
Universally Composable Direct Anonymous
Attestation?

Jan Camenisch1, Manu Drijvers1,2, and Anja Lehmann1

1 IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
{jca,mdr,anj}@zurich.ibm.com

2 Department of Computer Science, ETH Zürich, 8092 Zürich, Switzerland

Abstract. Direct Anonymous Attestation (DAA) is one of the most
complex cryptographic algorithms that has been deployed in practice. In
spite of this and the long body of work on the subject, there is still no
fully satisfactory security definition for DAA. This was already acknowl-
edged by Bernard et al. (IJIC’13) who showed that in existing models
even insecure protocols can be proven secure. Bernard et al. therefore
proposed an extensive set of security games which, however, aim only
at a simplified setting termed pre-DAA. In pre-DAA the host platform
that runs a TPM is assumed to be trusted. Consequently, their notion
does not guarantee any security if a TPM is embedded in a potentially
corrupt host which is a significant restriction. In this paper, we give a
comprehensive security definition for full DAA in the form of an ideal
functionality in the Universal Composability model. Our definition con-
siders the host and TPM to be separate entities that can be in different
corruption states. None of the existing DAA schemes satisfy our strong
security notion. We therefore propose a realization that is based on a
DAA scheme supported by the TPM 2.0 standard and prove it secure in
our model.

1 Introduction

Direct Anonymous Attestation (DAA) allows a small chip, the Trusted Platform
Module (TPM), that is embedded in a host computer to create attestations about
the state of the host system. Such attestations, which can be seen as signatures
on the current state under the TPM’s secret key, convince a remote verifier that
the system it is communicating with is running on top of certified hardware and
is using the correct software. A crucial feature of DAA is that it performs such
attestations in a privacy-friendly manner. That is, the user of the host system
can choose to create attestations anonymously ensuring that her transactions
are unlinkable and do not leak any information about the particular TPM being
used. User-controlled linkability is also allowed and is steered by a basename
bsn: attestations under a fresh or empty basename can not be linked whereas
repeated use of a basename makes the corresponding transactions linkable.

? An extended abstract of this work was published at PKC2016. This is the full version.



DAA is one of the most complex cryptographic protocols deployed in prac-
tice. The Trusted Computing Group (TCG), the industry standardization group
that designed the TPM, standardized the first DAA protocol in the TPM 1.2
specification in 2004 [23] and included support for multiple DAA schemes in the
TPM 2.0 specification in 2014 [24]. Over 500 million computers with TPM chips
have been sold3, making DAA one of the largest deployments of such a complex
cryptographic scheme. This sparked a strong interest in the research community
in the security and efficiency of DAA schemes [3, 5–7,14–18].

Direct Anonymous Attestation has recently also gained the attention of the
FIDO alliance which aims at basing online authentication on strong cryptogra-
phy rather than passwords. The FIDO approach is to choose a fresh key pair for
every user account, to provide the public key to the service provider, and to au-
thenticate users via the corresponding secret key. Adding DAA to this approach
allows one to prove that the secret key is properly stored on and protected by a
trusted platform.

Existing Security Definitions. Interestingly, in spite of the large scale deploy-
ment and the long body of work on the subject, DAA still lacks a sound and
comprehensive security definition. There exist a number of security definitions in
the literature. Unfortunately all of them have rather severe shortcomings such as
allowing for obviously broken schemes to be proven secure. This was recently dis-
cussed by Bernard et al. [3] who provide an analysis of existing security notions
and also propose a new security definition. In a nutshell, the existing definitions
that capture the desired security properties in form of an ideal functionality ei-
ther miss to treat signatures as concrete objects that can be output or stored
by the verifier [5] or are unrealizable [14,17]. The difficulty in defining a proper
ideal functionality for the complex DAA setting might not be all that surpris-
ing considering the numerous (failed) attempts in modeling the much simpler
standard signature scheme in the universal composability framework [1, 13].

Another line of work therefore aimed at capturing the DAA requirements in
the form of game-based security properties [3, 7, 15] as a more intuitive way of
modeling. However, the first attempts [7, 15] have missed to cover some of the
expected security properties and also have made unconventional choices when
defining unforgeability (the latter resulting in schemes being considered secure
that use a constant value as signatures).

Realizing that the previous definitions were not sufficient, Bernard et al. [3]
provided an extensive set of property-based security games. The authors con-
sider only a simplified setting which they call pre-DAA. The simplification is
that the host and the TPM are considered as single entity (the platform), thus
they are both either corrupt or honest. For properties such as anonymity and
non-frameability this is sufficient as they protect against a corrupt issuer and
assume both the TPM and the host to be honest. Unforgeability of a TPM at-
testation, however, should rely only on the TPM being honest but allow the
host to be corrupt. This cannot be captured in their model. In fact, shifting the

3 http://www.trustedcomputinggroup.org/solutions/authentication



load of the computational work to the host without affecting security in case the
host is corrupted is one of the main challenges when designing a DAA scheme.
Therefore, a DAA security definition should allow one to formally analyze the
setting of an honest TPM and a corrupt host.

This is also acknowledged by Bernard et al. [3] who, after proposing a pre-
DAA secure protocol, argue how to obtain a protocol achieving full DAA security.
Unfortunately, due to the absence of a full DAA security model, this argumen-
tation is done only informally. In this paper we show that their argumentation
is actually somewhat flawed: the given proof for unforgeability of the given pre-
DAA proof can not be lifted (under the same assumptions) to the full DAA
setting. This highlights the fact that an “almost matching” security model to-
gether with an informal argument of how to achieve the actually desired security
does not provide sound guarantees beyond what is formally proved.

Thus still no satisfying security model for DAA exists to date. This lack of
a sound security definition is not only a theoretic problem but has resulted in
insecure schemes being deployed in practice. A DAA scheme that allows any-
one to forge attestations (as it does not exclude the “trivial” TPM credential
(1, 1, 1, 1)) has even been standardized in ISO/IEC 20008-2 [18,20].

Our Contributions. We tackle the challenge of formally defining Direct Anony-
mous Attestation and provide an ideal functionality for DAA in the Univer-
sal Composability (UC) framework [12]. Our functionality models hosts and
TPMs as individual parties who can be in different corruption states and com-
prises all expected security properties such as unforgeability, anonymity, and
non-frameability. The model also includes verifier-local revocation where a veri-
fier, when checking the validity of a signature, can specify corrupted TPMs from
which he no longer accepts signatures.

We choose to define a new model rather than addressing the weaknesses
of one of the existing models. The latest DAA security model by Bernard et
al. [3] seem to be the best starting point. However, as their model covers pre-
DAA only, changing all their definitions to full DAA would require changes to
almost every aspect of them. Furthermore, given the complexity of DAA, we
believe that the simulation-based approach is more natural as one has a lower
risk of overlooking security properties. A functionality provides a full description
of security and no oracles have to be defined as the adversary simply gets full
control over corrupt parties. Furthermore, the UC framework comes with strong
composability guarantees that allow for protocols to be analyzed individually
and preserve that security when being composed with other protocols.

None of the existing DAA constructions [3, 6, 7, 16, 18] satisfy our notion of
security. Therefore, we also propose a modified version of recent DAA schemes [3,
18] that are built from pairing-based Camenisch-Lysyanskaya signatures [9] and
zero-knowledge proofs. We then rigorously prove that our scheme realizes our
new functionality. By the universal composition theorem, this proves that our
scheme can be composed in arbitrary ways without losing security.



Organization. The rest of this paper is structured as follows. We start with
a detailed discussion of existing DAA security definitions in Section 2, with a
focus on the latest one by Bernard et al. [3]. Section 3 then presents our new
definition in the form of an ideal functionality in the UC framework. Section 4
introduces the building blocks required for our DAA scheme, which is presented
in Section 5. The latter section also contains a discussion why the existing DAA
schemes could not be proven secure in our model. The proof that the new DAA
scheme fulfills our definition of security is sketched in Section 6 (the complete
proof is given in Appendix B).

2 Issues in Existing Security Definitions

In this section we briefly discuss why current security definitions do not properly
capture the security properties one would expect from a DAA scheme. Some of
the arguments were already pointed out by Bernard et al. [3], who provide a
thorough analysis of the existing DAA security definitions and also propose a
new set of definitions. For the sake of completeness, we summarize and extend
their findings and also give an assessment of the latest definition by Bernard et
al.

Before discussing the various security definitions and their limitation, we
informally describe how DAA works and what are the desired security properties.
In a DAA scheme, we have four main entities: a number of trusted platform
modules (TPM), a number of hosts, an issuer, and a number of verifiers. A
TPM and a host together form a platform which performs the join protocol with
the issuer who decides if the platform is allowed to become a member. Once
being a member, the TPM and host together can sign messages with respect
to basenames bsn. If a platform signs with bsn = ⊥ or a fresh basename, the
signature must be anonymous and unlinkable to previous signatures. That is,
any verifier can check that the signature stems from a legitimate platform via a
deterministic verify algorithm, but the signature does not leak any information
about the identity of the signer. Only when the platform signs repeatedly with
the same basename bsn 6= ⊥, it will be clear that the resulting signatures were
created by the same platform, which can be publicly tested via a (deterministic)
link algorithm.

One requires the typical completeness properties for signatures created by
honest parties:

Completeness: When an honest platform successfully creates a signature on a
message m w.r.t. a basename bsn, an honest verifier will accept the signature.

Correctness of Link: When an honest platform successfully creates two sig-
natures, σ1 and σ2, w.r.t. the same basename bsn 6= ⊥, an honest verifier
running a link algorithm on σ1 and σ2 will output 1. To an honest verifier, it
also does not matter in which order two signatures are supplied when testing
linkability between the two signatures.



The more difficult part is to define the security properties that a DAA scheme
should provide in the presence of malicious parties. These properties can be
informally described as follows:

Unforgeability-1: When the issuer and all TPMs are honest, no adversary can
create a signature on a message m w.r.t. basename bsn when no platform
signed m w.r.t. bsn.

Unforgeability-2: When the issuer is honest, an adversary can only sign in the
name of corrupt TPMs. More precisely, if n TPMs are corrupt, the adversary
can at most create n unlinkable signatures for the same basename bsn 6= ⊥.

Anonymity: An adversary that is given two signatures, w.r.t. two different
basenames or bsn = ⊥, cannot distinguish whether both signatures were
created by one honest platform, or whether two different honest platforms
created the signatures.

Non-frameability: No adversary can create signatures on a message m w.r.t.
basename bsn that links to a signature created by an honest platform, when
this honest platform never signed m w.r.t. bsn. We require this property to
hold even when the issuer is corrupt.

2.1 Simulation-Based Security Definitions

A simulation-based security definition defines an ideal functionality, which can
be seen as a central trusted party that receives inputs from all parties and
provides outputs to them. Roughly, a protocol is called secure if its behavior is
indistinguishable from the functionality.

The Brickell, Camenisch, and Chen security definition [5]. DAA was first in-
troduced by Brickell, Camenisch, and Chen [5] along with a simulation-based
security definition. The functionality has a single procedure encompassing both
signature generation and verification, meaning that a signature is generated for
a specific verifier and will immediately be verified by that verifier. As the signa-
ture is never output to the verifier, he only learns that a message was correctly
signed, but can neither forward signatures or verify them again. Clearly this
limits the scenarios in which DAA can be applied.

Furthermore, linkability of signatures with the same basename was not de-
fined explicitly in the security definition. In the instantiation it is handled by
attaching pseudonyms to signatures, and when two signatures have the same
pseudonym, they must have been created by the same platform.

The Chen, Morissey, and Smart security definitions [14, 17]. An extension to
the security definition by Brickell et al. was later proposed by Chen, Morissey,
and Smart [17]. It aims at providing linkability as an explicit feature in the
functionality. To this end, the functionality is extended with a link interface
that takes as input two signatures and determines whether they link. However, as
discussed before, the sign and verify interfaces are interactive and thus signatures
are never sent as output to parties, so it is not possible to provide them as input



either. This was realized by the authors who later proposed a new simulation-
based security definition [14] that now separates the generation of signatures
from their verification by outputting signatures. Unfortunately, the functionality
models the signature generation in a too simplistic way: signatures are simply
random values, even when the TPM is corrupt. Furthermore, the verify interface
refuses all requests when the issuer is corrupt. Clearly, both these behaviours are
not realizable by any protocol.

2.2 Property-Based Security Definitions

Given the difficulties in properly defining ideal functionalities, there is also a
line of work that captures DAA features via property-based definitions. Such
definitions capture every security property in a separate security game.

The Brickell, Chen, and Li security definition [7]. The first property-based se-
curity definition is by Brickell, Chen, and Li [7]. They define security games
for anonymity, and “user-controlled traceability”. The latter aims to capture
our unforgeability-1 and unforgeability-2 requirements. Unfortunately, this def-
inition has several major shortcomings that were already discussed in detail by
Bernard et al. [3].

The first problem is that the game for unforgeability-1 considers insecure
schemes to be secure. The adversary in the unforgeability-1 game has oracle
access to the honest parties from whom he can request signatures on messages
and basenames of his choice. The adversary then wins if he can come up with
a valid signature that is not a previous oracle response. This last requirement
allows trivially insecure schemes to win the security game: assume a DAA scheme
that outputs the hash of the TPM’s secret key gsk as signature, i.e., the signature
is independent of the message. Clearly, this should be an insecure scheme as
the adversary, after having seen one signature can provide valid signatures on
arbitrary messages of his choice. However, this scheme is secure according to the
unforgeability-1 game, as there reused signatures are not considered a forgery.

Another issue is that the game for unforgeability-2 is not well defined. The
goal of the adversary is to supply a signature σ, a message m, a basename
bsn 6= ⊥, and a signer’s identity ID. The adversary wins if another signature
“associated with the same ID” exists, but the signatures do not link. Firstly,
there is no check on the validity of the supplied signature, which makes winning
trivial for the adversary. Secondly, “another signature associated with the same
ID” is not precisely defined, but we assume it to mean that the signature was
the result of a signing query with that ID. However, then the adversary is
limited to tamper with at most one of the signatures, whereas the second one
is enforced to be honestly generated and unmodified. Thirdly, there is no check
on the relation between the signature and the supplied ID. We expect that the
intended behavior is that the supplied signature uses the key of ID, but there is
no way to enforce this. Now an adversary can simply make a signing query with
(m, bsn, ID1), thus obtaining σ, and win the game with (σ,m, bsn, ID2).



The definition further lacks a security game that captures the non-frameability
requirement. This means a scheme with a link algorithm that always outputs 1
can be proven secure. Chen [15] extends the definition to add non-frameability,
but this extension inherits all the aforementioned problems from [7].

The Bernard et al. security definition [3]. Realizing that the previous secu-
rity definitions are not sufficient, Bernard et al. [3] provide an extensive set of
property-based security definitions covering all expected security requirements.

The main improvement is the way signatures are identified. An identify algo-
rithm is introduced that takes a signature and a TPM key, and outputs whether
the key was used to create the signature, which is possible as signatures are
uniquely identifiable if the secret key is known. In all their game definitions, the
keys of honest TPMs are known, allowing the challenger to identify which key
was used to create the signature, solving the problems related to the imprecisely
defined ID in the Brickell, Chen, and Li definition.

