
Privacy-Preserving User-Auditable Pseudonym Systems

Jan Camenisch
IBM Research – Zurich

jca@zurich.ibm.com

Anja Lehmann
IBM Research – Zurich

anj@zurich.ibm.com

Abstract—Personal information is often gathered and processed
in a decentralized fashion. Examples include health records
and governmental data bases. To protect the privacy of in-
dividuals, no unique user identifier should be used across
the different databases. At the same time, the utility of the
distributed information needs to be preserved which requires
that it be nevertheless possible to link different records if they
relate to the same user. Recently, Camenisch and Lehmann
(CCS 15) have proposed a pseudonym scheme that addresses
this problem by domain-specific pseudonyms. Although being
unlinkable, these pseudonyms can be converted by a cen-
tral authority (the converter). To protect the users’ privacy,
conversions are done blindly without the converter learning
the pseudonyms or the identity of the user. Unfortunately,
their scheme sacrifices a crucial privacy feature: transparency.
Users are no longer able to inquire with the converter and
audit the flow of their personal data. Indeed, such auditability
appears to be diametral to the goal of blind pseudonym
conversion. In this paper we address these seemingly conflicting
requirements and provide a system where user-centric audits
logs are created by the oblivious converter while maintaining
all privacy properties. We prove our protocol to be UC-secure
and give an efficient instantiation using novel building blocks.

1. Introduction

In our forming digital society, personal data is increas-
ingly collected, processed, maintained, and exchanged in
electronic form. When data collection and operations happen
in a distributed fashion, it is often important that differ-
ent data sets of the same user can be associated. Typical
examples of such distributed, yet linkable data sets are
health records or governmental databases. Many countries,
including the US, Belgium, Denmark, and Sweden, use a
nation-wide social security number for linkage. While the
use of such unique identifiers across the whole system easily
allows the different entities to correlate their records, it poses
serious risks to data security and user privacy. For one, it
is hard if not impossible to control and limit the exchange
of records between entities. Even worse, any data breach
reveals fully identifiable and linkable personal information.
Because this is a major threat to user privacy and a security
risk, such databases require high protection, which is often
very costly.

A better approach is to use entity-specific identi-
fiers (called pseudonyms) which per se are unlinkable.
To still allow for linkage of a user’s different records,
these pseudonyms are established via a central entity (the
converter), who can later be asked to convert between
pseudonyms of the same user on a case per case ba-
sis [14]. In Japan, a new social security and tax number
system, called “MyNumber,” following that approach has
been rolled-out in 2015 [22]. Also the recent eID system
in Austria [11] allows (in theory) for such convertible
pseudonyms. A pseudonym system with such a central
converter clearly has strong advantages regarding privacy of
the data records and controllability of the information flow.
However, as the converter is necessarily involved in every
data exchange and learns which entities want to correlate
data of which user, this central authority is very powerful,
must be fully trusted, and becomes a target of attack. To
avoid a privacy and security nightmare, the converter needs
to be very well protected and still be highly available – an
almost impossible task.

A better approach that addresses this problem by pre-
venting the converter from learning all this information has
recently been proposed by Camenisch and Lehmann [7].
In their system, termed the CL-15 system henceforth, the
converter is still the crucial entity to establish and to trans-
late between the (un)linkable pseudonyms, but it does so
in a blind way, i.e., without learning the pseudonyms or
identity of the user for whom a conversion is requested.
The converter cannot even tell whether or not two requests
relate to the same user. The only information it learns is that
one server, say SA, wants to access some related data from
another server, say SB . This allows the converter to impose
access control based on the servers’ identities.

Transparency vs. Privacy. While in terms of privacy the
CL-15 system is clearly superior to the other approaches
discussed, it misses one very crucial feature: transparency
and auditability. Indeed, a user is not able to follow and
audit the flow of his personal data. Transparency is vital
for compliance with legal and business requirements and
has been recognized as one of the three key principles in
the European Data Protection Directive. It states that data
subjects have the right to be informed when their personal
data are being processed. In fact, in the new social security
number system of Japan, where entity-specific pseudonyms
are used, a portal giving users access to the exchange history



of their data has been a crucial design requirement. A
realization called “MyPortal” is supposed to be launched
in 2017 [22].

Providing transparency is rather trivial in a pseudonym
system with a converter who learns the identity of the user
behind every request: the converter can simply create an
audit log for each data request and inform the users of
all exchanges of their personal data. A number of authors
discuss different mechanisms to publish such audit logs in
a secure and privacy-friendly manner, ensuring, e.g., that
personal information in audit logs is only accessible to
the respective user or that logs do not contain linkable
traces [21], [20], [26]. All these audit solutions crucially
rely on the converter’s knowledge of the underlying users’
identities. However, this information is exactly what the CL-
15 system hides from all involved entities. In fact, allowing
the converter (or the servers) to generate user-specific infor-
mation, such as an entry in an audit log, seems to inherently
contradict the blindness property that guarantees that neither
the converter nor the servers can learn anything about a
user’s identity when generating or converting pseudonyms.

A possible attempt to add transparency to the CL-15
system would be to introduce a dedicated audit entity ST
and to extend the pseudonym conversion protocol as fol-
lows. Whenever a server SA wants to convert a pseudonym
nymi,A towards SB , the converter also blindly transforms
nymi,A into a pseudonym nymi,T towards the auditor ST ,
and hands the conversion context to ST . As all pseudonyms
of the underlying user Ui will be consistently transformed
into nymi,T , the auditor is able to maintain the entire
conversion history for each user. Indeed, such a logging
approach was recently proposed by Verheul et al. [23],
where a pseudonym system with (semi)blind conversions
is described that is currently deployed in a medical research
project. While such an extension adds the desired auditabil-
ity, it destroys privacy: the auditor learns of all related
conversion requests and thus must be fully trusted and well
protected. Indeed, such a solution offers no advantage over a
solution where the converter is aware of the users’ identities
and creates the logs, in particular if users are allowed online
access to their logs.

Our Contributions. In this paper we show that transparency
and privacy are not contradictory by presenting an efficient
pseudonym system with build-in auditability that enjoys the
same strong privacy properties as the CL-15 system. Con-
ceptually, we aim at a similar audit setup as in a pseudonym
system with a fully trusted converter: the converter creates
an audit log entry upon each conversion request and makes
these logs publicly available. This is done such that users
can retrieve their log entries and inform themselves about the
exchange of their own data. Despite the added auditability,
no privacy is lost: all pseudonym conversions and genera-
tions are fully unlinkable and do not reveal any information
about the underlying user to the converter. Indeed, only the
user to whom different log entries relate is able to link them.

While from a system perspective, the addition of audit
capabilities might seem like a rather small extension, real-

izing it in a privacy-preserving and provably-secure manner
is far from trivial. The main idea behind our construction is
as follows: we associate each blindly generated pseudonym
with a public encryption key so that the underlying user
knows the corresponding decryption key. That public key is
carried along whenever a pseudonym is converted. However,
to retain the privacy of conversions, the public key must be
randomized. To enable this, we formally define a new kind
of encryption scheme that allows for such key randomization
and show an instantiation based on ElGamal. A similar
concept has been used to obtain encryption schemes with
receiver anonymity [24], [27].

The core of our pseudonym conversion protocol is sim-
ilar to the one in the CL-15 scheme. When a server SA
wishes to convert the pseudonym nymi,A (of the underlying
user Ui) towards a server SB , it sends the pseudonym in
homomorphically encrypted form to the converter, who then
blindly computes nymi,B by performing the conversion
homomorphically on the ciphertext. In our scheme, the
encrypted pseudonym is accompanied by a freshly random-
ized encryption key of the related, yet unknown user. The
converter then encrypts under this randomized key the audit
information that records the data exchange between SA and
SB . The encrypted audit logs are made publicly available
such that they can be fetched by all users, yet users can only
decrypt their own logs entries.

This basic scheme just sketched already provides both
auditability and privacy, but only if all entities follow the
protocols honestly. Given that a pseudonym system is de-
signed for a distributed environment, where a multitude of
servers and users with diverse and hard to control back-
grounds participate, assuming all parties to be honest-but-
curious is far too strong an assumption. Thus, to ensure
that malicious users or servers cannot deviate from the
protocol, we deploy a new type of signature scheme, i.e.,
one for signing encoded messages. Such a scheme allows the
converter to blindly sign tuples of transformed and encrypted
pseudonyms and randomized user public keys, and then to
later blindly verify that servers only use legitimate combi-
nations of pseudonyms and (randomized) keys. This new
kind of signature scheme has many other applications and
is considered a result of separate interest. We also describe a
realization based on a recent structure-preserving signature
scheme by Groth [15].

Ensuring security against a fully corrupted converter
would require a substantial overhead in form of distributed
consensus protocols and a number of additional zero-
knowledge proofs. By assuming that a corrupt converter will
still perform the protocol to specification (i.e., the converter
to be honest-but-curious), we can avoid this complexity yet
cover the main threat: an overly curious converter who tries
to trace or identify users by exploiting all the information
and keys it sees. We believe this is a reasonable setting. First,
because the converter performs operations blindly, its correct
behaviour can be tested at any time by dummy conversions
for which the servers know the outcome. Second, because
it being a central and important entity, its correct operation
can further be ensured for instance by using trusted hardware



and auditing mechanisms.
Another drawback of the basic scheme sketched above

is that users need to attempt the decryption of all published
records which is far from practical in systems used on a
nation-wide level. We therefore introduce a tag-chaining
approach so that user will be able to recognize their entries.
This requires that users be involved in the pseudonym
generation protocol (but still not in the conversion protocol),
so that they can obtain their initial tags. This involvement
of the user is different from the CL-15 system [7], where
the pseudonym generation was always triggered by the
converter and it was left outside the model how the converter
learns the identity of the user for whom to generate the
pseudonym. The involvement of the user actually allows us
to even increase the privacy properties of the pseudonym
system. CL-15 only guarantees privacy and unlinkability for
pseudonym conversion, but not for the generation where the
converter is always privy of the user behind a pseudonym
request. In our scheme, the converter blindly computes the
pseudonym without learning the user’s identity. This is
achieved using a new committed oblivious pseudorandom
function evaluation protocol, which we define formally and
instantiate securely.

We prove the security of our generic construction in
the UC framework by showing that it realizes the ideal
functionality Fnym-log. This functionality is a modification
of the CL-15 one, extended to cover blind pseudonym gener-
ation and user-centric auditability. We also give concrete and
optimized instantiations for all building blocks, yielding an
efficient realization of our scheme under discrete-logarithm
based assumptions and Paillier’s DCR assumption.

