Relentless Repairability or Reckless Reuse
Whether or Not to Rebuild a Concern with Your Familiar Tools and Materials

Marcel Taeumel
marcel.taeumel@hpi.uni-potsdam.de
Hasso Plattner Institute
Potsdam, Germany
University of Potsdam
Potsdam, Germany

Abstract

We must retain liveness and exploratory practices within the
programming systems that make us feel most productive.
However, the temptation to just reuse black boxes through
limited interfaces is pervasive. We expect time savings and
better performance at the cost of poor repairability. Fortu-
nately, we also know about the benefits of having an open
implementation constructed from familiar materials, inte-
grated with familiar tools. Consequently, it is primarily a
matter of “just building it” ... again? Piece of cake. What
could possibly go wrong?

CCS Concepts: » Software and its engineering — Soft-
ware testing and debugging; Object oriented languages;
Integrated and visual development environments; Runtime
environments.

Keywords: self-sustaining systems, exploratory program-
ming, liveness, reuse, open source, direct manipulation, sym-
bolic debugging, code simulation, flow, Smalltalk, Squeak

ACM Reference Format:

Marcel Taeumel and Robert Hirschfeld. 2022. Relentless Repairabil-
ity or Reckless Reuse: Whether or Not to Rebuild a Concern with
Your Familiar Tools and Materials. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! *22), Decem-
ber 8-10, 2022, Auckland, New Zealand. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3563835.3568733

1 The Dilemma

You are a programmer. Your program requires a certain fea-
ture. Now, you are torn between implementing something
from scratch or reusing an existing piece from somewhere.
The ecosystem around the programming language of your
choice might offer multiple alternatives, ready to be imported.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9909-8/22/12.
https://doi.org/10.1145/3563835.3568733

185

Robert Hirschfeld
robert.hirschfeld@uni-potsdam.de
Hasso Plattner Institute
Potsdam, Germany
University of Potsdam
Potsdam, Germany

If not, there is typically C below everything, and you can pick
a library from that space, integrate it with a tiny adapter.
Your operating system might already ship those libraries,
which saves you some deployment troubles. So, why bother
implementing something on your own? It takes time; you
will probably make mistakes along the way; you are not (yet)
an expert in that feature’s domain anyway.

What is it that your program requires? A new parser?
There are many document formats, mostly with human-
readable specifications. You might want to be able to parse
JSON or XML. Files or web requests might carry images (e.g.,
png, gif, svg), archives (e.g., tar, zip, rar), rich text (e.g., pdf,
docx, html), sound (e.g., mid, mp3, wav), or even unfamiliar
source code (e.g., JavaScript, Python, C/C++).

Or do you need to figure out a new cross-platform speci-
fication? Maybe your program should offer access to input
devices, displays, file systems, and networks on all major
platforms such as Microsoft Windows, Apple macOS, and
Ubuntu Linux. Surely, somebody has already done that.

Or do you want to address international users with your
program? Parsing font files might be manageable, but actual
text shaping and compositing is quite challenging with its
multitude of language- or country-specific rules. A glyph is
a glyph but not necessarily a valid letter or syllable.

Or do you need to establish a secure and reliable com-
munication space in a distributed network? Starting with
secure hash algorithms and UUID generation, you might
need several protocols and services across the ISO/OSI ses-
sion, presentation, and application layers (e.g., TLS, HTTP(S),
SSH, SMTP, WebDAV, XMPP).

Or does your program benefit from local, yet specific, hard-
ware? Accelerated graphics output might improve the user
experience in your game or data visualization. High-quality
sound processing might be part of the must-haves to satisfy
your target audience. Computation-intensive tasks might
benefit from using all the cores you have in your processor.

Or do you bother with storage and persistence? There are
all kinds of databases for version control, data logging, or
application-state checkpointing. Multi-user access is typi-
cally provided through a centralized client-server architec-
ture. There are index, relational, object, or graph databases.
You might want to implement your own client or also (ex-
tend) the server side.

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7559-6035
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3563835.3568733
https://doi.org/10.1145/3563835.3568733

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Or do you need any other sophisticated algorithm and
control/data flow? On the one hand, there are engines and
frameworks that can support any “business” logic for your
application. On the other hand, many best practices and
architectural patterns have also been documented, waiting
for you to be followed in your own implementation.

Ll

We believe that it is desirable to adhere to the values and
practices that define a certain community and its ecosystem.
This desire entails a carefulness that programmers should be
aware of and enact when working with software artifacts.
Reusing existing artifacts from other programmers, teams,
or communities might break established practices or values.
Incompatibility might arise at a technical and social level. For
example, crossing the system boundary compromises tool
integration due to hidden structure or unexpected semantics.
Any extra black box with its limited interface' might impede
exploration? and debugging, making it unnecessarily compli-
cated to fix issues that might arise in an unforeseeable future.
Discussions with that other community might be challeng-
ing if no common ground can be established. Incommen-
surability is real [7]. Thus, we might want to reimplement
software artifacts not because we think that we are smarter
than somebody else. Instead, we might want to avoid reuse
in favor of repairability. We believe that familiar tools and
materials can help: known programming languages, known
paradigms, known vocabulary, known patterns, known ex-
ploratory practices. Any step out of this trusted realm might
lead to conflict. Can we avoid that conflict?

We do not know how, we wish we did. In this essay, we
try to summarize the dilemma programmers face every time
they add new features to their programs. Similar to a pat-
tern form [12], we know about the problem context and the
problem forces. However, we are not able to resolve these
forces into an actionable solution. Thus, programmers keep
on gambling with the risk of choosing the wrong path time
and again. The forces that represent a programmer’s fears of
reimplementation for repairability are as follows:

4 Your efforts to rebuild a thing will not be acknowl-
edged if it is already available as an external module.

4 You are not an expert and cannot (yet) fully understand
the given specification.

4 You will make mistakes and not cover all the corner
cases in your reimplementation. Will 80 percent be
enough?

The forces that represent a programmer’s fears of reuse
from foreign communities are as follows:

Providers can mitigate this issue with an open implementation [15], where
multiple kinds of interfaces can serve different kinds of users.

2While programmers use tools to explore source code manually, there are
automated analysis tools that require full access to code for meaningful
results.