However, the security games make a simplifying assumption, namely that
the platform, consisting of a host and a TPM, is considered as one party. This
approach, termed “pre-DAA”, suffices for anonymity and non-frameability, as
there both the TPM and host have to be honest. However, for the unforgeability
requirements it is crucial that the host does not have to be trusted. In fact, dis-
tributing the computational work between the TPM and the host, such that the
load on the TPM is as small as possible and, at the same time, not requiring the
host to be honest, is the main challenge in designing a DAA scheme. Therefore,
a DAA security definition must be able to formally analyze this setting of an
honest TPM working with a corrupt host.

The importance of such full DAA security is also acknowledged by Bernard
et al. [3]. After formally proving a proposed scheme secure in the pre-DAA
setting, the authors bring the scheme to the full DAA setting where the TPM
and host are considered as separate parties. To obtain full DAA security, the
host randomizes the issuer’s credential on the TPM’s public key. Bernard et al.
then argue that this has no impact on the proven pre-DAA security guarantees
as the host does not perform any action involving the TPM secret key. While this
seems intuitively correct, it gives no guarantees whether the security properties
are provably preserved in the full DAA setting. Indeed, the proof of unforgeability
of the pre-DAA scheme, which is proven under the DL assumption, does not hold
in the full DAA setting as a corrupt host could notice the simulation used in the
security proof. More precisely, in the Bernard et al. scheme, the host sends values
(b, d) to the TPM which are the re-randomized part of the issued credential and
are supposed to have the form bgsk = d with gsk being the TPM’s secret key.
The TPM then provides a signature proof of knowledge (SPK) of gsk to the
host. The pre-DAA proof relies on the DL assumption and places the unknown
discrete logarithm of the challenge DL instance as the TPM key gsk. In the
pre-DAA setting, the TPM then simulates the proof of knowledge of gsk for any
input (b, d). This, however, is no longer possible in the full DAA setting. If the
host is corrupt, he can send arbitrary values (b, d) with bgsk 6= d to the TPM.
The TPM must only respond with a SPK if (b, d) are properly set, but relying



only on the DL assumption does not allow the TPM to perform this check. Thus,
the unforgeability can no longer be proven under the DL assumption. Note that
the scheme could still be proven secure using the stronger static DH assumption,
but the point is that a proof of pre-DAA security and a seemingly convincing
but informal argument to transfer the scheme to the full DAA setting does not
guarantee security in the full DAA setting.

Another peculiarity of the Bernard et al. definition is that it makes some
rather strong yet somewhat hidden assumptions on the adversary’s behavior.
For instance, in the traceability game showing unforgeability of the credentials,
the adversary must not only output the claimed forgery but also the secret keys
of all TPMs. For a DAA protocol this implicitly assumes that the TPM secret
key can be extracted from every signature. Similarly, in games such as non-
frameability or anonymity that capture security against a corrupt issuer, the
issuer’s key is generated honestly within the game, instead of being chosen by
the adversary. For any realization this assumes either a trusted setup setting or
an extractable proof of correctness of the issuer’s secret key.

In the scheme proposed by Bernard et al. [3], none of these implicit assump-
tions hold though: the generation of the issuer key is not extractable or assumed
to be trusted, and the TPM’s secret key cannot be extracted from every signa-
ture, as the rewinding for this would require exponential time. Note that these
assumptions are indeed necessary to guarantee security for the proposed scheme.
If the non-frameability game would allow the issuer to choose its own key, it could
choose y = 0 and win the game. Ideally, a security definition should not impose
such assumptions or protocol details. If such assumptions are necessary though,
then they should be made explicit to avoid pitfalls in the protocol design.

3 A New Security Definition for DAA

In this section we present our security definition for DAA, which is defined as
an ideal functionality F ldaa in the UC framework [12]. In UC, an environment E
passes inputs to and receives outputs from the protocol parties. The network is
controlled by an adversary A that may communicate freely with E . In the ideal
world, the parties forward their inputs to the ideal functionality F, which then
(internally) performs the defined task and creates the party’s outputs that they
forward to E .

Roughly, a protocol Π is said to securely realize a functionality F if the real
world in which the protocol is used is as secure as the ideal world where the
ideal functionality is used, meaning for every adversary performing an attack
in the real world, there is an ideal world adversary (often called simulator) S
that performs the same attack in the ideal world. More precisely, a protocol Π
is secure if for every adversary A and evironment E , there exists a simulator S
such that E cannot distinguish interacting with the real world with Π and A
from interacting with the ideal world with F and S.



3.1 Ideal Functionality F l
daa

We now formally define our ideal functionality F ldaa. We assume static corrup-
tions, i.e., the adversary decides upfront which parties are corrupt and makes this
information known to the functionality. The UC framework allows us to focus our
analysis on a single scheme instance with a globally unique session identifier sid.
Here we use session identifiers of the form sid = (I, sid′) for some issuer I and
a unique string sid ′. To allow several sub-sessions for the join and sign related
interfaces we use unique sub-session identifiers jsid and ssid. Our ideal func-
tionality F ldaa is further parametrized by a leakage function l : {0, 1}∗ → {0, 1}∗,
that models the information leakage that occurs in the communication between
a host Hi and TPM Mj .

We first briefly describe the main interfaces, then present the full function-
ality F ldaa and finally discuss in depth why F ldaa implements the desired security
properties.

Setup. The SETUP interface on input sid = (I, sid′) initiates a new DAA
session for the issuer I and expects the adversary to provide a number of al-
gorithms (ukgen, sig, ver, link, identify) that will be used inside the functionality.
These algorithms are used as follows:

– gsk ←$ ukgen() will be used to generate keys gsk for honest TPMs.
– σ ←$ sig(gsk,m, bsn) will also be used for honest TPMs. On input a key gsk,

a message m, and a basename bsn, it outputs a signature σ.
– f ← ver(σ,m, bsn) will be used in the verify interface. On input a signature
σ, a message m, and a basename bsn, it outputs f = 1 if the signature is
valid, and f = 0 otherwise.

– f ← link(σ,m, σ′,m′, bsn) will be used in the link interface. It takes two
tuples (σ,m), (σ′,m′) and a basename bsn as input and outputs f = 1 to
indicate that both signature are generated by the same TPM and f = 0
otherwise.

– f ← identify(σ,m, bsn, gsk) outputs f = 1 if σ is a signature on m with
respect to bsn under key gsk, and f = 0 otherwise. We will use identify in
several places to ensure consistency, e.g., whenever a new key gsk is generated
or provided by the adversary.

Note that the ver and link algorithms assist the functionality only for sig-
natures that are not generated by F ldaa itself. For signatures generated by the
functionality, F ldaa will enforce correct verification and linkage using its internal
records. While ukgen and sig are probabilistic algorithms, the other ones are
required to be deterministic. The link algorithm also has to be symmetric, i.e.,
for all inputs it must hold that link(σ,m, σ′,m′, bsn)↔ link(σ′,m′, σ,m, bsn).

Join. When the setup is completed, a host Hj can request to join with a TPM
Mi using the JOIN interface. Only if the issuer gives his approval through the
JOINPROCEED interface, the join will complete and F ldaa stores 〈Mi,Hj , gsk〉 in



an internal list Members. If the host or TPM are corrupt, gsk has to be provided
by the adversary. If both are honest, F ldaa stores gsk ← ⊥.

On the first glance, it might seem a bit surprising that we let the adversary
also provide gsk when the host is corrupt but the TPM is honest. However we use
gsk inside the functionality only to reflect the anonymity properties according
to the set of corrupted parties. Only if the entire platform if honest, one can
guarantee anonymity and then we enforce gsk ← ⊥. Note that the value of gsk
has in particular no impact on the unforgeability guarantees that are always
enforced by F ldaa if Mi is honest.

Sign. Once a platform has joined, the host Hj can call the SIGN interface to
request a DAA signature from a TPM Mi on a message m with respect to a
basename bsn. If the issuer is honest, only platforms 〈Mi,Hj , gsk〉 ∈ Members

can sign. The TPM is notified and has to give its explicit approval through the
SIGNPROCEED interface. If the host or TPM is corrupt, the signature σ has to
be input by the adversary. When both are honest, the signature is generated via
the sig algorithm. For this, F ldaa first chooses a fresh key gsk whenever an honest
platform (honest host and honest TPM) wishes to sign under a new basename,
which naturally enforces unlinkability and anonymity of those signatures. Every
newly generated key is stored as 〈Mi, bsn, gsk〉 in a list DomainKeys and will be
re-used whenever the honest platform wants to sign under the same bsn again.
For honest TPMs, the generated or adversarial provided signature is also stored
as 〈σ,m, bsn,Mi〉 in a list Signed.

Verify. The verify interface VERIFY allows any party V to check whether σ
is a valid signature on m with respect to bsn. The functionality will use its
internal records to determine whether σ is a proper signature. Here we also use
the helper algorithm identify to determine which of the gsk values stored by
F ldaa belongs to that signature. If the key belongs to an honest TPM, then an
entry 〈∗,m, bsn,Mi〉 ∈ Signed must exist. For signatures of corrupt TPMs, F ldaa
checks that a valid signature would not violate any of the expected properties,
e.g., whether the signature links to another signature by an honest TPM.

The interface also provides verifier-local revocation, as it accepts a revoca-
tions list RL as additional input which is a list of gsk values from which the
verifier does not accept signatures anymore. To ensure that this does not harm
the anonymity of honest TPMs, F ldaa ignores all honest gsk values for the revo-
cation check.

If the F ldaa did find some reason why the signature should not be valid, it
sets the output to f ← 0. Otherwise, it determines the verification result f using
the ver algorithm. Finally, the functionality keeps track of this result by adding
〈σ,m, bsn, RL, f〉 to a list VerResults.

Link. Any party V can use the LINK interface to learn whether two signatures
(σ, σ′), on messages (m,m′) respectively, generated with the same basename bsn
originate from the same TPM or not. Similarly as for verification, F ldaa then first
uses its internal records and helper functions to determine if there is any evi-
dence for linkage or non-linkage. If such evidence is found, then the output bit



f is set accordingly to 0 or 1. When the functionality has no evidence that the
signatures must or must not belong together, it determines the linking result via
the link algorithm.

The full definition of F ldaa is given in Figures 1 and 2. To save on repeating
and non-essential notation, we use the following conventions in our definition:

– All requests other than the SETUP are ignored until one setup phase is
completed. For such requests, F outputs ⊥ to the caller immediately.

– Whenever the functionality performs a check that fails, it outputs ⊥ directly
to the caller of the respective interface.

– We require the link algorithm to be symmetric: link(σ,m, σ′,m′, bsn) ↔
link(σ′,m′, σ,m, bsn). To guarantee this, whenever we write that F runs
link(σ,m, σ′,m′, bsn), it runs link(σ,m, σ′,m′, bsn) and link(σ′,m′, σ,m, bsn).
If the results are equal, it continues as normal with the result, and otherwise
F outputs ⊥ to the adversary.

– When F runs one of the algorithms sig, ver, identify, link, and ukgen, it does
so without maintaining state. This means all user keys have the same dis-
tribution, signatures are equally distributed for the same input, and ver,
identify, and link invocations only depend on the current input, not on pre-
vious inputs.

We will further use two “macros” to determine if a gsk is consistent with
the functionality’s records or not. This is checked at several places in our func-
tionality and also depends on whether the gsk belongs to an honest or corrupt
TPM. The first macro CheckGskHonest is used when the functionality stores a
new TPM key gsk that belongs to an honest TPM, and checks that none of
the existing valid signatures are identified as belonging to this TPM key. The
second macro CheckGskCorrupt is used when storing a new gsk that belongs to a
corrupt TPM, and checks that the new gsk does not break the identifiability of
signatures, i.e., it checks that there is no other known TPM key gsk′, unequal to
gsk, such that both keys are identified as the owner of a signature. Both func-
tions output a bit b where b = 1 indicates that the new gsk is consistent with
the stored information, whereas b = 0 signals an invalid key. The two macros
are defined as follows.

CheckGskHonest(gsk) =
∀〈σ,m, bsn,M〉 ∈ Signed : identify(σ,m, bsn, gsk) = 0 ∧

∀〈σ,m, bsn, ∗, 1〉 ∈ VerResults : identify(σ,m, bsn, gsk) = 0

CheckGskCorrupt(gsk) =

¬∃σ,m, bsn :
(
(〈σ,m, bsn, ∗〉 ∈ Signed ∨ 〈σ,m, bsn, ∗, 1〉 ∈ VerResults) ∧

∃gsk′ : (gsk 6= gsk′ ∧ (〈∗, ∗, gsk′〉 ∈ Members ∨ 〈∗, ∗, gsk′〉 ∈ DomainKeys) ∧
identify(σ,m, bsn, gsk) = identify(σ,m, bsn, gsk′) = 1)

)



Setup

1. Issuer Setup. On input (SETUP, sid) from issuer I
– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic (i).

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

3. Join Request. On input (JOIN, sid , jsid,Mi) from host Hj
– Create a join session record 〈jsid,Mi,Hj , status〉 with status ← request .

– Output (JOINSTART, sid , jsid,Mi,Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S
– Update the session record 〈jsid,Mi,Hj , status〉 to status ← delivered .

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists (ii).

– Output (JOINPROCEED, sid , jsid,Mi) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid) from I
– Update the session record 〈jsid,Mi,Hj , status〉 to status ← complete.

– Output (JOINCOMPLETE, sid , jsid) to S.

6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid, gsk) from S.

– Look up record 〈jsid,Mi,Hj , status〉 with status = complete.

– If Mi and Hj are honest, set gsk ← ⊥.

– Else, verify that the provided gsk is eligible by checking

• CheckGskHonest(gsk) = 1 (iii) if Hj is corrupt and Mi is honest, or

• CheckGskCorrupt(gsk) = 1 (iv) if Mi is corrupt.

– Insert 〈Mi,Hj , gsk〉 into Members and output (JOINED, sid , jsid) to Hj .

Fig. 1. The Setup and Join related interfaces of F ldaa. (The roman numbers are labels
for the different checks made within the functionality and will be used as references in
the detailed analysis in Section 3.2)

3.2 Detailed Analysis of F l
daa

We now argue that our functionality enforces the desired unforgeability, ano-
nymity, and non-frameability properties we informally introduced in Section 2.

In terms of completeness and correctness, we further have to add to three
more properties: consistency of verify, consistency of link, and symmetry of link.
These properties are trivially achieved for property-based definitions, where one
simply requires the algorithms to be deterministic, and the link algorithm to be
symmetric. In a simulation-based definition, however, the behavior of a function-
ality may depend on its state, which is why we explicitly show that we achieve
these properties.

We start with the security related properties unforgeability, anonymity and
non-frameability, and then discuss the correctness and consistency properties.

Unforgeability. We consider two unforgeability properties, depending on all
TPMs being honest or some of them being corrupt. The issuer is of course
always honest when aiming at unforgeability. Firstly, if all TPMs are honest, an
adversary cannot create a signature on a message m with respect to basename



Sign

7. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– If I is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– IfMi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no
such gsk exists or bsn = ⊥, set gsk ← ukgen(). Check CheckGskHonest(gsk) = 1
(v) and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn) and check ver(σ,m, bsn) = 1 (vi).