2. Security Model

In this section we provide the formal definition of our
(un)linkable pseudonym system with user auditability. Our
definition is based on the ideal functionality given by Ca-
menisch and Lehmann [7], which we modify to enhance the
user privacy for pseudonym generation and allow the user
to monitor the conversions of his pseudonyms. We start by
recalling the main entities and procedures of an (un)linkable
pseudonym system, and then present our formal definition
and discuss the properties it guarantees.

The main entities in an auditable pseudonym system are
a converter X , a set of servers S = {SA,SB , . . . } and
users Ui. Explicitly modeling the user as part of the system
is already the first crucial difference to the CL-15 model,
where the user was only represented by a user identifier that
was known to the converter.

The converter X is the central authority that must be in-
volved in any generation and conversion of the (un)linkable
pseudonyms. The generation of a pseudonym nymi,A for
user Ui on server SA is initiated by the user towards
the converter. Upon explicit approval of the converter, the
server-specific pseudonym nymi,A gets established and out-
put directly to the server SA, i.e., without X learning
the pseudonym. Further, neither SA nor X learn the user
behind the pseudonym which is different to CL-15 where

the user was (in pseudonym generation) always known to
the converter.

The converter X is the only entity in the system that
can link related pseudonyms nymi,A and nymi,B of the
same user, but will do so in a blind manner, i.e., without
learning anything about the pseudonyms in the request. A
conversion is initiated by SA towards X whenever the server
wishes to correlate his data for the user known to him as
nymi,A with related user data held by another server SB .
If a conversion is granted by X , only SB will learn the
converted pseudonym nymi,B .

Our main extension is that each conversion now triggers
the blind generation of an audit log entry that allows the user
behind the pseudonym to learn that SA wishes to access his
data from SB . Such an audit log entry is only accessible to
the correct underlying user Ui, who can retrieve all his log
entries to monitor the propagation of his pseudonyms.

As in CL-15, all pseudonyms are generated and con-
verted in a consistent way, meaning that each user can
generate only a single and unique pseudonym per server
and that all conversions among servers are transitive and
consistent with each other.

Corruption Model. We consider two different corruption
types: For servers and users we allow active corruptions by
the adversary, i.e., upon corruption the adversary is in full
control over the servers’ or users’ behaviour. The converter
can be corrupted only in a passive manner, which is also
called honest-but-curious model. That is, when corrupted,
the adversary sees all of the converter’s input, output and
internal state, but the converter’s behaviour remains honest.

2.1. Ideal Functionality

We now formally define our auditable pseudonym sys-
tem by describing an ideal functionality in the universal
composability (UC) framework [10]. The ideal functional-
ity performs the desired task in a way that is secure-by-
design. A real-world protocol is then said to securely realize
a certain ideal functionality F , if an environment cannot
distinguish whether it is interacting with the real protocol
or with F and a simulator.

We assume static corruptions in our paper, i.e., the ad-
versary decides upfront which parties are corrupt and makes
this information known to the functionality. The UC frame-
work allows us to focus our analysis on a single protocol in-
stance with a globally unique session identifier sid . Here we
use session identifiers of the form sid = (sid ′,X ,S,N), for
some converter and server identifiers X ,S = {SA,SB , . . . },
a unique string sid ′, and N denoting the pseudonym space.
To distinguish between several pseudonym generation and
conversion sessions, we use unique query identifiers nqid
and cqid = (cqid ′,SA,SB) for each session. We implicitly
assume that the functionality checks that all session and
query identifiers are well-formed and the query identifiers
nqid , cqid are unique.

The definition of our ideal functionality Fnym-log is
presented in detail in Figure 1. For simplicity, we refer to



1) Pseudonym Request. On input of (NYMREQ, sid ,nqid ,SA) from user Ui:
• If X and SA are corrupt, get `← leak(Ui). Otherwise, if at least X or SA is honest, set `← ⊥.
• Send (NYMREQ, sid ,nqid ,SA, `) to A and wait for (NYMREQ, sid ,nqid , ok) from A.
• Create a pseudonym request record as (nymreq, sid ,nqid ,Ui,SA).
• Output (NYMREQ, sid ,nqid ,SA) to X .

2) Pseudonym Generation. On input of (NYMGEN, sid ,nqid) from converter X :
• Proceed only if a pseudonym request record (nymreq, sid ,nqid ,Ui,SA) for nqid exists.
• Send (NYMGEN, sid ,nqid) to A and wait for (NYMGEN, sid ,nqid , ok) from A.
• If a pseudonym record (nym, sid ,Ui,SA,nymi,A) for Ui,SA exists, retrieve nymi,A; else create a new record with nymi,A ←$ N.
• Output (NYMGEN, sid ,nqid ,nymi,A) to SA.

3) Conversion Request. On input of (CONVERT, sid , cqid ,nymi,A) from server SA:
• Proceed only if a pseudonym record (nym, sid ,Ui,SA,nymi,A) for nymi,A,SA exists and cqid = (cqid ′,SA,SB).
• If X and SB are corrupt, get `← leak(Ui). Otherwise, if at least X or SB is honest, set `← ⊥.
• Send (CONVERT, sid , cqid , `) to A and wait for response (CONVERT, sid , cqid , ok).
• Create a conversion record (convert, sid , cqid ,Ui, status) with status ← request and with Ui taken from the pseudonym record

(nym, sid ,Ui,SA,nymi,A) for the requested nymi,A,SA.
• Output (CONVERT, sid , cqid) to X .

4) Conversion Response. On input of (PROCEED, sid , cqid) from converter X :
• Proceed only if a conversion record (convert, sid , cqid ,Ui, status) for cqid with status = request exists, set status ← done.
• Send (PROCEED, sid , cqid) to A and wait for (PROCEED, sid , cqid , ok) from A.
• If a pseudonym record (nym, sid ,Ui,SB ,nymi,B) for Ui,SB exists (with SB taken from cqid = (cqid ′,SA,SB)), retrieve nymi,B ;

otherwise create a new pseudonym record with nymi,B ←$ N.
• Output (CONVERTED, sid , cqid ,nymi,B) to SB .

5) User Audit. On input of (AUDIT, sid) from user Ui:
• Retrieve all conversion records (convert, sid , cqid j ,Ui, statusj) for Ui and assemble a list Llog ← {(cqid j , statusj)} from all found

records. Recall that cqid j = (cqid ′j ,SA,SB).
• Output (AUDIT, sid ,Llog) to Ui.

Figure 1: Ideal functionality F leak
nym-log with sid = (sid ′,X ,S,N) and parametrized with a leakage function leak.

Fnym-log as F from now on. In the following we informally
discuss the security properties that our functionality pro-
vides. Thereby we focus on the audit related procedures, for
a detailed discussion of the privacy and security properties
of the basic pseudonym system we refer to [7].

Pseudonym Generation. The NYMREQ interface allows a
user Ui to request the generation of a pseudonym nymi,A

towards server SA. The converter X is then informed about
that request but without learning the user identity Ui. When
both X and SA are corrupt though, the adversary will receive
some partial information of Ui via `← leak(Ui). We discuss
the leakage function and its relation to the CL-15 model in
more detail below.

When the converter approves the pseudonym genera-
tion via the NYMGEN interface, F either retrieves the
pseudonym nymi,A for (Ui,SA) from its internal record
or creates a new one. Every pseudonym is chosen at
random from N which naturally enforces unlinkability
of pseudonyms. The functionality internally stores each
pseudonym in a record that connects Ui and nymi,A which
allows for consistent conversion and the user-specific audits.
Finally, the pseudonym nymi,A is then output directly to SA.

As X no longer knows the user’s identity in
a pseudonym generation, we omit the verifiability of

pseudonyms that was provided in CL-15. Instead we as-
sociate each pseudonym generation session with a unique
session identifier nqid , that is given to Ui,X and SA and
that can be used by Ui to provide some context to the blindly
generated nymi,A whenever desired.

Pseudonym Conversion. The CONVERT interface allows a
server SA to request the conversion of a previously obtained
pseudonym nymi,A towards another server SB . Each con-
version query gets associated with a unique identifier cqid .
Upon each conversion request, the functionality internally
creates a conversion record for cqid that makes all conver-
sions auditable for the underlying user. Recall that F knows
the correlation between nymi,A and Ui and therefore can
tailor the log entry to that user, without anyone else learning
Ui’s identity.

The converter X is then notified about the request, but
only learns that SA wants to run a conversion towards SB .
If X or SB are honest, the adversary does not learn anything
about the pseudonym nymi,A the request was initiated for,
and cannot even tell whether two requests are for the same
pseudonym or not. If both X and SB are corrupt, the
adversary learns some partial information of Ui behind the
pseudonym via the leakage function leak.

When X allows the conversion, it completes the request



via the PROCEED interface. The converted pseudonym
nymi,B is then retrieved or generated using F’s knowledge
of the underlying Ui of nymi,A. Further, the audit log entry
gets updated to reflect completion of the conversion and the
server SB (and only SB) receives the converted pseudonym
nymi,B .

User Audits. The AUDIT interface allows a user Ui to
retrieve a log file containing all conversion requests of his
pseudonyms. This is done via the internal knowledge of F
that stored all requests cqid j = (cqid ′j ,SA,SB) associated
with the affected user id Ui. The interface only returns
the entries stored for the requesting Ui, thereby naturally
enforcing that the individual conversion records are only
accessible to the legitimate user.

Leakage. We parametrize our functionality with a leakage
function leak, and hand `← leak(Ui) to the adversary when-
ever a pseudonym is generated or converted via a corrupt
converter towards a corrupt server. Thus, the guaranteed
privacy properties of F in the presence of a corrupt X
depend on the function leak.

Our protocol in Section 4 realizes F with leak being a
deterministic one-way function. That is, the leakage ` ←
leak(Ui) still hides the user identity from the adversary but
makes related pseudonyms linkable among corrupt servers,
as ` is unique for each Ui. Note that the leakage never
allows the adversary to link pseudonyms between corrupt
and honest servers, as the functionality enforces ` ← ⊥
whenever an honest server is involved.

Leaking the relation between pseudonyms owned by
corrupt servers is in fact unavoidable in the presence of a
corrupt converter: The corrupt converter and corrupt servers
can internally link all the related pseudonyms they have. In
the CL-15 functionality this was modeled more implicitly, as
the adversary could simply use the CONVERT interface to
convert any learned pseudonym of a corrupt server towards
any other corrupt server (if the converter is corrupt). Here,
however, this would not be possible as the functionality
creates audit entries for the user upon each conversion. That
is, the adversary can no longer use the CONVERT interface
to link pseudonyms “off-the-record”. Thus, we had to model
this capability in a dedicated way without triggering audit
log entries, which is exactly what our leakage handle ` does.
Parametrizing F with the leakage function further makes the
definition more flexible, as simpler protocols may exist that
come for the price of increased leakage.