186

Marcel Taeumel and Robert Hirschfeld

4 You must decide soon: talented people will not join
your community if crucial components are not yet
available.

4 That “tiny” adapter to the external module turns out
to be a lot of work.

4 That external module has many dependencies that will
also be part of your program’s dependencies.

The forces that represent a programmer’s hopes for re-
pairability when reimplementing are as follows:

¥ You will follow familiar practices when rebuilding
something. Unforeseen issues can be explored and
debugged with familiar tools.

¥ You can omit unnecessary features from a specification
when being in control of the implementation. It will
be more concise and maintainable.

¥ There are already many useful things in your system,
which can be used when implementing a new feature.
You do not start “from scratch”

The forces that represent a programmer’s hopes for short-
term gain when reusing are as follows:

¥ That external module is almost ready to be used in
your program. It is basically “for free.”

¥ That external module is polished and optimized for
performance. You probably cannot do better.

¥ Your program does not have that many dependencies
yet. One more cannot hurt.

Our main goal is to preserve the values and practices of
the programming community and system of our choice. We
value openness [34], liveness [27], directness [11], malleabil-
ity [18], and feedback [26] in our system. We value communi-
cation [2], respect [2], curiosity [8], and forgiveness® in our
community. We practice exploratory programming; where
specifications unfold gradually through experimentation,
where failure is not punished but encouraged for the sake
of learning, where programs and systems keep running for
ages. We typically work with Smalltalk systems [10] such as
Squeak [14, 18, 34]° In this essay, we use the term repairabil-
ity to cover all our values and practices, which arguably
transcend into other communities and systems. We favor
repairability, and thus occasional reimplementation efforts,
over unreflected reuse. We invite readers to reflect on what
“repairability” means in their preferred working environment.

Ll

3The Extreme Programming method mentions courage [2] as a core value,
which we complement with curiosity and forgiveness to not only encourage
experimentation, but also deal with failure in an expedient way.

4We consider exploration a skill that is shaped by the explorer’s mindset and
available tools. That is, specific programming tools may or may not support
certain exploratory practices [36]. The benefits of exploratory programming
were first experienced by practitioners working with the original Smalltalk
systems [29, 38].

>The Squeak/Smalltalk programming system, https://squeak.org/

https://squeak.org/

Relentless Repairability or Reckless Reuse

This essay is a collection of anecdotal perspectives. From
hereon, we untwist our main thread about repairability and
reuse into six “fibers,” each being a text related to this theme.
We begin each text with a personal statement that reflects
our mood and sets the scene. You can read the stories in any
order. A brief summary for each one goes as follows:

Section 2 A short dialog between two programmers who
share a desire for liveness and exploration but make
quite different trade-offs.

Section 3 A brief introduction into the authors’ favorite
tools and materials, filled with personal experiences
and unsolved challenges.

Section 4 A quick reflection on whether the object-oriented
paradigm is actually a good fit for any kind of problem.

Section 5 A faint distress signal that calls out for more
skilled programmers who want to live our values and
follow our practices.

Section 6 A small report on the first author’s experiences
about making Squeak releases and the issue of tagging
along a visible community.

Section 7 A fair assessment of how to improve Squeak’s
liveness to yield predictable feedback loops for arbi-
trary application domains.

We revisit this essay’s dilemma in Section 8 and raise even
more questions for an unknown future.

2 Two Cultures, One Liveness

Let us not dwell in the past. There are new tech-
nologies and supportive companies. The Web is
the future. Everybody is there. Impact first!

Two programmers, Harmony and Sage, are experts and long-
time enthusiasts in the field of exploratory programming.
Both care for a different, yet similar, self-sustaining system,
full of liveness and immediate feedback. It is lunch break, and
they have a discussion about today’s accomplishments. Har-
mony is happy and somewhat proud of what she achieved.
Sage is rather skeptical after listening to her remarks. She
cannot quite understand and hence share the satisfaction:

S : Hi, there. Anything new in Squeak this morning?

H : Hello! Yes! I finished the refactoring and partial rewrite
of the font-file parser.

S : Font rendering? Huh. I thought that there was already
this plugin...

H : Yeah, we have quite a few implementations at this
point. I worked on the one in the base system. It did
not age well over the years.

S : Why didn’t you just delete that code and use that
existing plugin?

H : We don’t want to ship more dependencies with the
virtual machine. And now that we have a simple im-
plementation in Smalltalk, users can actually explore
and learn about the font format. And extend it.

187

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

S : Hmm... and you can render all Unicode codepoints and
international texts?

H : Not quite. I still have to work on the font stack and
fallbacks. Also, text composition is still limited to West-
ern fonts. Well, there is at least by-character line-break
support for Japanese text. So...

S : ...still a long way to go, huh? In Lively, we have all
these things working out of the box. Google takes care
of it. A lot of people are working on that.

: But you cannot look into the implementation, right?

: We don’t need to. It just works. And it’s free.

: What if a user does not have the Chrome browser
installed?

: Well, they can use other Web browsers. International
text rendering should work there as well. And our sys-
tem should perform good enough in other browsers...

H : You only optimize for Chrome? A platform that you
cannot control?

S : The community around web development is huge. I
wouldn’t bother.

H : And Lively itself? What if you use a not yet standard-
ized feature that Google’s Chrome interprets differ-
ently than, say, Apple’s Safari?

S : Yeah, we had that in the past. The community around
Lively is not super-big. And you can install Chrome
on macOS as well. Nothing to worry about.

s=i 7 Wasi

7]

Harmony takes a sip of soda and changes the subject:

H : Ha. Okay. Well, besides fonts, I also discovered a rather
interesting overhead in the code that handles mouse
clicks in push buttons...

S : You have to write that kind of low-level code? Is there
even time to program actually useful stuff?

H : The base system is useful. People use it to develop all
kinds of applications. Take our students, for example.
They really appreciate a responsive system.

S : Ah, I forgot that Squeak’s Morphic is at the breaking
point of responsiveness... do you even get 60 frames
per second?

H : Sure. If you follow some simple practices, you can get
sufficient rendering performance out of the system.

S : It’s still based on BitBLT from the 70’s, right? Hmm...
what about those high-resolution displays? 4K? Are
there still no accelerated graphics? Still CPU-bound?

H : Yes, that’s okay. Most of the applications’ graphics in
Squeak have mostly stable contents between frames.

