10.1145/258948.258973
https://doi.org/10.1007/978-3-662-44202-9_17
https://doi.org/10.1145/97945.97957

Stefan Ramson: Active Expressions

[5]

(6]

[7]

[8]

[12]

[13]

M. Grabmiiller and P. Hofstedt. “Turtle: A Constraint Imperative Programming
Language”. In: Research and Development in Intelligent Systems (RDIS). Springer,
2004, pages 185-198. por: 10.1007/978-0-85729-412-8_14.

T. Kamina, T. Aotani, and H. Masuhara. “Generalized layer activation mecha-
nism through contexts and subscribers”. In: Proceedings of the 14th International
Conference on Modularity. ACM. 2015, pages 14—28.

S. Lehmann, T. Felgentreff,]. Lincke, P. Rein, and R. Hirschfeld. “Reactive
Object Queries”. In: Constrained and Reactive Objects Workshop (CROW). ACM,
2016. DOI:|10.1145/2892664.2892665.

M. von Lowis, M. Denker, and O. Nierstrasz. “Context-oriented Program-
ming: Beyond Layers”. In: International Conference on Dynamic Languages (ICDL).
ACM, 2007, pages 143-156. DOI: 10.1145/1352678.1352688.

I. Maier and M. Odersky. “Higher-order reactive programming with incre-
mental lists”. In: European Conference on Object-Oriented Programming. Springer.
2013, pages 707—731.

L. A. Meyerovich, A. Guha, J. P. Baskin, G. H. Cooper, M. Greenberg, A. Brom-
tield, and S. Krishnamurthi. “Flapjax: A Programming Language for Ajax Ap-
plications”. In: Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA). 2009, pages 1—20. DOI: 10.1145/1640089.1640091.

G. Salvaneschi, S. Amann, S. Proksch, and M. Mezini. “An empirical study
on program comprehension with reactive programming”. In: Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM. 2014, pages 564-575.

G. Salvaneschi and M. Mezini. “Reactive Behavior in Object-oriented Appli-
cations: An Analysis and a Research Roadmap”. In: Proceedings of the 12th
Annual International Conference on Aspect-oriented Software Development. AOSD
"13. New York, NY, USA: ACM, 2013, pages 37—48. 1sBN: 978-1-4503-1766-5. DOI:
10.1145/2451436.2451442,

T. Van Cutsem and M. S. Miller. “Proxies: design principles for robust object-
oriented intercession APIs”. In: ACM Sigplan Notices. Volume 45. 12. ACM.

2010, pages 59-72.

216

https://doi.org/10.1007/978-0-85729-412-8_14
https://doi.org/10.1145/2892664.2892665
https://doi.org/10.1145/1352678.1352688
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/2451436.2451442

Brain Image Analysis with convolutional Neural Network

Mina Rezaei

Internet Technologies and Systems
Hasso-Plattner-Institut
Mina.Rezaei@hpi.uni-potsdam.de

This report describes my recent activities on Service-oriented Systems Engineering
in the HPI Research School and summarizes my research activities on magnetic
resonance brain abnormality classification, detection and segmentation by deep
learning. In this report, we explore ways of applying Deep Learning techniques
for brain abnormality detection. We consider brain abnormality detection in three
different stages and by using different neural network architectures. We proposed
the architectures based on deep learning for most important clinical problem on
medical imaging, classification, detection and segmentation.

1 Introduction

During the past years deep learning has raised a huge attention by showing promis-
ing result in some state-of-the-art approaches such as speech recognition, handwrit-
ten character recognition, image classification [3], and detection [7} 9] and segmen-
tation [1, 4]. There are expectations that deep learning improve or create medical
image analysis applications, such as computer aided diagnosis, image registration
and multi-modal image analysis, image segmentation and retrieval. There has been
some application that using deep learning in medical application like cell tracking [5]
and organ cancer detection [6]. Doctors use magnetic resonance images as effective
tools to diagnosis the diseases. Computer aided medical diagnosis can perform fast
and objective with high robustness and reliability to support the health system. The
brain is particularly complex structure, and analysis of brain magnetic resonance
images is an important step for many diseases. Doctors use Magnetic Resonance
Imaging (MRI) as an effective tool to diagnosis diseases and treatment planning.
Magnetic resonance imaging (MRI) provides detailed images of the brain, and is
one of the most common tests used to diagnose brain diseases. Medical application
diagnosis tools make it faster and more accurate. Some of the practical applications
of image segmentation in medical imaging are: local abnormal region and other
pathologist, measuring tissues sizes, computer guided(/aided) surgery, diagnosis,
treatment planing and study of anatomical structure.

2 Approach
An advance medical application based on deep learning methods for diagnosis,

detection and semantic segmentation of brain magnetic resonance imaging (MRI) is
my goal. For this work, Brain lesion diagnosis consist of several steps. Classification,

217

mailto:Mina.Rezaei@hpi.uni-potsdam.de

Mina Rezaei: Brain Image Analysis with convolutional Neural Network

detection and segmentation are main steps. The flow chart in Figure 1 describes my
plan for brain lesion detection based on deep leaning algorithms.

Hasso
Brain Lession Detection ﬂ inatitat
Input Medical Image
And Clinical data
Data Prepration |—»| Classification (Abnormality Normal/Healthy
Detection)

l

Ab | Semantic Segmentation
norma Object detection (HGG/LGG/MS/ Alzeimer/
(Labels) Ischemic Stroke)
Performance Discriminant
Analysis Area Detection

Figure 1: Overall process of brain lesion identification from MRI.

I prepared data in two steps, first volume of interest selection on MRI and next step
is preparing them for classification, lesion detection or even segmentation. Depends
on problem. Volume of interest (VOI) is the portion of the image in the dataset on
which we want to focus. It may be either one slice or multiple slices throughout the
dataset.

2.1 Classification

For classification our network architecture is based on the network proposed by
Krizhevsky et al [3]. The architecture is summarized in Figure 2. Input image for the
network has three channels and we use axial, coronal and axial planes in a Volume-
of-Interest (VOI) for each categories. In order to prevent over fitting in the next step
we exploit data augmentation. We increase convolutional layer to seven to achieve
better results because it is deeper. We also consider computation complexity and
the time of process by training and testing using very efficient GPU implementation
of the convolution operation. The network includes three pooling layers, average
pooling after 3th convolution layer and two max pool layers consequently after 5th,
6th CNN layers that has effective impact on decreasing size of the feature map. At the
end of 7th convolutional layer we put three fully-connected layers which have 4096
individual neurons. We apply regularization after last fully connected layer to reduce
chance of over fitting. We put in the final a 5-way SVM to classify 4 abnormalities
and healthy brain images. Figure 2 presents current network for classification task.

218

2 Approach

Fully

Conv4 Convs Convée Conv?7 Connected
innerProduct

Loss

—

AVG Pool-1 Max Pool-2 Max Pool-3

Stride of 4

Figure 2: classifynet architecture.

Table 1: Classification result on five different MRI dataset by deep learning

Total MRI accuracy sensitivity specificity

Our propose method 1500 95.07 % 0.91 0.87

Table 2: Comparing classification result with other approaches

Total MRI Number of classes accuracy

Our propose method 1500 5 95.07 %
Wavelet (DAUB-4) + PCA + SVM-RBF 75 2 98.70%
Wavelet (Haar) + PCA + KNN 1500 2 98.60%

accuracy

Training loss vs. training iterations

18 -
Test accuracy vs. training. 18 Test loss vs. raining

Training 10ss vs. training itérations

Training loss
o
H

/ 05
/ 06
/ I
/ | 0.4
/ o4 \
/ 0.2 {MJ 02 - — — |
1 AM\M&M[MMMMMM o
0 5000 10000 15000 20000 o 5000 Loc00 15000
5000 10000 15000 20000
Training iterations Training iterations

Training iterations

Figure 3: classifynet architecture.

219

20000

Mina Rezaei: Brain Image Analysis with convolutional Neural Network

2.2 Detection

Unlike image classification, detection requires localizing (likely many) objects within
an image. We propose an approach for tumor high and low grade glioma classifica-
tion. Our network is based on Fast-RCNN [2] but we make it six times faster. The
model introduces multiple built-in subnetworks which detect Tumor types with
location(s). Our network gets multi-modal MR images as input in training and test-
ing. We consider T1 contrast, flair, and T2 as red, blue, green channels and input
them as one time to make the network 3 time faster. We map the axial and coronal
planes in volume of interest to Red, Green and Blue channels. Same as Roth et al.
[6] we consider volume of interest of planes by following. In both types of input we
make network six times faster by combination of modalities and planes. We use the
VGG16 model [8] to initialize our network, which is used in the most recent state-of-
the-art method. The first seven convolutional layers and three max pooling layers
of the VGG16 network are used as the shared convolutional layers before the two
sub-networks to produce feature maps from the entire input image. Following the
Fast R-CNN, the last max pooling layer of the VGG16 network is replaced with the
region of interest pooling layer to pool the feature maps of each object proposal into
fixed resolution that we set as w; + 9 * h; = 9 same as SPP net. The final fully con-
nected layer and softmax are replaced with two sibling fully-connected layers. For
evaluation we apply our model on BRATS-2015 dataset which contains 220 subjects
with high grade and 54 subjects with low grade tumor. We have achieved dice 0.72,
0.89 sensitivity and 94.3 % accuracy for whole tumor detection.

Bbx
(Localization)

—

VGG-net 256-slice

(classification)

1

1

1 SVM
1

]

1

Max spatial

" Fully-connected
Objectness method/ Pooling

Input Image

Selective Search

Figure 4: Brain lesion detection architecture.

2.3 Segmentation

In medical applications, image segmentation is used to classify different anatomy
features, such as bones, muscle, blood vessels, soft tissue, etc. from the background
and from each other. It is also used for identification of the anatomical areas of in-
terest or as a preprocessing step for data analysis. In treatment and diagnosis of
multiple sclerosis, high and low grade glioma, segmentation of regions of interest is

220

2 Approach

TUMOR-HGG-Complete detections with p(TUMOR-HGG-Complete | bax) >= 0.9

TUMOR-HGG-Com;

TUMOR-HGG-Complete 0.989

A TUMOR-HGG-Complete 0.971
TUMOR-HGG-Complete 0.945

AW L2 E

K

Figure 5: tumor high grade glioma detection by fast-rcnn.