3. Building Blocks

In this section we introduce the building blocks required
by our protocol. We start with the standard primitives
of NIZK proofs, CPA-secure encryption and PRFs and
then introduce our new building blocks of encryption with
randomizable keys, oblivious pseudorandom function with
committed outputs and signatures on encoded messages.

3.1. Bilinear Maps

Let G, G̃, and Gt be groups of prime order q . A
map e : G × G̃ → Gt must satisfy 1) bilinearity, i.e.,
e(gx, g̃y) = e(g, g̃)xy; 2) non-degeneracy, i.e., for all gen-
erators g ∈ G and g̃ ∈ G̃, e(g, g̃) generates Gt; and
3) efficiency, i.e., there exists an efficient algorithm G(1τ )
that outputs the bilinear group (q ,G, G̃,Gt, e, g, g̃) and an
efficient algorithm to compute e(a, b) for any a ∈ G and
b ∈ G̃. If G = G̃ the map is symmetric and otherwise
asymmetric.

3.2. Non-Interactive Proofs of Knowledge

By NIZK{(w) : statement(w)} we denote a generic
non-interactive zero-knowledge proof protocol of knowl-
edge of a witness w such that the statement(w) is true.
Sometimes we need witnesses to be online-extractable,
which we make explicit by denoting with NIZK{(w1, w2) :
statement(w1, w2)} the proof of witnesses w1 and w2,
where w1 can be extracted. For the ease of presentation
we sometimes use simplified statements, e.g., we write
C = Enc(epk ,m) to describe a proof that C is a proper
encryption of m under key epk , and omit the explicit
randomness used within Enc. We use NIZKs for notational
convenience, in our scheme all proofs could also be done
interactively.

For concrete realizations of NIZKs, i.e., generalized
Schnorr-signature proofs [6], we will use notation [9] such
as SPK{(a, b, c) : y = gahb ∧ ỹ = g̃ah̃c}. Notice that,
because the function e(·, g) is a group homomorphism,
SPK{(a) : y = e(a, g)} is a valid proof specification.

3.3. Commitment Scheme

We require a commitment scheme (ComG,ComVfG) for
elements of G. The algorithm (com, o)←$ ComG(m) on in-
put a message m ∈ G, produces a commitment com and so-
called opening information o. The commitment verification
algorithm {0, 1} ← ComVfG(m, com, o) verifies whether m
is indeed committed to in a commitment com .

A suitable commitment scheme can be instantiated as
an ElGamal encryption of m under a random public key
for which the corresponding secret key is not known. To
this end, assume that in addition to g a second generator
h ∈ G is available, s.t. the discrete logarithm between
g and h is unknown. Then, the algorithm ComG(m) first
chooses a random o ← Zq and computes and outputs
com ← (ho, go · m). The ComVfG(m, com, o) algorithms
outputs 1 if com = (ho, go ·m) and 0 otherwise. Clearly,
this commitment scheme is unconditionally binding (m is
uniquely defined by the commitment) and computationally
hiding (under the Decisional Diffie-Hellman assumption).

3.4. Homomorphic Encryption Schemes

We require an encryption scheme (EncKGenG,EncG,
DecG) that is chosen-plaintext (CPA) secure and that has



a cyclic group G as message space. It consists of a key
generation algorithm (epk , esk) ←$ EncKGenG(1τ ), where
τ is a security parameter, an encryption algorithm C ←$

EncG(epk ,m), with m ∈ G, and a decryption algorithm
m← DecG(esk , C). Sometimes we will make the random-
ness used in the encryption process explicit, in which case
we will write C ← EncG(epk ,m, r), where r encodes all the
randomness, i.e., EncG(·, ·, ·) is a deterministic algorithm.

We require further that the encryption scheme has
an appropriate homomorphic property, namely that there
is an efficient operation � on ciphertexts such that, if
C1 ∈ EncG(epk ,m1) and C2 ∈ EncG(epk ,m2), then
C1 � C2 ∈ EncG(epk ,m1 · m2). We use exponentiation
to denote the repeated application of �, e.g., C3 denotes
C � C � C.

ElGamal Encryption (with a CRS Trapdoor). We use the
ElGamal encryption scheme, which is homomorphic and
chosen plaintext secure. The CPA security is sufficient for
our construction, as the parties always prove to each other
that they formed the ciphertexts correctly. Let (G, g, q) be
system parameters available as CRS such that the DDH
problem is hard w.r.t. τ .
EncKGenG(1τ ) : Pick random x from Zq , compute y ←
gx, and output esk ← x and epk ← y.

EncG(epk ,m) : To encrypt a message m ∈ G under epk =
y, pick r ←$ Zq and output the ciphertext (C1, C2) ←
(yr, grm).

DecG(esk , C) : On input a secret key esk = x and cipher-
text C = (C1, C2) ∈ G2, output m′ ← C2 · C−1/x

1 .
In our concrete instantiation we will use a variation of

ElGamal encryption with a CRS trapdoor, which allows
to make proofs for correct ciphertexts efficiently online
extractable. That is, we assume that the CRS additionally
contains a public key ŷ and extend each ciphertext with an
element C0 ← ŷr, that is ignored in normal decryption.
In the security proof of our protocol, the simulator will be
privy to x̂ = logg ŷ as it can set the CRS appropriately and
thus is able to decrypt as m′ ← C2 · C−1/x̂

0 .

3.5. Re-randomizable Public Keys

In our construction we will need a second encryp-
tion scheme that, on top of being CPA-secure and homo-
morphic, allows re-randomization of the public keys. We
call such a scheme a key-randomizable encryption scheme
(REncKGenG,REncG,RDecG,RandG). Besides the standard
algorithms to encrypt and decrypt, it also comes with a key-
randomization algorithm RandG that on input a public key
epk outputs a re-randomized key epk ′. For our construc-
tion, the scheme must also allow for efficient proofs of
correct re-randomization: πRand ←$ NIZK{(epk) : epk ′ =
RandG(epk)} and the public keys be group elements, i.e.,
epk ∈ Gn for some n. These requirements are easy to
meet as we shall see. For completeness we require that
decryption succeeds for all ciphertexts that are generated
under correctly re-randomized keys.

Key-Indistinguishability. The security guarantee we need
from a key-randomizable encryption scheme is that by see-
ing different re-randomized keys, an adversary cannot tell
which of the keys belong together. The formal definition of
this key-indistinguishability is given below.
Def inition 3.1. We say a key-randomizable encryption

scheme is key-indistinguishable if for any efficient al-
gorithm A the probability that the experiment given in
Figure 2 returns 1 with probability significantly larger
than 1/2 is negligible (as a function of τ ).

Experiment ExpREnc-keyind
A,REncG (G, τ):

(epk0, esk0)←$ REncKGenG(1τ )
(epk1, esk1)←$ REncKGenG(1τ )
b←$ {0, 1}
epk∗ ←$ RandG(epk b)
b′ ←$ A(epk0, epk1, epk

∗)
return 1 if b′ = b

Figure 2: Key-Indistinguishability Experiment.

A similar property, called incomparable keys, was in-
troduced by Waters et al. [24]. They consider derivation
of several incomparable public keys from the secret key,
though, instead of re-randomization based solely on the
public key. Further, their security notion for incomparable
keys gives the adversary access to a decryption oracle, which
in one world contains two secret keys and in the other world
only one. Thus, the notion can only be satisfied for schemes
that are also robust [1], i.e., where it is infeasible to come
up with ciphertexts that decrypt under more than one secret
key.

In a recent paper by Young and Yung [27], the notion of
incomparable keys is adapted to re-randomization of public
keys and the security definition does not enforce robustness
of ciphertexts anymore (as they consider incomparable keys
in isolation, without talking about encryption). However,
their security notion is given for a specific ElGamal-based
construction instead for the general class of schemes. Our
definition above is a generalization of that notion.

ElGamal-based Instantiation. For our instantiation we use
ElGamal encryption, which can easily be modified to be-
come a secure key-randomizable encryption scheme. The
randomization technique for the public key was also used
by Waters et al. [24] and Young and Yung [27]. However
in [24] the enc/decryption algorithms differ due to the
additional robustness requirement, and [27] omits them as
key-randomization was considered in isolation. But its easy
to see how ElGamal encryption and decryption need to be
adapted to cope with such randomizable keys. We call the
following scheme R-ElGamal.
REncKGenG(1τ ) : Pick random x←$ Zq , r ←$ Zq , compute
y1 ← gxr, y2 ← gr, and output esk ← x and epk ←
(y1, y2) ∈ G2.

RandG(epk) : On input a public key epk = (y1, y2) ∈ G2

choose a random r′ ←$ Zq and output epk ′ ← (yr
′

1 , y
r′

2 ) ∈
G2.



REncG(epk ,m) : To encrypt a message m ∈ G under
epk = (y1, y2), choose a random r ←$ Zq and output
the ciphertext (C1, C2)← (yr1, y

r
2m).

RDecG(esk , C) : On input a secret key esk = x, ciphertext
C = (C1, C2) ∈ G2, output m′ ← C2 · C−1/x

1 .

Theorem 3.2. (SECURITY OF R-ELGAMAL.)
The key-randomizable encryption scheme
(REncKGenG,RandG,REncG,RDecG) defined above is
key-indistinguishable and IND-CPA secure under the
DDH assumption.

Young and Yung proved RandG to produce indistinguish-
able public keys based on the DDH assumption, deploying a
generalization of the random self-reduction of DDH. Using
the same arguments, the proof of key-indistinguishable is
straightforward and omitted here. Similarly, it is easy to see
that R-ElGamal is still IND-CPA secure.

3.6. Pseudorandom Functions

For the generation of pseudonyms we require a pseu-
dorandom function, consisting of a key generation k ←$

PRFKGenG(1τ ) and evaluation function z ← PRFG(k,m).
Apart from the standard pseudorandomness property, we
also need PRFG to be a one-way function. That is, even
when privy of the key, the function should be hard to invert
on random inputs. We further need the function PRFG to be
amendable to an oblivious evaluation protocol, which we
will discuss later.

The construction by Dodis and Yampolskiy [12] satisfies
all these requirements. Their PRFG works in a cyclic group
G = 〈g〉 of order q and computes PRFG(k,m) = g1/(k+m)

for keys k ←$ Zq . Pseudorandomness is based on the q-
Decisional Diffie-Hellman Inversion problem [5] and, as is
not hard to see, so is one-wayness.

We also need a pseudorandom permutation. It consists
of a key generation k ←$ PRPKGenG(1τ ), a function z ←
PRPG(k,m) and its efficiently computable inverse m ←
PRP−1

G (k, z). For simplicity, we assume PRPG to work in
a group G as well.

