
Robust Multi-Property

Combiners for Hash Functions∗

Marc Fischlin1 Anja Lehmann2 Krzysztof Pietrzak3

1Darmstadt University of Technology, Germany
marc.fischlin@gmail.com

2IBM Research – Zurich, Switzerland
anj@zurich.ibm.com

3Institute of Science and Technology, Austria

krzpie@gmail.com

Abstract. A robust combiner for hash functions takes two candidate implemen-
tations and constructs a hash function which is secure as long as at least one of
the candidates is secure. So far, hash function combiners only aim at preserving a
single property such as collision-resistance or pseudorandomness. However, when
hash functions are used in protocols like TLS they are often required to provide
several properties simultaneously.

We therefore put forward the notion of robust multi-property combiners and elabo-

rate on different definitions for such combiners. We then propose a combiner that

provably preserves (target) collision-resistance, pseudorandomness, and being a se-

cure message authentication code. This combiner satisfies the strongest notion we

propose, which requires that the combined function satisfies every security property

which is satisfied by at least one of the underlying hash function. If the underlying

hash functions have output length n, the combiner has output length 2n. This basi-

cally matches a known lower bound for black-box combiners for collision-resistance

only, thus the other properties can be achieved without penalizing the length of

the hash values. We then propose a combiner which also preserves the property of

being indifferentiable from a random oracle, slightly increasing the output length

to 2n+ ω(log n). Moreover, we show how to augment our constructions in order to

make them also robust for the one-wayness property, but in this case require an a

priory upper bound on the input length.

∗This is the full version of the papers Multi-Property Preserving Combiners for Hash Functions

(appeared in Theory of Cryptography - TCC 2008, LNCS 4948, pp. 372-389, Springer, 2008) and
Robust Multi-Property Combiners for Hash Functions Revisited (appeared in ICALP 2008, LNCS 5125,
pp. 655-667, Springer, 2008).

1

1 Introduction

Recent attacks on collision-resistant hash functions [31, 32, 13, 30] caused a decrease
of confidence that today’s candidates really have this property and have raised the
question how to devise constructions that are more tolerant to cryptanalytic results.
Hence, approaches like robust combiners [19, 20, 18] which “merge” several candidate
functions into a single failure-tolerant one, are of great interest and have triggered a long
line of research [11, 28, 12, 15, 16, 21, 29, 17]. Informally, a hash combiner takes two hash
functions H0, H1 and combines them in such a way that the resulting function satisfies
some security property, whenever one of the underlying candidatesH0 orH1 is satisfies it.
For example, the “concatenation combiner” Comb

H0,H1

|| (M) = H0(M)||H1(M) preserves

the property of being collision-resistant because a collision M 6= M ′ for the combiner
is always also a collision for both components H0 or H1. Thus if either of the hash
functions H0 or H1 is collision-resistant, then so is the combined function.

However, hash functions are currently used for various tasks that require numer-
ous properties beyond collision resistance, e.g., the HMAC construction [3] based on
a keyed hash function is used (amongst others) in the IPSec and TLS protocols as a
pseudorandom function and as a MAC. In the standardized protocols RSA-OAEP [6]
and RSA-PSS [7] even stronger properties are required (cf. [9, 10]), prompting Coron
et al. [14] to give constructions which propagate the random-oracle property from the
compression function to the hash function. A further example for the need of multi-
ple properties is given by Katz and Shin [22], where collision-resistant pseudorandom
functions are required in order to protect authenticated group key exchange protocols
against insider attacks.1

While one could in principle always employ a suitable hash combiner tailored to the
individual security property needed by one particular cryptographic scheme, common
practices such as code re-use, call for the design of a single (combiner) function satisfying
as many properties as possible. On the level of hash functions this point of view has
also been adopted by NIST in its on-going SHA-3 competition [27] and motivated a
series of works [4, 2, 23] that, e.g., show how to lift multiple properties provided by a
compression functions to a full-grown hash function.

Thus, also for hash combiners one would ideally like to have a single construction
that is robust for many properties simultaneously. Combiners which preserve a single
property such as collision-resistance or pseudorandomness are quite well understood.
Robust multi-property combiners, on the other hand, are not covered by these strategies
and require new techniques instead. As an example we discuss this issue for the case of
collision-resistance and pseudorandomness.

The Problem with Multiple Properties. The simplest combiner for collision-resistance
simply concatenates the outputs of both hash functions Comb||(M) = H0(M)||H1(M).
Obviously, the combiner is collision-resistant as long es eitherH0 orH1 has this property.
Yet, it does not guarantee for example pseudorandomness (assuming that the hash
functions are keyed) if only one of the underlying hash functions is pseudorandom. An

1Technically, they require statistical collision-resistance for the keys of the pseudorandom function.

2

adversary can immediately distinguish the concatenated output from a truly random
value by simply examining the part of the insecure hash function.

An obvious approach to obtain a hash combiner that is robust for pseudorandom-
ness is to set Comb⊕(M) = H0(M) ⊕H1(M). However, this combiner is not known to
preserve collision-resistance anymore, since a collision for the combiner does not neces-
sarily require collisions on both hash functions. In fact, this combiner also violates the
conditions of [11, 28, 29] and [12], who have shown that the output of a (black-box)
collision-resistant combiner cannot be significantly shorter than the concatenation of
the outputs from all employed hash functions. Thus, already the attempt of combining
only two properties in a robust manner indicates that finding a robust multi-property
combiner is far from trivial.

Our Result. In this work we show how to build combiners that provably preserve
multiple properties in a robust manner. We concentrate on the most common prop-
erties as proposed in [5], namely, collision-resistance (CR), target collision-resistance
(TCR), pseudorandomness (PRF), message authentication (MAC), one-wayness (OW)
and indifferentiability from a random oracle (IRO).

M

H0
0 H0

1

⊕

⊕ H2
⊕

⊕ H3
⊕

M

PIP

H0
0 H0

1

⊕

⊕ H2
⊕

⊕ H3
⊕

Figure 1: Illustration of the basic construction Comb4P (left) preserving CR,PRF,TCR
and MAC. Here H i

b(·) denotes Hb(〈i〉2 ‖·) where 〈i〉2 is the binary representation of the
integer i with two bits. H i

⊕(·) denotes H
i
0(·)⊕H

i
1(·). By applying a pairwise independent

permutation (PIP) to the input ofH0
0 we get our construction Comb4P&OW (right), which

also preserves OW. Because of the PIP, the input length of the construction must now
be fixed.

The Combiner Comb4P. Our first construction is a combiner Comb4P which robustly
preserves the four properties collision-resistance, target collision-resistance, pseudoran-
domness and message authentication. If the underlying hash functions have output
length n bits, the combiner has output length 2n, which basically matches known lower
bounds for combiners which preserve collision-resistance only [11, 28, 29]. The idea for

3

M

H0
0 H0

1

⊕

⊕ H1
⊕ lsbm

⊕ H2
⊕

H3
⊕ PIF

lsb3m

⊕

αM

αM

M

PIP

H0
0 H0

1

⊕

⊕ H1
⊕ lsbm

⊕ H2
⊕

H3
⊕ PIF

lsb3m

⊕

αM

αM

Figure 2: Illustration of the construction Comb4P&IRO (left), which (besides the four
properties preserved by Comb4P) also preserves the IRO property, at the prize of an
increased output length. The third branch of the construction operates on a signature
value αM depending on input M and applies a pairwise independent function. On the
right side the construction Comb6P is illustrated which simultaneously preserves all six
properties considered.

our combiner is to use the concatenation combiner Comb||, followed by a three-round
Feistel permutation. In the first round of the Feistel permutation no round function is
applied, whereas the two subsequent rounds are constructed by using the XOR-combiner
Comb⊕ (cf. Figure 1). The round functions are made somewhat independent by prepend-
ing the round number to the input.

The rationale here is that applying the Feistel (or any other) permutation to the out-
put of Comb|| still preserves the CR, TCR and MAC properties, e.g., collisions for Comb||

are pulled through the downstream permutation and can be traced back to collisions
for Comb||. At the same time, one achieves robustness for the PRF property. The latter
can be seen as follows: if either H0 or H1 is pseudorandom, then the round functions in
the Feistel network are pseudorandom as Comb⊕ is a secure combiner for pseudorandom
functions. The Luby-Rackoff [24] result now states that a three-round Feistel-network,
instantiated with pseudorandom functions, is a pseudorandom permutation. We note
that the formal argument also needs to take into account that finding collisions in the
keyed version of the initial Comb|| computation is infeasible.

Our Comb4P combiner was recently implemented in an open source project [1].

Preserving IRO. In Section 4 we modify the Comb4P construction such that it also
preserves indifferentiability from a random oracle. The obstruction of the IRO robustness
in the Comb4P combiner stems from the invertibility of the Feistel permutation: an
adversary trying to distinguish the output of the combiner from a random function
(given access to the underlying hash functions, as opposed to the case of pseudorandom
functions for example) can partly “reverse engineer” images under the combiner. Hence,

4

we introduce a “signature” value αM (depending on the input message M), entering the
round functions in the Feistel network and basically allowing combiner computations in
the forward direction only.

The description of our enhanced combiner Comb4P&IRO is given in Figure 2. The
signature αM is taken as (a prefix of) the XOR of the output halves of the Comb|| com-
biner and is used as additional input parameter in the Feistel round functions, allowing
us to also save one round of the Feistel structure. Note that this essentially means that
different Feistel permutations may be used for different inputs M,M ′, because the sig-
natures αM , αM ′ may be distinct. In order to apply again the argument that the Feistel
permutation does not interfere with the CR,TCR and MAC robustness of the concatenat-
ing combiner, we therefore also need to ensure that finding “bad” pairs αM and αM ′ is
infeasible. To this end we introduce another output branch which basically guarantees
collision-resistance of the signatures. This additional output is of length 3m for some
m = ω(log n), yielding an overall output length of 2n+ ω(log n).

Preserving One-Wayness. Even though both our solutions are robust for an impor-
tant set of properties they are not good combiners for one-wayness. Our results so
far merely show that they are one-way functions making for example the potentially
stronger assumption that one of the two hash functions is collision-resistant. In Section
5 we therefore show how to augment our constructions such that also the one-wayness
property is preserved.

By apply a pairwise-independent permutation (PIP) to the input of H0 (or H1)
in the concatenation combiner Comb||, we get a construction which still is a combiner
for collision-resistance, but now also combines the one-wayness property. Using this
extended concatenation combiner in the initial stages of our previous constructions we
additionally achieve robustness for one-wayness. As the description length of a PIP is
linear in its input length, now the input length of the combiner must be a priory fixed.

Weak vs. Strong Robustness. We call a multi-property combiner strongly robust for a
set of properties, if the combined function satisfies every property which is satisfied by
at least one hash function, i.e. if H0 or H1 has property MAC, then so does the com-
bined function, independently of the other properties. All our constructions achieve this
strongest notion. We also define weaker notions of multi-property robustness (MPR),
which we denote by weak MPR and mild MPR. In the weak case the combiner only
inherits a set of multiple properties if they are all provided by at least one hash function
(i.e., if there is a strong candidate which has all properties at the same time). Mild MPR
combiners are between strong MPR and weak MPR combiners, here we also require that
all properties hold, but different hash functions may cover different properties.