Table 3: Classification result on five different MR images by deep learning

Methods Dice Sensitivity Specificity
Havaei 0.84 0.84 0.84
Zhao 0.79 0.85 0.84
My Method 72.63 89.86 0.84
Tustison 0.79 0.81 0.84
Meier 0.72 0.82 0.84

221

Mina Rezaei: Brain Image Analysis with convolutional Neural Network

Hasso
B R R N . _ Plattner
Brain Lesion Semantic Segmentation Institut

Figure 6: Brain lesion segmentation architecture.

used for tumours and lesion size estimation, calculation of thickness of the cartilage,
and for visualisation for surgical planning and simulation. Image guided surgery
is an important application of segmentation. Segmentation of medical imagery is
challenging problem due to the complexity of the image as well as to the absence
of the anatomy that fully capture the possible deformations in each structure. I con-
tinue segmentation based on my detection network and based on fully convolution
network [4] which recently Microsoft Al group published it as Multi-task Network
Cascades for instance-aware semantic segmentation [1]. This model consists of three
networks, respectively differentiating instances, estimating masks, and categorizing
objects. These networks form a cascaded structure, and are designed to share their
convolutional features. I will continue segmentation based on MNC network because
its based on my detection network and single-step training framework and can be
generalized to cascades that have more stages and very fast as well.

3 Data Description

In this research I have used five different brain datasets to evaluate my proposed
method.

1. Healthy Brain Images: This data has collected nearly 600 MR images from
normal, healthy subjects. The MR image acquisition protocol for each subject
includes:

e T,
e To,

Thttp://brain-development.org/ixi-dataset/ (last accessed 2016-10-20).

222

http://brain-development.org/ixi-dataset/

4 Future Work

¢ T1-Contrast,
¢ PD-weighted images (Diffusion-weighted images in 15 directions).

The data has been collected at three different hospitals in London and as part
of IXI — Information extraction from Images project. The format of images is
NIFTI (*.nii) and it is open access. Figure 1 column (a) shows healthy brain
from IXI dataset in sagittal, coronal and axial section.

2. High and Low grade glioma(Tumor)P| This data is from BRATS (Brain Tumor
Segmentation) challenges in MICCAI conference 2015. The data prepared in
two parts training and testing for high and low grade glioma tumor. All datasets
have been aligned to the same anatomical template and interpolated to 1mm 3
voxel resolution. The training dataset contains about 300 high- and low- grade
glioma cases. Each dataset has T1 (spin-lattice relaxation), T1 contrast-enhanced
MRI, T2 (spin-spin relaxation), and FLAIR MRI volumes. In the test dataset 200
MR images without label but in the same format is available. Figure 1 column
(b, c) shows high and low grade glioma, both categories are .mha format.

3. Alzheimer disease’| The Alzheimer dataset was downloaded from Open Ac-
cess Series of Imaging Studies (OASIS). The dataset consists of a cross-sectional
collection of 416 subjects aged 18 to 96. For each subject, 3 or 4 individual
T1-weighted MRI scans obtained in single scan sessions are included. The data
format is *.hdr.

4. Multiple sclerosisffl Multiple Sclerosis MR Images were downloaded from
ISBI conference 2008 (The MS Lesion Segmentation Challenges). This dataset
collected by e-Health lab of Cyprus University. Figure 6 column (e) shows mul-
tiple sclerosis images which training dataset consists of 18 multiple sclerosis as
nhdr format that ground truth (manual segmentation by expert) is available.

4 Future Work

As future work, I plan to continue work on the lesion detection and segmentation of
brain lesion by convolutional neural network.

References

[1] J. Dai, K. He, and J. Sun. “Instance-aware Semantic Segmentation via Multi-
task Network Cascades”. In: Computer Vision and Pattern Recognition (CVPR),
2016 IEEE Conference on. 2016.

2https://www.virtualskeleton.ch/BRATS/Start2015/ (last accessed 2016-10-20).
3http://www.medinfo.cs.ucy.ac.cy/index.php/downloads/datasets/ (last accessed 2016-10-20).
4http://www.oasis-brains.org/ (last accessed 2016-10-20).

223

https://www.virtualskeleton.ch/BRATS/Start2015/
http://www.medinfo.cs.ucy.ac.cy/index.php/downloads/datasets/
http://www.oasis-brains.org/

Mina Rezaei: Brain Image Analysis with convolutional Neural Network

Figure 7: We trained our architecture by five different categories of brain MRI. Col-
umn (a) shows healthy brain in sagittal, coronal and axial section. Column (b) and
(c) show tumor high and low grad glioma. Column (d) and (e) present some brain
data on Alzheimer and multiple sclerosis.

[2]

6]

R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for
accurate object detection and semantic segmentation”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2014, pages 580-587.
ISBN: 978-1-4799-5118-5.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information process-
ing systems. 2012, pages 1097—1105.

J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for se-
mantic segmentation”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2015, pages 3431-3440.

O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for
biomedical image segmentation”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer International Publish-
ing. 2015, pages 234-241.

H. R. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. B. Turkbey, and R. M. Sum-
mers. “Deeporgan: Multi-level deep convolutional networks for automated
pancreas segmentation”. In: International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention. Springer International Publishing. 2015,

pages 556-564. 1SBN: 978-3-319-24553-9.

224

[7]

8]

References

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. “Over-
feat: Integrated recognition, localization and detection using convolutional
networks”. In: International Conference on Learning Representations (ICLR 2014).
CBLS. 2013, page 16.

K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-
Scale Image Recognition”. In: arXiv preprint arXiv: 1409.1556 (2014).

C. Szegedy, A. Toshev, and D. Erhan. “Deep neural networks for object detec-
tion”. In: Advances in Neural Information Processing Systems. 2013, pages 2553~
2561.

225

Power-Law Distributions in Random Satisfiability

Ralf Rothenberger

Algorithm Engineering
Hasso-Plattner-Institut
ralf.rothenberger@hpi.de

One of the most fundamental problems in computer science is Propositional Satisfi-
ability (SAT). Its computational hardness gave rise to many complexity-theoretical
concepts, e.g. NP-hardness and lower bounds on algorithmic runtime via the
(Strong) Exponential Time Hypothesis. In order to analyze the average-case com-
plexity of SAT and to generate benchmarks for solvers, instances are created at
random (random SAT). Random SAT initiated the development of sophisticated
rigorous and non-rigorous techniques for analyzing random structures. Despite a
long line of research and substantial progress, nearly all theoretical work on ran-
dom SAT assumes a uniform distribution on the variables. In contrast, real-world
instances often exhibit community structure and large fluctuations in variable
occurrence, similar to big real-world networks.

We want to develop and analyze more sophisticated models for the creation
of realistic random SAT instances. This would provide a means of creating real-
istic benchmarks for SAT solvers on a large scale as well as giving insights on
the structural properties of such instances. Our hope is that techniques for the
creation and analysis of scale-free networks can be transferred to the domain of
random SAT. This report documents our work analyzing a first model proposed
by Ansétegui et al. [3]]. For this model we rigorously proved that the satisfiability
of generated formulas does not only depend on the number of clauses, but also on
the power-law exponent of the variable distribution. This is a stark contrast to the
behavior of formulas created in the uniform random SAT model. Furthermore, we
experimentally validated this behavior.

1 Overview

Over the last decades it was observed that many real-world networks exhibit degree
distributions that follow a power-law, including Internet topologies, the Web, social
networks, power grids, and literally hundreds of other domains. Furthermore, it
was shown that these networks feature a unique set of additional properties besides
their power-law degree distribution. These properties include the existence of a
giant component, which contains all but a linear fraction of nodes, small average
distance between two nodes, normally double-logarithmically in the number of
nodes, community structure, i.e. the emergence of densely connected subgraphs
which are only sparsely connected to the rest of the network, and the existence of
hub nodes, which are connected to a large fraction of nodes in the network[10].
One domain, where problem instances with these properties occur is the satisfia-
bility of propositional formulas (SAT). For industrial instances it was recently shown,
that their clause- and variable distributions resemble power-laws[2] and that they
exhibit community structure[4]. Industrial instances arise from problems in practice,

227

mailto:ralf.rothenberger@hpi.de

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

T T T 1717 ‘ T T T 1717 ‘ T T T T T 1717

= - — — hwmcc10 (indust.)

“\L’\'-.., ------ SAT_dat (indust.)
10~1 | STy power-law rand. |

e Ll\':-._ uniform rand.
=l
TN
-3| Bt R
10 VTN
| | R
10° 10! 10° 10°

Figure 1: Cumulative variable occurrence distributions of two industrial categories
from SAT Race 2015 compared to a random power-law formula (n = 10000, m =
45000, B = 2.75) and a uniform random formula (n = 10000, m = 45000). The
distributions of the industrial instances are much closer to the random power-law
formula than to the uniform random formula.

such as hardware and software verification, automated planning and scheduling,
and circuit design. Although SAT is NP-complete in theory, even large industrial
instances with millions of variables can often be solved very efficiently by modern
SAT solvers. This implies that their structural properties might be beneficial for the
runtime of some classes of solvers.

We would like to develop models, which generate synthetic formulas that are
similar to real ones, and to analyze these formulas. Having realistic models would
provide both a means of creating large-scale benchmarks for solvers as well as a
foundation for rigorous analysis. The purpose of an analysis is to validate properties
of generated instances against their real-world counterparts and to design heuristics
to efficiently solve generated instances. Our hope is that the results and algorithms
can be transferred to the original real-world problems. This might improve, or at
least explain, the effectiveness of state-of-the-art solvers.

In this report we summarize and discuss our results analyzing a model for random
formulas with power-law distributed variable occurrences proposed by Ansétegui
et al. [3]. These results are currently under review and not published yet.

2 Preliminaries and Related Work

For modeling typical inputs, we study random propositional formulas. In random
satisfiability, we have a distribution over Boolean formulas in conjunctive normal
form (CNF). Normally, the CNFs are also restricted to having clauses with a certain
number k of literals (k-CNFs).

228

2 Preliminaries and Related Work

0.8 i
o9 .
e}
3
& 06 -
©
7]]
ey
S 04l -
(&)
9 L]

0.2 . i

0 ! ! ! ! b WY . .
0 1 2 3 4 5 6 7 8

ratio of clauses to variables

Figure 2: Fraction of satisfiable formulas for uniform random SAT with clause length
k = 3 and n = 100 variables. Each data point created with 500 random formulas.

2.1 Uniform Random SAT

In the uniform model, a random k-CNF is created as follows:

1. Repeat m times:

a) Choose a k out of n variables uniformly at random. Repeat if at least one
variable is chosen twice.

b) Negate each variable independently at random with probability 1/2.

¢) Connect the resulting k literals via disjunctions to form a clause.

2. Connect the resulting m clauses via conjunctions to form a propositional for-
mula in conjunctive normal form.

Uniform random k-SAT is being analyzed for over thirty years now and there are
many papers concerning the model.