3.7. Multi-Session Oblivious Pseudorandom Func-
tion with Committed Output

Because users’ pseudonyms need to be generated blindly
by the converter, we use an Oblivious Pseudorandom Func-
tion (OPRF). The primitive of OPRF was introduced by
Jarecki and Liu [18] and later refined by Jarecki et al. [17].
To be useful to us, however, we need to extend this primi-
tives in two ways. First, we require that multiple invocations
of the OPRF will use the same seed (which the functionality
by Jarecki and Liu does not enforce). To this end, we define
a multi session functionality where the sender provides the
functionality with a seed upon setup. Later, receivers can
call the functionality with a message m and will get as
a result the PRF applied to this message, where the same

seed is used for all messages. Second, our functionality
does provide the sender with a commitment to the receiver’s
output. This allows one to use the OPRF as modular building
block, as the receiver can now prove to the sender that
he used the correct results of the OPRF in some later
computations.

Our functionality FcOPRF incorporating these two exten-
sions is given in Figure 3. It is parametrized with PRFG and
a commitment scheme ComG.

1) Setup. On input of (SETUP, sid) from sender S:
• Draw k ←$ PRFKGenG(1τ ) and store record (sid , k).
• If S is corrupt, send output (SETUP, sid , k) to S, otherwise,

send public delayed output (SETUP, sid) to S.

2) Evaluation. On input of (PRF, sid , qid ,m) from Ri:
• Abort if record (qid ,Ri, ·) exists or no (sid , k) is stored.
• Compute z ← PRFG(k,m).
• Store record (qid ,Ri, z).
• Send delayed private output (PRF, sid , qid , z) to Ri.

3) Commit. On input of (COM, sid , qid , comz, oz) from Ri:
• Proceed only if a record (qid ,Ri, z) for qid and Ri exists

s.t. 1 = ComVfG(z, comz, oz).
• Send public delayed output (COM, sid , qid , comz) to S.

Figure 3: Ideal functionality FcOPRF with sid = (sid ′,S) .

FcOPRF Realization. We now provide a concrete realiza-
tion ΠcOPRF of this functionality for the Dodis-Yampolskiy
PRF. Our protocol ΠcOPRF is inspired by the protocol that
Belenkiy et al. [4] have designed to let an issuer blindly
sign a random user secret key. The basic idea is to use
the homomorphic properties in the exponents and deploy
the semantically secure version of the Camenisch-Shoup
encryption scheme [8] (EncKGenn,Encn,Decn) to jointly
compute PRFG(k,m) = g1/(k+m). The protocol is given in
Figure 4 and requires just a few exponentiations in G and
in Z∗n2 of both sender and receiver, where n is the RSA
modulus of the Camenisch-Shoup encryption scheme. The
proof that ΠcOPRF securely realizes FcOPRF for honest-but-
curious S is given in the full paper.
Theorem 3.3. ΠcOPRF is a secure realization of FcOPRF in

the (F1-AUTH,FCA,FCRS)-hybrid model for the Dodis-
Yampolskiy PRF under the q-Decisional Diffie-Hellman
Inversion (q-DBDHI) and the Decision Composite
Residuosity (DCR) assumptions and if the sender is at
most honest-but-curiously corrupted.

3.8. Homomorphic Encoding Functions

Let {(Ef(i)G ,Df
(i)
G )} be a family of pairs of probabilistic

encoding and decoding functions for a group G, where
Ef

(i)
G is a probabilistic function Ef

(i)
G : G → {0, 1}∗, Df(i)G

a function Df
(i)
G : {0, 1}∗ → G, and for all m ∈ G

we have that m = Df
(i)
G (Ef

(i)
G (m)) holds. We require the

encoding functions to be homomorphic, namely that there
is an efficient operation � that, for all C1 ∈ Ef

(i)
G (m1) and



1) Setup. On input of (Setup, sid) with sid = (sid ′,S) sender S executes:
• Choose k ←$ Zq , generate (epk , spk)←$ EncKGenn(1τ ), and compute Ck ←$ Encn(epk , k).
• Store (sid , k, epk , esk) and register (epk , Ck) with FCA for session-id (sid ′, oprf ,S).
• Output (SETUP, sid).

2) Evaluation. On input of (EVAL, sid , qid ,m) to receiver Ri, the following protocol between Ri and S is executed.
• Ri, when executed for the first time, parses sid as (sid ′,S) and retrieves (epk , Ck) from FCA with session id (sid ′, oprf ,S), and

stores these parameters together with (sid , epk , Ck). Otherwise, Ri retrieves (sid , epk , Ck) from storage.
• Ri computes encrypted input to the PRF:

– Choose r ←$ Zq and compute Cv ←$ (Ck · Encn(epk ,m))r, (comr, or) ←$ ComG(gr), and prove correctness of these values in
π1 ←$ NIZK{(m, r, or) : (comr, or) = ComG(gr) ∧ (Ck · Encn(epk ,m))r}.

– Send (EVAL1, sid , qid , comr, Cv, π1) to S via F1-AUTH.
• S upon receiving (EVAL1, sid , qid , comr, Cv, π1) blindly computes g1/r(k+m) on the encrypted input:

– Verify π1 (if it fails, send Ri an abort message) and compute v ← Decn(esk , Cv) and V ← g1/v.
– Store (sid , qid , V, comr) and send (EVAL2, sid , qid , V ) to Ri via F1-AUTH.
• Ri upon receiving (EVAL2, sid , qid , V ) unblinds the received value:

– Compute z ← V r, store (qid , V, r, comr, or, z), and output (PRF, sid , qid , z).

3) Commit. On input of (COM, sid , qid , comz, oz) to Ri, the following protocol is executed.
• Ri proves that comz is a correct commitment on z = V r:

– Retrieve record (qid , V, r, comr, or, z) for qid , check that 1 = ComVfG(z, comz, oz), and prove correctness of the commitment
in π2 ←$ NIZK{(z, oz, r, or) : (comr, or) = ComG(gr) ∧ (comz, oz) = ComG(V r)}.

– Send (COM1, sid , qid , (comz, π2)) to S via F1-AUTH.
• S upon input (COM1, sid , qid , (comz, π2)) verifies π2 w.r.t. V and comr stored for qid and outputs (COM, sid , qid , comz).

Figure 4: Realization ΠcOPRF of FcOPRF for an honest-but-curious sender. The realization is also parametrized with a commitment scheme
(ComG,ComVfG). All communication between the sender and the receiver are via the one-sided authenticated channel functionality
F1-AUTH, where S is the authenticated party. Unless otherwise specified, if a check fails, the checking party aborts.

C2 ∈ Ef
(i)
G (m2), then C1 � C2 ∈ Ef

(i)
G (m1 ·m2). We again

use exponentiation to denote the repeated application of �.
Let us consider some examples of encoding functions.

Let (EncKGenG,EncG,DecG) be a homomorphic semanti-
cally secure encryption scheme and let (epk (i,j), esk (i,j))
be key pairs for it. Then the two pairs of functions given
below are members of the family {(Ef(i)G3 ,Df

(i)
G3)}, where the

operators ‘·’ and ‘�’ are defined component wise.

Ef
(1)
G3 (m1, . . . ,m3) =

(m1,EncG(epk (1,2),m2),EncG(epk (1,3),m3))

Df
(1)
G3 (c1, . . . , c3) =

(c1,DecG(esk (1,2), c2),DecG(esk (1,3), c3))

3.9. A Signature Scheme for Homomorphic Mes-
sage Encoding Functions

We require a signature scheme that is compatible with a
family {(Ef(i)G ,Df

(i)
G )} of homomorphic message encoding

functions, i.e., the scheme is able to sign messages that are
encoded with a function EfG where for some DfG the pair
(EfG,DfG) is a member of the family {(Ef(i)G ,Df

(i)
G )}.

Such a signature scheme is a generalization of the
dual-mode signature scheme as defined by Camenisch and
Lehmann [7]. While their scheme has two signing algo-
rithms (i.e., two modes), in one mode messages are signed
in the clear and in the other mode encrypted messages are
signed, we unify these two signing algorithms into a single
one. Furthermore, we generalize the signature scheme so

that blocks of messages can be signed (some of the messages
in the clear, some of them encrypted).

A signature scheme for a family of homomorphic mes-
sage encoding functions with message space G consists of
four algorithms (SigKGenG,EncSignG,DecSignG,VfG).
SigKGenG(1τ ) : On input the security parameter and be-

ing parametrized by G, this algorithm outputs a public
verification key spk and secret signing key ssk .

EncSignG(ssk ,EfG, C) : On input a signing key ssk , en-
coding function EfG, and an encoding C, the signing
algorithm outputs an “encoded” signature σ of C.

DecSignG(spk ,DfG, σ) : On input an “encoded” signature
σ, decoding function DfG, and public key spk , this
algorithm outputs a “decoded” signature σ.

VfG(spk , σ,m) : On input a public verification key spk ,
signature σ, and message m ∈ G, this algorithm outputs
1 if the signature is valid and 0 otherwise.

Compatibility of the signature scheme with the ho-
momorphic encoding now means that signatures σ ←$

EncSignG(ssk ,EfG, C) obtained on an encoding C ←$

EfG(m), can be decoded to a valid signature σ ←
DecSignG(spk ,DfG, σ) on m.

Security Definition. The security definition of a signature
scheme for a family of homomorphic encoding function
is close to that of unforgeability for an ordinary signature
scheme, the main difference being that 1) we consider m
to be a vector of messages which 2) can be homomorphi-
cally encoded. For the latter, we assume for simplicity that



the encoding is done correctly, either because the signer
encoded the messages himself or the party providing the
encoded message proves to the signer that the encoding was
done correctly. Figure 5 provides the corresponding security
experiment.

Experiment ExpENCSIG-forge
A,ENCSIG,EfG

(τ,G, {(Ef(i)G ,Df
(i)
G )}):

(spk , ssk)←$ SigKGenG(1τ )
L← ∅
(m∗, σ∗)←$ AOSign(ssk ,·,·)(spk)

where OSign on input (Ef
(i)
G ,mi):

adds mi to the list of queried messages L← L ∪mi

runs Ci ←$ Ef
(i)
G (mi)

computes σi ←$ EncSignG(ssk ,Ef
(i)
G , Ci)

returns (σi, Ci)
return 1 if VfG(spk , σ∗,m∗) = 1 and m∗ /∈ L

Figure 5: Unforgeability experiment for a signature scheme for a
family of homomorphic encoding functions.

Def inition 3.4. We say that a signature scheme for en-
coded messages is unforgeable against adaptively chosen
message attacks if for any efficient algorithm A the
probability that the experiment in Figure 5 returns 1 is
negligible (in the security parameter τ ).