We then address several questions related to the different notions of multi-property
robustness. In particular, we show that strong MPR is strictly stronger than mild MPR
which is strictly stronger than weak MPR. We finally discuss the case of general tree-
based combiners for more than two hash functions built out of combiners for two hash
functions, as suggested in a more general setting by Harnik et al. [18]. As part of this
result we show that such tree-combiners inherit the weakly and strongly MPR property

5

of two-function combiners, whereas mildly MPR two-function combiners surprisingly do
not propagate their security to trees.

Organization. We start by defining the three notions of robust multi-property combiners
and give definitions of the security properties considered in Section 2. In Section 3 we
present the construction of our most efficient MPR combiner that is robust for CR,
TCR, PRF and MAC according to our strongest notion. A combiner which additionally
preserves the IRO property, slightly increasing the output length and computational
costs, is then discussed in Section 4. In Section 5 we show that a twist on our combiners
also makes them robust for one-wayness (but at the price of a fixed input length). In
Section 6 we prove separations for the different notions of multi-property robustness.
We address the problem of composing more than just two hash functions in Section 7.

2 Preliminaries

We denote by {0, 1}n the set of bit-strings x of length |x| = n, and 1n stands for n in
unary encoding, i.e., the string that consist of n ones. For two strings x, y we write x||y
for the concatenation and x ⊕ y for the bitwise exclusive-or of x and y. For the latter
we assume that x and y have equal length.

An adversary A is a probabilistic algorithm. We write AO(y) for an adversary that
runs on input y and has oracle access to O. The shorthand x ← X denotes that x is
sampled from the random variable X. Similarly we write x ← A(y) for the output of
A for input y. We say an adversary is efficient if it runs in polynomial-time. That is,
if there exists a polynomial p(n) such that A takes at most p(n) steps where n is the
length of the input.

2.1 Hash Functions and Their Properties

A hash function H = (HKGen,H) is a pair of efficient algorithms such that HKGen for
input 1n returns (the description of) a hash function H (which contains 1n), and H for
input H and M ∈ {0, 1}∗ deterministically outputs a digest H(M). We often identify
the hash function with its digest values H(·) if the key generation algorithm is clear
from the context.

In this work we consider the following six important security properties for hash
functions (cf. [5]): the unkeyed properties of (target) collision-resistance and one-wayness
and the keyed properties of being a pseudorandom function or a message authentication
code. The final property – indifferentiability from a random oracle – is special, as
one considers idealized components. In particular, there is no efficient key-generation
algorithm, but rather the hash function is given directly by an oracle.

Depending on the security property we are interested in, the access of the adversary
to the hash function is modeled differently. For unkeyed primitives, the description of H
is given to the adversary. Whereas for keyed primitives the adversary only gets black-box
access to the hash function. We could also consider a somewhat more general notion,
where the key-generation algorithm outputs a pair Hp, Hs of values, which together

6

define the hash function H, and where in the keyed setting, only Hs (but not Hp) is
kept secret. For example in the HMAC construction, Hp would define the underlying
compression function, and the secret key Hs would be the randomly chosen initial value
IV. All our results also hold in this setting, but we avoid using such a fine-grained
definition as to save on notation which would only distract from the main ideas.

collision resistance (CR): Informally, collision-resistance of a hash function H re-
quires that it should be infeasible to find two distinct messages M 6= M ′ that
map under H to the same value H(M) = H(M ′). For the formal treatment we
consider families of hash functions and call a hash function collision-resistant if
for any efficient adversary A the advantage

Advcr
A(n) =

Prob[H ← HKGen(1n); (M,M ′)← A(H) :M 6=M ′ ∧ H(M) = H(M ′)]

is negligible (as a function of n).

target collision-resistance (TCR): Target collision-resistance is a weaker security
notion than collision-resistance which obliges the adversary to first commit to
a target message M before getting the description H ← HKGen(1n) of the hash
function. For the given H the adversary must then find a second messageM ′ 6=M
such that H(M) = H(M ′).

More formally, a hash function is target collision-resistant if for any efficient ad-
versary A = (A1,A2) the following advantage is negligible in n:

Advtcr
A (n) =

Prob

[

(M, st)← A1(1n);H ← HKGen(1n);

M ′ ← A2(H,M, st)
:

M 6=M ′ ∧

H(M) = H(M ′)

]

.

one-wayness (OW) : The definition of one-wayness intuitively requires that it is infea-
sible to determine the preimage of a hash value. A hash function is called one-way,
if for any efficient algorithm A the advantage

Advowf
A (n) =

Prob
[

H ← HKGen(1n);M ← {0, 1}∗;M ′ ← A(H,H(M)) : H(M ′) = H(M)
]

is negligible in n.

pseudorandomness (PRF): A hash function can be used as a pseudorandom function
if, e.g., the initial value IV is replaced by a randomly chosen keyK of the same size.
We capture such a keyed setting by granting the adversary only black-box access
to the (randomly chosen) hash function H(·). The hash function is then called
pseudorandom, if no efficient adversary can distinguishH from a uniformly random

7

function f (with the same range and same domain) with noticeable advantage.
More formally, we require that for any efficient adversary A the advantage

Advprf
A (n) =

∣

∣

∣
Prob

[

AH(·)(1n) = 1
]

− Prob
[

Af (1n) = 1
]∣

∣

∣

is negligible, where the probability in the first case is over A’s coin tosses and the
choice of H ← HKGen(1n), and in the second case over A’s coin tosses and the
choice of the random function f : {0, 1}∗ → {0, 1}n.

message authentication (MAC): Amessage authentication code is a symmetric prim-
itive which allows a sender and receiver, both sharing a secret, to exchange infor-
mation in an authenticated manner. When a hash function is used as a MAC, the
description H ← HKGen(1n) constitutes the shared secret, and the sender aug-
ments a message M by the tag τ ← H(M). The receiver of (M, τ) then verifies
whether τ = H(M) holds.

A MAC is considered secure, if it is unforgeable under chosen message attacks, i.e.,
an adversary after adaptively learning several tags (M1, τ1), (M2, τ2), . . . , (Mq, τq)
should not be able to compute a forgery for a fresh message M∗. Note that the
adversary has again only oracle access to H(·). More compactly, a hash function
is called a secure MAC, if for any efficient adversary A the following advantage is
negligible in n

Advmac
A (n) =

Prob
[

H ← HKGen(1n), (M, τ)← AH(·) : H(M) = τ ∧M not queried
]

.

indifferentiability from random oracles (IRO): Indifferentiability [25] is a gener-
alization of indistinguishability allowing to consider random oracles that are used
as a public component. More formally, a hash function Hf based on a random
oracle f is indifferentiable from a random oracle F if for any efficient adversary A
there exists an efficient algorithm S such that the advantage

Advind
A (n) =

∣

∣

∣
Prob

[

AHf ,f (1n) = 1
]

− Prob
[

AF ,S
F

(1n) = 1
]∣

∣

∣

is negligible in n, where the probability in the first case is over A’s coin tosses and
the choice of the random function f , and in the second case over the coin tosses
of A and S, and over the choice of F .

Thus, the goal of the simulator SF is to mimic the ideal compression function f ,
such that no adversary A can decide whether its interacting with Hf and f or with
F and SF . To this end, SF has to produce output that is random but consistent
with the values the adversary can obtain from the random oracle F . Note that
the simulator has oracle access to F too, but it does not get to see the queries A
issues to F .

8

2.2 Robust Multi-Property Hash Combiners

A hash function combiner C = (CKGen,Comb) for some security property P is a pair of
algorithms which, when instantiated with two hash functions H0,H1, itself implements
a hash function, such that the combined function satisfies P if at least one of the two
candidates satisfies P.

For multiple properties prop = {P1,P2, . . . ,PN} one can either demand that the
combiner inherits the properties if one of the candidate hash functions is strong and
has all the properties (weakly robust), or that for each property at least one of the two
hash functions has the property (strongly robust). We also consider a notion in between
but somewhat closer to the weak case, called mildly robust, in which case all properties
from prop must hold, albeit different functions may cover different properties (instead
of one function as in the case of weakly robust combiners).2 In the following, we denote
by prop(H) ⊆ prop for a set prop = {P1,P2, . . . ,PN} the properties which a hash
function H has.

More formally,

Definition 2.1 (Multi-Property Robustness) For a set prop = {P1,P2, . . . ,PN}
of properties a hash function combiner C = (CKGen,Comb) for hash functions H0,H1 is
called:

weakly multi-property robust (wMPR) for prop iff

prop = prop(H0) or prop = prop(H1) =⇒ prop = prop(C),

mildly multi-property robust (mMPR) for prop iff

prop = prop(H0) ∪ prop(H1) =⇒ prop = prop(C),

strongly multi-property robust (sMPR) for prop iff for all Pi ∈ prop,

Pi ∈ prop(H0) ∪ prop(H1) =⇒ Pi ∈ prop(C).

We remark that for weak and mild robustness all individual properties P1,P2, . . . ,PN

from prop are guaranteed to hold, either by a single function as in weak robustness,
or possibly by different functions as in mild robustness. The combiner may therefore
depend on some strong property Pi ∈ prop which one of the hash functions has, and
which helps to implement some other property Pj in the combined hash function. But
then, for a subset prop′ ⊆ prop which, for instance, misses this strong property Pi, the
combiner may no longer preserve the properties prop′. This is in contrast to strongly
robust combiners which support such subsets of properties by definition.

Note that for a singleton prop = {P} all notions coincide and we simply say that C
is P-robust in this case. However, for two or more properties the notions become strictly
stronger from weak to mild to strong, as we show in Section 6. Finally, we remark that
our definition allows the case H0 = H1, which may require some care when designing
combiners, especially if the hash functions are based on random oracles.

2One may also refine these notions further. We focus on these three “natural” cases.

9

3 The C4P Combiner for CR, PRF, TCR and MAC

In this section we introduce the construction of our basic combiner C4P as illustrated in
Figure 1. Recall that the idea of this combiner is to apply a Feistel permutation (with
quasi-independent round functions given by the XOR combiner) to the concatenating
combiner to ensure CR, PRF, TCR and MAC robustness.

3.1 Our Construction

The three-round Feistel permutation P 3 over {0, 1}2n is given by the round functions
H i
⊕(·) = H i

0(·) ⊕H
i
1(·) for i = 2, 3, with H i

b(·) denoting the function Hb(〈i〉2 ||·) where
〈i〉2 is the binary representation of the integer i with two bits. The first round function
is the identity function, which we denote for notational convenience as H1

⊕(X) = X.
In the i-th round the input (Li, Ri) is mapped to the output (Ri, Li ⊕ H

i
⊕(Ri)). We

occasionally denote this Feistel permutation more explicitly by P 3 = ψ[H1
⊕, H

2
⊕, H

3
⊕](·).

Our combiner, instantiated with hash functions H0,H1, is a pair of efficient algo-
rithms C4P = (CKGen4P,Comb4P) where the key generation algorithm CKGen4P(1

n) sam-
ples H0 ← HKGen0(1

n) and H1 ← HKGen1(1
n). The evaluation algorithm Comb

H0,H1

4P

for parameters H0, H1 and input message M outputs

Comb
H0,H1

4P (M) = P 3(H0
0 (M)||H0

1 (M)).

3.2 Multi-Property Robustness

We next show that the construction satisfies the strongest notion for robust multi-
property combiners:

Theorem 3.1 The combiner C4P is a strongly robust multi-property combiner for prop =
{CR,PRF,TCR,MAC}.

Recall that a strongly robust multi-property combiner inherits all properties that are
provided by at least one of the underlying hash functions. Thus, we have to prove that
each property CR,PRF,TCR and MAC is preserved independently.