S : Maybe because one cannot easily implement some-
thing more dynamic like a full-frame, animated 3D
application?

H : Oh, you can. You can write your own VM plugins to get
more performance, bypassing objects and messaging.
People have done that.

S : And what about the tangibility and directness that
Morphic provides? Could you still click on those 3D

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

elements and explore them if your custom VM plugin
does accelerated magic?

H : Hmm... one would have to consider that, too, I sup-
pose...
S : In Chrome, graphics are fast and I can still inspect all

the nodes of the document object model. It actually
feels like Squeak’s Morphic.

Harmony tries to think of a feature in Squeak that is com-
parably powerful but not available in Sage’s Lively system:

H : But you cannot interrupt and debug a long-running
script. The Smalltalk debugger is awesome! And users
can hit CMD+Dot, any time the system gets stuck.

S : Well, no, we cannot do that. I miss that sometimes.

H : Have you tried writing a browser plugin to extend
debugging support somehow?

S : Not sure whether Google even wants you to have this
kind of control over that very fast JavaScript VM...

H : It seems like Squeak and Lively make quite different
trade-offs.

S : Yes, it seems so.

LIl

Numerous concepts we appreciate in today’s interactive
environments have their roots in the 60’s and 70’s with Lisp
machines and Smalltalk programming systems [30]. Being
more than just languages, these systems experimented with
- and successfully demonstrated — a refreshing programming
experience: simplicity, purity,6 reflection, meta-circularity,
code simulation, overlapping windows, menus, icons, and
many more. Also, non-programming end-users benefit from
some ideas to this day. In the 80’s and 90’s, the concept of
direct manipulation [11] emerged through projects such as
the Alternate Reality Kit [31] and GUI frameworks such as
Morphic [18, 19, 34]. Over the years, many of these concepts
got replicated and adapted in all kinds of systems and appli-
cations. Unfortunately, originally pure ideas faded alongside
modern experiments, trends, and even fears ... safety first?
Compromise is ubiquitous, maybe even infectious. That is,
for example, one can find dynamic languages and interac-
tive windows in modern environments, but the purity and
openness of Smalltalk systems remains unmatched.

Harmony works with Squeak/Smalltalk, which runs on
the OpenSmalltalk VM She enjoys the pure object-oriented
paradigm where source code describes object structure and
messaging between objects to yield the desired behavior.
Thanks to the creators of Squeak, even the virtual machine
can be extended with a comparably efficient programming
experience [14, 20]. All the original concepts are there. Har-
mony can build new things, maybe even push the originals
to the next level. Baby steps toward innovation? Maybe. Un-
fortunately, the (rather small) Squeak community relies on
mostly unpaid, voluntary efforts. While there is compromise

SEvery “thing” in the system is an object, even numbers or classes.
"The OpenSmalltalk VM, https://opensmalltalk.org/

188

Marcel Taeumel and Robert Hirschfeld

at times, it is not so much for the sake of growing or staying
competitive. Yet, little competition means only little alter-
natives to choose from and reuse in your project, at least
compared to modern web-development platforms. Plus, dif-
ferent Smalltalk dialects and versions can make reuse even
more challenging due to compatibility issues. A custom im-
plementation (or fork) might be inevitable.

Sage works with Lively [13, 17], a Smalltalk-inspired pro-
gramming system for the Web that uses modern web tech-
nologies such as HTML, CSS, and JavaScript. Just visit a
web page® and get started. Thus, Sage enjoys the benefits
of a company-backed, fast JavaScript VM and the fact that
many computers have such web browsers these days. This
means that Lively can rely on a virtually unlimited commu-
nity of web developers, directly or indirectly contributing to
this programming system through shared JavaScript mod-
ules. Unfortunately, Lively programmers live at the mercy of
big companies, who increasingly see more value in security
and liability than in openness. As an effect, the leverage for
systems like Lively might fade away eventually. A generic
eval () might be prohibited, only typed scripting languages
allowed, maybe ending up in a Harvard architecture, where
programs and data are separate after all. Sage’s desire for
reflection and malleability might not be possible to achieve
anymore. The history knows the (remotely related) cases of
ActiveX and Flash: huge potential, moderate acceptance, not
future-proof.

All in all, Harmony values repairability and thus avoids
reusing external artifacts if possible, having to (re-)implement
features herself. She is virtually in control of the entire run-
time that drives the Smalltalk system. Sage enjoys reusing
foreign JavaScript modules, provided by the huge commu-
nity of web developers. She is, unfortunately, dependent on
the design decisions made by the companies in charge of
the runtime (i.e., web browser), which might interfere with
her values and practices. In both cases, it is challenging to
balance the pros and cons of repairability versus reuse.

3 Our Tools and Materials

Squeak is not that system where you just put in
content as objects to then never find them again.
Its inward openness and outward integrated-ness
is unprecedented.

We borrowed the term “tools and materials” from the epony-
mous metaphor [4, 28], which sketches a workshop-like
setting to make all kinds of programming tasks tangible.
That is, software artifacts can be both tools and materials,
depending on the perspective and task. We like this abstrac-
tion away from objects while still capturing a notion of self-
sustaining malleability. This essay’s scope is not limited to
object-oriented programming; it rather focuses on liveness

8The Lively web programming system, https://lively-kernel.org/

https://opensmalltalk.org/
https://lively-kernel.org/

Relentless Repairability or Reckless Reuse

and exploration as core values? Yet, we are aware that our
expertise in Squeak/Smalltalk frames this discussion and
guides it toward objects and messaging.

Squeak, together with the OpenSmalltalk VM, is a typical
Smalltalk implementation, where the object memory'’ can be
saved to disk at any time, the current control flow be resumed
later. While you can use these checkpoints (or images) to
undo mistakes, they make the entire system feel like running
forever. This compares to operating systems, their file system,
and the suspend-to-disk feature. Programs within the Squeak
system are made of objects, which can of course come and
go as you design via messaging, which thus mimics the exit
or restart of “conventional” applications.