• Check identify(σ,m, bsn, gsk) = 1 (vii) and check that there is noM′i 6=Mi with
key gsk′ registered in Members or DomainKeys with identify(σ,m, bsn, gsk′) = 1
(viii).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

11. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all pairs (gski,Mi) from 〈Mi, ∗, gski〉 ∈ Members and 〈Mi, ∗, gski〉 ∈
DomainKeys where identify(σ,m, bsn, gski) = 1. Set f ← 0 if at least one of the
following conditions hold:

• More than one key gski was found (ix).

• I is honest and no pair (gski,Mi) was found (x).

• There is an honest Mi but no entry 〈∗,m, bsn,Mi〉 ∈ Signed exists (xi).

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1 and no pair (gski,Mi)
for an honest Mi was found (xii).

– If f 6= 0, set f ← ver(σ,m, bsn) (xiii).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

12. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not
valid (verified via the verify interface with RL = ∅) (xiv).

– For each gski in Members and DomainKeys compute bi ← identify(σ,m, bsn, gski)
and b′i ← identify(σ′,m′, bsn, gski) and do the following:

• Set f ← 0 if bi 6= b′i for some i (xv).

• Set f ← 1 if bi = b′i = 1 for some i (xvi).

– If f is not defined yet, set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 2. The Sign, Verify, and Link related interfaces of F ldaa



bsn when no honest TPM signed m with respect to bsn. By Check (x), the
signature must trace to some TPMs gsk. As we assumed all TPMs to be honest,
Check (xi) will reject any signature on messages not signed by that TPM.

Secondly, when some TPMs are corrupt, an adversary cannot forge signatures
with more distinct ‘identities’ than there are corrupt TPMs. More precisely,
when the adversary corrupted n TPMs, he cannot create more than n unlinkable
signatures for the same bsn 6= ⊥, and when no honest TPM signed under bsn

too. We show that for any n+ 1 signatures {σi,mi, bsn}0≥i≥n, we cannot have
that all signatures verify, mi was not signed with respect to bsn by an honest
TPMs, and every pair of signatures is unlinkable.

If all signatures verify, by Check (x), each of the n+1 signatures must trace to
exactly one pair (Mi, gski). Given the fact that no honest TPM signed mi with
respect to bsn, by Check (xi), we must have that every TPM in the list of tracing
(Mi, gski) pairs is corrupt. Furthermore, we know that all (Mi, gski) come from
Members, as only honest TPMs occur in DomainKeys. Since the issuer is honest,
Check (ii) enforces that every TPM can join at most once, i.e., there can be at
most n pairs (Mi, gski) of corrupt TPMs in Members. Thus, the traced list of
(Mi, gski) pairs must contain at least one duplicate entry. By Check (xvi), the
two signatures that trace to the same gsk must link, showing that the adversary
cannot forge more than n unlinkable signatures with a single bsn 6= ⊥.

Anonymity. Anonymity of signatures created by an honest TPMMi and host
Hj is guaranteed by F ldaa due to the random choice of gsk for every signa-
ture. More precisely, if the platform is honest, our functionality does not store
any unique gsk for the pair (Mi,Hj) in Members, but leaves the key unas-
signed. Whenever a new signature is requested for an unused basename bsn,
F ldaa first draws a fresh key gsk ← ukgen under which it then creates the signa-
ture using the sig algorithm. The combination of basename and key is stored as
〈Mi, bsn, gsk〉 in a list DomainKeys, and gsk is re-used whenever Mi wishes to
sign under the same bsn 6= ⊥ again.

That is, two signatures with different basenames or with basename bsn = ⊥
are distributed in exactly the same way for all honest platforms, independent
of whether the signatures are created for the same platform or for two distinct
platforms.

Verifier-local revocation is enabled via the revocation list attribute RL in
the VERIFY interface and allows to “block” signatures of exposed gsk’s. This
revocation feature should not be exploitable to trace honest users, though, as
that would clearly break anonymity. To this end, F ldaa ignores gsk ∈ RL in the
revocation test when the key belongs to an honest TPM (Check (xii)).

Note that the anonymity property dictated the use of the sig algorithm
in F ldaa. We only use the algorithm if the platform is honest though, whereas
for corrupt platforms the simulator is allowed to provide the signature (which
then could depend on the identity of the signer). This immediately reflects that
anonymity is only guaranteed if both the TPM and host are honest.



Non-frameability. An honest platform (Mi,Hj) cannot be framed, meaning
that no one can create signatures on messages that the platform never signed
but that link to signatures the platform did create. Note that this definition also
crucially relies on both Mi and Hj being honest. Intuitively, one might expect
that only the TPMMi is required to be honest, and the host could be corrupt.
However, that would be unachievable. We can never control the signatures that a
corruptHj outputs. In particular, the host could additionally run a corrupt TPM
that joined as well, and create signatures using the corrupt TPM’s key instead
of using Mi’s contribution. The resulting signature can not be protected from
framing, as it uses a corrupt TPM’s key. Thus, for a meaningful non-frameability
guarantee, the host has to be honest too. The issuer can of course be corrupt.

We now show that when an honest platform (Mi,Hj) created a signature
σ on message m and under basename bsn, then no other signature σ′ on some
m′ links to σ when (Mi,Hj) never signed m′ with respect to bsn. The first
requirement in LINK is that both signatures must be valid (Check (xiv)). By
completeness (discussed below) we know that σ,m, bsn generated by the honest
platform is valid, and that it traces to some key gsk. If the second signature
σ′,m′, bsn is valid too, we know by the Check (xi) in the VERIFY interface that
the signature cannot trace to the same gsk, because (Mi,Hj) has never signed
m′, bsn′. Finally, by Check (xv) that ensures that the output of identify must
be consistent for all used keys, the output of LINK is set to f ← 0.

Completeness. The functionality guarantees completeness, i.e., when an hon-
est platform successfully creates a signature, this signature will be accepted by
honest verifiers. More precisely, when honest TPMMi with honest hostHj signs
m with respect to bsn resulting in a signature σ, a verifier will accept (σ,m, bsn).
To show this, we argue that the four checks the functionality makes (Check (ix),
Check (x), Check (xi), and Check (xii)) do not set f to 0, and that ver will
accept the signature.

Check (ix) will not trigger, as by Check (viii) there was no honest TPM
other than Mi with a key matching this signature yet and, by Check (iv),
Check (iv), and Check (v), gsk values matching σ cannot be added to Members

and DomainKeys.
Check (x) will not trigger as we have an entry 〈Mi, bsn, gsk〉 ∈ DomainKeys,

and by Check (vii) we know this one matches σ.
In Check (xi), F ldaa finds all honest TPMs that have a key matching this sig-

nature, and checks whether they signed m with respect to bsn. By Check (viii),
at the time of signing there were no other TPMs with keys matching this signa-
ture and, by Check (iii) and Check (v), no honest TPM can get a key matching
this signature. The only honest TPM with a matching key isMi, but as he hon-
estly signed m with respect to bsn, we have an entry 〈σ,m, bsn,Mi〉 ∈ Signed

ensuring that the check does not trigger.
The revocation test Check (xii) does not trigger as by Check (vii) we know

that honest TPM Mi has a key matching this signature.
As all previous checks did not apply, F ldaa sets the verification outcome using

the ver algorithm, we now show that ver will accept the signature. F ldaa checked



that ver accepts the signature in Check (vi), and by Check (i) and the fact that
F ldaa does not maintain state for the algorithms, the verification algorithm output
only depends on its input, so ver outputs 1 and F ldaa accepts the signature.

Correctness of Link. If an honest platform signs multiple times with the
same basename, the resulting signatures will link. Let platform (Mi, Hj) sign
messages m1 and m2 with basename bsn 6= ⊥, resulting in signatures σ1 and σ2
respectively. By completeness, both signatures verify, so Check (xiv) does not
trigger. By Check (vii), both signatures identify to some gsk, which results in
Check (xvi) setting the signatures as linked.

Consistency of Verify. This property ensures that calling the VERIFY inter-
face with the same input multiple times gives the same result every time. To
prevent the functionality from becoming unnecessarily complex, we only enforce
consistency for valid signatures. That is, whenever a signature was accepted, it
will remain valid, whereas an invalid signature could become valid at a later
time.

Suppose a signature σ on message m with basename bsn was verified suc-
cessfully with revocation list RL. We now show that in any future verification
with the same RL will lead to the same result. To show this, we argue that the
four checks the functionality makes (Check (ix), Check (x), Check (xi), and
Check (xii)) do not set f to 0, and that ver will accept the signature.

Check (ix) makes sure that at most one key gsk matches the signature σ,
meaning that for at most one gsk we have identify(σ,m, bsn, gsk) = 1. This check
does not cause rejection of the signature, as the signature previously verified,
and by Check (ix) we have that at most one gsk matched the signature at
that time. After that, the signature was placed in VerResults, which means
Check (iii), Check (iv), and Check (v) prevent adding gsk values that match
σ, so the number of matching gsk values has not changed and Check (ix) still
passes.

Check (x) does not apply. If I is corrupt, the check trivially does not trigger.
If I is honest, from the previous verification we have that there was precisely
one key matching, and as argued for the previous check, no matching gsk values
can be added, so we must still have precisely one matching gsk.

To show that Check (xi) does not apply, we must show that for every honest
TPM that has a key matching this signature, that TPM has signed m with
respect to bsn. The check previously passed, so we know that at that point for
any matchingMi there is a satisfying entry in Signed. No new TPMs matching
this signature can be found, as Check (iii) and Check (v) prevent honest TPMs
from registering a key that matches an existing signature.

Check (xii), the revocation check, did not reject σ in the previous verifica-
tion. By the fact that identify is deterministic Check (i) and executed without
maintaining state, it will not do so now.

As the four checks F ldaa makes did not apply, F ldaa uses the verification algo-
rithm ver. Since the signature was previously accepted, by Check (xiii) ver must



have accepted the signature. By the fact that ver is deterministic (Check (i))
and executed without maintaining state, it will also accept now.

Consistency of Link. We also want to ensure that calling the LINK interface
with the same input multiple times gives the same result every time. Here we
guarantee consistency for both outputs f ∈ {0, 1} i.e., if LINK outputs f for
some input (σ,m, σ′,m′, bsn), the result will always be f .

Suppose we have signatures σ and σ′ on messages m and m′ respectively,
both with respect to basename bsn, that have been linked with output f ∈ {0, 1}
before. We now show that the same result f will be given in future queries, by
showing that Check (xiv) will not cause an output of ⊥, and by showing that
Check (xv), Check (xvi), and the link algorithm are consistent.
F ldaa will not output ⊥, as by the previous output f 6= ⊥ we know that the

verification of both signatures must have passed. As VERIFY is consistent for
valid signatures, this test in Check (xiv) will pass again.

Check (xv) and Check (xvi) are consistent. They depend on the gsk values
in Members and DomainKeys that match the signatures and are retrieved via the
deterministic identify algorithm. The matching gsk values cannot have changed
as Check (iii), Check (iv), and Check (v) prevent conflicting gsk values to be
added to these lists. The link algorithm used to in the final step is deterministic
by Check (i). Thus, LINK will consistently generate the same output bit f .

Symmetry of Link. The link interface is symmetric, i.e., it does not mat-
ter whether one gives input (LINK, σ,m, σ′,m′, bsn) or (LINK, σ′,m′, σ,m, bsn).
Both signatures are verified, the order in which this happens does not change
the outcome. Next F ldaa finds matching keys for the signatures, and as identify
is executed without state, it does not matter whether it first tries to match σ
or σ′. The next checks are based on the equality of the bi and b′i values, which
clearly is symmetric. Finally F ldaa uses the link algorithm, which is enforced to
be symmetric as F ldaa will abort as soon as it detects link not being symmetric.

4 Building Blocks

In this section we introduce the building blocks for our construction. Apart
from standard building blocks such as pairing-based CL-signatures [9] and zero-
knowledge proofs, we also provide a new functionality Fauth∗ that captures the
semi-authenticated channel that is present in the DAA setting.

4.1 Bilinear Maps

Let G1, G2 and GT be groups of prime order q. A map e : G1 × G2 → GT
must satisfy bilinearity, i.e., e(gx1 , g

y
2 ) = e(g1, g2)xy; non-degeneracy, i.e., for all

generators g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates GT ; and efficiency, i.e., there
exists an efficient algorithm G(1τ ) that outputs the bilinear group (q,G1,G2,
GT , e, g1, g2) and an efficient algorithm to compute e(a, b) for any a ∈ G1, b ∈ G2.
If G1 = G2 the map is called symmetric, otherwise the map is called asymmetric.



4.2 Camenisch-Lysyanskaya Signature

We now recall the pairing-based Camenisch-Lysyanskaya (CL) signature scheme
[9] that allows for efficient proofs of signature possession and is the basis for the
DAA scheme we extend. The scheme uses a bilinear group (q,G1,G2,GT , e, g1, g2)
that is available to all algorithms.

Key generation. The key generation algorithm chooses x ←$ Zq and y ←$ Zq,
and sets sk ← (x, y), pk ← (X,Y ), where X ← gx2 and Y ← gy2 .

Signature. On input a message m and secret key sk = (x, y), choose a random
a←$ G1, and output the signature σ ← (a, ay, ax+mxy).

Verification. On input a public key pk = (X,Y ), message m, and purported
signature σ = (a, b, c), output 1 if the following verification equations hold,
and 0 otherwise: a 6= 1G1 , e(a, Y ) = e(b, g2) and e(a · bm, X) = e(c, g2).

This signature scheme is existentially unforgeable against a chosen-message
attack (EUF-CMA) under the LRSW assumption [21], which is proven in [9].
Certain schemes [3, 18], including ours, add a fourth element d = bm to the
signature, which allows more efficient proofs of knowledge of a message signed by
a signature. This extended CL signature is as secure as the original CL signature:
Any adversary that can create a standard CL forgery (a, b, c) on message m can
forge an extended CL signature by adding d = bm. Any adversary that can create
an extended CL forgery (a, b, c, d) on m can forge a standard CL signature, by
adding d = bm to the signing oracle outputs, and omitting d from the final
forgery.

4.3 Proof Protocols

When referring to the zero-knowledge proofs of knowledge of discrete logarithms
and statements about them, we will follow the notation introduced by Camenisch
and Stadler [11] and formally defined by Camenisch, Kiayias, and Yung [8].

For instance, PK{(a, b, c) : y = gahb ∧ ỹ = g̃ah̃c} denotes a “zero-knowledge
Proof of Knowledge of integers a, b and c such that y = gahb and ỹ = g̃ah̃c

holds,” where y, g, h, ỹ, g̃ and h̃ are elements of some groups G = 〈g〉 = 〈h〉
and G̃ = 〈g̃〉 = 〈h̃〉. Given a protocol in this notation, it is straightforward to
derive an actual protocol implementing the proof [8]. Indeed, the computational
complexities of the proof protocol can be easily derived from this notation: for
each term y = gahb, the prover and the verifier have to perform an equivalent
computation, and to transmit one group element and one response value for each
exponent.

SPK denotes a signature proof of knowledge, that is a non-interactive trans-
formation of a proof with the Fiat-Shamir heuristic [19] in the random oracle
model [2]. From these non-interactive proofs, the witness can be extracted by
rewinding the prover and programming the random oracle. Alternatively, these
proofs can be extended to be online-extractable, by verifiably encrypting the
witness to a public key defined in the common reference string (CRS). Now
a simulator controlling the CRS can extract the witness without rewinding by



decrypting the ciphertext. A practical instantiation is given by Camenisch and
Shoup [10] using Paillier encryption, secure under the DCR assumption [22].

