
Updatable Encryption
with Post-Compromise Security?

Anja Lehmann and Björn Tackmann??

Abstract. An updatable encryption scheme allows to periodically ro-
tate the encryption key and move already existing ciphertexts from the
old to the new key. These ciphertext updates are done with the help of
a so-called update token and can be performed by an untrusted party,
as the update never decrypts the data. Updatable encryption is partic-
ularly useful in settings where encrypted data is outsourced, e.g., stored
on a cloud server. The data owner can produce an update token, and the
cloud server can update the ciphertexts.
We provide a comprehensive treatment of ciphertext-independent schemes,
where a single token is used to update all ciphertexts. We show that
the existing ciphertext-independent schemes and models by Boneh et
al. (CRYPTO’13) and Everspaugh et al. (CRYPTO’17) do not guaran-
tee the post-compromise security one would intuitively expect from key
rotation. In fact, the simple scheme recently proposed by Everspaugh
et al. allows to recover the current key upon corruption of a single old
key. Surprisingly, none of the models so far reflects the timely aspect of
key rotation which makes it hard to grasp when an adversary is allowed
to corrupt keys. We propose strong security models that clearly capture
post-compromise and forward security under adaptive attacks. We then
analyze various existing schemes and show that none of them is secure
in this strong model, but we formulate the additional constraints that
suffice to prove their security in a relaxed version of our model. Finally,
we propose a new updatable encryption scheme that achieves our strong
notions while being (at least) as efficient as the existing solutions.

1 Introduction

In data storage, key rotation refers to the process of (periodically) exchanging
the cryptographic key material that is used to protect the data. Key rotation is
considered good practice as it hedges against the impact of cryptographic keys
being compromised over time. For instance, the Payment Card Industry Data
Security Standard (PCI DSS) [23], which specifies how credit card data must be
stored in encrypted form mandates key rotation, meaning that encrypted data
must regularly be moved from an old to a fresh key. Many cloud storage providers

? An extended abstract of this work appears at Eurocrypt 2018. This is the full and
updated version. A summary of the changes made in the update is given at the end
of the introduction.

?? Contact: anja.lehmann@hpi.de (Hasso-Plattner-Institut) and bjoern@dfinity.org

(DFINITY). Work done while being at IBM Research – Zurich.

that implement data-at-rest encryption, such as Google and Amazon, employ
a similar feature [14]. The trivial approach to update an existing ciphertext
towards a new key is to decrypt the ciphertext and re-encrypt the underlying
plaintext from scratch using the fresh key. Implementing this approach for secure
cloud storage applications where the data owner outsources his data in encrypted
form to a potentially untrusted host is not trivial, though: Either the owner has
to download, re-encrypt and upload all ciphertexts, which makes outsourcing
impractical, or the encryption keys have to be sent to the host, violating security.

Updatable Encryption. A better solution for updating ciphertexts has been pro-
posed by Boneh et al. [9]: in what they call an updatable encryption scheme, the
data owner can produce a short update token that allows the host to re-encrypt
the data himself, while preserving the security of the encryption, i.e., the token
allows to migrate ciphertexts from an old to a new key, but does not give the
host an advantage in breaking the confidentiality of the protected data. Boneh
et al. also proposed a construction (BLMR) based on key-homomorphic PRFs,
which essentially is a symmetric proxy re-encryption scheme (PRE) where one
sequentially re-encrypts data from one epoch to the next.

While being somewhat similar in spirit, PRE and updatable encryption do
have different security requirements: PRE schemes often keep parts of the cipher-
texts static throughout re-encryption, as there is no need to make a re-encrypted
ciphertexts independent from the original ciphertext it was derived from. In up-
datable encryption, however, the goal should be that an updated ciphertext is
as secure as a fresh encryption; in particular, it should look like an indepen-
dently computed ciphertext even given previous ones. Thus, any scheme that
produces linkable ciphertexts, such as the original BLMR construction, cannot
guarantee such a security notion capturing post-compromise security of updated
ciphertexts.

Ciphertext-Independence vs. Ciphertext-Dependence. In the full version of their
paper, Boneh et al. [8] provide security notions for updatable encryption, which
aim to cover the desired indistinguishability of updated ciphertexts. To sat-
isfy that notion, they have to remove the linkability from the BLMR scheme,
which they achieve by moving to the setting of ciphertext-dependent updates.
In ciphertext-dependent schemes, the owner no longer produces a single token
that can update all ciphertexts, but produces a dedicated token for each cipher-
text. Therefore, the owner has to download all outsourced ciphertexts, compute
a specific token for every ciphertext, and send all tokens back to the host.