We believe that having everything built from the same
material is beneficial for program comprehension and tool in-
tegration. In a basic Squeak image, there are objects for input,
graphics, or sound [34]. The Morphic framework provides a
UI process, which sets up and keeps certain objects in action
so that users can experience an interactive system. Building
new features means designing new (kinds of) objects and
messages, directly integrated with the existing ones. This
same material — the objects — can then be explored in the
shared object space (or memory) to be understood and re-
fined. While there are means to reach outside this space, such
as into files on disk, tool support is rather limited because
the system cannot be in control of everything that happens
there. Compromise is inevitable.

We leverage repairability by following exploratory prac-
tices [36]. In particular, we explore by having “conversations”
with the system through one or more tools, each providing a
useful (informational) context [35]. Squeak’s toolset shines
with at least three beautiful aspects: (1) code evaluation,
(2) code simulation, (3) graphics inspection. First, program-
mers can evaluate Smalltalk expressions in any tool’s text
buffer; the tool’s context will provide (variable) bindings as
local context. Second, programmers can suspend any pro-
cess to simulate its execution (or message sends) stepwise;
the Smalltalk debugger works that way. Third, programmers
can meta-click on graphical elements to reveal a (Morphic)
halo to then open inspectors on their object structure to
finally reach the code responsible for their actions. In sum,
we can observe objects with or without inherent graphical
representations, spot frictions in their state or behavior, and
repair those efficiently. We are not afraid of debuggers; we
appreciate them. We are happy to see the first 80 percent
working with little effort; we take care of the rest along the

9We invite readers who are also programmers to take a closer look at their
favorite programming language, environment, or system. What are the
means that make you feel most productive? Chances are that those tools
origin from Smalltalk systems. Also, probably, some valuable exploratory
practices [35, 36] got “lost in translation” and should be recovered.

10 Actually, Squeak is the object memory, yet there are several Squeak-
specific implementation details built into the virtual machine such as where
to find fundamental classes/objects in the image file.

189

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

System Boundarny ——_

Adapter
___________ . / * wot yet available

Your |
|

External

* available as black box
Coimimon Language
Shared Objects & Data
Integrated Tools
Explorable Abstractions

Platform

Functions J

* available as black box

Figure 1. Programmers can choose between writing a new
internal or reusing an existing external module. Both op-
tions entail different trade-offs. Reaching outside the system
boundary might violate core values and impede exploratory
practices. A reimplementation might not be feasible for small
communities.

way. Thus, it is often a viable strategy to reimplement a
concern to assure repairability.

Squeak programmers are not trapped inside the system
as illustrated in Figure 1. Maybe not even being aware of
it, they reach out constantly when working with ordinary
things such as numbers and files. The VM offers three mech-
anisms for reusing components from the host platform [23]:
(1) primitive calls, (2) plugin calls, (3) FFI calls. First, there
are (numbered or named) primitives, which primarily bypass
the object world to do fast operations such as arithmetics,
array manipulation, and closure handling. Besides perfor-
mance, there are also primitives that write object memory
to disk, access the clipboard, or set the host-window extent.
This kind of reuse requires programmers to modify the VM
and deploy a custom version. Second, there are modular
VM plugins, which can be deployed separately and loaded
on-the-fly while the VM is running. For example, file and
socket access is realized through plugins. Via network access,
programmers can send web requests and reuse components
from the Internet. Third, there is FFI, which is itself a plugin,
but generalizes calls out of the Squeak system to arbitrary
C libraries. Given that a C library is already part of the host
platform, programmers can now focus on writing and ship-
ping pure Smalltalk code. However, there are fewer “safety
nets,” which limits the usual Smalltalk debugging experience.
For example, memory access violations can crash the entire
VM and thus lead to data loss.

4 One Paradigm Fits All?

Objects themselves should not be the reason for
or against reuse. Identity, state, and behavior are
capable of capturing other paradigms as well.

Smalltalk is a multi-paradigm language, best suited for prob-
lems that can be expressed through objects and messaging.
Still, the Collections interface [5] promotes a functional pro-
gramming style; class-side methods can represent procedures.
Yet, a good object-oriented design considers identity, state,
and behavior 3, pp. 75-87]. An object-based library might
be especially challenging to reuse if it has a different notion

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

of identity. For example, “ids” or “names” can be manifold
when integrating external databases, apparently providing
“objects” without behavior, which is added only by your appli-
cation. For another example, while Squeak’s object memory
is persistent, the VM itself entails volatile state from the
host’s perspective. That is, any file handles stored as objects
will be invalid, the next time the VM starts. At the end of the
day, replication or combination of multiple paradigms can
increase the complexity of your implementation, regardless
of whether you plan for repairability or reuse.

The expression problem [16] contributes to the challenges
of reuse, even within the same system. Provided that your
program consists of data types and operations, you can
choose whether you want to allow for new data types or new
operations without touching the existing implementation.
You often cannot have both. For example, in a functional de-
sign, you can easily add operations, but you have to update
existing code for new data types. It is the other way around
in an object-based design, where you can often easily refine
objects through (class-based) inheritance, but you have to
touch all classes for new operations. The Visitor pattern [9,
pp- 331-349] flips this trade-off again, yet does not resolve it.
The expression problem often entails a notion of compilation
boundary, where a compiled module cannot be changed at
all and thus extensibility must be provided in a different way.
While Squeak comes with all the source code, you might not
want to change the base system to avoid compatibility issues
with projects that live nearby.

We see data-driven programming as a valuable paradigm
(or style or pattern) for interactive, object-oriented systems.
Programmers might want to apply an operation to a collec-
tion of objects to process a plenitude of related data points.
On the one hand, some form of automation can help mit-
igate issues of direct manipulation [11], like verb-noun in-
teraction [24, pp. 59-62] on multiple “nouns.” On the other
hand, external resources drive many applications these days:
streams of data from (hardware) sensors, iterators (or cur-
sors) over the results of database queries, anything time-
related that users want to explore and understand. Dataflow
is prevalent in systems that operate on data points about
“time and space” Datalogy [22, pp. 175-325] (or data sci-
ence) is a field that has been complementing computation
(or algorithm science) for a very long time. We associate
the latter with an object’s behavior, the former with its state.
Both require sufficient support in programming systems. If
you want to implement a new feature that benefits from a
data-driven perspective, efforts might increase unless such a
framework is already available. The UNIX pipes-and-filters
pattern [25, pp. 266—280] is a famous example of script-based,
data-driven, modular programming. Does your favorite sys-
tem have such a framework, maybe even integrated with
other programming styles?