Lemma 3.2 The combiner C4P is CR-robust.

Proof. Observe that any collision M 6= M ′ for Comb
H0,H1

4P (·) directly gives a collision
00‖M 6= 00‖M ′ for H0(·) and H1(·). Thus any adversary that finds collisions for Comb4P

when instantiated with H0, H1 with non-negligible probability, can be used to find col-
lision (with the same probability) for H0 and H1 respectively: to find a collision for
Hb ← HKGenb(1

n) with b ∈ {0, 1}, run Hb ← HKGenb(1
n) and then invoke the adver-

sary on input Hb, Hb. If the adversary outputs a collision for Comb
H0,H1

4P (·), this is also
a collision for Hb(·). �

Lemma 3.3 The combiner C4P is TCR-robust.

10

Proof. Assume towards contradiction that there exist an efficient adversary AComb =
(A1

Comb
,A2

Comb
) that commits to a message M before getting H0 and H1 and then

finds some M ′ such that Comb
H0,H1

4P (M) = Comb
H0,H1

4P (M ′) with noticeable probability.
Then we can use this attacker to construct a successful target-collision adversary Ab =
(A1

b ,A
2
b) against the underlying hash functions Hb for b ∈ {0, 1} which contradicts the

assumption that at least one of the two hash functions is target collision-resistant.
First, the adversary A1

b(1
n) runs A1

Comb
(1n) to receive the target message M and

some state information st. A1
b then commits to 00||M . On input Hb the adversary A2

b

samples the second hash function Hb ← HKGenb(1
n) and passes Hb, Hb together with

(M, st) to A2
Comb

. When A2
Comb

outputs a message M ′ 6= M with Comb
H0,H1

4P (M) =

Comb
H0,H1

4P (M ′) the adversary A2
b returns 00||M ′.

Since P 3(·) is an invertible permutation, a collision of M,M ′ for the combiner can
be traced back to the input of P 3(·) and thus we have

H0(00||M)||H1(00||M) = H0(00||M
′)||H1(00||M

′).

Hence, both adversaries Ab for b = 0, 1 succeed in finding a message 00||M ′ that together
with the target message 00||M leads to a collision under Hb with the same noticeable
probability as AComb. �

Lemma 3.4 The combiner C4P is PRF-robust.

Proof. As the XOR combiner is a good combiner for pseudorandom functions (PRFs),
the round functions H2

⊕, H
3
⊕ in the Feistel network are instantiated with PRFs, as long

as at least H0 or H1 is a PRF. Prepending the unique prefix 〈i〉2 for i = 2, 3 to the input
of H i

⊕(·) = H⊕(〈i〉2 ‖·) in each round ensures that the functions in different rounds
are never invoked on the same input, which means they are indistinguishable from two
independent random functions. The first round of our Feistel permutation, that does
not apply a round function, simply prepares the input for the second round function
H2
⊕(·) by xoring both input halves H0

0 (M)⊕H0
1 (M). Thus, if at least one hash function

is a PRF then the input to the second round function is already a pseudorandom value,
which prevents an adversary from directly choosing the inputs to the second Feistel
round.

We can now apply the results due to Luby-Rackoff [24] and Naor-Reingold [26]
which state that a two-round Feistel-network invoked on an unpredictable input and
instantiated with independent pseudorandom functions is a pseudorandom permutation
(PRP).

Further, if either H0 or H1 is a PRF, then the initial concatenation combiner
Comb

H0,H1

|| is weakly collision-resistant3, thus the probability that the adversary will

invoke the combiner on distinct inputs M,M ′ where a collision H0
0 (M)‖H0

1 (M) =
H0

0 (M
′)‖H0

1 (M
′) occurs, is negligible. So with overwhelming probability, all the adver-

sary sees is the output of a PRP on distinct inputs. This distribution is indistinguishable

3Weak collision-resistance is defined similarly to collision resistance, except that here the function is
keyed and the key is secret, i.e., the adversary only gets black-box access to the function.

11

from uniformly random (this follows from the PRP/PRF switching lemma [8]), thus C4P
is PRF robust.

More precisely, from any adversary AComb who has advantage ǫ in distinguishing
Comb

H0,H1

4P making q queries, we can construct an attacker Ab for b ∈ {0, 1}, that
distinguishes Hb ← HKGenb(1

n) from random with advantage ǫ − O(q2/2n). For b = 0
(the case b = 1 is symmetric) the adversary A0 first samples H1 ← HKGen1(1

n) and
then simulates the experiment of AComb using this knowledge of H1 and its oracle access
to H0. Finally, A0 returns the output of AComb. If H0 is a uniformly random function
f : {0, 1}∗ → {0, 1}n, then any (even computationally unbounded) adversary making

q queries has advantage at most O(q2/2n) in distinguishing Comb
f,H1

4P from a random
function (as the advantage from the PRP/PRF switching lemma and the advantage in
the Luby-Rackoff result are both O(q2/2n)). Thus, if AComb distinguishes Comb

H0,H1

4P

from a truly random function F : {0, 1}∗ → {0, 1}2n with advantage ǫ, it has advantage

ǫ−O(q2/2n) to distinguish Comb
H0,H1

4P from Comb
f,H1

4P . The latter is by definition also
A0’s advantage for f and H0.

�

Lemma 3.5 The combiner C4P is MAC-robust.

Proof. Assume towards contradiction that an adversary AComb with oracle access to
the combiner Comb

H0,H1

4P (·) finds with non-negligible probability a valid pair (M, τ),

such that τ = Comb
H0,H1

4P (M) but the message M was never queried to the MAC-
oracle. Given AComb we can construct a successful adversary Ab against the underlying
hash function Hb for b ∈ {0, 1}. To forge Hb(·), the adversary Ab first samples Hb ←

HKGenb(1
n), and then lets AComb attack Comb

H0,H1

4P (·), and let Ab use his oracle access
to Hb(·) and the knowledge of Hb to compute the answers to AComb’s oracle queries.
When finally AComb outputs (M, τ), the adversary Ab computes its forgery (00||M, τb)
by inverting the permutation P 3 = ψ[H1

⊕, H
2
⊕, H

3
⊕] (recall that H

i
⊕(·) = H0(〈i〉2 ||·) ⊕

H1(〈i〉2 ||·) for i = 2, 3 and that the required hash function evaluations can be made
with the help of the MAC oracle):

τ0||τ1 = P 3−1(τ).

The adversary Ab then outputs the message 00||M and τb. If M was not previously
queried by AC , then 00||M is distinct from all of Ab’s previous queries, because all
additional queries are prepended by 〈i〉2 where i ∈ {2, 3}. By construction, if (M, τ) is

a valid forgery for Comb
H0,H1

4P (·), then H0
0 (M)||H0

1 (M) = τ0||τ1 and thus (00‖M, τb) is a
valid forgery for Hb(·). �

4 Preserving Indifferentiability: the C4P&IRO Combiner

First, we give a brief idea why our C4P combiner does not guarantee the IRO property.
To be IRO-robust the combiner has to be indifferentiable from a random oracle for any
efficient adversary A, ifHb is a random oracle for some b ∈ {0, 1}. Thereby the adversary

12

A has oracle access either to the combiner Comb
H0,H1

4P and the random oracle Hb, or to
F and a simulator SF . The simulator’s goal is to mimic Hb such that A cannot have
a significant advantage on deciding whether its interacting with Comb

H0,H1

4P and Hb, or
with F and SF .

Usually, the strategy for designing such a simulator is to check if a query is a potential
attempt of A to imitate the construction of the combiner and then to precompute
further answers that are consistent with the information A can get from F . However,
for Comb

H0,H1

4P the simulator may be unable to precompute those consistent values,
because an adversary A can compute the permutation part of the combiner backwards
such that SF has to commit to its round values used in the permutation P 3 before
knowing the initial input M . To this end, A first queries the random oracle F on input
M and uses the response Y ← F(M) to compute X = P 3−1(Y) with the help of SF

simulating Hb and the function Hb which is accessible in a black-box manner. Then the
answers of SF , in order to be indistinguishable from those of Hb, must lead to a value
X = S(00||M)||H1(00||M) if b = 0, and X = H0(00||M)||S(00||M) else.

While the part of X corresponding to S(00||M) can simply be set as response to a
further query 00||M by the simulator, the part of Hb(00||M) is determined by the oracle
Hb(·) and the message M . However, since the simulator does not know the message

M when answering A’s queries for computing P 3−1, it is not able to call the Hb oracle
about 00||M and to choose those answers accordingly. Thus, the probability that the

responses provided by SF will lead in P 3−1(Y) to a value that is consistent with the
structure of the combiner, is negligible and the adversary A can distinguish between
(Comb

H0,H1

4P , Hb) and (F ,SF) with noticeable probability.

In order to guarantee the IRO property, we modify the Comb
H0,H1

4P combiner such
that the adversary is forced to query the message M before he can create meaningful
queries aiming to imitate the construction. By this the simulator becomes able to switch
to the common strategy of preparing consistent answers in advance. As explained in the
introduction, adding a signature value αM into the computation does the job.

4.1 The Combiner C4P&IRO

In this section we consider the modified combiner C4P&IRO as illustrated in Figure 2.
The combiner C4P&IRO = (CKGen4P&IRO,Comb4P&IRO) is defined as follows: CKGen4P&IRO

first samples H0 ← HKGen0(1
n), H1 ← HKGen1(1

n) and a pairwise independent function
g : {0, 1}m → {0, 1}3m for some m ≤ n/3 (the larger m, the better the security level,
but the longer the output, too):

Definition 4.1 (Pairwise-Independent Function/Permutation) A family of func-
tions G : A → B from domain A to range B is called pairwise independent iff for all
x 6= x′ ∈ A and z 6= z′ ∈ B we have Probg∈G[g(x) = z ∧ g(x′) = z′] = |B|−2.

A family of function Π : A→ A is a pairwise independent permutation, if for x 6= x′

and z 6= z′ ∈ A we have Probg∈G[g(x) = z ∧ g(x′) = z′] = 1
|B|(|B|−1) .

One gets a simple construction of a pairwise independent function (PIF) mapping {0, 1}n

to {0, 1}n, by sampling a, b ∈ {0, 1}n at random, which then defines the function

13

g(a,b)(x) = (ax + b), where addition and multiplication are in the field GF (2n). For
a smaller range {0, 1}m with m < n, one can simply drop n−m bits of the output. This
construction is also a pairwise-independent permutation (PIP), if a is chosen at random
from {0, 1}n \ 0n (instead of {0, 1}n).

The evaluation algorithm Comb
H0,H1,g
4P&IRO

(M) first computes Comb
H0,H1

|| (M) = H0
0 (M)||

H0
1 (M) and a value αM – which we call the “signature of M” – as αM = lsbm(H0

⊕(M))
where H0

⊕(M) = H0
0 (M)⊕H0

1 (M) and lsba(x) denotes the a least significant bits of x.
The value αM is used as an extra prefix in the round functions of the two-round Feistel
permutation P 2

α(·) = ψ[H1
⊕(αM‖·), H

2
⊕(αM‖·)]. Applying P 2

α on H0
0 (M)||H0

1 (M) then
gives the first part of the combiners output.