Clearly, ciphertext-dependent schemes are much less efficient and more cum-
bersome for the data owner than ciphertext-independent ones. They also increase
the complexity of the update procedure for the host, who has to ensure that it
applies the correct token for each ciphertext—any mistake renders the updated
ciphertexts useless. Another, more subtle disadvantage of ciphertext-dependent
schemes is that they require the old and new keys to be present together for a
longer time, as the owner needs both keys to derive the individual tokens for all
of his ciphertexts. Deleting the old key too early might risk losing the ability

2

of decrypting ciphertexts that have not been upgraded yet, whereas keeping the
old key too long makes an attack at that time more lucrative—the adversary
obtains two keys at the same time. In a ciphertext-independent scheme, the old
key can and should be deleted immediately after the token has been derived.

In a recent work [14], Everspaugh et al. provide a systematic treatment for
such ciphertext-dependent schemes and observe that computing the token often
does not require access to the full ciphertext, but only to a short ciphertext
header, which allows to moderately improve the efficiency of this approach. Ev-
erspaugh et al. also show that the security notions from [8] do not cover the
desired property of post-compromise security of updated ciphertexts. They pro-
vide two new security notions and propose schemes that can provably satisfy
them. As a side-result, they also propose a security definition for ciphertext-
independent schemes and suggest a simple xor-based scheme (XOR-KEM) for
this setting.

Ambiguity of Security Models. Interestingly, both previous works phrase the al-
gorithms and security models for updatable encryption in the flavor of normal
proxy re-encryption. That leads to a mismatch of how the scheme is used and
modeled—in practice, an updatable encryption scheme is used in a clear sequen-
tial setting, updating ciphertexts as the key progresses. The security model offers
more and unrealistic flexibility, though: it allows to rotate keys and ciphertexts
across arbitrary epochs, jumping back in forth in time. This flexibility gives the
adversary more power than he has in reality and, most importantly, makes the
security that is captured by the model hard to grasp, as it is not clear when the
adversary is allowed to corrupt keys.

Non-intuitive security definitions increase the risk that proofs are flawed or
that schemes are unintentionally used outside the security model. And in fact,
the way that Everspaugh et al. [14] define security for (ciphertext-independent)
schemes is ambiguous, and only the weaker interpretation of their model allows
their scheme XOR-KEM to be proven secure. However, this weaker interpretation
does not guarantee any confidentiality after a secret key got compromised, as it
allows key corruption only after the challenge epoch. Thus, an updatable scheme
that is secure only in such a weak model does not provide the intuitive security
one would expect from key rotation: namely that after migrating to the new
key, the old one becomes useless and no longer of value to the adversary. To the
contrary, all previous keys still require strong protection or secure deletion.

Importance of Post-Compromise Security. Realizing secure deletion in practice
is virtually impossible, as keys may be copied or moved across the RAM, swap
partitions, and SSD memory blocks, and thus we consider post-compromise se-
curity an essential property of updatable schemes. Avoiding the assumption of
securely deleted keys and re-gaining security after a temporary corruption has
recently inspired numerous works on how to achieve post-compromise security
in other encryption settings [5, 12, 13, 15]. Note that an updatable encryption
scheme that is not post-compromise secure can even reduce the security com-
pared with a scheme where keys are never rotated: as one expects old keys to be

3

useless after rotation, practitioners can be misled to reduce the safety measures
for “expired” keys, which in turn makes key compromises more likely. For the
example of Everspaugh et al.’s simple XOR-KEM scheme [14], a compromised
old key allows to fully recover the fresh key.

This leaves open the important question how to design a ciphertext-indepen-
dent scheme that achieves post-compromise security, capturing the full spirit of
updatable encryption and key rotation.

Our Contributions. In this work we provide a comprehensive treatment for
ciphertext-independent updatable encryption schemes that have clear advantages
in efficiency and ease-of-deployment over the ciphertext-dependent solutions. We
model updatable encryption and its security in the natural sequential manner
that is inherent in key rotation, avoiding the ambiguity of previous works, and
clearly capturing all desired security properties. We also analyze the (in)security
of a number of existing schemes and finally propose a construction that provably
satisfies our strong security notions.