190

Marcel Taeumel and Robert Hirschfeld

5 Wanted: Expert Knowledge

There is good Smalltalk code. There is bad Smalltalk
code. Programmers better become domain experts
and master explorers.

Programmers might want to reuse a component because
they are no domain experts, they might even lack basic do-
main knowledge. The correctness of an implementation is a
quality that determines its acceptance. Does it minutely fol-
low the (publicly available) specification? While knowledge
can be acquired during iterative development, it takes time
to become an expert, efforts that might better be spent in
designing and polishing the solution. What should be an ob-
ject? How to design the messages? A rule of thumb suggests:
“Don’t roll your own security” While specifications are open
and detailed, inaccurate implementations can have severe
consequences. Squeak follows this advice, for example, by
interfacing the host’s security components through a VM
plugin. Eventually, there can be implicit knowledge [21] in
a specification, hidden “between the lines.” A fair level of
robustness accounts for unexpected input to gracefully con-
tinue operation. To look beyond and infer from the known
facts, it requires expert knowledge.

Performance can be a critical factor and promotes either
reuse or reimplementation. Think of a parser for regular ex-
pressions, support for code completion, or on-the-fly syntax
highlighting. The material on which programs want to apply
these tools is already in the system: strings, texts, AST nodes.
Using external modules for these tasks might seem awkward,
especially if interface adapters entail a noticeable overhead
due to data copying. However, it takes time to tune parsers to
satisfy certain performance requirements. For example, the
regex engine should process gigabytes of data in under a sec-
ond, the completion module should make suggestions based
on thousands of nodes, or highlighting should be applied
while typing within a few milliseconds. Yearlong experience
and expert knowledge might be required to reach these goals.
Reuse might better be tried and evaluated first before start-
ing the adventure of reimplementation. But how to consider
unquantifiable values such as feedback in a discussion about
performance?

Exploratory programming encourages experimentation
and embraces failure for the sake of learning. However, at
some point, programs get released and actually used. People
then start to depend on their functionality. Any uncaught
mistake or freshly introduced error can have consequences.
Was the change already deployed? How many users are af-
fected? Is data loss involved? While security might be among
the features of highest priority, any issue around correctness,
performance, and overall stability can have a negative impact
on the reputation of a community. Consequently, program-
mers might be tempted to reuse a component from another
community not only to save time but also for plausible de-
niability. Still, users are not always that open-minded or

Relentless Repairability or Reckless Reuse

understandable. They might still blame the program they
are using and thus the wrong community. If programmers
have control over all the involved sources, they can at least
quickly react and mitigate damage. External components
might take longer to fix.

Expert knowledge might not be available if there is no
clear specification in the first place. When you cannot know
which experts to look for, you might as well become one
yourself. Maybe there is a specification but it is incomplete
and prone to change. Programming then entails not only
iterating over the solution space but also the problem space.
What is the domain? What terms and definitions belong
to the domain vocabulary? Are objects a good fit? While
these concerns benefit from onward communication with
domain experts, they do require programmers to acquire
expert knowledge as well. For example, we can observe this
challenge with Squeak. Do we just want to preserve original
ideas or do we want to innovate somehow? Can we discover
new opportunities? Reinterpret familiar problems in modern
contexts? Are there even better role models'! worth imitat-
ing? What are the risks of growing a (modern) community
at all cost? We are aware that not all Smalltalk programmers
share the same skill set. There is good Smalltalk code, and
there is bad Smalltalk code. It is not difficult to write code
for the compiler; it is difficult to keep it readable and com-
patible with certain values. Exploratory practices [35, 36]
can be quite challenging to teach to both fresh and longtime
Smalltalkers.

6 Make a Release, Release the Flow of
Exploratory Programming

If we could only keep on doing what we like to
do. Explore, understand, create, refine. Embrace
failure. No, we do not want to package a bug-free
experience. There is no such thing.

It feels like hitting the brakes. When the community
works toward a new release of the Squeak system, the flow [6]
of experimentation comes to a halt. We know that applica-
tion developers need some kind of “anchor” to have some
guarantees about interface stability. Programming against
the “bleeding edge” version of a library can be quite stressful.
However, our values and practices feel somewhat incompat-
ible with the idea of “making a release”” If someone missed
crucial things from “that other 20 percent,” who will have
the capacity to patch the released version? Many users seem
to start stress-testing only after the release, when they have
something tangible to work with. In smaller communities,
such a split of resources might not be sustainable. Still, the
Squeak community manages to push out a release every

11We think that many of today’s, often file-based, programming environ-
ments do not serve as good examples for innovation, not even their cloud-
based variants.

191

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

one or two years. While there is the desire to do it more
frequently, one must not neglect the overhead that comes
along: writing release notes, motivating programmers to up-
date their projects, finally starting to fix those nasty bugs
that no one else wanted to deal with because they are not
that serious... Yet, with every new “anchor,” a community’s
reputation is put on trial.

It is the peak of bug-fixing efforts. Our assumption is
that implementing the first 80 percent of a feature makes
sense because exploratory practices help programmers cover
the rest when needed. Squeak is an open system and every-
body can participate with their skills and expertise. How-
ever, a new version of a system makes certain tacit promises,
promises about that other 20 percent. Users might expect
corner cases to work, the entire artifact to be polished. Un-
fortunately, there is no “dial” to crank up the testing or fixing
efforts on short notice. Freezing the main branch to prohibit
new features helps on a technical but not on a social level. If
your mindset is tuned to exploration, you might as well just
bear the release process and wait for the permission to add
new things again. Experiments can always be done in your
private workshop. You may actually never stop your flow of
exploration.

It has structure but remains risky. The Squeak release
process is simple: feature freeze for 4-8 weeks (aka. beta
versions), code freeze for another 2-4 weeks (aka. release-
candidate versions), and then back to trunk development
(aka. alpha versions). Estimated times might double or triple
depending on the issues discovered. There are over 5000
automated tests in Squeak 6.0, but this does not imply a
“comprehensive” test suite. The community is expected to
do extensive manual testing with their favorite projects. For
three times, this essay’s first author was a so-called release
manager, which is a person who not only oversees the pro-
cess but also invests a lot of time in bug-fixing and polishing.
In Squeak 5.1, user-interface themes and “dark modes” got
added, which entailed tedious discussions about colors. In
Squeak 5.3, the remnants of Etoys [1] were cleaned out and re-
vived, which only addresses an even smaller sub-community
within the Squeak community!? In Squeak 6.0, support for
high-resolution displays was improved, which entailed cru-
cial updates in the VM!® Besides such “eye candy,” many
things got improved in the standard library, programming
tools, and virtual machine. The version number itself is also a
compromise: “6.0” could as well have been “5.4,” but increas-
ing the major version sends a stronger signal to encourage
Squeakers to finally port their projects from some ancient
version or private image.