Instantiation. We now give an instantiation of a signature
scheme for any family {(Ef(i)Gn ,Df

(i)
Gn)} of encoding func-

tions for product groups Gn for some constant n. This
means Gn needs to be the message space of the signature
scheme. To this end, we extend a recent structure-preserving
signature scheme by Groth [15] that works in a bilinear
maps setting. We denote this the Gr signature scheme. That
scheme is defined to sign a matrix of group elements, here
we consider the special case where we sign only a vector
of n group elements. We recall this special case of the Gr
scheme (SigKGenGn ,SignGn ,VfGn), slightly adapted to our
notation, and then describe how to instantiate the additional
algorithms EncSignGn and DecSignGn .

The signature scheme assumes the availability of sys-
tem parameters crs = (q,G, G̃,Gt, e, g, g̃, x1, . . . , xn) con-
sisting of (q,G, G̃,Gt, e, g, g̃) ←$ G(1τ ) and n additional
random group elements xi ←$ G.
SigKGenGn(q,G, G̃,Gt, e, g, g̃, x1, . . . , xn) : Choose v ←$

Zq , compute y ← g̃v, and return spk = y, ssk = v.
SignGn(ssk , (m1, . . . ,mn)) : On input a message

(m1, . . . ,mn) ∈ Gn and key ssk = v, choose a random
u ←$ Z∗q , and output the signature σ = (r, s, t1, . . . , tn),
where r ← g̃u, s← (x1 · gv)1/u, and ti ← (mix

v
i )

1/u.

VfGn(spk , σ, (m1, . . . ,mn)) : Parse input as
σ = (r, s, t1, . . . , tn) and spk = y and accept if:
mi, s, ti ∈ G, r ∈ G̃, e(s, r) = e(g, y) · e(x1, g̃), and
e(ti, r) = e(mi, g̃) · e(xi, y).

As pointed out by Groth, a signature σ = (r, s, t1, . . . , tn)
can be randomized to obtain a signature σ′ =

(r′, s′, t′1, . . . , t
′
n) by picking a random u′ ←$ Z∗q and com-

puting r′ ← ru
′
, s′ ← s1/u′

, and t′i ← t
1/u′

i .
Now, we present the additional algorithms to extend the

Gr signature scheme into one for the family of homomorphic
message encoding functions {(Ef(i)Gn ,Df

(i)
Gn)}. We denote

this scheme by Gr+. Let (EfGn ,DfGn) be an element of
{(Ef(i)Gn ,Df

(i)
Gn)} and (C1, . . . Cn) = EfGn(m1, . . . ,mn) be

an encoding of the message (m1, . . . ,mn).
EncSignGn(ssk ,EfGn , (C1, . . . , Cn)) : On input a

secret key ssk = v and a correct encoding
(C1, . . . , Cn), choose a random u ←$ Z∗q , and
output the encoded signature σ = (r, s, T1, . . . , Tn)
with r ← g̃1/u, s ← (x1 · gv)u, and
(T1, . . . , Tn)← ((C1, . . . , Cn)� EfGn(xv1, . . . , x

v
n))u.

DecSignGn(spk ,DfGn , σ) : Parse σ = (r, s, T1, . . . , Tn),
compute (t1, . . . , tn) ← DfGn(T1, . . . , Tn), and output
σ = (r, s, t1, . . . , tn).
It is not hard to see that σ = (r, s, t1, . . . , tn)

is a valid signature on the message (m1, . . . ,mn) ←
DfGn(C1, . . . , Cn), and that the distribution of the signature
values is the same as when the messages mi were signed
directly. The proof of the following theorem is provided in
the full version.
Theorem 3.5. If the Gr signature scheme (SigKGenG,SignG,

VfG) is unforgeable, then the scheme Gr+ resulting
from adding the algorithms EncSignG and DecSignG
described above, is an unforgeable signature scheme for
{(Ef(i)Gn ,Df

(i)
Gn)}.

Discussion. Its algebraic properties allow one to integrate
our signature scheme well into higher-level protocols, mak-
ing it a very powerful building block. By construction it
can be used to sign encrypted and committed messages.
Furthermore, as verification of a signature consists of pairing
equations only, one can do efficient proofs of knowledge
of a signature on encrypted or committed messages with
generalized Schnorr signature proofs. Also, it’s not too hard
to distribute the signing process and keys to multiple parties.
Due to space constraints, we provide the details of this in
the full version only and just mention that our new signa-
ture scheme is a very suitable basis to construct a variety
of privacy-enabling schemes such as group signatures or
anonymous credentials.

4. Our Protocol

The computation of pseudonyms in our protocol roughly
follows the protocol by Camenisch and Lehmann [7], but
adds audit capabilities for users and allows pseudonyms to
be generated in a blind manner. We first briefly recall the
pseudonym generation and conversion from their protocol
(CL-15), and then discuss our extensions and changes.

Roughly, in the CL-15 protocol, a pseudonym consists
of a random core zi that is unique per user, and to which
the converter and server add server-specific randomness. The
core is derived from the secret user identifier uid i as zi ←



Ui [uid , usk , upk ], T

SA SB SC

(1)

(2) (3)

(4)

(1) nymi,A, upk
′, T

(2) nymi,A, upk
′′, TA

(4) nymi,A, upk
′′′′, T ′A

(2) nymi,B , upk
′′, TB

(3) nymi,B , upk
′′′, T ′B

(3) nymi,C , upk
′′′, TC

(4) nymi,C , upk
′′′′, T ′C

Bulletin Board

(2) (T, REncG(upk ′′, TA))
(2) (T, REncG(upk ′′, TB))
(3) (TB ,REncG(upk ′′′, T ′B))
(3) (TB ,REncG(upk ′′′, TC))
(4) (TA,REncG(upk ′′′′, T ′A))
(4) (TA,REncG(upk ′′′′, T ′C))

Figure 6: Example of the tag structure and encrypted tag-chain on the bulletin board after three conversions of Ui’s pseudonyms. The
tuples below the servers denote the pseudonym, public key and tag (for user Ui) the servers hold after each conversion.

PRFG(kX , uid i) where kX is a secret key known only the
converter. From the unique core identifier zi, the converter
then derives its pseudonym contribution xnymi,A ← zxA

i
using a secret exponent xA that it chooses for each server
SA ∈ S, but never reveals to them.

To let the converter blindly convert a pseudonym from
SA to SB the pseudonym is sent to X only in homo-
morphically encrypted form. That is, server SA encrypts
his pseudonym under the key of the second server SB
and sends the encryption to X . The converter then uses
the homomorphic properties of the encryption scheme and
raises the encrypted pseudonym to the quotient of the two
servers’ secret keys, thereby blindly transforming the en-
crypted pseudonym.

Blind Pseudonym Generation. We no longer want the con-
verter to learn the user identifier uid i, nor the core identifier
zi when generating a pseudonym from scratch for a user Ui.
We therefore let Ui engage in the pseudonym generation
who then derives zi jointly with X using an oblivious
pseudorandom function FcOPRF. Thus, as in CL-15, the
core is derived as zi ← PRFG(kX , uid i) but now without
revealing uid i or zi to X .

User Audit. The main challenge was to add efficient audit
capabilities for the user without destroying or reducing the
privacy guarantees of the pseudonym system. The core idea
is to let the user also provide a public encryption key
of a key pair (upk , usk) when generating a pseudonym,
and carry the public key along whenever the pseudonym
gets converted. In a conversion request, the converter then
receives an encrypted pseudonym and upk , such that X
can encrypt some log information under the user’s key
and publish the ciphertext. Clearly, if upk is a static key
this would immediately destroy all our unlinkability and
privacy features. We therefore use a key-randomizable en-
cryption scheme that allows to obtain randomized public
keys upk ′ ←$ RandG(upk) that are unlinkable to upk . In
our protocol we then re-randomize the user’s public key
with every usage.

The converter could now simply encrypt the relevant
audit information under upk ′ and provide them on a public
bulletin board. This would be secure but not very efficient:
the user would have to decrypt all ciphertexts using usk and
for each check whether it decrypts to a valid audit log value.
In a context such as a social security system with possibly
billion of users, clearly, this would not yield a practical
solution.

We therefore use a tag-chaining approach that makes the
number of required decryptions independent of the amount
of users. The main idea is to leverage the fact that in
our protocol all pseudonyms originate from a user request.
This allows us to give the user some initial “hook” – the
audit tag – from which he can follow the propagation of
his pseudonyms. That is, whenever a user Ui generates
a pseudonym via the converter towards server SA, the
pseudonym gets associated to a random audit tag T that
is known to the user and server, but not to the converter.
Only when SA wants to convert that pseudonym towards
SB , it has to reveal T to the converter who then publishes
T along with the conversion context encrypted under the
user’s randomized key. Since T is known to the user, he
only has to decrypt the audit entry for his tag.

However, we cannot allow SA to re-use the same T for
another conversion of that pseudonym, as this would clearly
break unlinkability of the conversion requests. Thus, in order
to keep a used pseudonym “functional” for SA, he associates
the pseudonym to a new random tag TA after every usage.
To inform the (unknown) user behind the pseudonym about
the new audit tag, SA encrypts TA under upk ′ and hands
the ciphertext to X who publishes it along with the old
tag T at the bulletin board. Then, the user knowing T and
usk – and only that user – can secretly obtain the new tag
TA and follow the usage of the subsequent spending of his
pseudonym by SA. Similarly, the receiving server SB in the
conversion request also chooses a fresh audit tag TB that he
associates with the converted pseudonym. SB encrypts the
tag under upk ′ and sends it to X where it gets published
together with T . Again, only the user knowing T and usk
can retrieve TB and follow the usage of his pseudonym with
SB . An example of such a audit-tag chain is depicted in
Figure 6.

Security against Corrupted Parties. We want our protocol
to be tolerant to corrupt users and servers and a (honest-but-
curious) corrupted converter, which requires some additions
and modifications to the procedure described above. First,
all audit tags must be generated jointly with the converter,
that will blindly contribute randomness to each tag. This
ensures uniqueness of tags even when triggered by corrupt
users or servers, yet keeps the tag hidden from the converter
during generation.

Further, we have to make sure that every occurrence
of a pseudonym, randomized public key and tag is tightly
bound together. That is, an attacker should not be able



to reuse an honest users pseudonym out of context, e.g.,
along with an adversarially chosen public key, as this would
break the privacy and auditability of our scheme. To prevent
such attacks we use our signature scheme for blocks of
encoded messages, which the converter uses to sign the tuple
of pseudonym, public key and tag whenever generating or
converting a pseudonym. The server then has to prove at
every conversion request that it owns a signature on the
correct set of values. The capability of signing encoded
messages is crucial, as we will let X sign the tag and
pseudonym only in encrypted form which ensures privacy
even in presence of a corrupt converter.