4.4 Semi-Authenticated Channels via Fauth∗

In the join protocol of DAA, it is crucial that the TPM and issuer authenticate
to each other, such that only authentic TPMs can create signatures. This is not
an ordinary authenticated channel, as all communication is channeled via the
host, that can read the messages, block the communication, or append messages.
There exist several sub-protocols and setup settings in the DAA context that
provide this type of special authenticated channels, of which an overview is
given by Bernard et al. [3]. These constructions require the TPM to have a key
pair, the endorsement key, of which the public part is known to the issuer. In
practice, the TPM manufacturer certifies the public key using traditional PKI,
allowing an issuer to verify that this public key indeed belongs to a certain
TPM. If the endorsement key is a key for a signature scheme, the TPM can send
an authenticated message to the issuer by signing the message. If a public key
encryption key is used, this can be used to exchange a MAC key to authenticate
later messages.

We design a functionality Fauth∗ modeling the desired channel, which allows
us to rather use the abstract functionality in the protocol design instead of a
concrete sub-protocol. Then, any protocol that securely realizes Fauth∗ can be
used for the initial authentication.

The functionality must capture the fact that the sender S sends a message
containing an authenticated and an unauthenticated part to the receiver R, while
giving some forwarder F (this role will be played by the host) the power to block
the message or replace the unauthenticated part, and giving the adversary the
power to replace the forwarder’s message and block the communication. We
capture these requirements in Fauth∗, defined in Figure 3.

1. On input (SEND, sid , ssid,m1,m2, F ) from S. Check that sid = (S,R, sid ′) for some
R an output (REPLACE1, sid , ssid,m1,m2, F ) to S.

2. On input (REPLACE1, sid , ssid,m′2) from S, output (APPEND, sid , ssid,m1,m
′
2) to F .

3. On input (APPEND, sid , ssid,m′′2 ) from F , output (REPLACE2, sid , ssid,m1,m
′′
2 ) to S.

4. On input (REPLACE2, sid , ssid,m′′′2 ) from S, output (SENT, sid , ssid,m1,m
′′′
2 ) to R.

Fig. 3. The special authenticated communication functionality Fauth∗

Clearly we can realize this functionality using the endorsement key and a
signature scheme or public key encryption scheme.

5 Construction

In this section, we present our DAA scheme that securely implements F ldaa.
While our scheme is similar to previous constructions [3, 6, 7, 16, 18], it required



several modifications in order to fulfill all of our desired security guarantees. We
give a detailed discussion of the changes with respect to previous versions in
Section 5.2.

The high-level idea of our DAA scheme is as follows. In the join protocol, a
platform, consisting of a TPM Mi and host Hj , receives a credential (a, b, c, d)
from the issuer I which is a Camenisch-Lysyanskaya signature [9] on some TPM
chosen secret gsk . After joining, the platform can sign any message m w.r.t. some
basename bsn. To this end, the host first randomizes the credential (a, b, c, d)
to (a′ = ar, b′ = br, c′ = cr, d′ = dr) for a random r and then lets the TPM
Mi create a signature proof of knowledge (SPK) on m showing that b′gsk = d′.
To obtain user-controlled linkability for basenames bsn 6= ⊥, pseudonyms are
attached to the signature. Pseudonyms are similar to BLS signatures [4] on the
basename and have the form nym = H1(bsn)gsk for some hash function H1.
Whenever a basename bsn 6= ⊥ is used, the SPK generated by the TPM also
proves that the pseudonym is well-formed.

5.1 Our DAA protocol Πdaa

We now present our DAA scheme in detail, and also give a simplified overview
of the join and sign protocols in Figures 4 and 5 respectively.

We assume that a common reference string functionality FDcrs and a certificate
authority functionality Fca are available to all parties. The later allows the issuer
to register his public key, and FDcrs is used to provide all entities with the system
parameters comprising a security parameter τ , a bilinear group G1,G2,GT of
prime order q with generators g1, g2 and bilinear map e, generated via G(1τ ).
We further use a random oracle H1 : {0, 1}∗ → G1.

For the communication between the TPM and issuer (via the host) in the join
protocol, we use our semi-authenticated channel Fauth∗ introduced in Section 4.4.
For all communication between a host and TPM we assume the secure message
transmission functionality F lsmt (enabling authenticated and encrypted commu-
nication). In practice, F lsmt is naturally guaranteed by the physical proximity of
the host and TPM forming the platform, i.e., if both are honest an adversary
can neither alter nor read their internal communication. To make the protocol
more readable, we simply say that host Hi sends a message to, or receives a
message from TPM Mj , instead of explicitly calling F lsmt with sub-session IDs
etc. For definitions of the standard functionalities FDcrs,Fca and F lsmt we refer to
Appendix A.

In the description of the protocol, we assume that parties call FDcrs and Fca

to retrieve the necessary key material whenever they use a public key of another
party. In case of the issuer public key, every protocol participant first verifies
the correctness of the key by checking the proof π and that Y 6= 1G2

(with π, Y
being parts of the public key as defined below). Further, if any of the checks
in the protocol fails, the protocol ends with a failure message ⊥. The protocol
also outputs ⊥ whenever a party receives an input or message it does not expect
(e.g., protocol messages arriving in the wrong order.)



TPM Host Issuer

-JOIN

n←$ {0, 1}τ
� n � n

gsk ←$ Zq
Q← ggsk1

π1 ←$ SPK{(gsk) : Q = ggsk1 }(n)

-Q, π1 -Q, π1

verify π1

r ←$ Zq
a← g1

r

b← ay

c← ax ·Qrxy
d← Qry

π2 ←$ SPK{(t) : b = gt1 ∧ d = Qt}
�a, b, c, d, π2

verify π2

a
?

6= 1

e(a, Y )
?
= e(b, g2)

e(c, g2)
?
= e(ad,X)

�b, d, π2

verify π2

store (gsk , b, d) -JOINED
store (a, b, c, d)

Fig. 4. Overview of the join protocol

Setup. In the setup phase, the issuer I creates a key pair of the CL-signature
scheme and registers the public key with Fca.

1. I upon input (SETUP, sid) generates his key pair:

– Check that sid = (I, sid ′) for some sid ′.

– Choose x, y ←$ Zq, and set X ← gx2 , Y ← gy2 . Initiate LJOINED ← ∅.
– Prove that the key is well-formed in π ←$ SPK{(x, y) : X = gx2 ∧ Y = gy2}.
– Register the public key (X,Y, π) at Fca, and store the secret key as (x, y).

– Output (SETUPDONE, sid).

Join. The join protocol runs between the issuer I and a platform, consisting
of a TPM Mi and a host Hj . The platform authenticates to the issuer and, if
the issuer allows, obtains a credential that subsequently enables the platform to
create signatures. To distinguish several join sessions that might run in parallel,
we use a unique sub-session identifier jsid that is given as input to all parties.

1. Hj upon input (JOIN, sid , jsid,Mi) parses sid = (I, sid ′) and sends the
message (JOIN, sid , jsid) to I.

2. I upon receiving (JOIN, sid , jsid) from a party Hj chooses a fresh nonce
n←$ {0, 1}τ and sends (sid, jsid, n) back to Hj .



3. Hj upon receiving (sid , jsid, n) from I, sends (sid, jsid, n) to Mi.

4. Mi upon receiving (sid , jsid, n) from Hj , generates its secret key:

– Check that no completed key record exists.

– Choose gsk ←$ Zq and store the key as (sid, jsid,Hj , gsk ,⊥).

– Set Q← ggsk1 and compute π1 ←$ SPK{(gsk) : Q = ggsk1 }(n).

– Send (Q, π1) via the host to I using Fauth∗, i.e., invoke Fauth∗ on input
(SEND, (Mi, I, sid), jsid, (Q, π1),Hj).

5. Hj upon receiving (APPEND, (Mi, I, sid), jsid,Q, π1) from Fauth∗, forwards
the message to I by sending (APPEND, (Mi, I, sid), jsid,Hj) to Fauth∗. It
also keeps state as (sid, jsid,Q).

6. I upon receiving (SENT, (Mi, I, sid), jsid, (Q, π1),Hj) from Fauth∗ verifies π1
and checks that Mi /∈ LJOINED. It stores (sid, jsid,Q,Mi,Hj) and outputs
(JOINPROCEED, sid , jsid,Mi).

The join session is completed when the issuer receives an explicit input telling
him to proceed with join session jsid.

1. I upon input (JOINPROCEED, sid , jsid) generates the CL credential:

– Retrieve the record (sid, jsid,Q,Mi,Hj) and add Mi to LJOINED.

– Choose r ←$ Zq and compute a← gr1, b← ay, c← ax ·Qrxy, d← Qry.

– Prove correctness of the signature in π2 ←$ SPK{(t) : b = gt1 ∧ d = Qt}.
– Send the credential (a, b, c, d) to the host Hj by giving Fauth∗ input (SEND,

(I,Mi, sid), jsid, (b, d, π2), (a, c),Hj).
2. Hj upon receiving (APPEND, (I,Mi, sid), jsid, (b, d, π2), (a, c)) from Fauth∗

verifies the credential (a, b, c, d) and forwards (b, d, π2) to Mi:

– Retrieve (sid, jsid,Q) and verify π2 w.r.t. Q.

– Verify the credential as a 6= 1, e(a, Y ) = e(b, g2), and e(c, g2) = e(a · d,X).

– Send (APPEND, (I,Mi, sid), jsid,⊥) to Fauth∗.

3. Mi upon receiving (SENT, (I,Mi, sid), jsid, (b, d, π2),⊥) from Fauth∗, com-
pletes the join:

– Retrieve the record (sid, jsid,Hj , gsk ,⊥) and verify π2 with respect to Q←
ggsk1 .

– Complete the record to (sid, jsid,Hj , gsk , (b, d)) and send (sid, jsid, JOINED)
to Hj .

4. Hj upon receiving (sid, jsid, JOINED) from Mi stores (sid,Mi, (a, b, c, d))
and outputs (JOINED, sid , jsid).

Sign. The sign protocol runs between a TPMMi and a host Hj . After joining,
together they can sign a message m with respect to a basename bsn. Again, we
use a unique sub-session identifier ssid to allow for multiple sign sessions.

1. Hj upon input (SIGN, sid , ssid,Mi,m, bsn) re-randomizes the CL-credential:

– Retrieve the join record (sid,Mi, (a, b, c, d)).

– Choose r ←$ Zq and set (a′, b′, c′, d′)← (ar, br, cr, dr).



TPM Host
gsk , b, d (a, b, c, d),m, bsn

r ←$ Zq
a′ ← ar, b′ ← br, c′ ← cr, d′ ← dr

�m, bsn, r

b′ ← br, d′ ← dr

if bsn 6= ⊥: nym← H1(bsn)gsk

π ←$ SPK{(gsk) : d′ = b′gsk ∧ nym = H1(bsn)gsk}(bsn,m)

-π, nym

output σ ← (a′, b′, c′, d′, nym, π)

Fig. 5. Overview of the sign protocol

– Send (sid, ssid,m, bsn, r) to Mi and store (sid, ssid, (a′, b′, c′, d′))

2. Mi upon receiving (sid, ssid,m, bsn, r) from Hj asks for permission to pro-
ceed.

– Check that a complete join record (sid ,Hj , gsk , (b, d)) exists.

– Store (sid, ssid,m, bsn, r) and output (SIGNPROCEED, sid , ssid,m, bsn).

The signature is completed when Mi gets permission to proceed for ssid.

1. Mi upon input (SIGNPROCEED, sid , ssid) computes the SPK and nym:

– Retrieve records (sid , ∗,Hj , gsk , (b, d)) and (sid, ssid,m, bsn, r).

– Compute b′ ← br, d′ ← dr.

– If bsn = ⊥, set nym = ⊥ and compute π ←$ SPK{(gsk) : d′ = b′gsk}(m, bsn).

– If bsn 6= ⊥, set nym = H1(bsn)gsk and compute the SPK on (m,bsn) as
π ←$ SPK{(gsk) : nym = H1(bsn)gsk ∧ d′ = b′gsk}(m, bsn).

– Send (sid, ssid, π, nym) to Hj .
2. Hj upon receiving (sid, ssid, π, nym) fromHj , retrieves (sid, ssid, (a′, b′, c′, d′))

and outputs (SIGNATURE, sid , ssid, (a′, b′, c′, d′, π, nym)).

Verify. The verify algorithm allows anyone to check whether a signature σ
on message m with respect to basename bsn is valid, i.e., stems from a certi-
fied TPM. To test whether the signature originates from a TPM that did get
corrupted, the verifier can pass a revocation list RL to the algorithm. This list
contains the keys of corrupted TPMs he no longer wishes to accept signatures
from.

1. V upon input (VERIFY, sid ,m, bsn, σ, RL) verifies the signature:

– Parse σ as (a, b, c, d, π, nym).

– Verify π with respect to (m, bsn) and nym (if bsn 6= ⊥).

– Check that a 6= 1, e(a, Y ) = e(b, g2), and e(c, g2) = e(a · d,X).

– For every gsk i ∈ RL, check that bgski 6= d.

– If all tests pass, set f ← 1, otherwise f ← 0.

– Output (VERIFIED, sid , f).



Link. With the link algorithm, anyone can test whether two signatures (σ,m),
(σ′,m′) that were generated for the same basename bsn 6= ⊥, stem from the
same TPM.

1. V upon input (LINK, sid , σ,m, σ′,m′, bsn) verifies the signatures and com-
pares the pseudonyms contained in σ, σ′:

– Check that bsn 6= ⊥ and that both signatures σ, σ′ are valid.

– Output ⊥ if any check failed.

– Parse the signatures as (a, b, c, d, π, nym)← σ, (a′, b′, c′, d′, π′, nym′)← σ′.

– If nym = nym′, set f ← 1, otherwise f ← 0.

– Output (LINK, sid , f).

5.2 Differences with Previous Schemes

Our proposed protocol is very similar to previous CL-based DAA construc-
tions [3, 6, 7, 16, 18] which, however, do not immediately satisfy our security
notion. For each part of the protocol we now discuss the weaknesses of these
previous schemes and the way our solution overcomes them.

Setup. In our scheme, the issuer is required to prove knowledge of his secret
key (x, y) in the proof π and to make π part of his public key. This proof allows
the simulator in the security proof to extract the issuers secret key. Such an
extraction capability is crucial for the security proof and was missing in the ex-
isting schemes, even though some of the corresponding security models implicitly
assumed the extractability of the issuers key (as discussed in Section 2.2).

Join. In the join protocol, we reintroduced a proof π1 of gsk by the TPM, that
was present in many previous works but omitted in the scheme by Bernard et
al. [3]. Additionally, our scheme contains the proof π2 by the issuer, which was
introduced by Bernard et al.

Many previous schemes [6,7,16,18] let the TPM prove knowledge of the dis-
crete log of Q = ggsk in the join protocol. Bernard et al. removed this proof
by reducing the forgery of a join credential to the security of a blind signature
scheme, and using a unforgeability notion that requires the adversary to out-
put all secret keys. This assumes that all these secrets are extractable which, if
extraction by rewinding is used, would require exponential time. We realize effi-
cient extraction by adding the SPK π1 in which the TPM proves of knowledge of
gsk to the join protocol and allowing only a logarithmic number of simultaneous
join sessions.