The construction as described so far, is already a robust combiner for IRO and
PRF, but not for CR and TCR. The reason is that now distinct input messages M,M ′

where αM 6= αM ′ lead to distinct Feistel permutations P 2
αM
6= P 2

αM′
, and thus we

cannot compute a collision for Comb
H0,H1 (and thus for H0 and H1) from a collision

Comb
H0,H1

|| (P 2
αM

(M)) = Comb
H0,H1

|| (P 2
α′

M
(M ′)).

To solve this problem, we could append the signature to the output of the combiner,
which would enforce that two inputs can only collide if they have the same signature.
Unfortunately, outputting the signature α directly would make the permutation P 2

α

invertible, and ruin the IRO robustness of our construction again. This is why we only
output a “blinded” version of the signature computed as lsb3m(H3

⊕(αM))⊕g(αM). This
way the signature αM gets not leaked when H0 or H1 is a random oracle, which is
necessary for the combiner to be IRO robust. Moreover with high probability (over
the choice of the pairwise-independent function g) the blinding, which maps {0, 1}m

to {0, 1}3m, will be injective (i.e., contain no collisions), which as explained before is
necessary to get robustness for CR and TCR.

Overall, the combiner – as illustrated in Figure 2 – computes for input message M
and its corresponding signature αM = lsbm(H0

⊕(M)) the following output:

Comb
H0,H1,g
4P&IRO

(M) = P 2
α(H

0
0 (M)||H0

1 (M)) || lsb3m(H3
⊕(αM))⊕ g(αM).

4.2 C4P&IRO is IRO-Robust

We show that our combiner is indifferentiable from a random oracle when instantiated
with two functions H0, H1, where one of them is a random oracle (we refer to it as
Hb, b ∈ {0, 1}), and the other function Hb is arbitrary

4. Like the random oracle Hb, also
Hb is given as an oracle and accessible by all parties. The pairwise independent function
g that comes up in this construction is only needed to prove that C4P&IRO still preserves
the CR and TCR properties; for the IRO property this function can be arbitrary.

Lemma 4.2 The combiner C4P&IRO is IRO-robust.

4There is a small caveat here. Our definition of combiners allows to use the same hash function
H0 = H1, albeit our combiner samples independent instances of the hash functions then. In this sense,
it is understood that, if the hash function Hb is given by a random oracle, then in case Hb = Hb the
other hash function instance uses an independent random oracle.

14

Remark. Note that the security of Comb4P&IRO as a random oracle combiner depends
on m, and thus on the output length, which is 2n+ 3m. This can be slightly improved
to 2n+ 2m+m′ for some m′ < m (by simply replacing 3m with 2m+m′ in Figure 2),
though m′ should not be too small, as C4P&IRO is a good combiner for the CR and TCR

with probability 2−m
′

(this probability is over the choice of the PIF, as we explain later
in Section 4.3).

Proof. For the proof we assume that b = 0, i.e., the hash function H0 : {0, 1}
∗ → {0, 1}n

is a random oracle. The case b = 1 is proved analogously. The adversary A has then
access either to the combiner Comb4P&IRO and H0 or to a random oracle F : {0, 1}∗ →
{0, 1}2n+3m and a simulator SF . Our combiner is indifferentiable from a random oracle
F if there exists a simulator SF , such that the adversary A can distinguish between
Comb4P&IRO, H0 and F ,SF only with negligible probability. The proof consists of two
parts: we first provide the description of our simulator SF and then we show that A
has only negligible advantage in distinguishing the ideal setting (with SF) and the real
setting.

The simulator keeps as state the function table of a (partially defined) function
Ĥ0 : {0, 1}∗ → {0, 1}n, which initially is empty, i.e., Ĥ0(X) = ⊥ for all X. We define
Ĥ i

0(M) = Ĥ0(〈i〉2 ||M) to mimic the notion used in Figure 2. The goal of SF is to define

Ĥ0 in such a way that, from A’s point of view, (F , Ĥ0) look like (Comb
H0,H1,g
4P&IRO

, H0),

i.e., the output of Ĥ0 has to be random and consistent with what the distinguisher can
obtain from F . Therefore, our simulator SF parses each query X it is invoked on as
X = 〈i〉2 ||M and proceeds as follows:

Simulator SF (X):

on query X check if some entry Y ← Ĥ0(X) already exists
if Y = ⊥ //no entry so far

if X = 〈0〉
2
||M for some M

set Ĥ0

0
(M) = y0 where y0 is randomly chosen from {0, 1}n (∗)

get y1 ← H0

1
(M) and compute αM = lsbm(y0 ⊕ y1)

get U ← F(M) for query M and parse U as U1||U2||U3 (∗)
where |U1| = |U2| = n and |U3| = 3m.

set Ĥ1

0
(αM ||y1) = U2 ⊕ y0 ⊕H

1

1
(αM ||y1)

set Ĥ2

0
(αM ||U2) = U1 ⊕ y1 ⊕H

2

1
(αM ||U2)

set Ĥ3

0
(αM) = (U3||z) ⊕ (g(αM)||0n−3m) ⊕ H3

1
(αM)

where z is randomly chosen from {0, 1}n−3m

if X 6= 〈0〉
2
||M , choose a random Y ∈ {0, 1}n (∗)

and save the value by setting Ĥ0(X) = Y

output Y ← Ĥ0(X)

Figure 3: Description of the Simulator

Whenever SF is invoked on a query X where Ĥ0(X) 6= ⊥, SF simply outputs Ĥ0(M).
Thus from now on we only consider queries X where Ĥ0(X) = ⊥. In this case, SF

will define the output of Ĥ0(X), and in some cases also on some additional inputs. On

15

a query X = 〈i〉2 ||M where Ĥ i
0(M) = ⊥ and i 6= 0, the simulator samples a random

Y ∈ {0, 1}n, sets Ĥ i
0(M) = Y and outputs Y .

The interesting queries are the queries of the form X = 〈0〉2 ||M which could be an
attempt of A to simulate the construction of the combiner, such that the simulator has
to compute in addition consistent answers to potential subsequent queries of A. The
simulator starts by sampling a random y0 ∈ {0, 1}

n and sets Ĥ0
0 (M) = y0. To define the

“signature” αM of M , SF queries its oracle H1 on 〈0〉2 ||M and uses the answer y1 =
H0

1 (M) to compute αM = lsbm(y0 ⊕ y1). The simulator then defines the outputs of the

intermediate functions Ĥ1
0 , Ĥ

2
0 and Ĥ3

0 such that Comb
Ĥ0,H1,g
4P&IRO

(M) = F(M). Therefore
SF invokes its random oracle F on input M and computes the corresponding outputs
of Ĥ0 by retracing the combiners construction as defined in the simulators description.
Note that this is possible in a unique way, except for the n − 3m last bits of Ĥ3

0 (αM),
which must be chosen uniformly at random.

We now prove that from A’s point of view (Comb
H0,H1,g
4P&IRO

, H0) and (F ,SF) are indis-
tinguishable, when making at most q queries to each oracle. To this end we consider a se-
quence of hybrid games, starting with a game where A interacts with (Comb

H0,H1,g
4P&IRO

, H0)
and ending in the ideal setting where the distinguisher has access to (F ,SF). The game
structure of this proof is depicted in Figure 4.

A A A A

H0H0

H0 FF SS∗S∗
CombComb

Game 0 Game 1 Game 2 Game 3

Figure 4: Games used in the Indifferentiability Proof

Game 0: The adversary interacts with Comb
H0,H1,g
4P&IRO

and H0.

Game 1: We change the way A’s queries to H0 are answered, by giving A access to an
algorithm S∗ instead of direct access to the random oracle. The algorithm S∗ works as
our simulator S, except that it queries H0 instead of simulating it via lazy sampling,
and it calls Comb

H0,H1,g
4P&IRO

(M) instead of F(M). Thus, S∗ basically relays all queries of A
to H0 but also keeps a table of answered values. For all queries of the form X = 〈0〉2 ||M
the algorithm additionally precomputes further values as described in Figure 3 (the lines
where S∗ deviates from S are marked with ∗). Note that S∗’s answers and stored values
are (with one exception) exactly the same as the values one would obtain directly from
H0. In particular, the values S∗ defines for Ĥ1

0 , Ĥ
2
0 by querying Comb

H0,H1,g
4P&IRO

are identical
to the real values of H1

0 , H
2
0 . The only difference occurs when in the precomputations

16

of S∗ a value for Ĥ3
0 (αM) is set, since only the first 3m bits will equal the value of

H3
0 (αM). However, the final n− 3m bits are set to random such that also Ĥ3

0 (αM) is a
truly random string. Thus, the only way for A to recognize the discrepancy to the real
H3

0 (αM) value, is by querying 〈3〉2 ||αM before sending a query 〈0〉2 ||M that will lead
to αM . We denote this event by Bad1. As all signature values αM that originate from
a query to H0

0 are uniform random values of length m and A makes at most q queries
to its S∗ oracle, this event happens with overall probability at most q2 · 2−m. Unless A
provokes Bad1, Game 0 and Game 1 are identical (we denote by Game i⇒ 1 the event
that A outputs 1 in Game i):

|Prob[Game 1⇒ 1]− Prob[Game 0⇒ 1] | ≤ Prob[Bad1] ≤ q
2 · 2−m

Game 2: In our second game we replace the combiner Comb
H0,H1,g
4P&IRO

with the ran-
dom oracle F . Due to that change, the algorithm S∗ now obtains F(M) instead of
Comb

H0,H1,g
4P&IRO

(M) when doing its precomputations. Thus, the additional values that S∗

stores in Ĥ i
0 for i ∈ {1, 2, 3} when responding to a 〈0〉2 ||M query, are now consistent

with F(M) and thereby with high probability different from the real values of H i
0 for

i ∈ {1, 2, 3}. Again, this only matters if A manages to first issue a query 〈i〉2 ||αM ||∗
and subsequently invokes S∗ on 〈0〉2 ||M that will lead to αM . Otherwise, all A gets to
see from S∗ are random and consistent answers. To capture that case where S∗ “fails”,
we consider by Bad2 the event that the function Ĥ i

0 for i ∈ {1, 2} is already defined on
any input of the form αM ||∗ when S∗ wants to set a value in the course of a precom-
putation. (Note that the case for i = 3 is already handled by Bad1 in Game 1.) As
αM ∈ {0, 1}

m is uniformly random, the probability that Bad2 occurs in the q-th query
is at most q · 2−m (as each Ĥ i

0 for i ∈ {1, 2} is defined on at most q − 1 inputs). Then
the overall probability that Bad2 in any of A’s queries happens is at most 2q2 · 2−m.

Furthermore, the outputs provided by Comb
H0,H1,g
4P&IRO

are indistinguishable from F , as
long as no collision on the signature values occurs, i.e., M 6=M ′ but αM = α′M (we omit
a formal proof, as it follows the argumentation of Lemma 4.4 closely). Since A sends at
most q queries to Comb

H0,H1,g
4P&IRO

, such a collision occurs with probability at most q2 · 2−m.
By adding the probabilities of both events we obtain

|Prob[Game 2⇒ 1]− Prob[Game 1⇒ 1] | ≤ 3q2 · 2−m

Game 3: In the final game the adversary interacts with F and SF . That is, Game 2

and Game 3 only differ in the fact that SF simulates the random responses from H0

by using lazy sampling instead of querying H0. Thus, from A’s viewpoint both games
are identical:

Prob[Game 3⇒ 1] = Prob[Game 2⇒ 1]

Overall, we have

|Prob[Game 3⇒ 1]− Prob[Game 0⇒ 1] | ≤ 4q2 · 2−m.