4.1. Detailed Description

We now describe our protocol assuming that functional-
ities FCA,FAUTH,F1-AUTH,FCRS,FBB,FcOPRF are available
to all parties. The certificate authority functionality FCA [10]
allows to register public keys, and we assume that parties
call FCA to retrieve the necessary key material whenever
they have to use a public key of another party. The authenti-
cated channel functionality FAUTH [3] enables authenticated
communication between two parties which we assume for
all communication between servers and the converter. For
communication between a user and the converter, we rely on
a one-side authenticated channel F1-AUTH [3]. That is, only
one side (in our protocol the converter) authenticates himself
towards the other party (in our protocol the user). While the
channel does not provide authenticity of the user, it still
guarantees that all messages a converter receives in a given
session originate from the same user. A natural realization
of F1-AUTH is the TLS protocol with server certificates. The
authenticated bulletin board FBB [25] allows a dedicated
party to publish authenticated content that can be retrieved
by any party. The common reference string functionality
FCRS [10] provides all parties with the system parameters,
consisting of the security parameter τ and a cyclic group
G = 〈g〉 of order q (which is a τ -bit prime), and the
parameters for the NIZK proofs. And finally, FcOPRF allows
to obliviously evaluate a pseudorandom function, as defined
in Section 3.

To make the protocol more readable we often omit the
explicit interface calls to those functionalities, and simply
say that e.g., SA sends a message to X , or X publishes data
at FBB, instead of explicitly calling FAUTH or FBB with sub-
session IDs etc.

4.1.1. Setup. To initiate our pseudonym system, the con-
verter chooses a random string sid ′ and sets the session iden-
tifier to be sid = (sid ′,X ,S,N) where S = {SA,SB , . . . }
is the set of all server identities and N = G defines
the domain of the pseudonyms. The converter then makes
sid available to all participating entities, upon which they
generate their respective keys as defined in Figure 7. Notice
that we assume that user public keys are elements of Gn,
as already mentioned in the previous section. We further
assume that all parties will retrieve and store the CRS via
FCRS for sid .

Converter Setup:
(epkX , eskX )←$ EncKGenG(1τ )
call FcOPRF with (Setup, (sid,X ))

(which internally creates kX ←$ PRFKGenG(1τ ))
for each server SA ∈ S:

(spkX ,A, sskX ,A)←$ SigKGenG(1τ )
choose a random xA ←$ Zq

store skX ← (eskX , {xA, sskX ,A}∀SA∈S)
register pkX ← (epkX , {spkX ,A}∀SA∈S) with FCA

Server Setup (by each server SA ∈ S):
(epkA, eskA)←$ EncKGenG(1τ )
kA ←$ PRPKGenG(1τ )
store skA ← (eskA, kA)
register pkA ← epkA with FCA

User Setup (by each user Ui):
(upk i ∈ Gn, usk i)←$ REncKGenG(1τ )
choose a random uid i ←$ Zq
store (usk i, upk i, uid i)

Figure 7: Setup of Converter, Servers, and Users.

4.1.2. Pseudonym Generation. When a user Ui wants to
generate a pseudonym nymi,A towards a server SA, Ui and
X first jointly prepare the pseudonym stub. In a second
step, X and SA complete the pseudonym generation. Both
protocols are depicted in Figure 8, we specify the proof πU
and used enc/decoding functions below.

The user has to prove in πU that he correctly encrypted
the output from FcOPRF and that his contributions to the
audit tag T are correct:

πU ←$ NIZK{(zi, r1, oz) : ComVfG(zi, comz, oz) = 1 ∧
Cnym = EncG(epkA, zi) ∧ Cr = EncG(epkA, r1) ∧
C∗r = REncG(upk ′i, r1)}(sid ,nqid , Cnym , Cr, C

∗
r , upk

′
i, comz)

Binding the proof to all ciphertexts, session identifiers
and upk ′i, guarantees that an adversary cannot “impersonate”
an honest user by re-using his encrypted core-pseudonym zi
in another session or replace his key upk ′i.

When the converter completes the pseudonym
towards SA, it signs a mixed block of plaintext
and encrypted messages using our signature scheme
for encoded messages w.r.t. the following functions:
EfGn+2(m1,m2,m3) =

(m1,EncG(epkA,m2),EncG(epkA,m3))

DfGn+2(c1, c2, c3) = (c1,DecG(eskA, c2),DecG(eskA, c3)).

Both functions work in group Gn+2 = Gn × G × G,
where Gn is the public key space of REncG and G the
domain of the encryption scheme EncG. As in the CL-15
protocol, the converter has a dedicated signing key for each
server which is crucial to ensure that only the server SA,
for which the pseudonym was intended for, can subsequently
use it in a conversion request.

4.1.3. Pseudonym Conversion. When a server SA wishes
to convert a pseudonym nymi,A towards a server SB , it
sends a conversion request to X . If the request is legitimate,
the converter and SB then jointly complete the conversion.



USER Ui CONVERTER X

input (NYMREQ, sid ,nqid ,SA)
retrieve (usk i, upk i, uid i)

STEP 1: Joint computation of pseudonym core zi

-uid i

FcOPRF

zi ← PRFG(kX , uidi)�
zi

(comzi , oz )←$ ComG(zi)

-(comz , oz ) -
comz

Cnym ←$ EncG(epkA, zi)

STEP 2: Joint generation of fresh audit tag T for Ui and SA
upk ′i ←$ RandG(upk i)
r1 ←$ G
Cr ←$ EncG(epkA, r1)
C∗r ←$ REncG(upk ′i, r1)

proof πU that Cr, C∗r are encryptions of the
same value & Cnym encrypts FcOPRF output

sid ,nqid ,SA, upk ′i, Cnym , Cr, C
∗
r , πU−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

verify πU , draw r2 ←$ G
CT ←$ Cr · EncG(epkA, r2)
C∗T ←$ C∗r · REncG(upk ′i, r2)

sid ,nqid , C∗T←−−−−−−−−−−−−−−−−−
T ← RDecG(usk i, C

∗
T ) store (sid ,nqid ,SA, upk ′i, CT , Cnym)

store (mytag, sid , T ) output (NYMREQ, sid ,nqid ,SA)

SERVER SA CONVERTER X
input (NYMGEN, sid ,nqid)

retrieve (sid ,nqid ,SA, upk ′i, CT , Cnym)

STEP 3: X blindly computes xnymi,A & issues credential to SA
C ′nym ← (Cnym � EncG(epkA, 1))xA

σ ←$ EncSignGn+2(sskX ,A,EfGn+2 , (upk ′i, C
′
nym , CT ))

sid ,nqid , upk ′i, C
′
nym , CT , σ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

σ ← DecSignGn+2(spkX ,A,DfGn+2, σ)
T ← DecG(eskA, CT )
xnymi,A ← DecG(eskA, C

′
nym)

nymi,A ← PRPG(kA, xnymi,A)
store (sid,nymi,A, upk

′
i, T, σ)

output (NYMGEN, sid ,nqid ,nymi,A)

Figure 8: Pseudonym Request & Generation Protocol.

To distinguish multiple conversion requests and give the
servers a handle to identify the session, each request is asso-
ciated to a unique query identifier cqid = (SA,SB , cqid ′).
The conversion request and response protocols are depicted
in Figure 9 and we specify the two proofs πA and πB below.

When making a conversion request, SA has to prove in
πA that all its contributions are correct and consistent. In
particular, it has to show that it encrypted the same xnymi,A

in Cnym,A and Cnym,B , where the former ciphertext is used
to let X blindly re-issue a new one-time credential to SA,
and Cnym,B will be blindly transformed into the pseudonym
for SB . SA further has to show that his contribution to the

new random audit tag TA are correct and the user-specific
encryption is done for a correctly re-randomized public
key upk ′. That all computations are made for legitimate
values is guaranteed by proving knowledge of a signature
σ on the encrypted messages. Overall, πA looks as follows:

πA ←$ NIZK{(upk , xnymi,A, σ, r) :

VfG(spkX ,A, σ, (upk , xnymi,A, T )) = 1 ∧
Cnym,A = EncG(epkA, xnymi,A) ∧
Cnym,B = EncG(epkB , xnymi,A) ∧

Cr = EncG(epkA, r) ∧ C∗r = REncG(upk ′, r) ∧
upk ′ = RandG(upk)

}(sid , cqid , Cnym,A, Cnym,B , Cr, C
∗
r , upk

′, T ).

When the converter approves the request, it blindly
computes xnymi,B ← xnym

xB/xA

i,A and signs the
encrypted pseudonym together with the randomized
user key and encrypted tag TB . The tag has
been jointly computed with SB who has to prove
correctness of his contribution in a proof πB :

πB ←$ NIZK{(r) : Cr = EncG(epkA, r) ∧
C∗r = REncG(upk ′, r)}(sid , cqid , Cr, C∗r , ).

4.1.4. User Audit. The audit procedure allows a user Ui
to learn all conversion requests related to his pseudonyms.
Therefore Ui first uses the audit tags Tj he received
at each pseudonym generation to iteratively retrieve the
chain of new audit tags that were generated whenever his
pseudonyms got converted. These new audit tags are pub-
lished in encrypted form at the bulletin board and are asso-
ciated with the “old” tag that was used for the conversion.
When Ui has retrieved all his audit tags, he decrypts for each
tag the corresponding audit log entry containing the query
identifier cqid . Recall that these identifiers have the form
cqid = (cqid ′,SA,SB), i.e., specify both servers involved
in the conversion request. The detailed audit procedure is
given in Figure 10.

We opted for full download of the bulletin board for the
sake of simplicity and best privacy guarantees. Of course,
a user would not have to download all entries at every
time, but could only retrieve the newest ones (sacrificing
some privacy though). In fact, as the audit procedure can be
done entirely one-the-fly, the users could retrieve the bulletin
board in form of an RSS feeds. When receiving an update,
each user would check for log entries that are labeled with
one of his tags, process these entries and delete the unrelated
ones. Another alternative that requires less communication
is the use of private-information retrieval, but which in turn
increases the computational costs.

5. Security

We now show that our auditable pseudonym system
presented in the previous section securely realizes the ideal
functionality F leak

nym-log against actively corrupted users and
servers, and passively corrupted converter.