The second proof π2 ←$ SPK{(t) : b = gt1 ∧ d = Qt} in our join protocol
was introduced by Bernard et al. and lets the issuer prove correctness of his
credential computations, which none of the previous works did. We also use this
proof as it allows to simulate a TPM without knowing the secret key gsk . This
is required in our reduction where we use the unknown discrete logarithm of a
DL or DDH instance as the key of a TPM.



Sign. We change the communication between the TPM and host to prevent the
TPM from leaking information about its secret key gsk to the host, and we only
use pseudonyms when required.

Chen, Page, and Smart [18] let the host send a randomized b value of the
credential to the TPM, which responded with d = bgsk . This gives information to
the host that cannot be simulated without knowing gsk , which prevents a proof
of unforgeability under the DL assumption, and requires the stronger static DH
assumption. The scheme by Bernard et al. [3] has a similar problem: The host
sends (b, d) to the TPM, and the TPM responds with a proof proving that
bgsk = d. Now the TPM should only output a valid proof for valid inputs, i.e,
when bgsk = d. A simulator mimicking a TPM in the security proof, however,
cannot decide this when reducing to the DL problem, a stronger assumption is
required to prove unforgeability in their scheme.

We apply the fix by Xi et al. [25], in which the host sends the randomness r
used to randomize the credential. This does not give the host any new informa-
tion on gsk , which is why we can prove unforgeability under the DL assumption.

Some schemes [6, 7, 16, 18] always attached a pseudonym to signatures to
support revocation, even when the basename bsn was equal to ⊥. However, we

can perform the revocation check on the credential: bgsk
?
= d, so the pseudonym

can be omitted when bsn = ⊥ for a more efficient scheme.

Verify. We add a check a 6= 1G1
to the verification algorithm, which many of the

previous schemes [6, 7, 16, 18] are lacking. Without this check, schemes tolerate
a trivial issuer credential (1G1

, 1G1
, 1G1

, 1G1
) that allows anyone to create valid

DAA signatures, which clearly breaks unforgeability. Note that [18] has been
ISO standardized [20] with this flaw.

The verification algorithm also checks b 6= 1G1
, which is not present in any of

the previous schemes. A credential with b = 1G1
leads to d = 1G1

, and lets any
gsk match the credential, which is undesirable as we no longer have a unique
matching gsk . An adversarial issuer can create such credentials by choosing its
secret key y = 0. This case is “excluded” by the non-frameability property of
Bernard et al. [3] which assumes that even a corrupt issuer creates his keys
honestly, so y = 0 will occur with negligible probability only. We avoid such an
assumption and simply add the check b 6= 1G1

.

6 Security Proof Sketch

Theorem 1. The protocol Πdaa presented in Section 5 securely realizes F ldaa in
the (Fauth∗,Fca,F lsmt,FDcrs)-hybrid model using random oracles and static corrup-
tions, if the DL and DDH assumptions hold, the CL signature [9] is unforgeable,
and the proofs-of-knowledge are online extractable.

As CL signatures are unforgeable under the LRSW assumption [21], and
we can instantiate the SPKs to be online extractable under the DCR assump-
tion [22], we obtain the following corollary:



Π C S1 F1
≈

. . .
Sn Fn≈ ≈ ≈

Fig. 6. Visualization of the proof strategy

Corollary 1. The protocol Πdaa presented in Section 5 instantiated with on-
line extractable proofs securely realizes F ldaa in the (Fauth∗,Fca,F lsmt,FDcrs)-hybrid
model using random oracles and static corruptions under the DL, DDH, LRSW,
and DCR assumptions.

Instead of relying on online extractable SPKs one could also use extraction
by rewinding, which would yield a more efficient scheme. However, one needs
to take special care that the rewinding does not require exponential time in
the security proof. The only SPK we constantly have to extract from in our
security proof is π1 used in the join protocol. Thus, we can avoid the exponential
blow-up by letting the issuer limit the number of simultaneous join sessions to
be logarithmic in the security parameter. Since we keep the way in which the
simulator extracts witnesses abstract in the proof of Theorem 1, the very same
simulator proves the scheme with extraction by rewinding secure. Note though,
that the UC framework does not allow rewinding at all, i.e., this only proves the
instantiation using extraction by rewinding secure in a stand-alone fashion, but
one cannot claim composability guarantees.

To show that no environment E can distinguish the real world, in which it
is working with Πdaa and adversary A, from the ideal world, in which it uses
F ldaa with simulator S, we use a sequence of games. We start with the real
world protocol execution. In the next game we construct one entity C that runs
the real world protocol for all honest parties. Then we split C into two pieces, a
functionality F and a simulator S, where F receives all inputs from honest parties
and sends the outputs to honest parties. We start with a useless functionality,
and gradually change F and update S accordingly, to end up with the full F ldaa
and a satisfying simulator. This strategy is depicted in Figure 6.

Due to space constraints, we present the complete security proof including
all intermediate functionalities and simulators in Appendix B. Here an overview
of the game hops is given, along with an explanation how we can show indistin-
guishability between the games.

Game 1: This is the real world protocol.

Game 2: The challenger C now receives all inputs and simulates the real world
protocol for honest parties. Since C gets all inputs, it can simply run the real
world protocol. It also simulates all hybrid functionalities, but does so honestly,
so E does not see any difference. By construction, this is equivalent to the pre-
vious game.

Game 3: We now split C into a “dummy functionality” F and simulator S. F
receives all inputs, and simply forwards them to S. S simulates the real world



protocol and sends the outputs it generates to F, who then outputs them to E .
This game only restructures the previous game.

Game 4: In this game we let our intermediate F handle the setup related inter-
faces using the procedure specified in F ldaa. Consequently, F expects to receive the
algorithms (ukgen, sig, ver, link, identify) from the simulator. For ukgen, ver, link
and identify, S can simply provide the algorithms from the real-world protocol,
where it omits the revocation check from ver. The sig algorithm, though, must
contain the issuer’s private key, so S has to be able to get that value.

When I is honest, S will receive a message from F asking for the algorithms,
which informs S what is happening and allows him to start simulating the issuer.
Since S is running the issuer, it knows its secret key and sets the sig algorithm
accordingly.

When I is corrupt, S starts the simulation when the issuer registers his key
with Fca that is controlled by the simulator. Since the public key includes a
proof of knowledge of the issuer’s secret key, S can extract the secret key from
there and define the sig algorithm accordingly. By the simulation soundness of
the SPK, this game hop is indistinguishable for the adversary.

Game 5: F now handles the verify and link queries using the provided algo-
rithms ver and link from the previous game, rather than forwarding the queries
to S. We do not let F perform the additional checks (Check (ix) - Check (xvi))
done by F ldaa, though, but add these only later. For Check (xii), F rejects a sig-
nature when a matching gsk′ ∈ RL is found, but does not exclude honest TPMs
from this check yet.

Because verify and link do not involve network traffic, the simulator does
not have to simulate traffic either, we must only make sure the outputs do not
change. F executes the algorithms that S supplied, and S supplied them in such
a way that they are equivalent to the real world algorithms, so the outcome will
clearly be equivalent.

Game 6: In this step we change F to also handle the join-related interfaces,
meaning it will receive the inputs and generate the outputs. We let F run
the same procedure as F ldaa, but again omit the additional checks (Check (ii)-
Check (iv)).

We have to ensure that F outputs the same values as the real world did. As
the join interfaces do not output crypto values, but only messages like start and
complete, we simply have to guarantee that whenever the real world protocol
would reach a certain output, the functionality also allows that output, and vice
versa.

For the direction from the real world to the functionality this is clearly given,
since F does not perform additional checks and thus will always proceed for any
input it receives from S. For all outputs triggered by F, the simulator has to
give explicit approval which allows S to block any output by F if the real world
protocol would not proceed at a certain point.

If the host and/or TPM are honest, the simulator knows the identitiesMi,Hj
and correctly uses them towards F as well as in the simulation. If both, the



TPM and host are corrupt but the issuer is honest, then S cannot determine
the identity of the host, as the host does not authenticate towards the issuer in
the real world. This does not impact the real world simulation of the issuer, but
the simulator has to choose an arbitrary corrupt host Hj now when invoking F
with the JOIN call. This will only result in a different host being stored in the
Members list in F, but F never uses this identity when the corresponding TPM
is corrupt.

In the final join interface JOINCOMPLETE, the simulator has to provide the
secret key gsk of the TPM. When the TPM is honest, S knows the key anyway
and if the TPM is corrupt, S extracts the key from the proof π1. Note that F
sets gsk ← ⊥ when both the TPM and host are honest. However, this has no
impact yet, as the signatures are still created by the simulator and the verify
and link interfaces of F do not run the additional checks that make use of the
internally stored records and keys. Overall, this game hop is indistinguishable
by the simulation soundness of the SPK π1.

Game 7, 8, 9, 10: Over the next four game hops we transform F such that
it internally handles the signing queries instead of merely forwarding them to
S. Again, F uses the sign interfaces from F ldaa, with the difference that it does
not perform the Check (v)-Check (viii) which we only add in a later game.
As argued in the previous game, the procedures are defined such that S has to
approve every output by F, which allows it to block any output that would not
happen in the real world protocol.

When the TPM or the host is corrupt, S has to provide the signature value,
which it takes from the real world simulation, and thus perfectly mimics the
real world output. When both the TPM and the host are honest, F creates the
signatures internally in an unlinkable way: It chooses a new gsk per basename
and TPM, or per signature when bsn = ⊥ and then runs the sig algorithm
for that fresh key. F keeps the internally chosen keys 〈Mi, bsn, gsk〉 in a list
DomainKeys to ensure consistency if a TPM wishes to reuse the basename.

This change is indistinguishable under the DDH assumption: Suppose an
environment can distinguish a signature by an honest party with the gsk it
joined with from a signature by the same party but with a different gsk. Then
we can use that environment to break a DDH instance α, β, γ by simulating
the join and the first signature using the unknown logg1(α) as gsk, and for the
second signature we use the unknown logβ(γ) as gsk. If the environment notices
a difference, we know that logg1(α) 6= logβ(γ), solving the DDH problem.

In the reduction we have to be able to simulate the TPM without knowing
gsk , but merely based on α = ggsk1 . A TPM uses gsk to set Q ← ggsk1 in
the join protocol, to do proofs π1 in joining and π in signing, and to compute
pseudonyms. In simulation, we set Q← α and we simulate all proofs π1 and π.
For pseudonyms, the power over the random oracle is used: S chooses H1(bsn) =
gr1 for r ←$ Zq, and sets nym← αr = H1(bsn)gsk without knowing gsk. Note that
the proof π2 the issuer makes in the join protocol is crucial for our simulation as

well, since the TPM does not have to use gsk to check bgsk
?
= d, it can simply

verify π2.



Game 11: In this game we let F additionally check the validity of every new
gsk that is generated or received in the join and sign interface.

If the TPM is corrupt, F checks that CheckGskCorrupt(gsk) = 1 for the
gsk that the simulator extracted from π1 (Check (iv)). This check prevents the
adversary from choosing different keys gsk 6= gsk ′ that both fit to the same
signature. In our protocol there exists only a single gsk for every valid signature
where identify(σ,m, bsn, gsk) = 1, and thus this check will never fail.

For keys of honest TPMs, F verifies that CheckGskHonest(gsk) = 1 whenever
it receives or generates a new gsk (Check (iii) and Check (v)). With these
checks we avoid the registration of keys for which matching signatures already
exist. Since keys for honest TPMs are chosen uniformly at random from an
exponentially large group and every signature has exactly one matching key, the
chance that a signature under that key already exists is negligible.

Game 12: We now add the checks to F that F ldaa runs in the sign inter-
faces when internally generating signatures for honest platforms. After creating
a signature, F checks whether the signature verifies and matches the right key
(Check (vi) and Check (vii)). As S supplied proper algorithms and the signature
scheme is complete, these checks will obviously always succeed.

F also checks with the help of its internal key records Members and DomainKeys

that no one else already has a key which would match this newly generated sig-
nature (Check (viii)). If this fails, we can solve the DL problem: We simulate
a TPM using the unknown discrete logarithm of the DL instance as gsk like in
the DDH reduction before. If a matching gsk is found, then we have a solution
to the DL problem.

Game 13, 14, 15, 16: In these four game hops, we let F perform the four
additional checks that are done by F ldaa in the verification interface and show
that this does not change the verification outcome.

The first check prevents multiple gsk values matching one signature, but as
identify considers the discrete log relation between b and d from the credential,
and b 6= 1, there exists only one gsk ∈ Zq such that bgsk = d (Check (ix)).

If the issuer is honest, the second check prevents signing with join creden-
tials that were not issued by the issuer (Check (x)). We can reduce this to the
unforgeability of the CL signature. The signing oracle is now used to create cre-
dentials, and when a credential is verified that was not signed by the issuer, it
must be a forgery.

F prevents signatures that use the key and credential of an honest TPM, but
are for messages that this TPM never signed (Check (xi)). We can reduce the
occurrence of such a signature to the DL problem. Again we simulate a TPM
using the unknown discrete logarithm of the problem instance. When a signature
is verified for a message that the TPM never signed, we know that the proof π
is not simulated, so we can extract gsk from it, breaking the DL assumption.

The last check prevents the revocation of honest TPMs (Check (xii)), which
we can reduce to the DL problem as well. We simulate the TPM using the DL



instance, and if a matching key is placed on the revocation list, this must be the
discrete logarithm of the problem instance.

Game 17: We now let F perform all the additional checks F ldaa makes for link
queries. If it notices a key that matches one signature but not the other, F states
the signatures are not linked. If it notices one key that matches both signatures,
it outputs that the signatures are linked. The output of F based on these checks
is still consistent with the output which the link algorithm would give: If there is
a gsk that matches one signature but not the other, by soundness of π we have
that the pseudonyms are not based on the same gsk. As H1(bsn) generates G1

with overwhelming probability, the pseudonyms differ and link would output 0.
If there is a gsk that matches both signatures, by soundness of π we have that
the pseudonyms are based on the same gsk and must be equal, resulting in link
outputting 1.

Now F is equal to F ldaa, concluding our proof sketch.

Acknowledgements. This work was supported by the European Commission
through the Seventh Framework Programme, under grant agreements #321310
for the PERCY grant and #318424 for the project FutureID.

References

1. Backes, M., Hofheinz, D.: How to break and repair a universally composable sig-
nature functionality. Information Security 2004.

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. ACM CCS 1993.

3. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N., Warinschi, B.: Anonymous
attestation with user-controlled linkability. International Journal of Information
Security 12(3), (2013)

4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. ASI-
ACRYPT 2001.

5. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. ACM
CCS 2004.

6. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. Trusted Computing - Challenges and Applications 2008.

7. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attes-
tation and a concrete scheme from pairings. International Journal of Information
Security 8(5), (2009)

8. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. EUROCRYPT 2009.

9. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. CRYPTO 2004.

10. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. CRYPTO 2003.

11. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). CRYPTO 1997.

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. ePrint Archive Report 2000/067.



13. Canetti, R.: Universally composable signatures, certification and authentication.
ePrint Archive, Report 2003/239.

14. Chen, L., Morrissey, P., Smart, N.: DAA: Fixing the pairing based protocols. ePrint
Archive, Report 2009/198.

15. Chen, L.: A DAA scheme requiring less tpm resources. Information Security and
Cryptology 2010.

16. Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing (invited talk).
PAIRING 2008.