17

Hence, the advantage of A in distinguishing (Comb
H0,H1,g
4P&IRO

, H0) from (F ,SF) is neg-
ligible. This proves our claim.

�

4.3 C4P&IRO is Robust for CR,TCR,MAC,PRF

We now prove that, like the C4P combiner, C4P&IRO also preserves the CR, TCR, MAC

and PRF property in a robust manner.

Lemma 4.3 The combiner C4P&IRO is CR- and TCR-robust.

Proof. We will prove that for any H0, H1, with probability 1 − 2−m over the choice of
the pairwise independent function g, any collision for Comb

H0,H1,g
4P&IRO

is simultaneously a

collision for H0
0 and H0

1 . To this end, let M 6=M ′ be a collision for Comb
H0,H1,g
4P&IRO

and let

αM and αM ′ denote their signatures. Let Y ‖Y ′ = Comb
H0,H1,g
4P&IRO

(M) where Y ∈ {0, 1}2n

and Y ′ ∈ {0, 1}3m.
If αM = αM ′ , then M,M ′ must be a collision for H0

0 and H0
1 , as we have

H0
0 (M)‖H0

1 (M) = P 2
α

−1
(Y) = P 2

α′

−1
(Y) = H0

0 (M
′)‖H0

1 (M
′) (1)

and the Feistel permutations P 2
α, P

2
α′ are identical if αM = αM ′ .

For M,M ′ where αM 6= αM ′ , a collision on the combiner Comb
H0,H1,g
4P&IRO

(M) =

Comb
H0,H1,g
4P&IRO

(M ′) does not imply (1), and thus will in general not be a collision for H0

and H1. Yet, as with probability 1 − 2−m over the choice of the pairwise independent
function g : {0, 1}m → {0, 1}3m, there does not exist a collision M,M ′ for Comb

H0,H1,g
4P&IRO

where αM 6= αM ′ . Note that for this it is sufficient to prove that for any two potential
signatures α 6= α′ ∈ {0, 1}m, we have

lsb3m(H3
⊕(α))⊕ g(α) 6= lsb3m(H3

⊕(α
′))⊕ g(α′) (2)

as this implies that the final outputs are distinct for any two messages with different
signatures. As g is pairwise independent, for any particular α 6= α′, equation (2) holds
with probability 1−2−3m. Taking the union bound over all 2m(2m−1)/2 < 22m distinct
values α 6= α′, we get that the probability that there exists some α 6= α′ not satisfying
(2) is at most 22m/23m = 2−m.

The proof of TCR-robustness follows a similar argumentation. A collision M 6= M ′

on the combiner implies with overwhelming probability a collision H0
0 (M)||H0

1 (M) =
H0

0 (M
′)||H0

1 (M
′) on the first evaluation of both hash functions. Thus, given an adver-

sary AComb against the combiner that commits to a target messageM and later outputs
a colliding message M ′, one can build an adversary Ab against hash function Hb that
commits to 00||M and outputs in the second stage 00||M ′. �

Lemma 4.4 The combiner C4P&IRO is PRF-robust.

18

Remark. To compute the first part of the output, our combiner Comb
H0,H1,g
4P&IRO

applies a
two-round Feistel network, which in general does not preserve the (pseudo)-randomness
from an underlying round function H i

⊕, because it maps an input (L0, R0) to (L2, R2)
where R2 = H1

⊕(R0)⊕L0 depends only on the given input values. When evaluating the
Feistel network with two distinct inputs (L0, R0) and (L′0, R0), the difference L0 ⊕ L

′
0

then propagates to the outputs, i.e., L0 ⊕ L
′
0 = R2 ⊕ R

′
2, which can be exploited by

an adversary. In our construction we destroy this dependence by prepending the value
αM to the input of each round function, where αM = lsbm(H0

⊕(M)) is a uniformly
random value if Hb, b ∈ {0, 1} is a uniformly random function. Thus we have R2 =
H1
⊕(αM ||R0)⊕L0 with L0 = H0

0 (M) and R0 = H0
1 (M) such that for two distinct inputs

M 6=M ′, the probability for R2 ⊕R
′
2 = H0

0 (M)⊕H0
0 (M

′) is Prob[αM = αM ′] = 2−m.

Proof. Assume that the hash function H0 is a pseudorandom function, but the combiner
Comb

H0,H1,g
4P&IRO

is not (the proof for H1 can be done analogously). Hence, there exists a

successful adversary AComb which can distinguish the construction Comb
H0,H1,g
4P&IRO

from a
truly random function F : {0, 1}∗ → {0, 1}2n+3m with non-negligible probability. We
show that this allows to construct an adversary A0 that can distinguish H0 from a
random function f : {0, 1}∗ → {0, 1}n.

Algorithm A0 simulates the oracle of AComb, which is either Comb
H0,H1,g
4P&IRO

or F , with
his own oracle and the knowledge of H1 ← HKGen1 and g that he samples accord-
ingly. For each query of AComb, the adversary A0 computes an answer by emulating the
combiner Comb4P&IRO using H1(·), g and his oracle which serves as H0.

For the analysis recall that the underlying oracle of A0 is either a random function
f or the hash function H0(·). In the latter case A0 provides outputs that are identically
distributed to the values AComb would obtain from Comb

H0,H1,g
4P&IRO

. Hence, we have

Prob
[

AH0

0 (1n) = 1
]

= Prob

[

A
Comb

H0,H1,g

4P&IRO

Comb
(1n) = 1

]

.

If the underlying oracle is the random function f , then the computed answers of A0

have to look like a truly random function as well. We show that this is true if, for q
queries M1 . . .Mq and for all i 6= j, we have αMi

6= αMj
. The probability of this not

being the case is at most q2 · 2−m, since αM = lsbm(H0
⊕(M)) is a random value when

H0 gets replaced by the random function f .
Hence, with high probability A0 will create for each query Mi of AComb a fresh

signature αMi
. To analyze the corresponding output of A0 we parse his answer in three

parts, namely Comb
f,H1,g
4P&IRO

(Mi) = U1||U2||U3 with |U1| = |U2| = n and |U3| = 3m.
The last part U3 results from the computation lsb3m(f(〈3〉2 ||αMi

)⊕H3
1 (αMi

))⊕g(αMi
).

Since αMi
is uniformly distributed and gets extended by the unique prefix 〈3〉2, the input

value of f(〈3〉2 ||αMi
) is distinct from all other queries to f during the Comb

f,H1,g
4P&IRO

(Mi)
computation, and hence the corresponding output is an independently and uniformly
distributed value. As xor-ing is a good combiner for random functions, the randomness
of f gets preserved in the computation of U3. For the second part U2 we just consider
the final calculation, i.e., U2 = f(〈0〉2 ||Mi) ⊕ f(〈1〉2 ||αMi

||Y) ⊕ H1
1 (αMi

||Y) for some

19

Y ∈ {0, 1}n. Here we prepend the bits 〈1〉2 to the random value αMi
, such that we

have again distinct evaluations of f which gives us uniformly random images. A similar
argumentation holds for U1 = Y ′⊕f(〈2〉2 ||αMi

||Y ′′)⊕H2
1 (αMi

||Y ′′) for Y ′, Y ′′ ∈ {0, 1}n,
where we use the unique prefix 〈2〉2 when querying f in order to obtain values that are
independently and uniformly distributed. Thus, if for all queried messages Mi 6=Mj of
AComb there occurs no collision on the signatures, i.e., αMi

6= αMj
, the values U1||U2||U3

are independent random strings.
Overall, the output distribution of AComb satisfies

Prob
[

Af
0(1

n) = 1
]

≤ Prob
[

AF
Comb(1

n) = 1
]

+ q2 · 2−m.

Thus, the probability that A0 can distinguish H0 from f is not negligible, which con-
tradicts the assumption that H0 is a pseudorandom function. �

Lemma 4.5 The combiner C4P&IRO is MAC-robust.

Proof. The proof is by contradiction. Assume that an adversary AComb with oracle
access to the combiner Comb

H0,H1,g
4P&IRO

outputs with noticeable probability a valid pair

(M, τ) where τ = Comb
H0,H1,g
4P&IRO

(M) and M is distinct from all previous queries to the
MAC-oracle. This allows to construct an adversary Ab against the hash function Hb for
b ∈ {0, 1}.

Adversary Ab first samples Hb ← HKGen1 that it uses together with its own oracle
Hb(·) to answer all queries by AComb in a black-box simulation. When AComb returns a
valid forgery (M, τ), where M 6=M1,M2 . . .Mq, the adversary Ab flips a coin c← {0, 1}
and proceeds as follows:

• If c = 0, then Ab randomly chooses an index k between 1 and q and looks up
the corresponding signature value αMk

. It then computes τ0||τ1 = P 2
α
−1

(lsb2n(τ))
using αMk

and stops with the output (〈0〉2 ||M, τb).

• If c = 1, then Ab queries its oracle about 〈0〉2 ||M to receive an answer y0 and com-
putes αM = y0⊕y1 with y1 = H0

1 (M). It then calculates the first round of the Feis-
tel permutation, i.e., until the evaluation of H2

⊕ where x = y0⊕H
1
0 (αM ||y1) would

be used as input to this function. It outputs as forgery the message (〈2〉2 ||αM ||x)
with tag τ ′ = τb ⊕Hb(〈2〉2 ||αM ||x)⊕ y1 where τ0||τ1 = lsbn(τ).

For the analysis we have to consider two cases of a successful adversary AComb. In
the first case, AComb returns a pair (M, τ), such that αM = αMj

for some j = 1, 2, . . . , q,
i.e., the signature value of M has already been computed for another message Mj 6=M
during Ab’s process of simulating the combiner. Then, if c = 0, the adversary Ab obtains
a valid forgery (〈0〉2 ||M, τb) if it guesses the index j correctly and then inverts the Feistel
step for input lsb2n(τ) and αMj

. The message 〈0〉2 ||M is distinct from all of Ab’s queries,
because 〈0〉2 ||M is distinct from all 〈0〉2 ||Mi and the additional queries of Ab start with
a prefix 〈i〉2 where i ∈ 1, 2, 3. Hence, if AComb forges such a MAC with non-negligible
probability ǫ, then Ab succeeds with probability ǫ/2q.

20

In the second case, AComb outputs (M, τ) where αM has not occurred in Ab’s com-
putations, i.e., αM 6= αMj

for all j = 1, 2, . . . , q. In this case, we have c = 1 with
probability 1/2 where Ab starts its forgery by computing the first round of the Feistel
permutation for input H0

0 (M)||H0
1 (M) and αM = lsbm(H0

⊕(M)), which requires a fur-
ther oracle query about 00||M . The left part of the computed Feistel output is then
x = H0

0 (M) ⊕H1
0 (αM ||H

0
1 (M)) and would serve as input for H2

⊕. The adversary uses
this value together with the fresh signature αM as its output message (〈2〉2 ||αM ||x)
and reconstructs the corresponding tag with the knowledge about the other parameters.
Since αM is distinct from all αMj

, the message (〈2〉2 ||αM ||x) was never queried by Ab

before.
In both cases a successful attack against the combiner Comb

H0,H1,g
4P&IRO

allows successful
attacks on H0 and H1, contradicting the assumption that at least one hash function is
a secure MAC. �

5 Preserving One-Wayness and the C4P&OW Combiner

In this section we first propose a combiner which is simultaneously a combiner for CR

and OW. At the end of this section we discuss how to plug this combiner into our
combiners Comb4P and Comb4P&IRO to derive our constructions Comb4P&OW (cf. Figure
1) and Comb6P (cf. Figure 2), respectively.