One of the oldest and most prominent research questions is proving the Satisfi-
ability Threshold Conjecture. The conjecture states that for each k > 2 there exists a
constant ratio r; of clauses to variables such that random k-CNFs are almost surely[|
satisfiable if % < r; — e and almost surely unsatisfiable if % > r; + ¢ (c.f. Figure [2).
Friedgut [8] showed that the threshold is sharp, i.e. that there only is a single value
rx(n) instead of a whole range. Note that this does not prove the Satisfiability Thresh-
old Conjecture, since it does not prove that there is a limiting value of rx(n) for
n — oo. Chvétal and Reed [5] proved that the threshold is at r, = 1 for k = 2. For
k > 3 the exact location has not been proven rigorously, although the approximate

"By almost surely we denote a probability going to one as the problem size goes to infinity.
In the context of random SAT the problem size is #, the number of variables.

229

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

10000 . . . — . . .
9000 - y
8000 - o .
7000 * .
6000 - * y
5000 - ° o .
4000 ° . .
3000 - . .
2000 | o.o'... . i
1000) * Couet

0 e0e® | ! ! I

0 1 2 3 4 5 6 7 8
ratio of clauses to variables

median computational cost

Figure 3: Median number of propagations when solving with MiniSAT (no prepro-
cessing or randomization) for uniform random SAT with clause length k = 3 and
n = 100 variables. Each point is the median of 500 random formulas.

location of the threshold can be determined experimentally for fixed values of k.
Recently, Coja-Oghlan [6] proved rx = 2¥In2 — 1(1 +1n2) + o(1) for large k.

Determining the location of the satisfiability threshold can give insights about
structural properties of the random formulas. Furthermore, it can be observed that
the runtime of SAT solvers is especially high around the satisfiability threshold [13]
(c.f. Figure[3). Therefore, knowing the location of the threshold can be helpful when
trying to generate difficult benchmarks.

2.2 Relevant Non-Uniform Models

There are two models proposed so far, which each capture one of the properties of
industrial formulas.

The Community Attachment Model by Giraldez-Cru and Levy|[9] creates random
formulas with clear community structure, but lacking a power-law distribution of
variable frequencies. Furthermore, the work of Mull et al.[14] shows that community
structure alone is not sufficient to explain the efficiency of industrial SAT solvers
based on conflict-driven clause learning (CDCL). More precisely, they show that
instances generated by the Community Attachment Model have exponentially long
resolution proofs with high probability, making them hard for CDCL on average.

The model by Ansétegui et al.[3] creates random formulas with power-law dis-
tributed variable frequencies, which lack the community structure observed in [4].
It generates k-CNF formulas in the same way as the uniform model with the differ-
ence that variables are now chosen according to a power-law distribution instead of
uniformly at random. In the following we will call this model power-law random SAT.
The authors also propose a way to create random CNF-formulas with power-law dis-
tributed variable frequencies and power-law distributed clause lengths. They show

230

3 Our Results

experimentally that the runtime of solvers on formulas generated in their models
resembles that of the same solvers on real industrial instances, but they do not show
any theoretical results. In fact, prior to our work there were no theoretical results for
power-law random SAT at all.

3 Our Results

We analyze the power-law random SAT model and show several results regarding
its satisfiability threshold. A summary of our results can be seen in Figure

unsatisfiable g unsatisfiable "
‘ unknown 4 + unknown
' [solver timeout)

2 : =, :

S i ey S :
Corollar ; ol
Corollaryll] | ——L— , i

» satisfiable /" satisfiable

1 1 -
Zkk_*ll 2 22 24 26 28 3
p p

Figure 4: Illustration of our asymptotic results for the power-law satisfiability thresh-
old location when n — oo (left) compared with empirical results for randomly
generated power-law 3-SAT formulas on n = 10° variables checked with the SAT
solver MiniSAT (right). The timeout was set to one hour.

3.1 Upper Bounds

A first step in trying to understand the behavior of the satisfiability threshold in
power-law random SAT is to try and derive some upper bounds on it. That is, we
want to see up to which clause-variable-ratios 7} random power-law CNFs are still
satisfiable. Surprisingly, our first result already establishes, that for some ranges of
power-law exponents there does not exist a satisfiability threshold.

Corollary 1. Let ® be a random k-SAT formula that follows an arbitrary power-law distri-
bution. If the power-law exponent is p < Zkk%ll — ¢ for an arbitrary e > 0, ®@ is unsatisfiable
with high probability.

231

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

The intuition behind this is simple: If the power-law exponent is too small, then
there are k variables with very high probabilities. In fact, their probabilities are
so high that they appear together in a polynomial number of clauses. Especially,
they appear together with all 2 different combinations of signs, therefore making it
impossible to satisfy all their clauses.

To see how the threshold behaves for the regime of power-law exponents > 21{’1—_11,
we use methods from the analysis of uniform random SAT. A first upper bound
can be derived from the probabilistic method: The expected number of satisfying
assignments for a random formula on any probability distribution is 2" (1 —27%)™, as
long as clauses are drawn independently at random and each variable is negated with
probability 1/2. Therefore, if the clause-variable ratio is higher than In(2) / ln(zkz—il),
the formula will be unsatisfiable with high probability?]

However, this constant is rather large: For random 3-SAT this yields an upper
bound of ~ 5.191, whereas the true value for power-law random SAT seems to be
much smaller (c.f. subsection|[3.3).

To get a better upper bound, we use the so called Single-Flip Method introduced by
Kirousis et al. [11]. The main idea of the method is the following: Instead estimating
the expected number of all satisfying assignments, we only estimate the expected
number of satisfying assignments which have the single-flip property. The property
states that by flipping any single bit of the assignment from zero to one, we do not get
another satisfying assignment. These always exist, if the formula is satisfiable and
since their number is a lot smaller than the total number of satisfying assignments,
we also get a smaller expected value, which in turn gives us a lower upper bound.

By generalizing this method to arbitrary probability distributions, we get the fol-
lowing result:

Theorem 2. Let ® be a random k-SAT formula with k > 2 and r = * that follows a
power-law distribution. Let further N € IN™ be any constant. If the power-law exponent is
B > 2, then @ is w. h. p. unsatisfiable if

((121,(>r21111\1]—[1 lz—exp (—(14—0(1))1'2]{]{_12:? <I;f>ﬁll>]N) <1

I=1

Unfortunately, we cannot solve this expression analytically, but in Table 1) we nu-
merically determined the smallest values of such that the formulas are unsatisfiable.
Furthermore, we compare these values to the upper bounds the Single Flip Method
gives for uniform random SAT.

3.2 Lower Bounds

To complement our upper bound on the satisfiability threshold for § > zkk%ll +e,
we now want to show that there also is a constant lower bound. Since this is a

*We say that an event E holds with high probability (w.h.p.), if there exists an 6 > 0 such
that Pr(E] > 1 - O(n™?).

232

3 Our Results

Table 1: Numerical upper bounds on the satisfiabilty threshold obtained from the
Single-Flip Method (cf. Theorem [2). Empty fields indicate unsatisfiability for all
constant densities by Corollary cor:unsat. The values for uniform random SAT are
obtained from the Single-Flip Method. To the best of our knowledge, the bounds
for uniform random SAT with k > 4 are the currently best known numerical
upper bounds. For k = 3 the best known unconditional numerical upper bound
is 4.4898 [71.

power-law distribution with exponent uniform
k 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 dist.
3 348 371 387 399 4.08 4.67
4 7.87 8.42 8.78 9.04 9.23 9.37 10.23
5 16.27 1775 18.64 19.21 19.61 19.90 20.11 21.33
7 6721 7574 79.81 8209 83.49 84.42 8507 85.54 87.88
10 619.28 662.48 680.93 690.36 695.77 699.12 701.34 702.88 708.94

difficult task even in the arguably simpler uniform random SAT model, we start by
considering k = 2. Although 2-SAT can be solved in polynomial time, it exhibits
the same threshold behavior in the uniform case. Furthermore, uniform random
2-SAT is the only case with matching lower and upper bounds on the satisfiability
threshold. This is due to the fact that the structure of 2-CNFs is not as complicated
as that of formulas with higher clause lengths.

By adjusting a proof technique by Chvétal and Reed [5] to power-law random SAT
we are able to establish the following result:

Theorem 3. Scale-free random 2-SAT with power-law exponent B > 3 and clause-variable

ratiom/n < % is satisfiable with probability 1 — o(1).

The proof of this statement utilizes the notion of bicycles introduced by Chvatal

and Reed [5]. A bicycle is a certain sub-formula which appears in every unsatisfiable

2-CNF. With the probabilistic method, we can show that the expected number of
(ﬁzﬁl)(f);S)
inequality, this gives us the probability bound. As can be seen in Figure 5| this lower
bound matches the threshold we observe in practice quite well.

Now we can use the former statement to show a similar lower bound for k-SAT

with k > 3.

bicycles is smaller than 1 as long as § > 3 and m/n < . Using Markov’s

Theorem 4. Let ® be a random k-SAT formula that follows an arbitrary power-law distri-
bution. If the power-law exponent is > 2kk_7—11 + ¢ for an arbitrary € > 0, O is satisfiable

with high probability if %! is a small enough constant.

The proof idea is the following: From each k-clause we choose the two variables
with lowest probability to form a 2-clause. These 2-clauses are then conjoined to form
a 2-CNF. We can show that, if the variable distribution of the original formula follows
a power-law with exponent at least zkk_—’ll + ¢, then the variable distribution in the

233

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

1 M unsatisfiable

Figure 5: Phase diagram for scale-free 2-SAT formulas with n = 107 variables. We
empirically observe a sharp phase transition (= =), which closely matches the the-
oretical bound of Theorem [3|(—).

resulting 2-CNF is dominated by a power-law with exponent bigger than 3 + ¢’. Due
to Theorem |§| this means, that there has to be a clause-variable-ratio below which
the reduced 2-CNF is almost surely satisfiable. Since every satisfying assignment
for the 2-CNF also satisfies the original k-CNF, the original formula is almost surely
satisfiable below the same clause-variable-ratio, thus proving the statement.

3.3 Experiments

We did extensive experiments to study the behavior of power-law random SAT and
to validate our theoretical results. The diagrams in Figure [5|and in the left panel of
Figure[f]are generated as follows. To see the asymptotic behavior, we choose n very
large, n = 107 for k = 2 and n = 10° for k = 3. 50 scale-free formulas are generated
for each exponent § = 1.5,1.6, ...,3.5 and each m such that "/n = 11—0, %, ..., 10. The
resulting formulas are then solved by the CDCL-based solver Map1eCOMSPS [12] with
a time cutoff of goo seconds. We chose Map1eCOMSPS because of its good performance
on the Application Benchmarks at the SAT 2016 competition. If the solver does not
finish in time, the formula’s satisfiability is unknown and it is marked as “hard”.
If all 50 formulas are unsatisfiable, a red cross (x) is drawn. If some formulas are
satisfiable, a green dot (e) is drawn with the dot’s size corresponding to the fraction
of satisfiable instances. Note that the threshold appears to be sharp, and in most
cases, either all formulas are satisfiable, all are unsatisfiable, or all are hard.