12Some time ago, Etoys was the number-one reason, people (including
programmers) might have heard about Squeak/Smalltalk in the first place.
13The release process of the OpenSmalltalk VM is separate. We bundle
the best possible VM version with each Squeak release. However, it is
worthwhile to also try recent VMs with older images.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

It might leave people behind. How big is the Squeak
community actually? There are several active groups around
the globe, yet, personal usage makes it hard to pin down
an exact number of Squeakers. Smalltalk’s image concept
spawns many different scenarios. Users are in full control of
a multimedia world filled with tools, games, simulations, and
other kinds of applications. Thus, there is no need to main-
tain your program against official releases to be part of the
Squeak family. Liveness, directness, malleability: users can
live these values without having the most recent “features.”
By living in their custom image, they might even create a
private (or fan) community without noticing it. Looking back
on the last 10 years of Squeak releases, it was mostly'* clean-
up and polishing. Still, we think that this progress has helped
the entire community to appreciate openness and liveness
even more. Having modern features that “catch up” with
popular software systems, the original notion of Smalltalk
exploratory programming is now available to a new genera-
tion of programmers.

7 The Limits of Liveness

When programmers understand a system’s limi-
tations, they can get immediate feedback through
domain-specific constraints.

The liveness we value in Squeak entails several trade-offs
during exploration. It is far from ideal: level-4 liveness [37]
means that when programmers make a change, the system
will exhibit an observable effect only after some time. The
duration of this emergence phase depends on the particular
application [26]; it may take forever. That is, programmers
can change object behavior through code modification and
object state through (manual) code evaluation. Whether or
not that object participates in an activity that actually needs
that state or behavior, they might not know in advance. Still,
there are idioms that help grasp the scope of a change such
as initialize methods, update methods, and Morphic’s
step methods. Programmers can then check whether their
change is something invoked from those familiar places. This
gulf of evaluation [11] can be a serious hurdle in interactive
systems, interfering with direct manipulation and thus the
feedback loop during exploration.

Experienced Smalltalkers know where to look for and
find short feedback loops, independent from the kind of pro-
gram. The code browser and idioms mentioned above are
complemented with three powerful tools: (1) Workspace, (2)
Inspector, and (3) Debugger. First, workspace-like interfaces
are part of almost all other tools. The Workspace itself has
the simplest form: a single text field where programmers

4The OpenSmalltalk VM made a lot of progress in terms of (JIT) perfor-
mance and processor compatibility. Our argument focuses on the tools
and practices that programmers experience through Squeak’s graphical
interface.

192

Marcel Taeumel and Robert Hirschfeld

can type Smalltalk expressions, evaluate arbitrary text selec-
tions, and manage state through (variable) bindings. They
are in full control of the length of the feedback loop. Second,
the Inspector reveals an object’s state while also embedding
a mini workspace to allow for state changes via Smalltalk
expressions. The inspector’s Ul is refreshed frequently, ex-
posing each instance variable’s string representation. Third,
the Debugger represents a suspended process, ready for code
modification, state inspection, and workspace-like evalua-
tion. Thus, debuggers practically combine all other Smalltalk
tools. Programmers can change an active method from the
process stack; control flow can be resumed from that point.
This can lead to immediate feedback and a sense of liveness,
even though programmers are working with an immutable
past and an overall uncertain emergence phase.
Domain-specific application (or tool-building) frameworks
can tame Squeak’s unreliable emergence phase. Such frame-
works prescribe a specific “choreography of objects,” which
then allows for direct tracing of code or state changes to ob-
servable effects. That is, a simple Observer [9, pp. 293-303]
can leverage Squeak’s meta-programming facilities to notify
frameworks about such changes. We followed this approach
and designed a tool-building environment, called VIvIDE [33]:

We propose a new perspective on graphical tools
and provide a concept to build and modify such
tools with a focus on high quality, low effort, and
continuous adaptability. That is, (1) we propose an
object-oriented, data-driven, declarative scripting
language that reduces the amount of and governs
the effects of glue code for view-model specifica-
tions, and (2) we propose a scalable Ul-design lan-
guage that promotes short feedback loops in an in-
teractive, graphical environment such as Morphic
known from Self or Squeak/Smalltalk systems.

Our goal was to hide as much glue code as possible when con-
necting data sources to graphical views. Several observers in
the environment are constantly monitoring a certain collec-
tion of objects to then precisely reinitialize the affected view
models or graphics. Overall, this mechanism is a fine-grained
version of automating a program’s exit-and-restart or an ob-
ject’s destroy-and-recreate. We argue that having VIVIDE
available will reduce the efforts required for reimplementing
your favorite visualization or database adapter.

8 The Dilemma Revisited

So ... should we reuse that existing module, written in a dif-
ferent language by a different community following different
values? We would really like to have an implementation of
that feature in our system, written in Smalltalk by our com-
munity following our values... Can this desire form a vision
that encourages an entire community to seek for innovation
in the field of liveness and exploration? Or might it be one of

Relentless Repairability or Reckless Reuse

the reasons that such noble values get scattered and dimin-
ished to eventually be forgotten in history? We think that
it comes down to two things: time and people. First, time is
essential to fully understand certain practices and live the
values. There will be too much compromise when things get
rushed. Second, a single person might have an expedient
idea, but often cannot succeed without the help of a group -
a team or community — that shares a vision, lives the same
values, and knows the best practices.

In this essay, we collected anecdotal perspectives that do
not resolve the dilemma but emphasize its intricacy. We
touched on conceptual, technical, and social issues. We are
certain that liveness and exploratory practices are the way
to go forward to tackle unknown challenges without leaving
people and their values behind. However, when actually
exploring the solution space and having to make decisions,
programmers might be tempted to follow the “wrong” path,
time and again. Time is always short; people may not be
skilled enough. How to stay motivated to keep trying?