Recall that the concatenation combiner

Comb
H0,H1

‖ (M) = H0(M)‖H1(M)

is a robust combiner for the CR property, but its not hard to see that this combiner is not
robust for the one-wayness property OW.5 On the other hand, the following combiner

Comb
H0,H1

OW
(ML‖MR) = H0(ML)‖H1(MR)

is robust for the OW property, i.e. Comb
H0,H1

OW
(ML‖MR) is hard to invert on a random

input from {0, 1}2m, if either H0 or H1 is hard to invert on {0, 1}m. Unfortunately, this
combiner is not robust for CR.6

The basic idea to construct a combiner which is robust for CR and OW is to use the
Comb

H0,H1

‖ combiner, and to apply a pairwise independent permutation (PIP) to the
input of one of the two components. As the length of a description of a PIP is twice its
input length, we have to assume an upper bound on the input length of the components.
We fix the domain of H0 and H1 to {0, 1}5n, but remark that any longer input length
kn, k > 5 would work, but then also the 2kn-bits key for the PIP grows accordingly.
Allowing (much) shorter input length kn for some k < 5 is not possible, as we use the
fact that the input is (at least) 5n bits in the proof.

5Consider e.g. the case where H0(·) is a one-way function on the first n bits of its input (and ignoring
the rest), and H1(·) outputs the first n bits of its input.

6Consider e.g. the case where H0(·) is collision resistant, and H1(·) outputs a constant, then any pair
ML‖MR,ML‖M

′

R gives a collision.

21

5.1 A Combiner for CR and OW

We define the combiner CCR&OW for preserving collision-resistance and one-wayness in a
robust manner as follows. The key generation algorithm of the combiner CKGenCR&OW(1n)
generates H0 ← HKGen0(1

n) and H1 ← HKGen1(1
n) and picks a permutation π from

a family Π of pairwise independent permutations over {0, 1}5n. It outputs (H0, H1, π).
The evaluation algorithm Comb

H0,H1,π
CR&OW

on inputM ∈ {0, 1}5n returnsH0(π(M))||H1(M).
By the following theorem CCR&OW preserves the properties of Comb|| and CombOW si-
multaneously.

Theorem 5.1 The combiner CCR&OW is a strongly robust multi-property combiner for
prop = {CR,TCR,MAC,OW}.

The proof is again split into lemmas for the individual properties.

Lemma 5.2 The combiner CCR&OW is CR-, TCR- and MAC-robust.

Proof. As for the CR and TCR properties, note that given any collision M 6= M ′ for
Comb

H0,H1,π
CR&OW

, we get a collision M,M ′ for H1 and a collision π(M), π(M ′) for H0. Note
that π(M) 6= π(M ′) as π is a permutation.

To see that the MAC property is preserved, observe that given any forgery (M, τ)
for Comb

H0,H1,π
CR&OW

, we get a forgery (π(M), τ0) for H0 and a forgery (M, τ1) for H1 where
τ0‖τ1 = τ . �

Lemma 5.3 The combiner CCR&OW is OW-robust.

Technically, we show the following. Let H0, H1 : {0, 1}5n → {0, 1}n be any hash func-
tions, T = T (n) be arbitrary and Π be a family of pairwise independent permutations
over {0, 1}5n. Then with probability 1 − 2/T over the choice of π ← Π the following
holds: any adversary A that inverts Comb

H0,H1,π
CR&OW

(·) on a random output with proba-

bility at least 2/T , can be used to invert Comb
H0,H1

OW
(·) with probability 2/T 3. Thus, if

we assume that the advantage of every efficient adversary in inverting Comb
H0,H1

OW
(·) is

some negligible value ǫ = 2/T 3, then for an overwhelming 1 − 2/T fraction of the π’s,
the advantage of every adversary inverting Comb

H0,H1,π
CR&OW

(·) is bounded by a negligible
term 2/T .

To get some intuition for our proof, assume there is a “perfect” adversary A who
inverts Comb

H0,H1,π
CR&OW

(·) on every value in its range. We can simply invoke this algorithm

A on an output y0‖y1 generated by the “plain” combiner Comb
H0,H1

OW
(·) = H0(·)||H1(·),

and if now A gives us a preimage M with y0‖y1 = Comb
H0,H1,π
CR&OW

(M) for our advanced

combiner, then this gives us a preimage π(M)‖M with y0‖y1 = Comb
H0,H1

OW
(π(M)‖M)

for the plain combiner. There is one caveat here, namely, even such an ideal A will not
invert an output y0‖y1 = Comb

H0,H1

OW
(M) if y0‖y1 is not in the range of Comb

H0,H1,π
CR&OW

(·).
Using the fact that the H0, H1 are shrinking and π is a PIP, this can be shown to happen
with only small probability (over the choice of π,M).

The general case where A only inverts Comb
H0,H1,π
CR&OW

(·) with some small probability
ǫ is more tricky as here A might invert exactly on these outputs y0‖y1 which are much

22

M

π−1(M0)

π M1 = {x ; H1(x) = y1}

M0 = {x ; H0(x) = y0}

H0 H1

y0 y1

Figure 5: Illustration of Comb
H0,H1,π
CR&OW

and the sets defined in the proof of Claim 1.

more likely to be outputs of Comb
H0,H1,π
CR&OW

(·) than of Comb
H0,H1

OW
(·), and thus would be

of limited use for inverting Comb
H0,H1

OW
(·). In the proof below we show that for most

choices of π, A has still success probability Ω(ǫ3) in inverting Comb
H0,H1

OW
(·) even if A

shows such worst-case behavior.

Proof (of Lemma 5.3). Let H0, H1 be fixed, we prove that for a 1− 2/T fraction of the
π ∈ Π the following holds: If an adversary A inverts Comb

H0,H1,π
CR&OW

(·) with probability

2/T , this adversary also inverts the one-way combiner Comb
H0,H1

OW
(·) (and thus also H0

and H1) with probability at least 1/2T 3.
We first relate the output distribution of the combiner Comb

H0,H1,π
CR&OW

with the output

distribution of the one-wayness combiner Comb
H0,H1

OW
. Call a tuple (π, y0||y1) bad if it is

more than 2T 2 times more likely to be an output of Comb
H0,H1,π
CR&OW

than of Comb
H0,H1

OW
(·) =

H0(·)||H1(·). That is, (π, y0||y1) is called bad iff

ProbM [Comb
H0,H1,π
CR&OW

(M) = y0||y1]

≥ 2 · T 2 · ProbM0,M1
[Comb

H0,H1

OW
(M0||M1) = y0||y1] (3)

which, by definition, means

ProbM [H0(π(M)) = y0 ∧H1(M) = y1]

≥ 2 · T 2 · ProbM0,M1
[H0(M0) = y0 ∧H1(M1) = y1]. (4)

The following Claim bounds the probability of a tuple (sampled in a particular way) to
be bad:

Claim 1:

Probπ,M [(π,Comb
H0,H1,π
CR&OW

(M)) is bad] ≤ 2/T 2

Proof. To save on notation, we let τ denote the probability space defined by the following
process:

π ← Π , M ← {0, 1}5n , y0 := H0(π(M)) , y1 := H1(M) (5)

With this, we can write the statement of the claim as

Probτ [(π, y0‖y1) is bad] ≤ 2/T 2 (6)

23

Plugging the definition (4) of “being bad” into (6) we get

Probτ [ProbM ′ [H0(π(M
′)) = y0 ∧H1(M

′) = y1]

≥ 2 · T 2 · ProbM0,M1
[H0(M0) = y0 ∧H1(M1) = y1]] (7)

≤ 2/T 2

For fixed y0, y1 ∈ {0, 1}
n, π ∈ Π we letMb denote the preimages of yb under Hb, that is,

M0
def
= {x : H0(x) = y0}, M1

def
= {x : H1(x) = y1}, π−1(M0)

def
= {x : π(x) ∈M0}.

We can now express the terms in (7) as:

ProbM0,M1
[H0(M0) = y0 ∧H1(M1) = y1] =

|M0|

25n
|M1|

25n
(8)

ProbM ′ [H0(π(M
′)) = y0 ∧H1(M

′) = y1] =
|π−1(M0) ∩M1)|

25n
(9)

Equation (8) is simply the probability that the randomM0 ← {0, 1}
5n falls intoM0 and

that M1 ← {0, 1}
5n falls intoM1. To see eq.(9) note that H0(m(M ′))‖H1(M

′) = y0‖y1
if and only if M ′ ∈ π−1(M0) ∩M1.

Plugging (8),(9) into (7) (and multiplying with 25n) we can rewrite the statement of
the claim as

Probτ

[

|π−1(M0) ∩M1| ≥ T
2 · 2
|M0||M1|

25n

]

≤
2

T 2
. (10)

We claim that Eτ

[

|π−1(M0) ∩M1|
]

, the expected number of preimages of y0‖y1 (sam-

pled according to τ) under Comb
H0,H1,π
CR&OW

, can be expressed as

Eτ

[

|π−1(M0) ∩M1|
]

= Eτ

[

1 +
(|M0| − 1)(|M1| − 1)

25n − 1

]

(11)

This can be seen as follows. A way to sample a variable with the same expectation
as |π−1(M0) ∩M1| is to sample M,π(M) (i.e., only the output of π on input M , but
not the entire π) which defines y0‖y1 := H0(π(M))‖H1(M). Now, one preimage of
y0‖y1 isM (this is accounted for by the term “1+” above), and for every of the |M1|−1
otherM ′ ∈M1 we have another preimage if π(M ′) ∈M0. As π is pairwise independent,
π(M ′) is uniform inM0\π(M), thus this happens with probability (|M0|−1)/(2

5n−1).
To get some intuition, assume for the moment thatM0 andM1 are “large”, say of

size at least 23n. Then we can essentially ignore the “1+” and “−1” terms in (11) and
the statement becomes roughly

Eτ

[

|π−1(M0) ∩M1|
]

≈ Eτ

[

|M0||M1|/2
5n
]

This would allow us to relate the probabilities (8) and (9), and applying Markov’s
inequality would prove the claim. Thus to prove the claim we first show thatM0,M1

are indeed very large with high probability, and then we will work out the details of the
outlined intuition.

24

For any function f : {0, 1}5n → {0, 1}n, the probability that a random image has
less than 23n preimages is at most 2−n, i.e.

Probx←{0,1}5n
[

|{x′ : f(x′) = f(x)}| < 23n
]

≤ 2−n (12)

This holds as at most 2n−1 (i.e. all except one) values in the range {0, 1}n of f can have
< 23n preimages. So at most (2n− 1)(23n− 1) < 24n values in {0, 1}5n are mapped by f
to an image with < 23n preimages under f . The probability that a random x← {0, 1}5n

falls into this set is ≤ 25n/24n = 2−n. Using (12) and the definitions of M0,M1, we
conclude

Probτ [|M0| < 23n] ≤ 2−n and Probτ [|M1| < 23n] ≤ 2−n.