17. Chen, L., Morrissey, P., Smart, N.: On proofs of security for DAA schemes. Provable
Security 2008.

18. Chen, L., Page, D., Smart, N.: On the design and implementation of an efficient
DAA scheme. Smart Card Research and Advanced Application 2010.

19. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. CRYPTO 1986.

20. International Organization for Standardization: ISO/IEC 20008-2: Information
technology - Security techniques - Anonymous digital signatures - Part 2: Mecha-
nisms using a group public key (2013)

21. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. SAC 1999.
22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. EUROCRYPT 1999.
23. Trusted Computing Group: TPM main specification version 1.2 (2004)
24. Trusted Computing Group: Trusted platform module library specification, family

“2.0” (2014)
25. Xi, L., Yang, K., Zhang, Z., Feng, D.: DAA-related APIs in TPM 2.0 revisited.

Trust and Trustworthy Computing 2014.



A Auxiliary Ideal Functionalities

In this section, we formally define the ideal functionalities we use as subroutines
in our protocol.

A.1 Certification Authority

We use the ideal certification authority functionality Fca as defined in [13].

1. Upon receiving the first message (Register, sid, v) from party P , send
(Registered, sid, v) to the adversary; upon receiving ok from the adversary, and
if sid = P and this is the first request from P , then record the pair (P, v).

2. Upon receiving a message (Retrieve, sid) from party P ′, send (Retrieve, sid, P ′)
to the adversary, and wait for an ok from the adversary. Then, if there
is a recorded pair (sid, v) output (Retrieve, sid, v) to P ′. Else output
(Retrieve, sid,⊥) to P ′.

Fig. 7. Ideal certification authority functionality Fca from [13]

A.2 Secure Message Transmission

We further use the ideal secure message transmission functionality as defined in
the 2013 version of [12]. This functionality is parametrized by a leakage function
l : {0, 1}∗ → {0, 1}∗.

For our security proof, we require the leakage function l to fulfill the following
property: l(b) = l(b′)→ l(a, b) = l(a, b′) for all a, b, b′. This is a natural require-
ment, as most secure channels will at most leak the length of the plaintext, for
which this property holds.

1. Upon receiving input (Send, S,R, sid,m) from S, send (Sent, S,R, sid, l(m)) to
the adversary, generate a private delayed output (Sent, S, sid,m) to R and halt.

2. Upon receiving (Corrupt, sid, P ) from the adversary, where P ∈ {S,R}, disclose
m to the adversary. Next, if the adversary provides a value m′, and P = S, and
no output has been yet written to R, then output (Sent, S, sid,m′) to R and
halt.

Fig. 8. Ideal secure message transmission functionality F lsmt from [12]



A.3 Common Reference String

For the crs functionality we use the 2005 version of [12]. This functionality is
parametrized by a distribution D, from which the crs is sampled.

1. When receiving input (CRS, sid) from party P , first verify that sid = (P, sid′)
where P is a set of identities, and that P ∈ P; else ignore the input. Next, if
there is no value r recorded then choose and record r ←$ D. Finally, send a
public delayed output (CRS, sid, r) to P .

Fig. 9. Ideal crs functionality FDcrs from [12]



B Proof of Theorem 1

Proof. We have to prove that our scheme realizes F ldaa, which means proving that
for every adversary A, there exists a simulator S such that for every environment
E we have EXECΠ,A,E ≈ IDEALF,S,E . To prove this a sequence of games is
used. First we define all intermediate functionalities and simulators, and then
we prove that they are all indistinguishable from each other.



B.1 Functionalities and Simulators

Setup

1. On input (SETUP, sid) from I.

– Output (FORWARD, (SETUP, sid), I) to S.

Join

1. On input (JOIN, sid , jsid,Mi) from host Hj .
– Output (FORWARD, (JOIN, sid , jsid,Mi),Hj) to S.

2. On input (JOINPROCEED, sid , jsid) from I
– Output (FORWARD, (JOINPROCEED, sid , jsid), I) to S.

Sign

1. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– Output (FORWARD, (SIGN, sid , ssid,Mi,m, bsn),Hj) to S.

2. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify

1. On input (VERIFY, sid ,m, bsn, σ, RL) from V,

– Output (FORWARD, (VERIFY, sid , vsid,m, bsn, σ, RL),V) to S.

Link

1. On input (LINK, sid , σ,m, σ′,m′, bsn) from V.

– Output (FORWARD, (LINK, sid , lsid, σ,m, σ′,m′, bsn),V) to S.

Output

1. On input (OUTPUT,P,m) from S.

– Output (m) to P.

Fig. 10. F for Game 3



When any simulated party “P” outputs a message m, S sends (OUTPUT,P,m) to F.
KeyGen

– Upon receiving (FORWARD, (SETUP, sid), I) from F.

• Give “I” input (SETUP, sid).

Join

– Upon receiving input (FORWARD, (JOIN, sid , jsid,Mi),Hj) from F.

• Give “Hj” input (JOIN, sid , jsid,Mi).

– Upon receiving input (FORWARD, (JOINPROCEED, sid , jsid), I) from F.

• Give “I” input (JOINPROCEED, sid , jsid).

Sign

– Upon receiving (FORWARD, (SIGN, sid , ssid,Mi,m, bsn),Hj) from F.

• Give “Hj” input (SIGN, sid , ssid,Mi,m, bsn).

– Upon receiving FORWARD, (SIGNPROCEED, sid , ssid),Mi) from F.

• Give “Mi” input (SIGNPROCEED, sid , ssid).

Verify

– Upon receiving (FORWARD, (VERIFY, sid ,m, bsn, σ, RL),V) from F.

• Give “V” input (VERIFY, sid ,m, bsn, σ, RL).

Link

– Upon receiving (FORWARD, (LINK, sid , lsid, σ,m, σ′,m′, bsn),V) from F.

• Give “V” input (LINK, sid , lsid, σ,m, σ′,m′, bsn).

Fig. 11. Simulator Game 3



Setup

1. Issuer Setup. On input (SETUP, sid) from issuer I
– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic.

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

1. On input (JOIN, sid , jsid,Mi) from host Hj .
– Output (FORWARD, (JOIN, sid , jsid,Mi),Hj) to S.

2. On input (JOINPROCEED, sid , jsid) from I
– Output (FORWARD, (JOINPROCEED, sid , jsid), I) to S.

Sign

1. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– Output (FORWARD, (SIGN, sid , ssid,Mi,m, bsn),Hj) to S.

2. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify

1. On input (VERIFY, sid ,m, bsn, σ, RL) from V,

– Output (FORWARD, (VERIFY, sid , vsid,m, bsn, σ, RL),V) to S.

Link

1. On input (LINK, sid , σ,m, σ′,m′, bsn) from V.

– Output (FORWARD, (LINK, sid , lsid, σ,m, σ′,m′, bsn),V) to S.

Output

1. On input (OUTPUT,P,m) from S.

– Output (m) to P.

Fig. 12. F for Game 4



When any simulated party “P” outputs a message m that is not explicitly handled by
S yet, S sends (OUTPUT,P,m) to F.
KeyGen
Honest I

– On input (SETUP, sid) from F.

• Try to parse sid as I, sid ′, output ⊥ to I if that fails.

• Give “I” input (SETUP, sid).

• When “I” outputs (SETUPDONE, sid), S takes its private key x, y.

• Define sig(gsk,m, bsn) as follows: compute (a, b, c, d)← CL.Sig(x, y; gsk), if bsn 6= ⊥,
nym = H1(bsn)gsk and π ← SPK{(gsk) : d = bgsk ∧ nym = H1(bsn)gsk}(m, bsn),
if bsn = ⊥, nym = ⊥ and π ← SPK{(gsk) : d = bgsk}(m, bsn), and output
(a, b, c, d, π, nym).

• Define ver(σ,m, bsn) as follows: parse σ as (a, b, c, d, π, nym) and check whether π is
valid on (m, bsn), a 6= 1G1 , b 6= 1G1 , e(a, Y ) = e(b, g2), e(c, g2) = e(a · d,X). If so
output 1, otherwise 0.

• Define link(σ,m, σ′,m′, bsn) as follows: parse the signatures as (a, b, c, d, π, nym) ← σ,
(a′, b′, c′, d′, π′, nym′)← σ′. If nym = nym′, output 1, otherwise 0.

• Define identify(σ,m, bsn, gsk) as follows: parse σ as (a, b, c, d, π, nym) and check gsk ∈
Zq, ver(σ,m, bsn) = 1 and d = bgsk. If so, output 1, otherwise 0.

• Define ukgen as follows: take gsk ∈R Zq and output gsk.

• S sends (KEYS, sid , sig, ver, link, identify, ukgen) to F.

Corrupt I

– S notices this setup as it notices I registering a public key with “Fca” with sid =
(I, sid ′).

• If the registered key is of the form X,Y, π and π is valid, S extracts x, y from π.

• S defines the algorithms sig, ver, link, identify, ukgen as before, but now depending on
the extracted key.

• S sends (SETUP, sid) to F on behalf of I.

– On input (KEYGEN, sid) from F.

• S sends (KEYS, sid , sig, ver, link, identify, ukgen) to F.

– On input (SETUPDONE, sid) from F
• S continues simulating “I”.

Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 13. Simulator Game 4



Setup

1. Issuer Setup. On input (SETUP, sid) from issuer I
– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic.

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

1. On input (JOIN, sid , jsid,Mi) from host Hj .
– Output (FORWARD, (JOIN, sid , jsid,Mi),Hj) to S.

2. On input (JOINPROCEED, sid , jsid) from I
– Output (FORWARD, (JOINPROCEED, sid , jsid), I) to S.

Sign

1. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– Output (FORWARD, (SIGN, sid , ssid,Mi,m, bsn),Hj) to S.

2. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Output

1. On input (OUTPUT,P,m) from S.

– Output (m) to P.

Fig. 14. F for Game 5



When any simulated party “P” outputs a message m that is not explicitly handled by
S yet, S sends (OUTPUT,P,m) to F.
KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Nothing to simulate.
Link
Nothing to simulate.

Fig. 15. Simulator Game 5



Setup

1. Issuer Setup. On input (SETUP, sid) from issuer I
– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic.

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

1. Join Request. On input (JOIN, sid , jsid,Mi) from host Hj
– Create a join session record 〈jsid,Mi,Hj , status〉 with status ← request .

– Output (JOINSTART, sid , jsid,Mi,Hj) to S.

2. Join Request Delivery. On input (JOINSTART, sid , jsid) from S
– Update the session record 〈jsid,Mi,Hj , status〉 to status ← delivered .

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.

– Output (JOINPROCEED, sid , jsid,Mi) to I.

3. Complete Join. On input (JOINPROCEED, sid , jsid) from I
– Update the session record 〈jsid,Mi,Hj , status〉 to status ← complete.

– Output (JOINCOMPLETE, sid , jsid) to S.

4. Key Generation. On input (JOINCOMPLETE, sid , jsid, gsk) from S.

– Look up record 〈jsid,Mi,Hj , status〉 with status = complete.

– If Mi and Hj are honest, set gsk ← ⊥.

– Insert 〈Mi,Hj , gsk〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign

1. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– Output (FORWARD, (SIGN, sid , ssid,Mi,m, bsn),Hj) to S.

2. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Output

1. On input (OUTPUT,P,m) from S.

– Output (m) to P.

Fig. 16. F for Game 6



When any simulated party “P” outputs a message m that is not explicitly handled by
S yet, S sends (OUTPUT,P,m) to F.
KeyGen
Unchanged.
Join
Honest H, I:

– S receives (JOINSTART, sid , jsid,Mi,Hj) from F.

• It simulates the real world protocol by giving “Hj” input (JOIN, sid , jsid,Mi) and
waits for output (JOINPROCEED, sid , jsid,Mi) from “I”.

• If Mi is corrupt, S extracts gsk from proof π1 stores it. If Mi is honest, it already
knows gsk as it is simulating Mi.

• S sends (JOINSTART, sid , jsid) to F.

– On input (JOINCOMPLETE, sid , jsid) from F.

• S continues the simulation by giving “I” input (JOINPROCEED, sid , jsid), and waits
for output (JOINED, sid , jsid) from “Hj”.

• Output (JOINCOMPLETE, sid , jsid, gsk) to F.

Honest H, Corrupt I:

– On input (JOINSTART, sid , jsid,Mi,Hj) from F.

• S simulates the real world protocol by giving “Hj” input (JOIN, sid , jsid,Mi) and
waits for output (JOINED, sid , jsid) from “Hj”.

• S sends (JOINSTART, sid , jsid) to F.

– Upon receiving (JOINPROCEED, sid , jsid) from F.

• S sends (JOINPROCEED, sid , jsid) to F on behalf of I
– Upon receiving (JOINCOMPLETE, sid , jsid) from F.

• Send (JOINCOMPLETE, sid , jsid,⊥) to F.

Honest M, I, Corrupt H:

– S notices this join as “Mi” receives a nonce n from Hj
• S makes a join query on Hj ’s behalf by sending (JOIN, sid , jsid,Mi) to F.

– Upon receiving (JOINSTART, sid , jsid,Mi,Hj) from F.

• S continues the simulation of “Mi” until “I” outputs (JOINPROCEED, sid , jsid,Mi).

• S sends (JOINSTART, sid , jsid) to F.

– Upon receiving (JOINCOMPLETE, sid , jsid) from F.

• S sends (JOINCOMPLETE, sid , jsid, gsk) to F, where gsk is taken from simulating
“Mi”.

– Upon receiving (JOINED, sid , jsid) from F as Hj is corrupt.

• S gives “I” input (JOINPROCEED, sid , jsid).

Simulator continues on next page.

Fig. 17. First part of Simulator Game 6





Honest I, Corrupt M, H:

– S notices this join as “I” receives (SENT, sid ′, (Q, π1),H′j) from Fauth∗.

• Parse sid ′ as (Mi, I, sid). S extracts gsk from π1.

• Note that S does not know the identity of the host that initiated this join, so it chooses
some corrupt Hj and proceeds as if this is the host that initiated the join protocol.
Even though this probably is not the correct host, it will only put a different host in
Members, and the identities of hosts in this list are only used while creating signatures
for platforms with an honest TPM or host, so for a fully corrupt platform it does not
matter.

• S makes a join query with Mi by sending (JOIN, sid , jsid,Mi) to F on behalf of Hj .
– Upon receiving (JOINSTART, sid , jsid,Mi,Hj) from F.

• S continues simulating “I” until it outputs (JOINPROCEED, sid , jsid,Mi).

• S sends (JOINSTART, sid , jsid) to F.

– Upon receiving (JOINCOMPLETE, sid , jsid) from F.

• S sends (JOINCOMPLETE, sid , jsid, gsk) to F.

– Upon receiving (JOINED, sid , jsid) from F as Hj is corrupt.

• S continues the simulation by giving “I” input (JOINPROCEED, sid , jsid).

Honest M, Corrupt H, I:

– S notices this join as “Mi” receives a message n from Hj
– S simply simulates Mi honestly, there is no need to involve F as Mi does not receive

inputs or send outputs in the join procedure.

Sign
Unchanged.
Verify
Nothing to simulate.
Link
Nothing to simulate.