We surely missed many perspectives in this discussion.
Being longtime Smalltalkers, we selected stories about “Re-
pairability or reuse?” based on our daily practices. While
there are other core values thinkable, we do favor the ap-
proaches of the two systems Squeak and Lively. Even there,
compromise seems inevitable. Having impact might be the
one value that overshadows others. Is it worthwhile what I
am programming? Do people appreciate my efforts?

Finally, there are many open-source communities that
have to cope with this dilemma. The Debian GNU/Linux dis-
tribution, for example, manages to ensure backwards compat-
ibility through its package tracking system [32], a structured
approach for reuse. There are more such Linux-centered com-
munities way bigger than Lively or Squeak. And it seems
to work out for them ... or does it? Who keeps track of the
integrity of a community’s core values? The answer to that
question may be explored in another essay.

Acknowledgements

We are grateful to our colleagues Jens Lincke, Patrick Rein,
and Tom Beckmann for pivotal discussions and valuable
feedback on earlier versions of this essay. Their expertise
in Smalltalk, JavaScript, exploratory programming, and web
development revealed crucial perspectives. We thankfully ac-
knowledge the financial support of the HPI Research School
on Service-oriented Systems Engineering (www.hpi.de/en/
research/research-schools) and the Hasso Plattner Design
Thinking Research Program (www.hpi.de/en/dtrp).

References

[1] BJ Allen-Conn and Kimberly Rose. 2003. Powerful Ideas in the Class-
room. Viewpoints Research Institute, Inc.

[2] Kent Beck and Cynthia Andres. 2004. Extreme Programming Explained:
Embrace Change (Second Edition). Addison-Wesley.

193

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

[3] Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J.
Young, Jim Conallen, and Kelli A. Houston. 2007. Object-oriented Anal-
ysis and Design with Applications (Third Edition). Addison-Wesley.
Reinhard Budde and Heinz Ziillighoven. 1992. Software Tools in a Pro-
gramming Workshop. In Software Development and Reality Construc-
tion. Springer, 252-268. https://doi.org/10.1007/978-3-642-76817-0_20
William R. Cook. 1992. Interfaces and Specifications for the Smalltalk-
80 Collection Classes. In Conference Proceedings on Object-oriented
Programming Systems, Languages, and Applications (Vancouver, BC,
Canada). ACM, 1-15. https://doi.org/10.1145/141936.141938

Mihaly Csikszentmihalyi. 2008. Flow: The Psychology of Optimal Expe-
rience. Harper Perennial Modern Classics.

Richard P. Gabriel. 2012. The Structure of a Programming Language
Revolution. In Proceedings of the ACM international symposium on New
ideas, new paradigms, and reflections on programming and software.
195-214. https://doi.org/10.1145/2384592.2384611

Richard P. Gabriel. 2014. I Throw Itching Powder at Tulips. In Pro-
ceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Portland,
OR, USA). ACM, 301-319. https://doi.org/10.1145/2661136.2661155
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1995. Design Patterns: Abstraction of Reusable Object-oriented Soft-
ware. Addison-Wesley.

Adele Goldberg and David Robson. 1983. Smalitalk-80: The Language
and its Implementation. Addison-Wesley.

Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. 1985.
Direct Manipulation Interfaces. Human-Computer Interaction 1, 4 (12
1985), 311-338. https://doi.org/10.1207/s15327051hci0104_2

Takashi Iba and Taichi Isaku. 2016. A Pattern Language for Creating
Pattern Languages: 364 Patterns for Pattern Mining, Writing, and
Symbolizing. In Proceedings of the 23rd Conference on Pattern Languages
of Programs. 1-63. https://doi.org/10.5555/3158161.3158175

Daniel H. H. Ingalls, Tim Felgentreff, Robert Hirschfeld, Robert Krahn,
Jens Lincke, Marko Réder, Antero Taivalsaari, and Tommi Mikkonen.
2016. A World of Active Objects for Work and Play: The First Ten
Years of Lively. In Proceedings of the 2016 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software. 238-249. https://doi.org/10.1145/2986012.2986029

Daniel H. H. Ingalls, Ted Kaehler, John H. Maloney, Scott Wallace, and
Alan C. Kay. 1997. Back to the Future: The Story of Squeak, a Practical
Smalltalk Written in Itself. In Proceedings of the 12th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications (Atlanta, GA, USA). ACM, 318-326. https://doi.org/10.
1145/263700.263754

Gregor Kiczales. 1996. Beyond the Black Box: Open Implementation.
IEEE software 13,1 (1996), 8-11. https://doi.org/10.1109/52.476280
Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman.
1998. Synthesizing Object-oriented and Functional Design to Pro-
mote Re-use. In European Conference on Object-Oriented Programming.
Springer, 91-113. https://doi.org/10.1007/BFb0054088

Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel
Taeumel, and Tim Felgentreff. 2017. Designing a Live Development
Experience for Web-Components. In Proceedings of the Programming
Experience 2017.2 (PX/17.2) Workshop (Vancouver, BC, Canada). ACM,
28-35. https://doi.org/10.1145/3167109

John H. Maloney. 2002. An Introduction to Morphic: The Squeak User
Interface Framework. Prentice Hall, Chapter 2, 39-67.

John H. Maloney and Randall B. Smith. 1995. Directness and Liveness in
the Morphic User Interface Construction Environment. In Proceedings
of the 8th Annual ACM Symposium on User Interface and Software
Technology (Pittsburgh, PA, USA). ACM, 21-28. https://doi.org/10.
1145/215585.215636

[l

[4

5

—

G

—

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

www.hpi.de/en/research/research-schools
www.hpi.de/en/research/research-schools
www.hpi.de/en/dtrp
https://doi.org/10.1007/978-3-642-76817-0_20
https://doi.org/10.1145/141936.141938
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2661136.2661155
https://doi.org/10.1207/s15327051hci0104_2
https://doi.org/10.5555/3158161.3158175
https://doi.org/10.1145/2986012.2986029
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/263700.263754
https://doi.org/10.1109/52.476280
https://doi.org/10.1007/BFb0054088
https://doi.org/10.1145/3167109
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/215585.215636

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

[20]

(24]

(25]
[26]

(27]

[28

[t

[29]

(30]

Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Daniel H. H.
Ingalls. 2018. Two Decades of Smalltalk VM Development: Live VM De-
velopment Through Simulation Tools. In Proceedings of the 10th ACM
SIGPLAN International Workshop on Virtual Machines and Intermediate
Languages. ACM, 57-66. https://doi.org/10.1145/3281287.3281295
Peter Naur. 1985. Programming as Theory Building. Microprocessing
and Microprogramming 15, 5 (5 1985), 253-261. https://doi.org/10.
1016/0165-6074(85)90032-8

Peter Naur. 1992. Computing: A Human Activity. ACM Press.