Strong Security Models. We define updatable encryption in its natural form
where keys and ciphertexts sequentially evolve over time epochs. To capture
security, we allow the adversary to adaptively corrupt secret keys, update tokens
and ciphertexts in any combination of epochs as long as this does not allow him
to trivially decrypt a challenge ciphertext. In our first notion, indistiguishability
of encryptions (IND-ENC), such a challenge ciphertext will be a fresh encryption
Cd of one of two messages m0,m1 under the current epoch key, and the task of
the adversary is to guess the bit d. This is the standard CPA game adapted to
the updatable encryption and adaptive corruption setting. Our second notion,
indistiguishability of updates (IND-UPD), returns as a challenge the re-encryption
C ′d of a ciphertext either C0 or C1, and an adversary again has to guess the bit d.

In the ciphertext-independent setting, capturing the information that the ad-
versary can infer from a certain amount of corrupted tokens, keys and ciphertexts
is a delicate matter, as, e.g., an update token allows the adversary to move any
ciphertext from one epoch to the next. We observe that all existing constructions
leak more information than necessary. Instead of hard-coding the behavior of the
known schemes into the security model, we propose a set of leakage profiles, and
define both the optimal and currently achievable leakage.

We then compare our model to the existing definition for encryption indis-
tinguishability by Everspaugh et al. [14]. We argue that their definition can be
interpreted in two ways: the weaker interpretation rules out post-compromise se-
curity, but allows the XOR-KEM construction to be secure, whereas the stronger
interpretation is closer to our IND-ENC model. However, in their stronger ver-
sion, as well as in our IND-ENC notion, we show that XOR-KEM cannot be secure
by describing a simple attack that allows to recover the challenge secret key after
compromising one old key. We further show that IND-ENC is strictly stronger
than the weak interpretation of [14], but incomparable to the stronger one, due
to the way both models handle adversarial ciphertexts.

4

SE-KEM 2ENC BLMR BLMR+ RISE

IND-ENC (3) (3) 3 3 3

no token near a
challenge

either token
near challenge,
or secret key

IND-UPD 8 (3) 8 (3) 3

no token near a
challenge

at most one
token

Table 1. Overview of results in this work. (Corruption of secret keys in challenge epochs
is forbidden by the IND-ENC and IND-UPD definitions. The symbol (3) denotes that a
schemes requires additional constraints on the tokens that can be corrupted to achieve
the security notion.)

Provably Secure Constructions. We further analyze several schemes according
to the new definitions (Sec. 5), the results are summarized in Table 1. First, we
consider a simple construction (called 2ENC) that is purely based on symmetric
primitives. Unfortunately, the scheme cannot satisfy our strong security notions.
Yet, instead of simply labeling this real-world solution as insecure, we formulate
the additional constraints on the adversarial behavior that suffice to prove its
security in relaxed versions of our IND-ENC and IND-UPD models.

We then turn our attention to less efficient but more secure schemes, starting
with the BLMR construction by Boneh et al. [9] that uses key-homomorphic
PRFs. We show that the original BLMR scheme does satisfy our IND-ENC notion
but not IND-UPD, and also propose a slight modification BLMR+ that improves
the latter and achieves a weak form of update indistinguishability. While BLMR
seems to be a purely symmetric solution on the first glance, any instantiation of
the underlying key-homomorphic PRFs so far requires modular exponentiations
or is built from lattices. The same holds for the recent ciphertext-dependent
construction by Everspaugh et al. [14] that also relies on key-homomorphic PRFs
and suggests a discrete-logarithm based instantiation.

Acknowledging that secure updatable encryption schemes seem to inherently
require techniques from the public-key world, we then build a scheme that omits
the intermediate abstraction of using key-homomorphic PRFs which allows us to
take full advantage of the underlying group operations. Our construction (RISE,
for Re-randomizable ciphertext-Independent Symmetric Elgamal) can be seen as
the classic ElGamal-based proxy re-encryption scheme combined with a fresh re-
randomization upon each re-encryption. We prove that this scheme fully achieves
both of our strong security definitions.

We compare the schemes in terms of efficiency in Table 2. The costs for
encryption and updates of our most secure RISE scheme are—on the owner
side—even lower than the costs in the less secure BLMR scheme and the recent
ciphertext-dependent scheme ReCrypt by Everspaugh et al. [14]. The solution by
Everspaugh et al. shifts significantly many expensive update operations to the
data owner, who has to compute two exponentiation for each ciphertext (block)

5

Ciphertext
Independent

Encryption Token
Derivation

Update of n
Ciphertexts

BLMR’ [8] 2 exp. 2n sym. 2n exp.