4 Conclusion and Future Work

We analyzed the power-law random SAT model proposed by Ansétegui et al. [3]. For
the case of 2-SAT we were able to prove a lower bound on the satisfiability threshold

234

References

x| unsatisfiable
4.
s 3
~
g
2.
1.
1.5 20

Figure 6: Phase diagrams (left) and timing contour plots (right) for scale-free k-SAT
with n = 10° and k = 3. The phase diagrams show a clear phase transition from
unsatisfiable (x) to satisfiable (#) and a patch of very hard instances (), close to
the phase transition for higher m/n and . The contour plots and heat maps in
the right column report mean solver time on the formulas (blue=fast, red=slow);
solver run time strongly increases around the phase transition.

which depends on the power-law exponent of the variable distribution and seems to
be tight in practice. For k-SAT with k > 3 we showed that only the regime of distri-
butions with power-law exponent bigger than zkk_—_ll exhibits a satisfiability threshold,
while distributions with a lower exponent almost surely generate unsatisfiable for-
mulas. Furthermore, for power-law exponents only slightly above 2]:1—’11 the threshold
is smaller than the one for uniform random SAT (see Table [1).

At the time of writing we are trying to prove a matching upper bound for the
lower bound in Theorem [3] Furthermore, we are trying to show a sharpness result
for power-law random SAT similar to the one by Friedgut [8]]. This would enable us
to use second moment techniques similar to the ones in [1] to derive better lower
bounds on the satisfiability threshold of power-law random SAT. Also, we would
like to try and propose a model which combines community structure with power-
law distributed variable frequencies. Furthermore, it would be beneficial to discover
additional structural properties of real-world instances, which can be incorporated
into a model for generating formulas.

References

[1] D. Achlioptas and C. Moore. “Random k-SAT: Two Moments Suffice to Cross
a Sharp Threshold”. In: SIAM]. Comput. 36.3 (2006), pages 740—762.

[2] C. Ansétegui, M. L. Bonet, and J. Levy. “On the Structure of Industrial SAT
Instances”. In: Principles and Practice of Constraint Programming — CP 2009, 15th
International Conference. 2009, pages 127—-141.

235

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

[3]

(4]

[7]

[8]

C. Ansétegui, M. L. Bonet, and J. Levy. “Towards Industrial-Like Random SAT
Instances”. In: IJCAI 2009, Proceedings of the 21st International Joint Conference
on Artificial Intelligence. 2009, pages 387-392.

C. Ansétegui, J. Girdldez-Cru, and J. Levy. “The Community Structure of SAT
Formulas”. In: Theory and Applications of Satisfiability Testing — SAT 2012 — 15th
International Conference. 2012, pages 410—423.

V. Chvatal and B. A. Reed. “Mick Gets Some (the Odds Are on His Side)”. In:
Proc. of the 33rd Annual Symposium on Foundations of Computer Science. 1992,
pages 620-627.

A. Coja-Oghlan. “The asymptotic k-SAT threshold”. In: Symposium on Theory
of Computing, STOC 2014. 2014, pages 804-813.

J. Diaz, L. M. Kirousis, D. Mitsche, and X. Pérez-Giménez. “On the satisfiability
threshold of formulas with three literals per clause”. In: Theor. Comput. Sci.
410.30-32 (2009), pages 2920—-2934.

E. Friedgut. “Sharp thresholds of graph properties, and the k-sat problem”. In:
J. Amer. Math. Soc. 12.4 (1999). With an appendix by Jean Bourgain, pages 1017
1054. ISSN: 0894-0347.

J. Girdldez-Cru and J. Levy. “A Modularity-Based Random SAT Instances

Generator”. In: Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence,]CAI 2015. 2015, pages 1952—-1958.

R. van der Hofstad. Random graphs and complex networks. 2011. URL: http://www/
win.tue.nl/~rhofstad/NotesRGCN.pdf (last accessed 2016-10-20).

L. M. Kirousis, E. Kranakis, D. Krizanc, and Y. C. Stamatiou. “Approximating
the unsatisfiability threshold of random formulas”. In: Random Struct. Algo-
rithms 12.3 (1998), pages 253—269.

J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupar. “MapleCOMSPS,
MapleCOMSPS_LRB, MapleCOMSPS_CHB”. In: Proceedings of SAT Compe-
tition 2016: Solver and Benchmark Descriptions. Volume B-2016-1. Department
of Computer Science Series of Publications B, University of Helsinki. 2016,
pages 52-53.

D. G. Mitchell, B. Selman, and H. J. Levesque. “Hard and Easy Distributions
of SAT Problems”. In: Proceedings of the 10th National Conference on Artificial
Intelligence. San Jose, CA, July 12-16, 1992. 1992, pages 459—465.

N. Mull, D. J. Fremont, and S. A. Seshia. “On the Hardness of SAT with Com-
munity Structure”. In: Theory and Applications of Satisfiability Testing — SAT 2016
— 19th International Conference. 2016, pages 141-159.

236

http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf
http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf

Matching Unstructured Product Offers
to a Product Catalog (A Case Study)

Ahmad Samiei

Information Systems Group
Hasso-Plattner-Institut
ahmad.samiei@hpi.uni-potsdam.de

Product matching is a recent, and more challenging variation of entity resolution,
or duplicate detection, which links product offers from different sources to their
corresponding entries within a product catalog. Tens of millions of offers for a wide
variety of product categories are daily collected by price comparison websites. This
data is highly heterogeneous, because product offers are gathered from thousands
of different retailers and most use different attributes and styles describing their
offers. Data heterogeneity and variety of the product categories makes the task
more difficult than conventional duplicate detection, which usually deals with
data from a specific domain. Moreover, the velocity of data updates and volume
of the data make the task even harder.

Prior work typically deals with this problem using different text similarity mea-
sures or machine learning approaches for a dataset of a specific product category.
In this work, we initially attempt to adapt these approaches to the problem of
having a larger dataset that contains a wider range of product categories.

1 Product Matching

With the increasing popularity of the internet, the amount of eCommerce has also
grown tremendously during last decade. Based on a recent study by eMarketer, the
amount of worldwide retail eCommerce sales will reach $ 1.9 trillion by the end of
2016, and its yearly double digit growth will continue until 2020 [20]. The internet
has already achieved an important position in retail commerce and there are tens
of thousand online retailers, which sell hundreds of millions of products across the
globe. This number of online shops has already made finding a particular product a
difficult task for the consumers. That prevails mainly because there is not any univer-
sal product identifier for all of the products. As a result, many product search engines
and price comparison websites (e.g. Amazon, Google’s product search engine shop-
ping.bing.com) have emerged to help the consumer in this regard, by aggregating
and clustering product offers from different online retailers.

Offers from different retailers have heterogeneous data formats and sparse in-
formation. There is no global unique identifier for all of the products that could be
simply used as a key to link different offers of a specific product. Offers also contain a
few textual attribute fields. These fields are usually very short. In addition to missing
attribute values, offer data often have many misspellings and abbreviations, which
make product matching even more challenging task. Product matching attempts to
identify product offers with different syntactical representations that refer to the

237

mailto:ahmad.samiei@hpi.uni-potsdam.de

A. Samiei: Matching Unstructured Product Offers to a Product Catalog (A Case Study)

same real-world entity, and place them in the same cluster. The aim of this work
is to explore datasets for our partner idealof]a leading online product comparison
website. We plan to investigate different approaches and devise effective similarity
functions and necessary similarity indices. They should improve accuracy of the
product matching task in terms of precision and recall in comparison to state of
the art methods, yet retain the efficiency. Initially, we examine text-similarity based
approaches, and then we will investigate different machine learning approaches in
combination with text similarity measures.

2 Related Work

Duplicate detection has being investigated under different names such as entity
resolution, record linkage, purge and merge, reference matching, and reference rec-
onciliation [8, 11]. Product matching is a rather new sub-field in duplicate detection
that deals with the product data. Literature in this field could be classified in two
main categories as follows:

Text similarity based approaches Work in this category solely relies on text simi-
larity measures to discover duplicates in product offers. They aim at finding the
most suitable similarity metrics for the product matching task. They typically em-
ploy general similarity metrics, tailor or combine some of them together so that the
newly generated similarity measures produce better results. For instance, Bezu et al.
propose a multi-component similarity measure to compute the similarity of prod-
uct offers [4]. In their work authors combine two already existing approaches, Title
Model Word Method (TMWM) [19] and weighted average of Key-Value attribute
Pairs (KVP) similarity method [1]. Application of this combined approach followed
by agglomerative clustering on the output shows significant improvement over any
of the former methods independently. The combined approach also outperforms
another baseline method, which basically applies TF-IDF on the offer attribute val-
ues and uses cosine similarity to measure the similarity of two products. In order
to decrease the number of redundant comparisons in the method introduced in [4],
Dam et al. propose to leverage Locality Sensitive Hashing (LSH) in order to pre-
select potential duplicates. Their evaluation show that utilizing LSH improves the
performance significantly, however it sacrifices the quality (i.e. recall, F-measure) of
the result to some extent [10].

Hybrid approaches This category of work typically utilizes various machine learn-
ing methods in combination with similarity measures to discover duplicates. For
instance, Kannan et al. try to match unstructured product offers to structured product
specification exploiting a binary logistic regression model. They start with semanti-
cally parsing the offer descriptions to extract attribute values. Thereafter, by applying

Thttps://www.idealo.de (last accessed 2016-10-20).

238

https://www.idealo.de

3 Case Study (Product Matching in idealo)

a similarity function on two attribute vectors of a product and an offer, they con-
struct similarity feature vector for each pair. Subsequently, as a matching function
they train a binary logistic regression model using the already constructed similarity
feature vectors and a manually labeled training set. Finally, the trained model is used
to match unforeseen offers to the product catalog [13].