Applying the union bound we get an upper bound on the probability that either set is
small as

Probτ [|M0| < 23n ∨ |M1| < 23n] ≤ 2 · 2−n. (13)

Hence, except with probability 2 ·2−n (which becomes smaller than 1/T 2 for sufficiently
large n’s), we have |M0| ≥ 23n and |M1| ≥ 23n, let us call this event E . A short
calculation shows that in this case

E implies 1 +
(|M0| − 1)(|M1| − 1)

25n − 1
≤ 2
|M0||M1|

25n
, (14)

We can now prove (10). For this, let Z = |π−1(M0) ∩M1|. In the second step below
we use the fact, established by equations (11) to (14), that conditioned on E we have
Eτ [Z] ≤ Eτ [2|M0||M1|/2

5n]. We use Markov’s inequality and equation (13) in the third
step below.

Probτ

[

Z ≥ T 2 · 2
|M0||M1|

25n

]

≤ Probτ [E]Probτ

[

Z ≥ T 2 · 2
|M0||M1|

25n
| E

]

+Probτ [¬E]Probτ

[

Z ≥ T 2 · 2
|M0||M1|

25n
| ¬E

]

≤ Probτ [Z ≥ T
2 · E[Z]|E] + Probτ [¬E]

≤ 1/T 2 + 2 · 2−n ≤ 2/T 2

This concludes the proof of the claim. �

Using Markov’s inequality once more the claim implies

Probπ[ProbM [(π,Comb
H0,H1,π
CR&OW

(M)) is bad] ≤ 1/T] ≥ 1− 2/T. (15)

We will now show that with probability 1− 2/T over the choice of π ← Π the following
holds: any adversary A that inverts Comb

H0,H1,π
CR&OW

(·) on a random output with probability

at least 2/T , can be used to invert Comb
H0,H1

OW
(·) with probability 2/T 3. This will imply

the Lemma as explained in the paragraph after the statement of the Lemma.

25

The 1− 2/T fraction of π’s we will conisder are all π ∈ Π where

ProbM [(π,Comb
H0,H1,π
CR&OW

(M)) is bad] =

ProbM [(π,H0(π(M)‖H1(M)) is bad] ≤ 1/T (16)

by eq.(15) a random π ← Π will indeed satisfy this with probability 1− 2/T .
Now consider any π satisfying (16) and any adversaryA who inverts a random output

y0‖y1 = Comb
H0,H1,π
CR&OW

(M) with probability 2/T (wlog. we assume A is deterministic).
As by eq.(16) such a random output (π, y0‖y1) is bad with probability at most 1/T , it
follows that such a random output simultaneously is good and A finds a preimage with
probability at least 2/T − 1/T = 1/T . Let Y ⊂ {0, 1}2n denote this set, i.e.

Y = {y0‖y0 : (π, y0‖y1) is good and Comb
H0,H1,π
CR&OW

(AH0,H1(π, y0‖y1)) = y0‖y1}

As explained above
ProbM [Comb

H0,H1,π
CR&OW

(M) ∈ Y] ≥ 1/T

As Y only contains good outputs, by definition (cf. eq.(3)) the probability that the
output of the one-way combiner Comb

H0,H1

OW
(·) on a random input falls into Y is at most

2T 2 times smaller than the probability that the output of Comb
H0,H1,π
CR&OW

(·) on a random
input falls into Y, which as just shown is at least 1/T , thus

ProbM0,M1
[Comb

H0,H1

OW
(M0||M1) ∈ Y] ≥

1

T
·

1

2T 2
=

1

2T 3

As by definition of Y the adversary A inverts all values in Y, A on input a random output
y0‖y1 of Comb

H0,H1

OW
will find a preimage M ′ for this output with probability at least

1/2T 3. Although A outputs a preimageM ′ for the wrong combiner Comb
H0,H1,π
CR&OW

(M ′) =
y0‖y1, from this we can easily compute a preimageM ′0‖M

′
1 := π(M ′)‖M ′1 for the one-way

combiner CombOW(M ′0‖M
′
1) = y0‖y1. �

5.2 Combining Things

We can now plug the combiner CCR&OW into the initial computation of our combiner C4P.
That is, we replace the initial computation H0

0 (M)||H0
1 (M) in our original combiner by

H0
0 (π(M))||H0

1 (M) for messages of 5n bits. Note that if Hb(·) is one way on inputs of
length 5n + 2, then also H0

b (·) is one-way on inputs of length 5n, and we only lose a
factor of 4 in the security.

More formally, in our combiner C4P&OW = (CKGen4P&OW,Comb4P&OW) for func-
tions H0,H1 the key generation algorithm generates a tuple (π,H0, H1) consisting of
a pairwise independent permutation π (over {0, 1}5n) and two hash functions H0 ←
HKGen0(1

n) and H1 ← HKGen1(1
n). The evaluation algorithm Comb

H0,H1,π
4P&OW

for input
M ∈ {0, 1}5n computes P 3(H0

0 (π(M))||H0
1 (M)) where P 3 is the Feistel permutation

P 3 = ψ[H1
⊕, H

2
⊕, H

3
⊕]. Note that applying a permutation to the output of a one-way

function does not violate the one-way property. We have already proved that the other
three properties CR,TCR,MAC which are preserved by CCR&OW are not affected by ap-
plying a permutation in Section 3.

26

Theorem 5.4 The combiner C4P&OW is a strongly robust multi-property combiner for
prop = {CR,PRF,TCR,MAC,OW}.

Applying the modifications from Section 5 and the combiner Comb4P&IRO from Sec-
tion 4 together, we derive our construction C6P (cf. Figure 2). This construction is defined
like C4P&IRO, where one additionally applies a pairwise-independent permutation over
{0, 1}kn (with k ≥ 5) to the input of H0

0 .

Theorem 5.5 The combiner C6P is a strongly robust multi-property combiner for prop =
{CR,TCR,PRF,MAC,OW, IRO}.

6 Weak vs. Mild vs. Strong Robustness

In this section we revert to our different notions of multi-property robustness as in-
troduced in Section 2.2, and analyze the relations among the three variants. The first
proposition shows that strong robustness implies mild robustness which, in turn, implies
weak robustness. The proof is straightforward and given only for sake of completeness:

Proposition 6.1 Let prop be a set of properties. Then any strongly robust multi-
property combiner for prop is also mildly robust for prop, and any mildly robust com-
biner for prop is also weakly robust for prop.

Proof. Assume that the combiner is sMPR for prop. Suppose further that prop(C) 6⊆
prop such that there is some property Pi ∈ prop− prop(C). Then, since the combiner
is sMPR, we must also have Pi /∈ prop(H0) ∪ prop(H1), else we derive a contradiction
to the strong robustness. We therefore have prop 6⊆ prop(H0) ∪ prop(H1), implying
mild robustness via the contrapositive statement.

Now consider an mMPR combiner and assume prop = prop(H0) or prop =
prop(H1). Then, in particular, prop = prop(H0)∪prop(H1) and the mMPR property
says that also prop = prop(C). This proves sMPR. �

To separate the notions we consider the collision-resistance property CR and the
property NZ (non-zero output) that the hash function should return 0 · · · 0 with small
probability only. This may be for example required if the hash value should be inverted
in a field:

non-zero output (NZ): A hash function H has property NZ if for any efficient ad-
versary A the probability that for H ← HKGen(1n) and M ← A(H) we have
H(M) = 0 · · · 0, is negligible.

Lemma 6.2 Let prop = {CR,NZ} and assume that collision-resistant hash functions
exist. Then there is a hash function combiner which is weakly multi-property robust for
prop, but not mildly multi-property robust for prop.

Proof. Consider the following combiner (with the standard key generation, (H0, H1)←
CKGen(1n) for H0 ← HKGen0(1

n) and H1 ← HKGen1(1
n)):

27

The combiner for input M first checks that the length of M is even, and if
so, divides M = L||R into halves L and R, and checks

• that H0(L) 6= H0(R) if L 6= R, and that H0(M) 6= 0 · · · 0,

• that H1(L) 6= H1(R) if L 6= R, and that H1(M) 6= 0 · · · 0.

If the length of M is odd or any of the two properties above holds, then the
combiner outputs H0(M)||H1(M). In any other case, it returns 02n.

We first show that the combiner is weakly robust. For this assume that the hash
function Hb for b ∈ {0, 1} has both properties. Then the combiner returns the excep-
tional output 02n only with negligible probability, namely, if one finds an input with a
non-trivial collision under Hb which also refutes property NZ. In any other case, the
combiner’s output H0(M)||H1(M) inherits the properties CR and NZ from hash function
Hb.

Next we show that the combiner is not mMPR. Let H ′1 be a collision-resistant hash
function with n − 1 bits output (and let H1 include a description of H ′1). Define the
following hash functions:

H0(M) = 1n, H1(M) =

{

0n if M = 0n1n

1||H ′1(M) else
.

Clearly, H0 has property NZ but is not collision-resistant. On the other hand, H1 obeys
CR but not NZ, as 0n1n is mapped to zeros. But then we have prop = {CR,NZ} =
prop(H0) ∪ prop(H1) and mild robustness now demands that the combiner, too, has
these two properties. Yet, for inputM = 0n1n the combiner returns 02n since the length
of M is even, but L = 0n and R = 1n collide under H0, and M is thrown to 0n under
H1. This means that the combiner does not obey property NZ. �

Lemma 6.3 Let prop = {CR,NZ}. Then there exists a hash function combiner which
is mildly multi-property robust for prop, but not strongly multi-property robust for prop.

Proof. Consider the following combiner (again with standard key generation):

The combiner for inputM first checks that the length ofM is even, and if so,
dividesM = L||R into halves L and R and then verifies that H0(L) 6= H0(R)
or H1(L) 6= H1(R) or L = R. If any of the latter conditions holds, or the
length ofM is odd, then the combiner outputs H0(M)||H1(M). In any other
case it returns 02n.

We first prove that the combiner is mMPR. Given that prop ⊆ prop(H0) ∪ prop(H1)
at least one of the two hash functions is collision-resistant. Hence, even for M = L||R
with even length and L 6= R, the hash values only collide with negligible probability.
In other words, the combiner outputs H0(M)||H1(M) with overwhelming probability,
implying that the combiner too has properties CR and NZ.

Now consider the constant hash functions H0(M) = H1(M) = 1n for all M . Clearly,
both hash functions obey property NZ ∈ prop(H0) ∪ prop(H1). Yet, for input 0n1n

28

the combiner returns 02n such that NZ /∈ prop(C), implying that the combiner is not
strongly robust. �

The proof indicates how mildly (or weakly) robust combiners may take advantage of
further properties to implement other properties. It remains open if one can find similar
separations for the popular properties like CR and PRF, or for CR and IRO.

7 Multiple Hash Functions and Tree-Based Composition

of Combiners

So far we have considered combiners for two hash functions. The multi-property robust-
ness definition extends to the case of more hash functions as follows:

Definition 7.1 For a set prop = {P1,P2, . . . ,PN} of properties an m-function com-
biner C = (CKGen,Comb) for hash functions H0,H1, . . . ,Hm−1 is called

weakly multi-property robust (wMPR) for prop iff

∃j ∈ {0, 1, . . . ,m− 1} s.t. prop = prop(Hj) =⇒ prop = prop(C),

mildly multi-property robust (mMPR) for prop iff

prop =
m−1
⋃

j=0

prop(Hj) =⇒ prop = prop(C),

and strongly multi-property robust (sMPR) for prop iff for all Pi ∈ prop,

Pi ∈
m−1
⋃

j=0

prop(Hj) =⇒ Pi ∈ prop(C).

For the above definitions we still have that sMPR implies mMPR and mMPR implies
wMPR. The proof is a straightforward adaption of the case of two hash functions.