SERVER SA CONVERTER X

input (CONVERT, sid , cqid ,nymi,A)
retrieve (sid ,nymi,A, upk , T, σ)

STEP 1: Conversion request w.r.t. tag T

upk ′ ←$ RandG(upk)
xnymi,A ← PRP−1

G (kA,nymi,A)
Cnym,A ←$ EncG(epkA, xnymi,A)
Cnym,B ←$ EncG(epkB , xnymi,A)
r1 ←$ G
Cr ←$ EncG(epkA, r1)
C∗r ←$ REncG(upk ′, r1)

proof πA that all C’s and upk ′ are
computed correctly, and are based on
values for which SA has a valid σ

sid , cqid , upk ′, Cnym,A, Cnym,B , Cr, C
∗
r , T, πA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

STEP 2: X completes generation of fresh audit tag TA for SA
& publishes encryption of new tag under upk ′

verify πA and that T /∈ LT
update LT ← LT ∪ T
r2 ←$ G
CT,A ←$ Cr · EncG(epkA, r2)
C∗T,A ←$ C∗r · REncG(upk ′, r2)
C∗log ←$ REncG(upk ′, cqid)
publish in audit log FBB:
(convert, sid , T, C∗log, request)
and (audittag, sid , T, C∗T,A)

STEP 3: X blindly issues new one-time credential to SA
σA ← EncSignGn+2(sskX ,A,EfGn+2 , (upk ′, Cnym,A, CT,A))

sid , cqid , CT,A, σA←−−−−−−−−−−−−−−−−−−−−−
σA ← DecSignGn+2(spkX ,A,DfGn+2 , σA)
TA ← DecG(eskA, CT,A)
store (sid,nymi,A, upk

′, TA, σA) store (sid , cqid , Cnym,B , upk
′, T )

delete (sid,nymi,A, upk , T, σ) output (CONVERT, sid , cqid)

CONVERTER X SERVER SB
input (PROCEED, sid , cqid)
retrieve (sid , cqid , Cnym,B , upk

′, T )
publish in audit log FBB:
(convert, sid , T, done)

sid , cqid , upk ′−−−−−−−−−−−−−−−−−−→
STEP 4: Joint generation of fresh audit tag TB for SB

& X publishes encryption of new tag under upk ′

r1 ←$ G
Cr ←$ EncG(epkB , r1)
C∗r ←$ REncG(upk ′, r1)

proof πB that Cr, C∗r are en-
cryptions of the same value

sid , cqid , Cr, C
∗
r , πB←−−−−−−−−−−−−−−−−−−−−−−

verify πB
r2 ←$ G
CT,B ←$ Cr · EncG(epkB , r2)
C∗T,B ←$ C∗r · REncG(upk ′, r2)
publish in audit log FBB:
(audittag, sid , T, C∗T,B)

STEP 5: X converts pseudonym
& blindly issues one-time credential to SB

∆← xB/xA (mod q)
C ′nym,B ← (Cnym,B � EncG(epkB , 1))∆

σB ← EncSignGn+2(sskX ,B ,EfGn+2 , (upk ′, C ′nym,B , CT,B))

sid , cqid , C ′nym,B , CT,B , σB−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
σB ← DecSignGn+2(spkX ,B ,DfGn+2 , σB)

TB ← DecG(eskB , CT,B)
xnymi,B ← DecG(eskB , C

′
nym,B)

nymi,B ← PRPG(kB , xnymi,B)
store (sid,nymi,B , upk

′, TB , σB)
output (CONVERTED, sid , cqid ,nymi,B)

Figure 9: Conversion Protocol (left: Request, right: Response).

Theorem 5.1. Our auditable pseudonym system described
in Section 4 securely implements the ideal function-
ality F leak

nym-log defined in Section 2 (with leak be-
ing a deterministic one-way function), against mixed
adversaries described below and in the (FCA,FCRS,
FAUTH,F1-AUTH,FBB,FPRF,Com

cOPRF) hybrid-model, provided
that

– (EncKGenG,EncG,DecG) is a secure homomorphic en-
cryption scheme,

– (REncKGenG,RandG,REncG,RDecG) is a secure homo-
morphic key-randomizable encryption scheme,

– (SigKGenGn+2 ,EncSignGn+2 ,DecSignGn+2 ,VfGn+2) is an
unforgeable signature scheme for encoded messages,

– (PRFKGenG,PRFG) is a secure and one-way PRF,
– (PRPKGenG,PRPG) is a secure PRP,
– (ComG,ComVfG) is a secure commitment scheme,
– the proof system used for NIZK is zero-knowledge,

simulation-sound and online-extractable (for the under-
lined values), and

– the DDH-assumption holds in group G.

We discuss the considered mixed adversary type below,
and provide the proof of Theorem 5.1 in the full version of
this paper.

Mixed Adversaries. To prove our protocol secure we con-
sider a mixed adversary [13] that can actively corrupt servers
and users but only gain passive control over the converter.
We consider this a realistic model: for servers and users
which can have diverse and hard to control backgrounds we
do not make any assumptions on their trustworthiness and
tolerate entirely malicious behaviour. For the converter, who
is the central and crucial entity in our system, we assume
that correct behaviour can be controlled and enforced more
easily which allows to consider only honest-but-curious
adversaries. That is, even when corrupted, the converter will
perform the protocol correctly. This avoids the complexity
needed to cryptographically enforce X ’s compliance, while
it still covers the main threats: an overly curious converter
trying to trace or identify users by exploiting all the infor-
mation and keys it sees, or X getting compromised by an
attacker stealing all internal data.



User Ui upon input (AUDIT, sid) retrieves and decrypts his
logs from the bulletin board FBB:

STEP 1: Retrieve all data from bulletin board.
Retrieve all audit tag entries {(audittag, sid , Tk, C∗T )} and
conversion records {(convert, sid , Tk, C∗log, request)} and
{(convert, sid , Tk, done)} for sid from the bulletin board FBB.

STEP 2: Recursively get chain of audit tags.
Retrieve all locally stored audit tags (mytag, sid , Tj), and for
each Tj do the following:
a) Look up all related tag entries (audittag, sid , Tj , C

∗
T ) for Tj .

b) Decrypt the follow-up audit tag as T ′j ← RDecG(usk i, C
∗
T ).

c) Store (mytag, sid , T ′j) and repeat procedure for T ′j .

STEP 3: Decrypt conversion logs for audit tags.
Retrieve all stored tags (mytag, sid , Tj), set Llog ← ∅, and for
each Tj do the following:
a) Look up entry (convert, sid , Tj , C

∗
log, request) for Tj .

b) Decrypt audit info as cqid j ← RDecG(usk i, C
∗
log).

c) If a record (convert, sid , Tj , done) for Tj exists as well, set
statusj ← done and statusj ← request otherwise.

d) Update Llog ← Llog ∪ {(cqid j , statusj)}.

End with output (AUDIT, sid ,Llog).

Figure 10: User Audit.

This mixed setting of actively and passively corrupted
parties then requires some (often only implicitly handled)
trust assumptions in order to maintain the difference be-
tween active and passive corruption. Recall that actively
corrupted parties are fully controlled by the adversary,
whereas a passively corrupted entity still behaves honestly
but the adversary can see all its inputs, outputs and internal
state. However, the adversary can actually not be allowed to
learn the full state including all secret keys of a passively
corrupted party P . Otherwise, A could simply impersonate
P by running an identical copy which the adversary then
actively controls. Thus, to enforce A’s passive behaviour
for P , one assumes authenticated channels that remain
intact even upon passive corruption which prevents such
“impersonation attacks” [28], [16].

Consequently, an adversary passively corrupting the con-
verter in our protocol will not receive X ’s secret keys
used to realize FAUTH, F1-AUTH, and FBB. Moreover, as
the signature scheme on encoded messages is used by
the converter to issue credentials which can be used in
an anonymous manner, we assume that the corresponding
secret key cannot be exposed upon corruption either. In fact,
giving these keys to the adversary would no longer reflect
honest-but-curious behaviour of X : the adversary could sign
arbitrary combinations of pseudonyms, public keys and tags
on behalf of X , e.g., irregularly mixing pseudonyms of
honest users with adversarially controlled public keys. When
the adversary also actively corrupted some servers, he then
can circulate these malicious signatures, thereby indirectly
impersonating X . Thus, we grant the signing keys the same
necessary protection as the authentication keys, which could

e.g., be realized via HSM’s.
An adversary passively corrupting X still gets to see all

internal protocol messages as well as the secret PRF key
kX and all secret exponents xA, xB , . . . used to generate
and convert pseudonyms. For actively corrupted users and
servers, of course all keys are known to the adversary (as
he generates them).

6. Concrete Instantiation
Our protocol can be instantiated with the

ElGamal encryption scheme with CRS trapdoor for
(EncKGenG,EncG,DecG), the R-ElGamal scheme
for (REncKGenG,REncG,RDecG,RandG), the Gr+
for the signature scheme for encoded messages
(SigKGenG,SignG,EncSignG,DecSignG,VfG) and the
ΠcOPRF protocol for FcOPRF. For the PRPG we use lazy
sampling as in [7], symmetric encryption is an alternative
as well, with proper mapping from G into the domain and
from the range of the symmetric cipher.

6.1. NIZK Instantiations
We now provide the concrete instantiations of the non-

interactive proofs when our scheme is instantiated as de-
scribed above. A number of secrets of which knowledge is
proven need to be online extractable. To achieve this, we
employ for the encryption scheme EncG(·, ·) the ElGamal
scheme extended with a CRS trapdoor, as discussed in Sec-
tion 3.4, thus, e.g., C = EncG(epk ,m, ρ) = (C0, C1, C2) =
(ŷρ, epkρ, gρm) and use for REncG(upk ,m, ρ) = C =
(C1, C2) = (upkρ1, upk

ρ
2m).

Pseudonym Generation. We first consider the following
proof πU , with which the user proves that he correctly
encrypted the output obtained from FcOPRF (to which the
verifier had obtained the commitment comz) and that Cr and
C∗r , which will be used to derive the audit tag, are encryp-
tions of the same value r. Let comz = (comz,1, comz,2) =
(hoz , gozzi) be the concrete commitment to zi. Then πU is
as follows.

πU ←$ SPK{ρ1, ρ2, ρ3, oz) :

Cnym,0 = ŷρ3 ∧ Cnym,1 = epkρ3A ∧
comz,1 = hoz ∧ comz,2/Cnym,2 = gozg−ρ3

Cr,0 = ŷρ1 ∧ Cr,1 = epkρ1A ∧ C∗r,1 = upk ′1
ρ2 ∧

Cr,2/C
∗
r,2 = gρ1upk ′2

−ρ2 ∧
}(sid ,nqid , Cnym , Cr, C

∗
r , comz) .