Kopcke et al. evaluate and show that offer matching is a harder task than con-
ventional entity matching, which usually deals with well-structured and a domain
specific datasets [15]. In a series of work the authors attempt to detect duplicates
in a totally unstructured product offer dataset, which they believe is even harder
than mapping the product offers to a structured product catalog. In their proposed
approach they start with an extensive pre-processing step where they try to extract
product code from the offer titles and verify it through an external knowledge source.
They observed that product codes, if exist, greatly help to discern similar but dif-
ferent products. The authors continue pre-processing step to extract manufacturer
name and other relevant features from the product offer textual fields. They use
TF-IDF, Trigram Jaccard as string similarity measures for title and description at-
tributes and a specific similarity measure for the extracted product code. As a final
step, they train a SVM classifier using different strategies to select training sets [16].
In another work, K&pcke et al., investigate the effect of using different classifiers: de-
cision tree, logistic regression, SVM, and hybrid classifiers with respect to the result
quality. Based on their observation, none of the latter performs well over all different
datasets, whereas a hybrid classifier outperforms all other individual classifiers [12].

Most of the already mentioned work uses a specific category of the products,
namely electronic products in addition to a general dataset, which contains products
from a wider spectrum of categories to evaluate their approaches. The evaluation
shows a significant difference in performance between these two categories and
specific categories produce much higher result quality.

In addition to these two categories, additional related work focuses on other as-
pects of the product matching, such as [2, 18] which investigate on devising adaptive
similarity measures for product matching. Product classification techniques pro-
posed in [3,|5,[14] are basically approaches used to increase efficiency of the matching
process by limiting the number of comparisons. Product classification also could be
used to construct a list or hierarchical product catalog or incrementally update it if
exists.

3 Case Study (Product Matching in idealo)

idealo is the largest price comparison website in Germany. It daily receives over 650
million unique product offers from more than 58 thousand online retailers. These
retailers periodically send snapshot of their entire database or an increment including
any changes from their last data transfer (i.e., update, delete, and insert new records).
As the data mainly arrives as a continuous stream, to be competitive idealo has to
process the data and match them to the product catalog or other similar product
offers in real-time and very accurately. Hence product matching is a key feature of

239

A. Samiei: Matching Unstructured Product Offers to a Product Catalog (A Case Study)

Table 1: Structured product record of the product catalog

Attribute Name Attribute Value
category digital camera
product name Panasonic Lumix DMC-EX07
sensor resolution 7 megapixel
color silver

weight 132 g

price: minimum $249.99
price: maximum $ 286
display: type LCD display
display: diagonal size 2.5in

flash memory: storage capacity 8 MB

lens system: optical zoom 3.6

Table 2: Sample offers

offers textual attribute, product name (title)

offer-1 Panasonic Lumix DMC-FX07 digital camera

[7.2 megapixel, 2.5”, 3.6x optical zoom, LCD monitor]
offer-2 Panasonic DMC-FX07EB digital camera silver
offer-3 Lumix DMC-FX07EB-S 7.2 MP

idealo and any other product comparison websites. In order to enhance product
matching, idealo manually maintains a product catalog, a well-structured dataset
consists of key-value pairs for the product attributes. Table [1| presents a sample
product from the catalog. idealo’s current product catalog contains over 1.8 million
entries, which on average contain 12 attributes per entry.

In contrast to the products, offers are not well-structured and only have two textual
fields, title and description. The title contains essential information but it is very short
(Figure |1} shows distribution of the offer titles length extracted from our evaluation
dataset). The description field usually contains attribute names and values. Besides
these two fields, offers might contain EANP|and ASINP|unique identifiers.

However, these unique identifiers exist, they are not widespread. Within the prod-
uct offers, which idealo receives only about 8 % of them contain one of theses identi-
fiers. Furthermore, presence of theses identifiers does not guarantee that two prod-
ucts having the same identifier are necessarily identical. It is observed that two offers
with the same identifier might refer to two different products or on the contrary two

?European Article Number.
3Amazon Standard Identification Numbers.

240

3 Case Study (Product Matching in idealo)

Title Length

3500
3000
2500
2000
1500
1000

500

Offer Counts

12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22
Number of tokens

Figure 1: The length of the offer titles in the evaluation dataset.

different identifiers might also refer to a unique product. Table |2, shows title field of
three sample offers for the product presented in the Table

As can be seen, out of 3 offers, offer-1 contains the most detailed information, yet
it contains a small subset of the attribute values of the corresponding product, and
some of the values are not exact match. For instance, 7.2 megapixel vs. 7 megapixel
or LCD monitor vs. LCD display. Offer-2 has a smaller subset of the attributes than
offer-1 has. It does not provide part of the product name, and its model name also has
an extra suffix EB, Panasonic DMC-FXO07EB vs. Panasonic Lumix DMC-FX07. Offer-3
does not provide brand name, and misses part of the model name and instead adds
a suffix to it, Lumix FX07EB-S vs. Panasonic Lumix DMC-FX07. In addition it uses
an abbreviation MP instead of megapixel. Clearly we have to deal with a difficult
problem of matching the offers with free text format to the structured product data.
In summary, any product matching approach has to address the following issues:

¢ Wide variety of product categories (millions of diverse products).

* Huge degree of heterogeneity, because product offers are collected from thou-
sands of different retailers which usually use different attributes, title and
description.

¢ Textual nature of the title and description fields, which requires parsing and
extracting attribute values.

¢ Missing or wrong values, abbreviations in attribute values.

We start our work with the following approaches:

241

A. Samiei: Matching Unstructured Product Offers to a Product Catalog (A Case Study)

Stream of the
offers

Query

?y¢ elastic <=>

]

Product

Candidate
set

catalog

Figure 2: Product Matching Workflow for a new Offer.

3.1 Baseline approach

Conventional duplicate detection approaches are perfectly suitable for the schema
based datasets that consist of multiple fields. These fields could be used for blocking
or sorting to restrict the number of pair comparison. Moreover, corresponding fields
could be simply compared to compute the pairs similarity values. Because product
offers have only two textual fields, Title and Description, the prior work mainly tried
to extract attribute values from the offers text fields and subsequently compare them
to their corresponding fields in the product data. In stead of that, here we follow a
different approach as our baseline. Figure |2|depicts the architecture of the proposed
approach. We use an inverted index for the product catalog, which substitutes the
blocking key to narrow down the search space. We decided to use Elasticsearch[]|
which is a disk based index, however, it is desirable to use an in-memory inverted
index. Firstly, because of the growth in size of the product catalog (idealo’s product
catalog currently contains about 4 million entries out of that 1.8 million are active),
and secondly, due to Elasticsearch’s capability to deploy on a distributed platform,
which satisfies our need of processing a huge volume of input offers.

Considering the full-text search feature of Elasticsearch, submitting any fuzzy
query constructed from the offer title returns a long list of the similar products found
inside the product catalog as a candidate set. It is a very time intensive task to process
the entire candidate set using an expensive similarity measure. In order to further
restrict this result set, we use some filter such as price range (we are preparing other

4Elasticsearch is an open source search engine based on lucene. It provides a distributed,
multitenant-capable full-text search over the schema free JSON documents.

242

4 Future Work

filters such as category to compensate the deficiencies of the price range). Because
of the typographical errors and abbreviations in the product titles (as seen in the
sample), we use the bigram-jaccard as the similarity measure over the titles of the
product offers.

3.2 Hybrid approach

In the hybrid approach, we try to add the description field of the offers to our
similarity measure. Prior work attempts to first parse the textual fields and extract
attribute values out of it in order to construct a structured record, and thereafter
compute the similarity between two structured records similar to the conventional
de-duplication approaches [7, 17]. Even computing the similarity between two struc-
tured records also seems to be a challenging task due to the wide variety in attribute
types [6,|9]. We believe the process of extracting attribute values is a complicated, time
expensive, and error prone due to the large number of attributes (idealo’s product
catalog currently contain about 3.6 thousand unique attributes), and also synonyms
in the attribute names. Therefore, instead of extracting attribute values, we purify
the textual fields by removing irrelevant tokens (e.g. stop worlds, verbs). Thereafter,
we directly compute the similarity between two records by finding the most similar
tokens for each attribute from the relevant tokens in the textual fields. To perform
this task we exploit an existing NLP API, then by adopting the weighting strategy
proposed by Kannan et al., [13] to compute the final record similarity value between
attribute values of the product and offer textual fields. Our preliminary evaluation
over a subset of our offer evaluation dataset (containing 23 thousand offers from
a wide variety of the product categories that are manually labeled) shows its effec-
tiveness to map the corresponding attribute values and improves the f-measure of
the baseline by almost 8 %. This is our ongoing work and it needs to be investigated
more precisely.

4 Future Work

¢ As it is mentioned in the related work and observed in our experiments, ap-
plication of hybrid similarity measures improve the accuracy of the matching
result by increasing the runtime. It would be worthy to try to optimize run-
time of the solution by utilizing further necessary steps, such as more efficient
indices.

* Machine learning classifiers have proved to advance quality of the product
matching. Investigating on the effects of using different classifiers such as SVM,
logistic regression, decision tree and other classifiers on the idealo’s dataset
would be an appealing direction.

¢ Prior work has shown that domain or category specific similarity measures
outperform the general one. Hence, automatic offer categorization facilitates

243

A. Samiei: Matching Unstructured Product Offers to a Product Catalog (A Case Study)

designing category specific similarity measures, which in turn improve prod-
uct matching quality and also makes it more efficient. Furthermore, it could
also prevent the cumbersome task of manual categorization or in case of an
existing category list makes it possible to update it incrementally.

Offer clustering is another very important direction in our research, because
currently more than 9o % of the offers cannot be matched to any product in the
catalog during the product matching. Considering the special characteristics of
offer datasets we would like to investigate on different clustering approaches
in order to devise a method to improve the accuracy and runtime of the offer
clustering. The proposed method should be scalable so that it can process
a large volume of data from idealo project. This might require an approach
runnable in a distributed platform such as Apache Spark. Moreover, due to the
streaming nature of the input data, the solution has to ingest data in real time.

References

[1]

[2]

(4]

[7]

M. de Bakker, F. Frasincar, and D. Vandic. “A Hybrid Model Words-driven
Approach for Web Product Duplicate Detection”. In: Proceedings of the Inter-
national Conference on Advanced Information Systems Engineering. CAiSE. 2013,
pages 149-161. 1sBN: 978-3-642-38709-8.

K. Balog. “On the Investigation of Similarity Measures for Product Resolution”.
In: Proceedings of the International Conference on Discovering Meaning On the Go
in Large Heterogeneous Data. LHD. 2011, pages 49-54.

S. Bergamaschi, F. Guerra, and M. Vincini. “A Data Integration Framework for
e-Commerce Product Classification”. In: Proceedings of the First International
Semantic Web Conference on The Semantic Web. ISWC. 2002, pages 379—393. ISBN:
978-3-540-48005-1.