Tobias Pape, Tim Felgentreff, Fabio Niephaus, and Robert Hirschfeld.
2019. Let Them Fail: Towards VM Built-in Behavior That Falls Back to
the Program. In Proceedings of the Conference Companion of the 3rd In-
ternational Conference on Art, Science, and Engineering of Programming
(Genova, Italy). ACM, 1-7. https://doi.org/10.1145/3328433.3338056
Jef Raskin. 2000. The Humane Interface: New Directions for Designing
Interactive Systems. Addison-Wesley.

Eric S. Raymond. 2004. The Art of UNIX Programming. Addison-Wesley.
Patrick Rein, Stefan Lehmann, Toni Mattis, and Robert Hirschfeld.
2016. How Live are Live Programming Systems?: Benchmarking the
Response Times of Live Programming Environments. In Proceedings
of the Programming Experience 2016 (PX/16) Workshop (Rome, Italy).
ACM, 1-8. https://doi.org/10.1145/2984380.2984381

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias
Pape. 2018. Exploratory and Live, Programming and Coding. The
Art, Science, and Engineering of Programming 3, 1 (2018), 1:1-1:33.
https://doi.org/10.22152/programming-journal.org/2019/3/1

Dirk Riehle and Heinz Ziillighoven. 1995. A Pattern Language for
Tool Construction and Integration based on the Tools and Materials
Metaphor. In Pattern Languages of Program Design, James O. Coplien
and Douglas Schmidt (Eds.). Addison-Wesley, 9-42.

David W. Sandberg. 1988. Smalltalk and Exploratory Programming.
ACM SIGPLAN Notices 23, 10 (10 1988), 85-92. https://doi.org/10.1145/
51607.51614

Beau Sheil. 1998. Datamation®: Power Tools for Programmers. Morgan
Kaufmann, Inc., Chapter 33, 573-580. https://doi.org/10.1016/B978-0-

194

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Marcel Taeumel and Robert Hirschfeld

934613-12-5.50048-3

Randall B. Smith. 1987. Experiences with the Alternate Reality Kit: An
Example of the Tension between Literalism and Magic. IEEE Computer
Graphics and Applications 7,9 (9 1987), 42-50. https://doi.org/10.1109/
MCG.1987.277078

Sebastian Spaeth, Matthias Stuermer, Stefan Haefliger, and Georg von
Krogh. 2007. Sampling in Open Source Software Development: The
Case for Using the Debian GNU/Linux Distribution. In 2007 40th An-
nual Hawaii International Conference on System Sciences (HICSS 07).
IEEE, 166a-166a. https://doi.org/10.1109/HICSS.2007.471

Marcel Taeumel. 2020. Data-driven Tool Construction in Exploratory
Programming Environments. Ph. D. Dissertation. University of Potsdam,
Digital Engineering Faculty, Hasso Plattner Institute. https://doi.org/
10.25932/publishup-44428

Marcel Taeumel and Robert Hirschfeld. 2016. Evolving User Interfaces
From Within Self-supporting Programming Environments: Exploring
the Project Concept of Squeak/Smalltalk to Bootstrap Uls. In Proceed-
ings of the Programming Experience 2016 (PX/16) Workshop (Rome,
Italy). ACM, 43-59. https://doi.org/10.1145/2984380.2984386

Marcel Taeumel, Jens Lincke, Patrick Rein, and Robert Hirschfeld. 2022.
A Pattern Language of an Exploratory Programming Workspace. In
Design Thinking Research: Achieving Real Innovation. Springer, 111-145.
https://doi.org/10.1007/978-3-031-09297-8_7

Marcel Taeumel, Patrick Rein, and Robert Hirschfeld. 2021. Toward
Patterns of Exploratory Programming Practice. In Design Thinking
Research: Translation, Prototyping, and Measurement. Springer, 127-150.
https://doi.org/10.1007/978-3-030-76324-4_7

Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live

Programming. In 2013 Ist International Workshop on Live Programming
(LIVE) (San Francisco, CA, USA). IEEE, 31-34. https://doi.org/10.1109/

LIVE.2013.6617346

[38] Jason Trenouth. 1991. A Survey of Exploratory Software Development.

Comput. J.34, 2 (1 1991), 153-163. https://doi.org/10.1093/comjnl/34.
2.153

Received 2022-09-05; accepted 2022-10-03

https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1016/0165-6074(85)90032-8
https://doi.org/10.1016/0165-6074(85)90032-8
https://doi.org/10.1145/3328433.3338056
https://doi.org/10.1145/2984380.2984381
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/51607.51614
https://doi.org/10.1145/51607.51614
https://doi.org/10.1016/B978-0-934613-12-5.50048-3
https://doi.org/10.1016/B978-0-934613-12-5.50048-3
https://doi.org/10.1109/MCG.1987.277078
https://doi.org/10.1109/MCG.1987.277078
https://doi.org/10.1109/HICSS.2007.471
https://doi.org/10.25932/publishup-44428
https://doi.org/10.25932/publishup-44428
https://doi.org/10.1145/2984380.2984386
https://doi.org/10.1007/978-3-031-09297-8_7
https://doi.org/10.1007/978-3-030-76324-4_7
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1093/comjnl/34.2.153
https://doi.org/10.1093/comjnl/34.2.153

	Abstract
	1 The Dilemma
	2 Two Cultures, One Liveness
	3 Our Tools and Materials
	4 One Paradigm Fits All?
	5 Wanted: Expert Knowledge
	6 Make a Release, Release the Flow of Exploratory Programming
	7 The Limits of Liveness
	8 The Dilemma Revisited
	References