Fig. 18. Second part of Simulator Game 6



Setup
Unchanged.
Join
Unchanged.
Sign with bsn 6= ⊥

1. On input (SIGN, sid , ssid,Mi,m, bsn) with bsn 6= ⊥ from host Hj .
– Output (FORWARD, (SIGN, sid , ssid,Mi,m, bsn),Hj).
2. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Sign with bsn = ⊥

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) with bsn = ⊥ from host Hj .
– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid,m, bsn,Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such
gsk exists or bsn = ⊥, set gsk ← ukgen() and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Output

1. On input (OUTPUT,P,m) from S.

– Output (m) to P.

Fig. 19. F for Game 7



When any simulated party “P” outputs a message m that is not explicitly handled by
S yet, S sends (OUTPUT,P,m) to F.
KeyGen
Unchanged.
Join
Unchanged.
Sign with bsn 6= ⊥

– Upon receiving (FORWARD, (SIGN, sid , ssid,Mi,m, bsn),Hj) from F.

• Give “Hj” input (SIGN, sid , ssid,Mi,m, bsn).

– Upon receiving FORWARD, (SIGNPROCEED, sid , ssid),Mi) from F.

• Give “Mi” input (SIGNPROCEED, sid , ssid).

Sign with bsn = ⊥
Honest M, H:

– Upon receiving (SIGNSTART, sid , ssid,m, bsn,Mi,Hj) with bsn = ⊥ from F.

• S starts the simulation by giving “Hj” input (SIGN, sid , ssid,Mi,m
′, bsn′).

• When “Mi” outputs (SIGNPROCEED, sid , ssid,m′, bsn′), send (SIGNSTART, sid , ssid)
to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

• When “Mi” outputs (SIGNATURE, sid , ssid, σ), send (SIGNCOMPLETE, sid , ssid,⊥)
to F.

Honest H, Corrupt M:

– Upon receiving (SIGNSTART, sid , ssid,m, bsn,Mi,Hj) with bsn = ⊥ from F.

• Send (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNPROCEED, sid , ssid,m, bsn) from F as Mi is corrupt.

• Starts the simulation by giving “Hj” input (SIGN, sid , ssid,Mi,m, bsn).

• When “Hj” outputs (SIGNATURE, sid , ssid, σ), sends (SIGNPROCEED, sid , ssid) to F
on behalf of Mi.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send SIGNCOMPLETE, sid , ssid, σ) to F.

Honest M, Corrupt H:

– S notices this sign as “Mi” receives m, bsn, r with bsn = ⊥ from Hj .
• Make a sign query on Hj ’s behalf by sending (SIGN, sid , ssid,Mi,m, bsn).

– Upon receiving (SIGNSTART, sid , ssid,m, bsn,Mi,Hj) from F.

• Continue the simulation of “Mi” until it outputs (SIGNPROCEED, sid , ssid,m, bsn).

• Sends (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send (SIGNCOMPLETE, sid , ssid,⊥) to F.

– Upon receiving (SIGNATURE, sid , ssid, σ) from F as Hj is corrupt.

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

Verify
Nothing to simulate.
Link
Nothing to simulate.

Fig. 20. Simulator Game 7



Setup
Unchanged.
Join
Unchanged.
Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid,m, bsn,Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such
gsk exists or bsn = ⊥, set gsk ← ukgen() and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 21. F for Game 8



KeyGen
Unchanged.
Join
Unchanged.
Sign
Honest M, H:

– Upon receiving (SIGNSTART, sid , ssid,m, bsn,Mi,Hj) from F.

• S starts the simulation by giving “Hj” input (SIGN, sid , ssid,Mi,m, bsn).

• When “Mi” outputs (SIGNPROCEED, sid , ssid,m, bsn), send (SIGNSTART, sid , ssid)
to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

• When “Mi” outputs (SIGNATURE, sid , ssid, σ), send (SIGNCOMPLETE, sid , ssid,⊥)
to F.

Honest H, Corrupt M:

– Upon receiving (SIGNSTART, sid , ssid,m, bsn,Mi,Hj) from F.

• Send (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNPROCEED, sid , ssid,m, bsn) from F as Mi is corrupt.

• Starts the simulation by giving “Hj” input (SIGN, sid , ssid,Mi,m, bsn).

• When “Hj” outputs (SIGNATURE, sid , ssid, σ), sends (SIGNPROCEED, sid , ssid) to F
on behalf of Mi.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send SIGNCOMPLETE, sid , ssid, σ) to F.

Honest M, Corrupt H:

– S notices this sign as “Mi” receives m, bsn, r from Hj .
• Make a sign query on Hj ’s behalf by sending (SIGN, sid , ssid,Mi,m, bsn).

– Upon receiving (SIGNSTART, sid , ssid,m, bsn,Mi,Hj) from F.

• Continue the simulation of “Mi” until it outputs (SIGNPROCEED, sid , ssid,m, bsn).

• Sends (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send (SIGNCOMPLETE, sid , ssid,⊥) to F.

– Upon receiving (SIGNATURE, sid , ssid, σ) from F as Hj is corrupt.

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

Verify
Nothing to simulate.
Link
Nothing to simulate.

Fig. 22. Simulator Game 8



Setup
Unchanged.
Join
Unchanged.
Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such
gsk exists or bsn = ⊥, set gsk ← ukgen() and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 23. F for Game 9



KeyGen
Unchanged.
Join
Unchanged.
Sign
Honest M, H:

– Upon receiving (SIGNSTART, sid , ssid, l,Mi,Hj) from F.

• Take a dummy m′, bsn′ such that l(m′, bsn′) = l.

• S starts the simulation by giving “Hj” input (SIGN, sid , ssid,Mi,m
′, bsn′).

• When “Mi” outputs (SIGNPROCEED, sid , ssid,m′, bsn′), send (SIGNSTART, sid , ssid)
to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

• When “Mi” outputs (SIGNATURE, sid , ssid, σ), send (SIGNCOMPLETE, sid , ssid,⊥)
to F.

Honest H, Corrupt M:

– Upon receiving (SIGNSTART, sid , ssid, l,Mi,Hj) from F.

• Send (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNPROCEED, sid , ssid,m, bsn) from F as Mi is corrupt.

• Starts the simulation by giving “Hj” input (SIGN, sid , ssid,Mi,m, bsn).

• When “Hj” outputs (SIGNATURE, sid , ssid, σ), sends (SIGNPROCEED, sid , ssid) to F
on behalf of Mi.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send SIGNCOMPLETE, sid , ssid, σ) to F.

Honest M, Corrupt H:

– S notices this sign as “Mi” receives m, bsn, r from Hj .
• Make a sign query on Hj ’s behalf by sending (SIGN, sid , ssid,Mi,m, bsn).

– Upon receiving (SIGNSTART, sid , ssid, l,Mi,Hj) from F.

• Continue the simulation of “Mi” until it outputs (SIGNPROCEED, sid , ssid,m, bsn).

• Sends (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send (SIGNCOMPLETE, sid , ssid,⊥) to F.

– Upon receiving (SIGNATURE, sid , ssid, σ) from F as Hj is corrupt.

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

Verify
Nothing to simulate.
Link
Nothing to simulate.

Fig. 24. Simulator Game 9



Setup
Unchanged.
Join
Unchanged.
Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– If I is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such
gsk exists or bsn = ⊥, set gsk ← ukgen() and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 25. F for Game 10



KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged
Verify
Unchanged.
Link
Unchanged.

Fig. 26. Simulator Game 10



Setup
Unchanged.
Join

1. Join Request. On input (JOIN, sid , jsid,Mi) from host Hj
– Create a join session record 〈jsid,Mi,Hj , status〉 with status ← request .

– Output (JOINSTART, sid , jsid,Mi,Hj) to S.

2. Join Request Delivery. On input (JOINSTART, sid , jsid) from S
– Update the session record 〈jsid,Mi,Hj , status〉 to status ← delivered .

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.

– Output (JOINPROCEED, sid , jsid,Mi) to I.

3. Complete Join. On input (JOINPROCEED, sid , jsid) from I
– Update the session record 〈jsid,Mi,Hj , status〉 to status ← complete.

– Output (JOINCOMPLETE, sid , jsid) to S.

4. Key Generation. On input (JOINCOMPLETE, sid , jsid, gsk) from S.

– Look up record 〈jsid,Mi,Hj , status〉 with status = complete.

– If Mi and Hj are honest, set gsk ← ⊥.

– Else, verify that the provided gsk is eligible by checking

• CheckGskHonest(gsk) = 1 if Hj is corrupt and Mi is honest, or

• CheckGskCorrupt(gsk) = 1 if Mi is corrupt.

– Insert 〈Mi,Hj , gsk〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– If I is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no
such gsk exists or bsn = ⊥, set gsk ← ukgen(). Check CheckGskHonest(gsk) = 1
and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify
Unchanged.
Link
Unchanged.

Fig. 27. F for Game 11



KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged
Verify
Unchanged.
Link
Unchanged.

Fig. 28. Simulator Game 11



Setup
Unchanged.
Join
Unchanged.
Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– If I is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no
such gsk exists or bsn = ⊥, set gsk ← ukgen(). Check CheckGskHonest(gsk) = 1
and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn) and check ver(σ,m, bsn) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and check that there is no M′i 6= Mi with key
gsk′ registered in Members or DomainKeys with identify(σ,m, bsn, gsk′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 29. F for Game 12



KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged
Verify
Unchanged.
Link
Unchanged.

Fig. 30. Simulator Game 12



Setup
Unchanged.
Join
Unchanged.
Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– If I is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no
such gsk exists or bsn = ⊥, set gsk ← ukgen(). Check CheckGskHonest(gsk) = 1
and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn) and check ver(σ,m, bsn) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and check that there is no M′i 6= Mi with key
gsk′ registered in Members or DomainKeys with identify(σ,m, bsn, gsk′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all pairs (gski,Mi) from 〈Mi, ∗, gski〉 ∈ Members and 〈Mi, ∗, gski〉 ∈
DomainKeys where identify(σ,m, bsn, gski) = 1. Set f ← 0 if at least one of the
following conditions hold:

• More than one key gski was found.

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 31. F for Game 13



KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged
Verify
Unchanged.
Link
Unchanged.

Fig. 32. Simulator Game 13



Setup
Unchanged.
Join
Unchanged.
Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– If I is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no
such gsk exists or bsn = ⊥, set gsk ← ukgen(). Check CheckGskHonest(gsk) = 1
and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn) and check ver(σ,m, bsn) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and check that there is no M′i 6= Mi with key
gsk′ registered in Members or DomainKeys with identify(σ,m, bsn, gsk′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all pairs (gski,Mi) from 〈Mi, ∗, gski〉 ∈ Members and 〈Mi, ∗, gski〉 ∈
DomainKeys where identify(σ,m, bsn, gski) = 1. Set f ← 0 if at least one of the
following conditions hold:

• More than one key gski was found.

• I is honest and no pair (gski,Mi) was found.

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 33. F for Game 14



KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged
Verify
Unchanged.
Link
Unchanged.

Fig. 34. Simulator Game 14



Setup
Unchanged.
Join
Unchanged.
Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– If I is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no
such gsk exists or bsn = ⊥, set gsk ← ukgen(). Check CheckGskHonest(gsk) = 1
and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn) and check ver(σ,m, bsn) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and check that there is no M′i 6= Mi with key
gsk′ registered in Members or DomainKeys with identify(σ,m, bsn, gsk′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all pairs (gski,Mi) from 〈Mi, ∗, gski〉 ∈ Members and 〈Mi, ∗, gski〉 ∈
DomainKeys where identify(σ,m, bsn, gski) = 1. Set f ← 0 if at least one of the
following conditions hold:

• More than one key gski was found.

• I is honest and no pair (gski,Mi) was found.

• There is an honest Mi but no entry 〈∗,m, bsn,Mi〉 ∈ Signed exists.

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 35. F for Game 15



KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged
Verify
Unchanged.
Link
Unchanged.

Fig. 36. Simulator Game 15



Setup
Unchanged.
Join
Unchanged.
Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– If I is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no
such gsk exists or bsn = ⊥, set gsk ← ukgen(). Check CheckGskHonest(gsk) = 1
and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn) and check ver(σ,m, bsn) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and check that there is no M′i 6= Mi with key
gsk′ registered in Members or DomainKeys with identify(σ,m, bsn, gsk′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all pairs (gski,Mi) from 〈Mi, ∗, gski〉 ∈ Members and 〈Mi, ∗, gski〉 ∈
DomainKeys where identify(σ,m, bsn, gski) = 1. Set f ← 0 if at least one of the
following conditions hold:

• More than one key gski was found.

• I is honest and no pair (gski,Mi) was found.

• There is an honest Mi but no entry 〈∗,m, bsn,Mi〉 ∈ Signed exists.

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1 and no pair (gski,Mi) for
an honest Mi was found.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 37. F for Game 16



KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged
Verify
Unchanged.
Link
Unchanged.

Fig. 38. Simulator Game 16



Setup
Unchanged.
Join
Unchanged.
Sign

1. Sign Request. On input (SIGN, sid , ssid,Mi,m, bsn) from host Hj .
– If I is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.

– Create a sign session record 〈ssid,Mi,Hj ,m, bsn, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid, l(m, bsn),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid,Mi,Hj ,m, bsn, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid,m, bsn) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid,Mi,Hj ,m, bsn, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, σ) from S.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate
the signature for a fresh or established gsk:

• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no
such gsk exists or bsn = ⊥, set gsk ← ukgen(). Check CheckGskHonest(gsk) = 1
and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature as σ ← sig(gsk,m, bsn) and check ver(σ,m, bsn) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and check that there is no M′i 6= Mi with key
gsk′ registered in Members or DomainKeys with identify(σ,m, bsn, gsk′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid, σ) to Hj .

Verify

1. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all pairs (gski,Mi) from 〈Mi, ∗, gski〉 ∈ Members and 〈Mi, ∗, gski〉 ∈
DomainKeys where identify(σ,m, bsn, gski) = 1. Set f ← 0 if at least one of the
following conditions hold:

• More than one key gski was found.

• I is honest and no pair (gski,Mi) was found.

• There is an honest Mi but no entry 〈∗,m, bsn,Mi〉 ∈ Signed exists.

• There is a gsk′ ∈ RL where identify(σ,m, bsn, gsk′) = 1 and no pair (gski,Mi) for
an honest Mi was found.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults, output (VERIFIED, sid , f) to V.

Link

1. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (σ,m, bsn) or (σ′,m′, bsn) is not valid
(verified via the verify interface with RL = ∅).

– For each gski in Members and DomainKeys compute bi ← identify(σ,m, bsn, gski)
and b′i ← identify(σ′,m′, bsn, gski) and do the following:

• Set f ← 0 if bi 6= b′i for some i.

• Set f ← 1 if bi = b′i = 1 for some i.

– If f is not defined yet, Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 39. F for Game 17



KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged
Verify
Unchanged.
Link
Unchanged.

Fig. 40. Simulator Game 17



B.2 Indistinguishability of games

Game 1: This is the real world protocol.

Game 2: C receives all inputs for honest parties and simulates the real world
protocol for honest parties. By construction, this is equivalent to the real world.