R. van Bezu, S. Borst, R. Rijkse, J. Verhagen, D. Vandic, and F. Frasincar.
“Multi-component Similarity Method for Web Product Duplicate Detection”.
In: Proceedings of the Annual ACM Symposium on Applied Computing. SAC. 2015,
pages 761-768. 1sBN: 978-1-4503-3196-8.

M. Bilenko, S. Basu, and M. Sahami. “Adaptive Product Normalization: Using
Online Learning for Record Linkage in Comparison Shopping”. In: Proceedings
of the IEEE International Conference on Data Mining (ICDM). 2005, pages 58-65.
ISBN: 0-7695-2278-5.

M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg. “Adaptive
Name Matching in Information Integration”. In: IEEE Intelligent Systems 18.5
(2003), pages 16—23. I1ssN: 1541-1672.

V. T. Chakaravarthy, H. Gupta, P. Roy, and M. Mohania. “Efficiently Linking
Text Documents with Relevant Structured Information”. In: Proceedings of the
International Conference on Very Large Databases (VLDB). 2006, pages 667—678.

244

[8]

[14]

[15]

[16]

[17]

[18]

[19]

References

P. Christen. “A Survey of Indexing Techniques for Scalable Record Linkage
and Deduplication”. In: IEEE Transactions on Knowledge and Data Engineering
(TKDE) 24.9 (2012), pages 1537—-1555. ISSN: 1041-4347.

M. Cochinwala, V. Kurien, G. Lalk, and D. Shasha. “Efficient Data Reconcilia-
tion”. In: Information Sciences 137.1-4 (2001), pages 1—15. ISSN: 0020-0255.

I. van Dam, G. van Ginkel, W. Kuipers, N. Nijenhuis, D. Vandic, and F. Frasincar.
“Duplicate Detection in Web Shops Using LSH to Reduce the Number of Com-
putations”. In: Proceedings of the Annual ACM Symposium on Applied Computing.
SAC. 2016, pages 772—779. I1SBN: 978-1-4503-3739-7.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. “Duplicate Record De-
tection: A Survey”. In: IEEE Transactions on Knowledge and Data Engineering
(TKDE) 19.1 (2007), pages 1—16. ISSN: 1041-4347.

K. Hanna, T. Andreas, and R. Erhard. “Learning-Based Approaches for Match-
ing Web Data Entities”. In: IEEE Internet Computing 14 (2010), pages 23—-31.
I1SSN: 1089-7801.

A.Kannan, I. E. Givoni, R. Agrawal, and A. Fuxman. “Matching Unstructured
Product Offers to Structured Product Specifications”. In: Proceedings of the
International Conference on Knowledge Discovery and Data Mining (SIGKDD).
2011, pages 404—412. ISBN: 978-1-4503-0813-7.

Y.-g. Kim, T. Lee, J. Chun, and S.-g. Lee. “Modified NaiVe Bayes Classifier for
e-Catalog Classification”. In: Proceedings of the Second International Conference
on Data Engineering Issues in E-Commerce and Services. DEECS. 2006, pages 246—

257. ISBN: 978-3-540-35441-3.

H. Koépcke, A. Thor, and E. Rahm. “Evaluation of Entity Resolution Ap-
proaches on Real-world Match Problems”. In: Proceedings of the VLDB Endow-
ment 3.1-2 (2010), pages 484—493. 1SSN: 2150-8097.

H. Kopcke, A. Thor, S. Thomas, and E. Rahm. “Tailoring Entity Resolution
for Matching Product Offers”. In: Proceedings of the International Conference on
Extending Database Technology (EDBT). 2012, pages 545-550. ISBN: 978-1-4503-
0790-1.

M. Michelson and C. A. Knoblock. “Creating Relational Data from Unstruc-
tured and Ungrammatical Data Sources”. In: Journal of Artificial Intelligence
Research 31.1 (2008), pages 543-590. ISsN: 1076-9757.

A. Thor. “Toward an adaptive String Similarity Measure for Matching Prod-
uct Offers”. In: Informatik 2010: Service Science - Neue Perspektiven fiir die Infor-
matik, Beitrige der 4o. Jahrestagung der Gesellschaft fiir Informatik e.V. (GI). 2010,
pages 702-710.

D. Vandic, J.-W. Van Dam, and F. Frasincar. “Faceted Product Search Powered
by the Semantic Web”. In: Decision Support Systems 53.3 (2012), pages 425-437.
ISSN: 0167-9236.

245

A. Samiei: Matching Unstructured Product Offers to a Product Catalog (A Case Study)

[20] Worldwide Retail Ecommerce Sales Will Reach $1.9 Trillion This Year. urL: https:
//www.emarketer.com/Article/Worldwide-Retail-Ecommerce-Sales-Will-Reach-1915+
Trillion-This-Year/1014369 (last accessed 2016-10-01).

246

https://www.emarketer.com/Article/Worldwide-Retail-Ecommerce-Sales-Will-Reach-1915-Trillion-This-Year/1014369
https://www.emarketer.com/Article/Worldwide-Retail-Ecommerce-Sales-Will-Reach-1915-Trillion-This-Year/1014369
https://www.emarketer.com/Article/Worldwide-Retail-Ecommerce-Sales-Will-Reach-1915-Trillion-This-Year/1014369

Video Captioning with Deep Neural Networks

Cheng Wang

Internet Technologies and Systems
Hasso-Plattner-Institut
Cheng.Wang@hpi.de

This report summaries my research activities of the past six months in the HPI
Research School on Service Oriented Systems Engineer. In this report, we explore
ways of applying Deep Learning techniques to generate captions for videos. We
facilitate Long Short-Term Memory using the Caffe framework and a pre-trained
VGG network for image feature extraction. We show how to get started with video
captioning and discuss good practices to improve the performance of video cap-
tioning.

1 Introduction

Videos are an intuitive and easy way of recording real life sceneries. In the blink of
an eye humans can recognize known objects, persons and movements in a video,
not even considering recorded sound. Even children and animals without reading
skills or knowledge of other information systems can comprehend the information
displayed in a video. For computers, understanding the content of a video consti-
tutes a major problem since the pixels do not refer to the semantics of objects. Only
by applying recent advancements in the field of image recognition, we are able to
recognize and understand roughly what a human sees in a picture.

Video to text translation tries to transfer that progress from single pictures to
(short) videos. This enables information retrieval of a big chunk of “undiscovered”
and uncategorized data, e.g. the millions of videos uploaded to YouTube, statistics
shows that 300 hours of video are uploaded to YouTube every minute. Unless the
authors of those videos provide detailed text information on the contents of the
video, we are unable to index, sort or cluster the videos by its actual contents. By
automatically generating captions and tags for videos, this no longer holds true.
Furthermore, this enables improvements in the domain of recommender systems for
video data. It can also not just improve the smartness of backends, but increase web
accessibility for platforms like YouTube by providing textual description of videos
for handicapped users. In this work, we aim to understand, implement and enhance
the full process of video to text translation. We want to discover how state of the art
video recognition works in detail, so we could also identify space for improvement.

Our work is based on the research of Subhashini Venugopalan and Jeff Donahue
et al. [10], in which they propose an end-to-end sequence-to-sequence model to
tackle the challenge of both variable length input and output. To achieve this, they

Thttps://www.youtube.com/yt/press/en-GB/statistics.html (last accessed 2016-10-20).

247

mailto:Cheng.Wang@hpi.de
https://www.youtube.com/yt/press/en-GB/statistics.html

Cheng Wang: Video Captioning with Deep Neural Networks

use recurrent neural networks, specially Long short-term memory (LSTMs). Jeff
Donahue himself further elaborated on this topic is his paper “Long-term Recurrent
Convolutional Networks for Visual Recognition and Description” [3], which we
also highly valued in our work. Our dataset choices are based on “MSR-VTT: A
Large Video Description Dataset for Bridging Video and Language” from Jun Xu
et al. [11], which also was used for a Microsoft Research Challenge on video-to-
sentence transformation.

2 Methodology

Jeff Donahue et al. [4] showed, that temporal deep learning for video to text con-
version can outperform approaches, that neglect the order of frames, which is why
we wanted to learn with temporal context. Recurrent Neural Networks (RNNs) in
contrast to the feed-forward approach process sequences of inputs in such a way, that
the output of the last time step can be used as input for the next one. This implements
a kind of memory or hidden state and makes it possible to learn temporal informa-
tion out of sequences of inputs. Conventional RNNs suffer from gradient vanishing
and explosion on long term sequences, which suggests the use of long short-term
memory (LSTMs) a special kind of RNN that can learn to forget information and
thus are able to cope with longer sequences [4]. Therefore we use the LSTM-based
model denition from Venugopalan et al. [10]] available on GitHub, which is trained
and used with the Caffe deep learning framework [5]. This results in the architec-
ture displayed in The part (red) consists of a convolutional neural network
(CNN). It takes as an input a frame from the video.

3 Training and Optimization

Based on our proposed network structure, this section describes the training and op-
timization of network, we also discuss some influential factors of improving network
performance.

Frame rate LSTM is able to learn from sequences (i.e. multiple frame) and they
are quite flexible about how many steps to learn from. This means, we can input 5
or 8o frames. During training, however, we need to have a fixed amount of steps
(i.e. frames), because we want to propagate and back-propagate in batches with the
averaged loss and delta. We cannot do this, if the different propagations in one batch
are differently enrolled. Furthermore, the more frames we feed in, the more memory
is required to keep all values for back-propagation. Sampling with a specific frame
rate leads to sequence lengths as different as the video lengths. Sampling about the
same amount of frames leads, in turn, to varying time intervals between frames. Our
dataset contains only short video sequences, thus for training we stick to using a
maximum of 8o frames at 5 frames per second with padding if necessary. In this

248

3 Training and Optimization

Figure 1: Architecture for video captioning. Each extracted video frame is fed to
CNN that used as image encoder, the output of CNN will be fed to LSTM which
encodes sentence input as well as decodes image and sentence to generate novel
sentence.

setting-combined with the lengths of the videos the frame rate should not be higher
than 5 frames per second to not truncate too much. Optimizing the frame rate is
about finding a good trade-off between resulting sequence length and keeping a low
delta between frames.

Mean pooling Averaging the values over n frame feature vectors is called mean
pooling in contrast to the more naive approach of only taking the feature vector of
every n-th frame for training. Mean pooling therefore helps by smoothing the data
and thus, reducing the effect of outliers. Another approach to solve this is called soft
attention which selectively focuses on only a small subset of frames. This may lead
to small improvements over mean pooling.

Size of dataset As with many tasks in computer science, the size of the data that is
used has a big influence on both performance and quality of the results. On the one
hand, using a bigger dataset improves the output of our network. On the other hand,
it would increase the time for training. Moreover, the results could not be tested as
early thus leaving less time to evaluate different settings of other parameters.