Given a combiner for two hash functions one can build a combiner for three or more
hash functions by considering the two-function combiner itself as a hash function and
applying it recursively. For instance, to combine three hash functions H0,H1,H2 one
may define the “cascaded” combiner by C2(C2(H0,H1),H2), where we assume that the
output of C2 allows to be used again as input to the combiner on the next level.

More generally, given m hash functions and a two-function combiner C2 we define
an m-function combiner Cmulti as a binary tree, as suggested for general combiners by
[18]. Each leaf is labeled by one of the m hash functions (different leaves may be labeled
by the same hash function). Each inner node, including the root, with two descendants
labeled by F0 and F1, is labeled by C2(F0,F1).

The key generation algorithm for this tree-based combiner now runs the key gener-
ation algorithm for the label at each node (each run independent of the others, even if

29

two nodes contain the same label). To evaluate the multi-hash function combiner one
inputs M into each leaf and computes the functions outputs recursively up to the root.
The output of the root node is then the output of Cmulti. We call this a combiner tree
for C2 and H0,H1, . . . ,Hm−1.

For efficiency reasons we assume that there are at most polynomially many com-
biner evaluations in a combiner tree. Also, to make the output dependent on all hash
functions we assume that each hash function appears in (at least) one of the leaves. If a
combiner tree obeys these properties, we call it an admissible combiner tree for C2 and
H0,H1, . . . ,Hm−1.

We first show that weak MPR and strong MPR preserve their properties for admis-
sible combiner trees:

Proposition 7.2 Let C2 be a weakly (resp. strongly) multi-property robust two-function
combiner for prop. Then any admissible combiner tree for C2 and functions H0,H1, . . . ,
Hm−1 for m ≥ 2 is also weakly (resp. strongly) multi-property robust for prop.

Proof. We give the proof by induction for the depth of the tree. For depth d = 1 we
have m = 2 and Cmulti(H0,H1) = C2(H0,H1) or Cmulti(H0,H1) = C2(H1,H0) and the
claim follows straightforwardly for both cases.

Now assume d > 1 and that combiner C2 is wMPR. Then the root node applies C2 to
two nodes N0 and N1, labeled by F0 and F1. Note that by the wMPR prerequisite we
assume that there exists one hash function Hj which has all properties in prop. Since
this hash functions appears in at least one of the subtrees under N0 or N1, it follows by
induction that at least one of the functions F0 and F1, too, has properties prop. But
then the combiner application in the root node also inherits these properties from its
descendants.

Now consider d > 1 and the case of strong MPR. It follows analogoulsy to the
previous case that for each property Pi ∈ prop, one of the hash functions in the subtrees
rooted at N0 and N1 must have property Pi as well. This carries over to the combiners
at nodes N0 or N1 by induction, and therefore to the root combiner. �

Somewhat surprisingly, mild MPR in general does not propagate security for tree
combiners, as we show by a counter-example below. Note that we still obtain, via the
previous proposition, that the mMPR combiner is also wMPR and that the resulting
tree combiner is thus also wMPR. Yet, it loses its mMPR property.

Proposition 7.3 Let prop = {CR,NZ} and assume that there are collision-resistant
hash functions. Then there exists a two-function mildly robust multi-property combiner
C2 for prop, and hash functions H0,H1,H2 such that the admissible tree combiner for
C2 is not mildly multi-property robust for prop.

Proof. Consider the following two-function combiner C2 for hash functions H0,H1 (again
with standard key generation):

For input M check that the length of M is even and, if so, divide M = L||R
into halves L and R. If H0(L) = H0(R) and H1(L) = H1(R) and L 6= R, or

30

we have H0(M) = 0 · · · 0 and H1(M) = 0 · · · 0, then output 0|H0(M)|+|H1(M)|.
Else, or if the length of M is odd, return H0(M)||H1(M).

It is easy to verify that this is an mMPR two-function combiner for prop. Now consider
the following hash functions, where H ′2 is a collision-resistant hash function with n− 1
bits output:

H0(M) = 1n, H1(M) = 1n, H2(M) =

{

0n if M = 0n1n

1||H ′2(M) else
.

Then prop(H0) = prop(H1) = {NZ} and prop(H2) = {CR} such that prop =
⋃

prop(Hj).
Consider the following tree combiner defined through C(H0,H1,H2) =

C2(C2(H0,H1),H2), i.e., which cascades the three hash functions. Then the inner appli-
cation of C2 yields a hash function which returns 02n for message M = 0n1n. Since this
message also causes H2 to return 0n the tree combiner runs into the exception case and
returns 03n for this input. Hence, the tree combiner does not have property NZ. �

Note that the cascading combiner can also be applied to all our proposed MPR
combiners to compose three or more hash functions. The derived combiner, however, is
less efficient than the direct construction sketched there.

Acknowledgments

We thank the anonymous reviewers for valuable comments. Most of this work was
done while the second author was at Darmstadt University of Technology. The first and
second author were supported by the Emmy Noether Program Fi 940/2-1 of the German
Research Foundation (DFG). The first author is also supported by a Heisenberg grant
Fi 940/3-1 of the German Research Foundation (DFG).

References

[1] Open source implementation of the Com4P combiner.
http://files.randombit.net/botan/doxygen/html/classBotan 1 1Comb4P.html,
2010.

[2] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-
property-preserving iterated hashing: ROX. In Advances in Cryptology — Asi-
acrypt 2007, volume 4833 of LNCS, pages 130–146. Springer-Verlag, 2007.

[3] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology — Crypto 1996, volume 96 of LNCS,
pages 1–15. Springer-Verlag, 1996.

31

[4] Mihir Bellare and Thomas Ristenpart. Multi-property preserving hash domain
extensions and the EMD transform. In Advances in Cryptology — Asiacrypt 2006,
volume 4284 of LNCS, pages 299–314. Springer-Verlag, 2006.

[5] Mihir Bellare and Thomas Ristenpart. Hash functions in the dedicated-key setting:
Design choices and MPP transforms. In International Colloquium on Automata,
Languages, and Programming (ICALP) 2007, volume 4596 of LNCS, pages 399–410.
Springer-Verlag, 2007.

[6] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption — how to
encrypt with RSA. In Advances in Cryptology — Eurocrypt 1994, volume 950 of
LNCS, pages 92–111. Springer-Verlag, 1994.

[7] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures — how
to sign with RSA and Rabin. In Advances in Cryptology — Eurocrypt 1996, volume
1070 of LNCS, pages 399–416. Springer-Verlag, 1996.

[8] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Advances in Cryptology — Eurocrypt
2006, volume 4004 of LNCS, pages 409–426. Springer-Verlag, 2006.

[9] Alexandra Boldyreva and Marc Fischlin. Analysis of random oracle instantiation
scenarios for OAEP and other practical schemes. In Advances in Cryptology —
Crypto 2005, volume 3621 of LNCS, pages 412–429. Springer-Verlag, 2005.

[10] Alexandra Boldyreva and Marc Fischlin. On the security of OAEP. In Advances
in Cryptology — Asiacrypt 2006, volume 4284 of LNCS, pages 210–225. Springer-
Verlag, 2006.

[11] Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining collision
resistant hash functions. In Advances in Cryptology — Crypto 2006, volume 4117
of LNCS, pages 570–583. Springer-Verlag, 2006.

[12] Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan, Salil P. Vadhan, and
Hoeteck Wee. Amplifying collision resistance: A complexity-theoretic treatment.
In Advances in Cryptology — Crypto 2007, volume 4622 of LNCS, pages 264–283.
Springer-Verlag, 2007.

[13] Christophe De Cannière and Christian Rechberger. Preimages for reduced SHA-0
and SHA-1. In Advances in Cryptology — Crypto 2008, volume 5157 of LNCS,
pages 179–202. Springer-Verlag, 2008.

[14] Jean-Sebastien Coron, Yevgeniy Dodis, Cecile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard revisited: How to construct a hash function. In Advances in
Cryptology — Crypto 2005, volume 3621 of LNCS, pages 430–448. Springer-Verlag,
2005.

32

[15] Marc Fischlin and Anja Lehmann. Security-amplifying combiners for hash func-
tions. In Advances in Cryptology — Crypto 2007, volume 4622 of LNCS, pages
224–243. Springer-Verlag, 2007.

[16] Marc Fischlin and Anja Lehmann. Multi-property preserving combiners for hash
functions. In Theory of Cryptography Conference (TCC) 2008, volume 4948 of
LNCS, pages 375–392. Springer-Verlag, 2008.

[17] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust multi-property
combiners for hash functions revisited. In International Colloquium on Automata,
Languages, and Programming (ICALP) 2008, volume 5126 of LNCS, pages 655–666.
Springer-Verlag, 2008.

[18] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In Advances in Cryptology
— Eurocrypt 2005, volume 3494 of LNCS, pages 96–113. Springer-Verlag, 2005.

[19] Amir Herzberg. On tolerant cryptographic constructions. In Topics in Cryptology
— Cryptographer’s Track, RSA Conference (CT-RSA) 2005, volume 3376 of LNCS,
pages 172–190. Springer-Verlag, 2005.

[20] Amir Herzberg. Folklore, practice and theory of robust combiners. Journal of
Computer Security, 17(2):159–189, 2009.

[21] Jonathan Hoch and Adi Shamir. On the strength of the concatenated hash combiner
when all the hash functions are weak. In International Colloquium on Automata,
Languages, and Programming (ICALP) 2008, volume 5126 of LNCS, pages 616–630.
Springer-Verlag, 2008.

[22] Jonathan Katz and Ji Sun Shin. Modeling insider attacks on group key-exchange
protocols. In Proceedings of the Annual Conference on Computer and Communi-
cations Security (CCS). ACM Press, 2005.

[23] Anja Lehmann and Stefano Tessaro. A modular design for hash functions: Towards
making the mix-compress-mix approach practical. In Advances in Cryptology —
Asiacrypt 2009, volume 5912 of LNCS, pages 364–381. Springer-Verlag, 2009.

[24] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[25] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodology.
In Theory of Cryptography Conference (TCC) 2004, volume 2951 of LNCS, pages
21–39. Springer-Verlag, 2004.

[26] Moni Naor and Omer Reingold. On the construction of pseudorandom permuta-
tions: Luby-Rackoff revisited. Journal of Cryptology, 12(1):29–66, 1999.

33

[27] NIST. National institute of standards and technology: SHA-3 competition.
http://csrc.nist.gov/groups/ST/hash/sha-3/.

[28] Krzysztof Pietrzak. Non-trivial black-box combiners for collision-resistant hash-
functions don’t exist. In Advances in Cryptology — Eurocrypt 2007, volume 4515
of LNCS, pages 23–33. Springer-Verlag, 2007.

[29] Krzysztof Pietrzak. Compression from collisions, or why CRHF combiners have a
long output. In Advances in Cryptology — Crypto 2008, volume 5157 of LNCS,
pages 413–432. Springer-Verlag, 2008.

[30] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik, , and Benne de Weger. Short chosen-prefix collisions for MD5 and
the creation of a rogue CA certificate. In Advances in Cryptology — Crypto 2009,
volume 5677 of LNCS, pages 55–73. Springer-Verlag, 2009.

[31] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Advances in Cryptology — Crypto 2005, volume 3621 of LNCS, pages
17–36. Springer-Verlag, 2005.

[32] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Advances in Cryptology — Eurocrypt 2005, volume 3494 of LNCS, pages 19–35.
Springer-Verlag, 2005.

34