Pseudonym Conversion. We next consider the proof
πA that all Cnym,A, Cnym,B , Cr, C∗r and upk ′

were computed correctly and based on values that
were signed. To provide the concrete instantiation,
let upk = (upk1, upk2) ∈ G2, xnymi,A ∈ G, and
T ∈ G. Next, let σ = (r̃, s̃, t̃1, t̃2, t̃3, t̃4) be a freshly
randomized signature on (upk1, upk2, xnymi,A, T ) ∈ G4.
Finally, let upk ′ = (upk ′1, upk

′
2) = RandG(upk , ρ5) =

(upk
1/ρ5
1 , upk

1/ρ5
2 ) for a random ρ5 ←$ Zq. As part



of the proof, the prover provides the two randomized
signature values r̃ and s̃ and encryptions of upk1,
upk2, and all t̃i’s under the public key ŷ contained in
the CRS. That is, let T̃i = (T̃i,1, T̃i,2) = (ŷνi , gνi t̃i),
for random νi ←$ Zq, be encryptions of the t̃i values
and let (Ui,1, Ui,2) = (ŷξi , gξiupk i) be encryptions of
upk i for random ξi ←$ Zq. Then the prover computes

πA ←$ SPK{(t̃1, . . . , t̃4, r, ξ1, ξ2, ν1, . . . , ν4, ρ1, . . . , ρ5) :

e(x1, y)e(U1,2, g̃)/e(T̃1,2, r̃) = e(g, r̃)−ν1e(g, g̃)ξ1 ∧
e(x2, y)e(U2,2, g̃)/e(T̃2,2, r̃) = e(g, r̃)−ν2e(g, g̃)ξ2 ∧

e(x3, y)e(Cnym,A,2, g̃)/e(T̃3,2, r̃) = e(g, r̃)−ν3e(g, g̃)ρ1 ∧
e(x4, y)e(T, g̃)/e(T̃4,2, r̃) = e(g, r̃)−ν4 ∧

T̃1,1 = ŷν1 ∧ T̃2,1 = ŷν2 ∧ T̃3,1 = ŷν3 ∧ T̃4,1 = ŷν4 ∧
Cnym,A,0 = ŷρ1 ∧ Cnym,B,0 = ŷρ2 ∧
Cnym,A,1 = epkρ1A ∧ Cnym,B,1 = epkρ2B ∧

Cnym,A,2/Cnym,B,2 = gρ1g−ρ2 ∧
Cr,0 = ŷρ3 ∧ Cr,1 = epkρ3A ∧ C∗r,1 = upk ′1

ρ4 ∧
Cr,2/C

∗
r,2 = gρ3upk ′2

−ρ4 ∧
U1,1 = ŷξ1 ∧ U2,1 = ŷξ2 ∧ U1,2 = gξ1upk ′1

ρ5 ∧
U2,2 = gξ2upk ′2

ρ5}(sid , cqid , e, g, g̃, x, y, r̃, s̃, T, ȳ,
T̃1, . . . , T̃4, U1, U2, Cnym,A, Cnym,B , Cr, C

∗
r ).

To verify the proof, the verifier checks whether
e(g, y)e(x1, g̃) = e(s̃, r̃) holds and whether πA is a correct
proof of the statement above.

Finally, deriving the proof πB of showing that Cr and
C∗r encrypt the same value is easy:

πB ←$ SPK{(ρ1, ρ2) : Cr,0 = ŷρ1 ∧ Cr,1 = epkρ1A ∧
C∗r,1 = upk ′1

ρ2 ∧ Cr,2/C
∗
r,2 = gρ1upk ′2

−ρ2

}(sid , cqid , Cr, C∗r ).

6.2. Security & Efficiency

If our scheme is instantiated with the NIZK’s and
building blocks stated above, then by the security
of the building blocks, our scheme is secure in the
(FCA,FCRS,FAUTH,F1-AUTH,FBB)-hybrid model under the
Symmetric eXternal Decision Diffie-Hellman (SXDH) as-
sumption [2], the q-Decisional Diffie-Hellman Inversion
assumption [5], the Decision Composite Residuosity as-
sumption [19] and the unforgeability of Groth’s signature
scheme [15].

With the instantiation described above we get the fol-
lowing efficiency figures, specifying the amount of expo-
nentiations and pairings in the respective groups. We as-
sume obvious optimizations such as making use of multi-
exponentiations and multi-pairings, or computing exponenti-
ations in G instead of Gt whenever applicable. The compu-
tations in group Z∗n2 with n being a RSA-modulus stem from
the Camenisch-Shoup encryption used in the realization of
FcOPRF.

Generation : Ui X SA
22G + 6Z∗n2 22G + G̃ + 6Z∗n2 4G

Conversion : SA X SB
37G + 4P 47G + 2G̃ + 4P 13G

User Audit : Ui with c denoting the amount
3c ·G of conversions for Ui

As a benchmark, using the BN254 curve of the Apache
Milagro Cryptographic Library (AMCL, C-Version), expo-
nentiations in G, G̃, and Gt require 0.6ms, 1.0ms, and
1.4ms respectively, and a pairing costs 1.6ms (executed on
an Intel i5-4300U CPU). Thus, in terms of computational
time the conversion takes 28.6ms for SA, 36.6ms for X , and
7.8ms for SB which we believe to be reasonably efficient
for practical use.

7. Conclusion & Open Problems
In this paper we have shown how to construct a

pseudonym system with build-in user auditability that
does not require a fully trusted auditor or converter. Our
pseudonym system overcomes the seemingly conflict of
providing user-specific audits by an oblivious converter, and
positively answers the open question from [7]. The converter
generates and converts (un)linkable pseudonyms in a blind
way, and also generates audit logs for each conversion
request that allow the concerned user, and only him, to learn
about the processing of his pseudonyms. The computational
complexity for the user part is rather minimal, and in partic-
ular independent of the number of users in the pseudonym
system. Further, our scheme provides better privacy for
pseudonym generation than [7], as the converter no longer
learns which user wishes to generate a pseudonym towards
which server, that was inherently revealed in the scheme of
Camenisch and Lehmann. Our construction makes use of a
number of new building blocks and a tag-chaining approach
which we believe to be of independent interest.

An interesting open question is how to tolerate fully
malicious behaviour of the converter, e.g., via distributing
the logging procedure or using recent advances in the block
chain area, ideally without imposing a significant perfor-
mance loss. Another area for future work is to further
enhance the power of the user, such that he can decide
which pseudonym conversions are allowed while remaining
anonymous to the converter.

Acknowledgements. We thank Manu Drijvers for providing
the benchmark measurements. This work was supported by
the European Commission through the Seventh Framework
Programme under grant agreement #321310 for the PERCY
grant.

References

[1] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryp-
tion. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS,
pages 480–497. Springer, Heidelberg, February 2010.



[2] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno
de Medeiros. Practical group signatures without random oracles.
Cryptology ePrint Archive, Report 2005/385, 2005. http://eprint.iacr.
org/2005/385.

[3] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin.
Secure computation without authentication. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 361–377. Springer,
Heidelberg, August 2005.

[4] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss,
Anna Lysyanskaya, and Hovav Shacham. Randomizable proofs
and delegatable anonymous credentials. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer,
Heidelberg, August 2009.

[5] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity
based encryption without random oracles. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS,
pages 223–238. Springer, Heidelberg, May 2004.

[6] Jan Camenisch, Aggelos Kiayias, and Moti Yung. On the portability
of generalized Schnorr proofs. In Antoine Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 425–442. Springer,
Heidelberg, April 2009.

[7] Jan Camenisch and Anja Lehmann. (Un)linkable pseudonyms for
governmental databases. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel:, editors, ACM CCS 15, pages 1467–1479. ACM Press,
October 2015.

[8] Jan Camenisch and Victor Shoup. Practical verifiable encryption
and decryption of discrete logarithms. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 126–144. Springer,
Heidelberg, August 2003.

[9] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups (extended abstract). In Burton S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 410–424. Springer, Hei-
delberg, August 1997.

[10] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. Cryptology ePrint Archive, Report 2000/067,
2000. http://eprint.iacr.org/2000/067.

[11] Austrian Citizen Card. http://www.a-sit.at/de/dokumente
publikationen/flyer/buergerkarte en.php.

[12] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random
function with short proofs and keys. In Serge Vaudenay, editor,
PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, Hei-
delberg, January 2005.

[13] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correct-
ness for privacy in unconditional multi-party computation (extended
abstract). In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of
LNCS, pages 121–136. Springer, Heidelberg, August 1998.

[14] David Galindo and Eric R Verheul. Microdata sharing via
pseudonymizatio. Joint UNECE/Eurostat work session on statistical
data confidentiality, 2007.

[15] Jens Groth. Efficient fully structure-preserving signatures for large
messages. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 239–259.
Springer, Heidelberg, November / December 2015.

[16] Martin Hirt, Christoph Lucas, and Ueli Maurer. A dynamic tradeoff
between active and passive corruptions in secure multi-party compu-
tation. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 203–219. Springer, Heidelberg,
August 2013.

[17] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu.
Highly-efficient and composable password-protected secret sharing
(or: How to protect your bitcoin wallet online). In IEEE European
Symposium on Security and Privacy, EuroS&P 2016, pages 276–291.
IEEE, 2016.

[18] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom
function with applications to adaptive OT and secure computation of
set intersection. In Omer Reingold, editor, TCC 2009, volume 5444
of LNCS, pages 577–594. Springer, Heidelberg, March 2009.

[19] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, EUROCRYPT’99, vol-
ume 1592 of LNCS, pages 223–238. Springer, Heidelberg, May 1999.

[20] Tobias Pulls, Roel Peeters, and Karel Wouters. Distributed privacy-
preserving transparency logging. In Proceedings of the 12th annual
ACM Workshop on Privacy in the Electronic Society, WPES 2013,
pages 83–94. ACM, 2013.

[21] Bruce Schneier and John Kelsey. Cryptographic support for secure
logs on untrusted machines. In Proceedings of the 7th USENIX
Security Symposium. USENIX Association, 1998.

[22] My Number (Japanese Social Security and Tax Number System).
http://www.ny.us.emb-japan.go.jp/japaninfo/winter2016/03.html.

[23] Eric Verheul, Bart Jacobs, Carlo Meijer, Mireille Hildebrandt, and
Joeri de Ruiter. Polymorphic encryption and pseudonymisation for
personalised healthcare. Cryptology ePrint Archive, Report 2016/411,
2016. http://eprint.iacr.org/2016/411.

[24] Brent R. Waters, Edward W. Felten, and Amit Sahai. Receiver
anonymity via incomparable public keys. In Sushil Jajodia, Vijayalak-
shmi Atluri, and Trent Jaeger, editors, ACM CCS 03, pages 112–121.
ACM Press, October 2003.

[25] Douglas Wikström. A universally composable mix-net. In Moni Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 317–335. Springer,
Heidelberg, February 2004.

[26] Karel Wouters, Koen Simoens, Danny Lathouwers, and Bart Preneel.
Secure and privacy-friendly logging for egovernment services. In
Proceedings of the The Third International Conference on Availabil-
ity, Reliability and Security, ARES 2008, pages 1091–1096. IEEE
Computer Society, 2008.

[27] Adam L. Young and Moti Yung. Semantically secure anonymity:
Foundations of re-encryption. Cryptology ePrint Archive, Report
2016/341, 2016. http://eprint.iacr.org/2016/341.

[28] Vassilis Zikas, Sarah Hauser, and Ueli M. Maurer. Realistic failures in
secure multi-party computation. In Omer Reingold, editor, TCC 2009,
volume 5444 of LNCS, pages 274–293. Springer, Heidelberg, March
2009.