Iteration count and batch size The batch size controls how many feature vectors
calculated from images are processed in each iteration of training our LSTM in Caffe.
The iteration count specifies how much iterations are used for training. Those two
parameters are tightly coupled as by multiplying them we obtain the number of
times a single feature vector is processed. As we show in following section they have
an influence on the quality of the results.

249

Cheng Wang: Video Captioning with Deep Neural Networks

Learning rate The learning rate influences to which extent the network’s parame-
ters are adapted after each iteration. It is one of the most important options that can
be tweaked for different training results. Having an optimized learning rate schedule
is important for faster convergence and the final accuracy.

Flow images Optical flow images are pictures which utilize the colors of their
pixels for capturing the difference between key frames. As they convey motion in-
formation between frames they might improve the results of creating captions for
videos depending on the kind of activity that is displayed. They are typically used
by doing two passes through the network, one with the normal image data and one
with the flow images, followed by averaging the results.

4 Evaluation

We use the Microsoft COCO Evaluation Server [1] to compare each generated sen-
tence to 20 ground truth sentences. Those ground truth sentences were compiled by
Amazon Mechanical Turks, so they represent the way a human would describe the
videos.

The COCO evaluation server takes candidate captions and scores them using
several popular metrics, including BLEU [8], METEOR [2], ROUGE [6] and CIDEr [9].
The evaluation server was originally designed to compare image captions, but as they
do not depend on the images at all and rather work as a similarity metric between
the sentences, we are reusing COCO to compare the generated video sentences from
our model to the ground truths provided by Microsoft.

Furthermore the same metrics are used in the MS Multimedia Challenge [7] from
which we used the data. Unfortunately we could not access all data because of the
missing test sentences and deleted /blocked videos on YouTube. This makes our
evaluation results less expressive compared to the other attendees of the MS Multi-
media Challenge. Nevertheless we made sure to have the same splits between train,
test and val data as the challenge does.

4.1 BLEU

Bilingual evaluation understudy (BLEU) is a popular automatic machine translation
evaluation metric known for its high correlation with human judgement. It uses
n-grams, i.e. a contiguous sequence of n items, to calculate the similarity between
two sentences. BLEU is known to prefer brevity and to perform better on a corpus
level by averaging over sentences. Bigger n lead to fewer matches when comparing
sentences and therefore the results get worse. This is why BLEU is not perfectly suited
for our standalone sentences and we use other metrics as well. For its multimedia
challenge, Microsoft chose to only look at 4-gram BLEU scores [8].

250

5 Results

4.2 METEOR

Metric for Evaluation of Translation with Explicit ORdering (METEOR) tries to solve
problems in the BLEU metric by putting more emphasis on order and recall. This
is achieved by hierarchically resolving the identity of words in two sentences by
the following matchers: exact, stem, synonym and paraphrase. Moreover, METEOR
prefers similarly aligned matches between compared sentences [2].

4.3 ROUGE

Recall-Oriented Understudy for Gisting Evaluation (ROGUE) is a collection of mul-
tiple evaluation metrics for machine translation specifically focused on summariza-
tion. It consists of ROUGE-N (n-gram co-occurrence Statistics), ROUGE-W (weighted
longest common subsequence), ROUGE-S (skip-bigram co-occurrence statistics) and
ROUGE-L (longest common subsequence).

ROUGE-L is the only one interesting for us as it is used in the Microsoft Multimedia
Challenge. Unlike n-grams, it allows other words to appear among the ones that
constitute the sequence. The final score is calculated using the harmonic mean of
recall and precision also known as F measure. For ROUGE-L, it is common practice
to use an F measure that slightly favors recall over precision [z, 6].

4.4 CIDEr

Consensus-based Image Description Evaluation (CIDEr) works by weighting the n-
grams found across all sentences using term frequency—inverse document frequency
(tf-idf). This gives higher weights to n-grams occurring rarely thus filtering out com-
mon phrases while promoting salient ones. The resulting CIDEr score is obtained
by calculating the average cosine similarity over the vector of tf-idf values of all
n-grams in the compared sentences. In the Microsoft Multimedia Challenge the ex-
tension CIDEr-D is used which tries to mitigate gaming effects. Gaming refers to
the phenomenon that a metric may score sentences highly that are judged as rather
dissimilar by humans. CIDEr-D prevents this by adding clipping as well as a length
based Gaussian penalty [9].

5 Results

In this section, we want to show training results and discuss what we could learn
from them. The results contain statistics over the training process and quality indica-
tors of the model’s performance. Overall, the model can only get as good as the data
that is used for training. YouTube videos, even though they do not have much context
knowledge, are not necessarily a good source for general purpose video captioning.
They either often show the same specific situations, like women or men explaining
something in a vlog; or they contain multiple scenes, which are hard to summarize

251

Cheng Wang: Video Captioning with Deep Neural Networks

Table 1: Evaluation results for different reduction techniques and batch sizes over
training iterations

Reduction batch It. CIDEr ROUGE; METEOR Bleuy Bleus Bleu, Bley;

30k 0.285 0.538 0.237 0.288 0.402 0.538 0.706

5 60k 0.309 0.550 0.244 0.308 0.427 o0.570 0.738

Keyframe 9ok 0.300 0.545 0.239 0.299 0.417 0.560 0.732
10k 0.312 0.562 0.239 0.319 0.438 0.573 0.732

16 20k 0.319 0.556 0.244 0.318 0.439 0.582 0.745

30k 0.313 0.549 0.244 0.306 0.427 0.571 0.740

M 10k 0.302 0.558 0.240 0.313 0.435 0.576 0.737

ean

Pooling 16 20k 0.319 0.556 0.244 0.318 0.439 0.582 0.746
30k 0.317 0.552 0.244 0.307 0.431 0.578 0.746

in one caption. Imagine for the latter, a video about a dancing group of people, cut
together with interviews about the dance. The ground truth may be some people are
dancing or a group is dancing, but this only reflects a specific scene. During training,
the model’s knowledge about interview scenes becomes distorted.

Nonetheless, for the given data, we want to maximize the overall quality of the
model’s performance. According to we tried to focus on understanding the
influence of the batch size, the iterations and the reduction strategy (which is taking
key frames or to mean pool frame features). We need to keep in mind, that with
around 6000 * 65 % = 3900 training videos and 20 captions per video, we have 78000
training records, which leads to exhaustion of all training data once every \lii?gk?\
iterations. For batch size 5, that is 15600 and for batch size 16, that is 4875. After
90000 iterations for batch size 5 and 30000 iterations for batch size 16 accordingly,
we have learned every training data record about 6 times. The graphs in the Figures|2}
and [4/show a similar loss development. The variance for the lower batch size of 5
is higher as expected.

After having used the data about 4 times, overfitting seems to take more and more
effect. The difference of the train and test accuracy grows (see Figures and
on the right) and evaluation scores decreases (see[Table 1)). For our specific setting,
we assume a batch size of 16 trained with around 20000 iterations to yield good
results. However, we cannot confirm the significant improvement of using mean
pooling reduction that Jun Xu et al. [11] showed. We assume, that our frame rate for
the key frames is too high, so that pooling over multiple frames does not add more
information to the feature vector and only reduces noise and variance slightly.

In one experiment, we trained on key frames with 20000 iterations and a batch
size of 16. But instead of generating captions from key frame features, we generated
them from pooled frame features and evaluated the captions. The results are overall
higher scores for each metric, with CIDEr improving the most from originally 0.319
to 0.324.

252

5 Results

Train Test
accuracy during training

0.5

0.375

0.25

Accuracy

0.125

0 0 9000 18000 27000 36000 45000 54000 63000 72000 81000 90000
Iteration

Figure 2: Keyframes, batch size 5, gok iterations: change of training loss, learning rate
and accuracy during training. One iteration means one change of the weight based
on the averaged loss of the batch. n being the amount of training records, all records
have been used after ‘ba”Th‘ iterations during training. To enable comparison of
the different batch sizes, 90000 iterations are needed to equal the 16 batch size
trainings.

Train Test
accuracy during training

0.5
0.375

0.25

Accuracy

0.125

0

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000
Iteration

Figure 3: Keyframes, batch size 16, 30k iterations: change of training loss, learning
rate and accuracy during training.

253

Cheng Wang: Video Captioning with Deep Neural Networks

Train Test
accuracy during training

0.5

0.375

0.25

Accuracy

0.125

0
0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000
Iteration

Figure 4: Mean pooling, batch size 16, 30k iterations: change of training loss, learning
rate and accuracy during training.

[PVA NVT ss2016] group soccer

Figure 5: Successful examples of video captioning, left: “A group of kids playing
with a ball in a field.”, right: “A young man is riding a bike and talking”.

6 Conclusion and outlook

In this report, we proposed a framework for generating video descriptions for given
video input. By feeding the feature vectors that extracted from CNN model to LSTM
network, our model is able to capture the semantic correlation between video frames
and word sequence. Novel sentence descriptions can be generated with pre-trained
model. Regarding future work, in our work the dataset only contained short video
clips with one scene each. Longer videos more likely contain multiple scenes with
different topics. One future improvement would be to detect those topical boundaries
and process the resulting clip parts separately.

254

References

References

[1]

[2]

[6]

[7]

8]

[10]

[11]

X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollér, and C. L. Zitnick.
“Microsoft COCO captions: Data collection and evaluation server”. In: arXiv
preprint arXiv:1504.00325 (2015).

M. Denkowski and A. Lavie. “Meteor Universal: Language Specific Translation
Evaluation for Any Target Language”. In: Proceedings of the EACL 2014 Workshop
on Statistical Machine Translation. 2014.

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell. “Long-term Recurrent Convolutional Networks for
Visual Recognition and Description”. In: CVPR. 2015.

J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell. “Long-term recurrent convolutional networks for
visual recognition and description”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2015, pages 2625-2634.

Y.Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. “Caffe: Convolutional architecture for fast feature embedding”.
In: Proceedings of the 22nd ACM international conference on Multimedia. ACM.
2014, pages 675-678.

C.-Y. Lin. “Rouge: A package for automatic evaluation of summaries”. In:
Text summarization branches out: Proceedings of the ACL-o04 workshop. Volume 8.
Barcelona, Spain. 2004.

T. Mei and T. Yao. Microsoft Multimedia Challenge. [Online; accessed 5-August-
2016]. 2016. URL: http://ms-multimedia-challenge.com/| (last accessed 2016-10-01).

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “BLEU: a method for automatic
evaluation of machine translation”. In: Proceedings of the 4oth annual meeting
on association for computational linguistics. Association for Computational Lin-
guistics. 2002, pages 311-318.