Game 3: We now split C into two pieces, F and S. We let F evolve to become
Fdaa and S to become the simulator. F behaves as an ideal functionality, so the
messages it sends are authenticated and immediate, so A will not notice them.
F receives all the inputs, who forwards them to S. S will simulate the real world
protocol for all honest parties, and sends the outputs to F, who forwards them
to E . Outputs generated by parties simulated by S are not sent anywhere, only
S notices them. S sends an equivalent output to F using an OUTPUT message,
such that F will generate the same output.

This game is simply Game 2 but structured differently, so Game 3 = Game
2.

Game 4: We now change the behavior of F in the setup interface, and store
algorithms in F. Note that F now checks the structure of sid for honest issuer
I, and aborts when it is not of the expected form. This abort will not change
the view of E , as I performs the same check upon receiving this input.

The simulated real world does not change, as I gives “I” the correct input.
For corrupt I, S also extracts the secret key and calls the setup interface on I’s
behalf, but clearly this does not change E ’s view, so Game 4 = Game 3.

Game 5: F now handles verification and link queries instead of forwarding
them to S. There are no protocol messages, so we only have to make sure the
output is equal.

The verification algorithm F uses is almost equal to the real world protocol.
The only difference is the that the ver algorithm that F uses does not contain the
revocation check. F performs this check separately, so the outcomes are equal.

The linking protocol outputs ⊥ when it is called with invalid signatures. F
does the same, it verifies the signatures and outputs ⊥ when one of the signatures
is not valid. The protocol then checks the pseudonyms for equality, which is
exactly what F does, showing that the outputs will be equal. F requires link to
be symmetrical and outputs ⊥ to E when it notices that it is not. This algorithm
is symmetrical, so this abort will not happen and we have Game 5 = Game 4.

Game 6: The join interface of F is now changed. It stores which members
joined, and if I is honest, stores the gsk key with which corrupt TPMs joined.
S extracts this from proof π in the simulated real world.

If extraction by rewinding is used, a fresh nonce must be included in the
proof, guaranteeing that this proof is fresh and we can extract from it. Note
that we can rewind here as the honest I only allows a logarithmic number of
simultaneous join sessions, so there is no risk of requiring exponential time to
rewind every join session.



S always has enough information to simulate the real world protocol, except
when only the issuer is honest. It then does not know which host initiated this
join, so it cannot make a join query with F on that host’s behalf. However, it is
sufficient to take any corrupt host, as this will only result in a different identity
in Members, and in Fdaa this identity only matters for honest hosts.

Note that we need the TPM to be assured that b, d, π2 was sent by the
issuer. If not, the host could send these values without involving the honest
issuer, resulting in E not seeing the JOINPROCEED output in the real world. We
have to make a query with F such that the platform whereas in the ideal world,
E would receive this output when I is honest. Since the TPM knows that b, d, π2
was sent by I, we are assured that I was involved in this join and E sees the
JOINPROCEED output.

We must argue that F does not prevent an execution that was previously
allowed. F only has one check that may cause it to abort, if M already reg-
istered and I is honest. Since in the protocol, I checks this before outputting
JOINPROCEED, F will never abort.

As S can simulate the real world protocol and keep everything in sync with
F, the view of E does not change, Game 6 = Game 5.

Game 7: When signing with bsn = ⊥, F now creates anonymous signatures
for honest platforms using the algorithms defined in setup. Clearly the process
for creating signatures with bsn 6= ⊥ has not changed. To show that E cannot
notice that signatures with bsn = ⊥ are now made in a different way by F, we
make this change gradually.

In Game 7.k.k′, F forwards all signing inputs with Mi, i < k to S, and S
creates signatures as before. For signing inputs with Mk, the first k′ inputs are
handled by F, and later inputs will be forwarded to S. We now have Game 7.0.0
= Game 6. When increasing k′, in polynomially many steps Game 7.k,k′ will
be equal to Game 7.k+ 1.0 Repeating this process will make k large enough to
include all TPMs, so for some k, k′, we have Game 7 = Game 7.k.k′. Therefore,
to show that Game 7 = Game 6, it suffices to show that increasing k′ by one
is indistinguishable. Note that in this reduction we allow S and F to share
information, as in this reduction the separation of S and F is irrelevant.

We now show that anyone distinguishing Game 7.k.k′ from Game 7.k.k′+1
can solve DDH. We modify S working with F parametrized by k, k′ such that if it
receives a DDH tuple, it is equivalent to Game 7.k.k′, and otherwise equivalent
to Game 7.k.k′ + 1.

S receives a DDH instance g̃, α, β, γ ∈ G1 and must answer whether logg̃(α) ·
logg̃(β) = logg̃(γ). S simulates Mk using the unknown discrete logarithm of α
as its gsk by setting Q ← α, simulating proof π1 in join. Note that the issuers
proof π2 helps the simulation of a TPM without knowing its gsk, as we don’t
need gsk to check bgsk = d.

The first k′ signatures for Mk are fully anonymous, generated by F.

In the k′ + 1-th signature for Mk, we modify F to output a signature using
the DDH instance: it computes credential a ← β1/y, b ← β, c ← ax · γx, d ← γ,



using x, y that S learned during the setup protocol. It simulates the proof π and
outputs a, b, c, d, π.

Signing queries with Mk after the k′ + 1-th one are handled by S. When S
must create signatures for Mk, it executes the protocol honestly except that it
simulates π.

Note that now the first k′ signing queries are based on different gsk values
for every signature, the k′ + 1-th query is also based on a fresh gsk if the DDH
instance is not a DDH tuple or is based on the gsk from join if it is a DDH tuple,
and all later signatures are based on the gsk from join. Now any distinguisher
between Game 7.k.k′ and Game 7.k.k′ + 1 can solve DDH.

Game 8: When signing with bsn 6= ⊥, F now creates pseudonymous signatures
for honest platforms using the algorithms defined in setup. To show that E cannot
notice that signatures with bsn 6= ⊥ are now made in a different way by F, we
make this change gradually.

In Game 8.k.k′, F forwards all signing inputs with Mi, i < k to S, and S
creates signatures as before. For signing inputs with Mk, signing queries with
the first k′ basenames that are hashed are handled by F, and later inputs will
be forwarded to S. We now have Game 8.0.0 = Game 7. When increasing k′,
in polynomially many steps Game 8.k,k′ will be equal to Game 8.k + 1.0, as
there can only be polynomially many basenames hashed. Repeating this process
will make k large enough to include all TPMs, so for some k, k′, we have Game
8 = Game 8.k.k′. Therefore, to show that Game 8 = Game 7, it suffices to
show that increasing k′ by one is indistinguishable.

We now show that anyone distinguishing Game 8.k.k′ from Game 8.k.k′+1
can solve DDH. We modify S working with F parametrized by k, k′ such that if it
receives a DDH tuple, it is equivalent to Game 8.k.k′, and otherwise equivalent
to Game 8.k.k′ + 1.

S receives a DDH instance g̃, α, β, γ ∈ G1 and must answer whether logg̃(α) ·
logg̃(β) = logg̃(γ). S answers H1 queries with gr1 for some r ∈R Zq, maintaining
consistency, except the k′-th query, in which it returns βr for r ∈R Zq. S simu-
lates Mk using the unknown discrete logarithm α as its gsk by setting Q← α,
simulating proof π1 in join.

Signatures with the first k′ basenames are handled by F.

When creating signatures with the k′ + 1-th basename for Mk, we modify
F to output a signature using the DDH instance: it computes credential a ←
β1/y, b ← β, c ← ax · γx, d ← γ, randomizes the credential by raising the four
values to a random exponent, sets nym ← δr where r is taken from computing
the random oracle output for the k′+ 1-th basename. Finally it simulates π and
outputs a, b, c, d, nym, π.

Signing queries with Mk and later basenames, S creates signatures using
the unknown gsk that it used in the join protocol. It honestly executes the real
world protocol, except that it simulates the proof π and the way it computes the
pseudonym: It computes nym← αr, where r is taken from answering the random
oracle query on the basename.



Note that now signatures with the first k′ basenames are based on different
gsk values for basename, signatures with the k′ + 1-th basename are also based
on a fresh gsk if the DDH instance is not a DDH tuple or is based on the gsk
from join if it is a DDH tuple, and signatures for all later basenames are based
on the gsk from join. Now any distinguisher between Game 8.k.k′ and Game
8.k.k′ + 1 can solve DDH.

As all outputs are generated by F now, S no longer forwards outputs to F
so we can remove the forward output interface of F.

Game 9: F now no longer informs S of which message and basename are being
signed. When the TPM and Host are both honest, S does not learn m, bsn to
simulate the real world, only leakage l(m, bsn). It now chooses m′, bsn′ such that
l(m, bsn) = l(m′, bsn′) and uses these values to simulate the real world protocol.
The host will send m′, bsn′, r over a secure channel, leaking l(m′, bsn′, r) to A,
but since l(m, bsn) = l(m′, bsn′), we have l(m, bsn, r) = l(m′, bsn′, r). The
leakage that A sees is therefore consistent with the input.

Game 10: F now only allows platforms that joined to sign when I is honest.
This check will not change the view of E , using S from Game 9. Before signing
with someMi in the real world, an honest host will check whether it joined with
Mi and abort otherwise, so for honest hosts there is no difference. An honest
TPM Mi only signs when it has joined with that host, and when an honest
Mi performs the join protocol with a corrupt Hj and honest I, the simulator
will make a join query with F, ensuring that Mi and Hj are in Members. Since
F still allows any signing that could take place in the real world, Game 10 ≈
Game 9.

Game 11: When storing a new gsk, F checks CheckGskCorrupt(gsk) = 1 or
CheckGskHonest(gsk) = 1. We now show that these checks will never fail.

Note that we only consider valid signatures from VerResults, and Signed

only contains valid signatures (added for honest TPM and host) and ⊥ (added
for honest TPM with corrupt host). As identify(⊥) = 0, we only have to consider
valid signatures.

Any signature that passes verification has b 6= 1, and since G1 is a prime
order group, there is only one gsk ∈ Zq that has bgsk = d. From this property,
it follows that CheckGskCorrupt can never fail.

The gsk values that enter CheckGskHonest are taken uniformly at random
from Zq, which has exponential size, meaning that the probability that one of
the existing signatures contains that gsk is negligible. Therefore we have Game
11 ≈ Game 10.

Game 12: F now performs some checks on honestly generated signatures. First,
it checks that these signatures verify. This check will pass with overwhelming
probability: sig creates a valid proof and ensures a, b, c, d have the correct struc-
ture such that the pairing tests will pass. Verification can only fail when a or b
are 1G1 , which happens with negligible probability.

Second, it makes sure identify(σ,m, bsn, gsk) = 1. F running sig sets b, d such
that bgsk = d, so identify(σ,m, bsn, gsk) = 1.



Third, it checks that no honest user is already using gsk. We reduce this
check happening with non-negligible probability to solving the DL problem. F
receives an instance h ∈ G1 of the DL problem and must answer logg1(h). Only
polynomial many gsk values are created in signing requests, F chooses one of
those at random. Instead of setting gsk ← ukgen, F creates a credential on h,
determines the nym using the power S has over random oracle, and simulates
the π. When F would reuse this key (this happens when bsn 6= ⊥), it repeats
the same process. When a key matching any of these signatures is found in
Members or DomainKeys, this must be the discrete log of h, as there is only one
gsk matching a signature.

As every check passes with overwhelming probability, we have Game 12 ≈
Game 11.

Game 13: F now performs an additional check during verification, it checks
whether it finds multiple gsk values matching this signature, and if so, it rejects
the signature. We now show that this check does not change the verification
outcome, as any signature that would previously pass will still pass.

If the signature would previously pass verification, we have ver(σ,m, bsn) =
1, meaning b 6= 1G1

. As G1 is a prime order group, there exists only one gsk ∈ Zq
with bgsk = d. Therefore Game 13 = Game 12.

Game 14: When I is honest, F now only accepts credentials on gsk values
that I issued. Under the existential unforgeability of the CL signature, this check
changes the verification outcome only with negligible probability.

C receives a CL public key, which it registers with a simulated proof. When I
must create a credential in the join protocol, it takes the extracted gsk and sends
it to the signing oracle and receives a, b, c. It computes d = bgsk and continues
as before. F now uses the signing oracle to create credentials when signing for
honest platforms. Note that all the gsk values that I signs are stored in Members

or DomainKeys.

When a verifier sees a signature σ = (a, b, c, d, π, nym) such that d 6= bgsk for
all gsk values in Members and DomainKeys, it extracts gsk′ from π. By sound-
ness of the proof, a, b, c is a valid CL signature on gsk′, allowing C to win the
unforgeability game.

As the CL signature is unforgeable under the LRSW assumption, Game 14
= Game 13.

Game 15: F now prevents forging signatures using an honest TPM’s gsk. We
make this change gradually, and in Game 15.i, we do this check for the firstMi

TPMs. We show that any environment able to distinguish Game 15.i − 1 and
Game 15.i can break the DL assumption.

S receives an DL instance h, and simulates Mi as follows: it uses Q ← h
in the join protocol to register the unknown discrete logarithm as its gsk value,
along with a simulated proof π1.

It answers H1 queries by taking r ∈ Zq and returning gr1, while maintaining
consistency.



Signing queries forMi are answered by simulating π, and if bsn 6= ⊥ setting
nym← hr, where r is taken from the H1 query on bsn.

In verification, F now skips the check that at least one pair (Mi, gski) must
be found, as it cannot do this check for Mi.

Only polynomially many verification queries can be made. F picks one ver-
ification query at random, and if it is a valid signature, it extracts gsk from π.
With non-negligible probability, this is the discrete logarithm of h.

Game 16: F now prevents honest TPMs from being revoked. Any environment
that can put a gsk on the revocation list that matches an honest TPMs signature
can break the DL problem. We show this in two steps: first F prevents this
for pairs (Mi, gsk) from Members, and after that also for pairs (Mi, gsk) from
DomainKeys.

If this check aborts for a pair found in Members, E can solve the DL problem.
S receives an instance h ∈ G1 of the DL problem and must answer logg1(h). S
chooses an honest TPM at random and, as described in previous games, simulates
this TPM using the unknown discrete logarithm of h as its secret key. When a
gsk matching one of this TPMs signatures is found in the revocation list this
must be the discrete log of h, as there is only one gsk matching a signature.

If this check aborts for a pair found in DomainKeys, E can solve the DL
problem. F receives an instance h ∈ G1 of the DL problem and must answer
logg1(h). Only polynomial many gsk values are created in signing requests, F
chooses one of those at random. Instead of setting gsk ← ukgen, F creates a
credential on h, determines the nym using its power over the random oracle, and
simulates the π. When F would reuse this key (this happens when bsn 6= ⊥), it
repeats the same process. When a key matching any of these signatures is found
in the revocation list this must be the discrete log of h, as there is only one gsk
matching a signature.

Game 17: F now puts requirements on the link algorithm. These requirements
do not change the output.

As the signatures already verified, we have b 6= 1G1 , and since G1 is prime
order there is one unique gsk ∈ Zq with identify(σ,m, bsn, gsk). If one gsk
matches one of the signatures but not the other, then by soundness of the proof,
nym 6= nym′ and link would also output 0. If both signatures match some gsk,
then by soundness of the proof, we have nym = nym′ and link would also output
1. Therefore we have Game 17 = Game 16.

The functionality in Game 17 is equal to F ldaa, completing our sequence of
games.