R. Vedantam, C. Lawrence Zitnick, and D. Parikh. “Cider: Consensus-based
image description evaluation”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2015, pages 4566—4575.

S. Venugopalan, M. Rohrbach, J. Donahue, R.]J. Mooney, T. Darrell, and
K. Saenko. “Sequence to Sequence — Video to Text”. In: CoRR abs/1505.00487
(2015).

J. Xu, T. Mei, T. Yao, and Y. Rui. “MSR-VTT: A Large Video Description Dataset

for Bridging Video and Language”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2016.

255

http://ms-multimedia-challenge.com/

Band

110

109

108

107

106

105

104

103

102

101

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

ISBN

978-3-86956-387-9

978-3-86956-386-2

978-3-86956-377-0

978-3-86956-373-2

978-3-86956-372-5

978-3-86956-360-2

978-3-86956-355-8

978-3-86956-348-0

978-3-86956-347-3

978-3-86956-346-6

Titel

Transmorphic : mapping direct
manipulation to source code
transformations

Software-Fehlerinjektion

Improving Hosted Continuous
Integration Services

Extending a dynamic
programming language and
runtime environment with access
control

On the Operationalization of
Graph Queries with Generalized
Discrimination Networks

Proceedings of the Third HPI
Cloud Symposium
"Operating the Cloud" 2015

Tracing Algorithmic Primitives
in RSqueak/VM

Babelsberg/RML : executable
semantics and language testing
with RML

Proceedings of the Master
Seminar on Event Processing
Systems for Business Process
Management Systems

Exploratory Authoring of
Interactive Content in a Live
Environment

Autoren / Redaktion

Robin Schreiber, Robert
Krahn, Daniel H. H. Ingalls,
Robert Hirschfeld

Lena Feinbube, Daniel Richter,
Sebastian Gerstenberg, Patrick
Siegler, Angelo Haller,
Andreas Polze

Christopher Weyand, Jonas
Chromik, Lennard Wolf,
Steffen Kotte, Konstantin
Haase, Tim Felgentreff, Jens
Lincke, Robert Hirschfeld

Philipp Tessenow, Tim
Felgentreff, Gilad Bracha,
Robert Hirschfeld

Thomas Beyhl, Dominique
Blouin, Holger Giese, Leen
Lambers

Estee van der Walt, Jan
Lindemann, Max Plauth,
David Bartok (Hrsg.)

Lars Wassermann, Tim
Felgentreff, Tobias Pape, Carl
Friedrich Bolz, Robert
Hirschfeld

Tim Felgentreff, Robert
Hirschfeld, Todd Millstein,
Alan Borning

Anne Baumgraf3, Andreas
Meyer, Mathias Weske (Hrsg.)

Philipp Otto, Jaqueline Pollak,
Daniel Werner, Felix Wolff,
Bastian Steinert, Lauritz
Thamsen, Macel Taeumel, Jens
Lincke, Robert Krahn, Daniel
H. H. Ingalls, Robert
Hirschfeld

ISBN 978-3-86956-390-9
ISSN 1613-5652

	Title
	Imprint

	Contents
	Multi-objective Optimization for Biochip Design
	1 Overview
	1.1 Multi-Objective Design Automation

	2 Related Work
	2.1 Biochip System
	2.2 Optimizing the Physical Layout
	2.3 Compiling a Bio-protocol

	3 Proposed Algorithm
	3.1 Generating new layouts through mutation/crossover
	3.2 Checking Routability
	3.3 Evaluating the Execution Time
	3.4 Evaluating the cost of the solution
	3.5 Next Generations

	4 Performance
	5 Discussion and Future Work
	References

	One Working Day of the Berlin Police
	1 Introduction
	2 Motivation and Related Work
	3 Research Design
	3.1 Normalization – Location
	3.2 Normalization – Incident

	4 Analysis – #24hPolizei Marathon
	5 Conclusion and Future Work
	References

	Enhancing Decision Making for Business Processes
	1 Introduction
	2 Challenges for the Integration of Business Process and Decision Management
	3 Discovering Decision Models from Event Logs
	3.1 Discovering Decision Models from Event Logs
	3.2 Running Example
	3.3 Application of the Approach on an Example Log

	4 Work in Progress
	5 Publications 2016
	References

	Runtime data-driven software evolution in enterprise software ecosystems
	1 Introduction
	2 Runtime model for self-adaptive monitoring of enterprise software systems
	2.1 Creating a runtime model
	2.2 Maintaining a runtime model
	2.3 Runtime model and measurement result quality
	2.4 Augmented runtime models

	3 Enterprise Application Simulator
	3.1 Simulator foundation
	3.2 Simulator capabilities

	4 Brief summary and outlook
	References

	Power of Greediness on Real World network
	1 Overview
	2 Approach
	2.1 Minimum Dominating Set
	2.1.1 The Greedy Algorithm

	2.2 Hardness of Covering Problems on PLB-(U,L,N) Graphs

	3 Related Work
	4 Future Work
	References

	Towards the Interactive Rendering of Dynamic 3D Point Clouds
	1 Introduction
	2 Background
	2.1 Out-of-Core-Rendering
	2.2 Client-Server-based Rendering
	2.3 Point Cloud Compression

	3 Interactive Rendering of Dynamic 3D Point Clouds
	3.1 Update-optimized data structures
	3.2 Hybrid Rendering

	4 Conclusion and Outlook
	5 Acknowledgements
	References

	Coverage Considerations for Software Fault Injection
	1 Introduction
	1.1 Why Coverage Measures?

	2 Related Work
	2.1 Test Coverage
	2.2 Fault and Failure Space Coverage
	2.3 Research Gap

	3 Coverage Criteria for SFI: Theory
	4 Case Study: Highly Available OpenStack
	5 Discussion
	References

	Improving Self-Healing by Estimating the Impact of Adaptation Rules on the Utility at Runtime
	1 Overview
	2 Architectural Self-Adaptation and Runtime Models
	3 Pattern-Based Architectural Utility
	4 Utility-Driven Rule-Based Adaptation
	5 Experimental Evaluation
	6 Related Work
	7 Discussion
	References

	Programming Models for Consistent Memory Access in Shared Something Architectures
	1 Memory Access Overview
	2 Shared Something Architecture
	3 Programming Models for Distributed Shared Memory
	4 Experimental Evaluation
	5 InstantLab integration
	6 Future Work
	References

	Metamaterial Mechanisms
	1 Introduction and Background
	2 Metamaterial Mechanisms
	3 Contribution, Benefits, and Limitations
	4 Metamaterial Mechanism Editor
	4.1 Walkthrough
	4.2 Multiple Dimensions
	4.3 Integration with Other Metamaterial Systems

	5 System Implementation
	5.1 Import
	5.2 Editor
	5.3 Simulation
	5.4 Export

	6 Conclusions and Future Work
	6.1 Acknowledgements

	References

	Profiling the Web of Data
	1 Problem Statement
	2 Related Work
	3 Large Scale Data Profiling
	3.1 Multi-query optimization for Apache Pig
	3.2 Evaluation

	4 Uniqueness, Density, and Keyness of Data
	5 Graph Structures in Linked Datasets
	6 Reflections and Conclusion
	References

	Creating Structurally Sound Truss Structures on Desktop 3D Printers
	1 Introduction
	2 Related Work
	2.1 Large-scale personal fabrication
	2.2 Construction kits
	2.3 Designing with ready-made objects
	2.4 Tools for creating structurally sound objects

	3 Creating structurally sound structures using TrussFab
	3.1 Editing truss structures efficiently
	3.2 Verifying stability

	4 Implementation
	4.1 TrussFab editor
	4.2 Finite element analysis
	4.3 Rigidity check

	5 Conclusion
	References

	Theoretical Analyses of Evolutionary Algorithms with a Focus on Estimation of Distribution Algorithms
	1 Introduction
	2 Preliminaries
	3 Results
	4 Future Work
	References

	Understanding “Bad Code” Using Qualitative Methods
	1 Introduction
	2 Deliberate Individual Change
	3 Qualitative Methods in Software Engineering Research
	4 Bad Code
	5 Summary
	References

	Event Subscription
	1 Introduction
	2 Motivation
	2.1 Benefits of the Approach
	2.2 Lifecycle of Process Model and Instance
	2.3 Points of Subscription
	2.4 Application on Event Kinds

	References

	Relying on Development Data for Software Development Processes
	1 Overview
	2 Approach
	2.1 University Courses for Data Mining
	2.2 Data Collection
	2.3 Development Data Analysis

	3 Related Work
	4 Future Work
	5 Publications
	References

	Supporting Program Comprehension Through Semantic Code Models
	1 Introduction
	2 Code as Result of a Random Process
	2.1 Mining Concepts
	2.2 Abstraction-aware Concept Allocation
	2.3 Code Structure beyond Names
	2.4 Applications

	3 Related Work
	4 Future Work
	5 Conclusion
	References

	Large graph exploration
	1 Overview
	2 Discovering notable characteristics among nodes in knowledge graphs
	2.1 Approach
	2.2 Related Work
	3 Graph exploration (Tutorial)
	4 Related Work
	5 Collaborations within research groups
	6 Future Work
	References

	Optimizing Noisy Functions: Resampling vs. Recombination
	1 Overview
	2 Approach
	3 Related Work
	4 Future Work
	References

	Active Expressions as a Basic Building Block for Reactive Programming Concepts
	1 Reactivity in Software
	1.1 A Recurring Reactive Pattern
	1.2 Designing the State-based Reactive Primitive

	2 Implementation
	2.1 Ticking
	2.2 Interpretation
	2.3 Rewriting

	3 Future Work and Conclusion
	References

	Brain Image Analysis with convolutional Neural Network
	1 Introduction
	2 Approach
	2.1 Classification
	2.2 Detection
	2.3 Segmentation

	3 Data Description
	4 Future Work
	References

	Power-Law Distributions in Random Satisfiability
	1 Overview
	2 Preliminaries and Related Work
	2.1 Uniform Random SAT
	2.2 Relevant Non-Uniform Models

	3 Our Results
	3.1 Upper Bounds
	3.2 Lower Bounds
	3.3 Experiments

	4 Conclusion and Future Work
	References

	Matching Unstructured Product Offers to a Product Catalog (A Case Study)
	1 Product Matching
	2 Related Work
	3 Case Study (Product Matching in idealo)
	3.1 Baseline approach
	3.2 Hybrid approach

	4 Future Work
	References

	Video Captioning with Deep Neural Networks
	1 Introduction
	2 Methodology
	3 Training and Optimization
	4 Evaluation
	4.1 BLEU
	4.2 METEOR
	4.3 ROUGE
	4.4 CIDEr

	5 Results
	6 Conclusion and outlook
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