ReCrypt [14] 2 exp. 2n exp. 2n exp.

BLMR [9] 3 2 exp. 2 exp. 2n exp.

BLMR+ (this work) 3 2 exp. 2 exp. 2n exp.

RISE (this work) 3 2 exp. 1 exp. 2n exp.

Table 2. Comparison of computational efficiency measured by the most expensive op-
erations for short (one-block) ciphertexts (exponentiation, symmetric cryptography).2

Note that the ciphertext-dependent BLMR’ variant of [8] is unlikely to have a security
proof [14], and BLMR and BLMR+ achieve significantly weaker security than RISE.
(SE-KEM and 2ENC are omitted here as they are purely symmetric solutions.)

that shall be updated, whereas our scheme requires the owner to compute only
a single exponentiation for the update of all ciphertexts.

In Appendix A, we additionally analyze a “hybrid-encryption” scheme SE-KEM
that is widely used in practical data-at-rest protection, where the encrypted
plaintext is stored together with the encryption key wrapped under an epoch
key. The scheme provides rather weak guarantees when viewed as an updatable
encryption scheme, but may still be useful in certain scenarios due to the efficient
key update.

Other Related Work. Beyond the previous work on updatable encryption [8,
9, 14] that we already discussed above, the most closely related line of work
is on (symmetric) proxy re-encryption (PRE) [2, 3, 6, 7, 11, 16, 19–21]. Notably,
the recent work of Berners-Lee [6] builds on the work of Everspaugh et al. [14]
and views the concept of ciphertext-dependent updates as a desirable security
feature of PRE in general, as it reduces the freedom of a possibly untrusted
proxy. The recent work of Myers and Shull [21] studies hybrid PRE schemes
aiming at efficient solutions for key rotation and access revocation. As stressed
before, however, while being similar in the sense that PRE allows a proxy to move
ciphertexts from one key to another, the desired security guarantees have subtle
differences and the security property of IND-UPD that is crucial for updatable
encryption is neither covered nor needed by PRE.

While this means that a secure PRE does not automatically yield a secure
updatable encryption scheme, it does not prevent PREs from being secure in the
updatable encryption sense as well—but this has to be proven from scratch. In
fact, our schemes are strongly inspired by proxy re-encryption: For the simple
double-encryption scheme discussed by Ivan and Dodis [17], we show that a
weak form of security can be proven, and our most secure scheme RISE combines
the ElGamal-based PRE with re-randomization of ciphertexts. We also observe
similar challenges in designing schemes that limit the “power” of the token,

6

which is related to the long-standing problem of constructing efficient PRE’s
that are uni-directional, multi-hop and collusion-resistant.

In the context of tokenization, which is the process of consistently replacing
sensitive elements, such as credit card numbers, with non-sensitive surrogate val-
ues, the feature of key rotation has recently been studied by Cachin et al. [10].
Their schemes are inherently deterministic, and thus their results are not applica-
ble to the problem of probabilistic encryption, but we follow their formalization
of modeling key rotation in a strictly sequential manner.

Finally, a recent paper of Ananth et al. [1] provides a broader perspective on
updatable cryptography, but targets generic and rather complex schemes with
techniques such as randomized encodings. The definitions in their work have
linkability hardcoded, as randomness has to remain the same across updates,
which is in contrast to our goal of achieving efficient unlinkable schemes for the
specific case of updatable encryption.

Changes w.r.t. the Eurocrypt’18 Version. In this updated version we cor-
rect two misconceptions present in our original paper:

First, we stress that — contrary to our original claims — the notion of
IND-ENC does capture post-compromise security, i.e., it covers CPA-type secu-
rity both for fresh and updated ciphertexts. In fact, the motivating counterexam-
ple for the insufficiency of IND-ENC we gave in Section 3.4 of the Eurocrypt’18
version was incorrect. While we still believe that the stronger IND-UPD security
notion is what one expects from updatable encryption and key rotation, it is
not as crucial as initially claimed. In fact, IND-ENC already captures the most
essential security properties and is sufficient for applications where linkability of
ciphertexts across epochs does not leak sensitive information.

Second, our security proofs had subtle issues in hybrid arguments we made.
The proof of IND-ENC for RISE used key privacy to simplify subsequent steps;
this part of the proof was incorrect. We modified the remaining parts and use a
different hybrid argument, the result remains the same. The hybrid argument in
the IND-ENC proof for BLMR had a flaw in sampling the epoch for embedding
the challenge; the sampling was slightly different in subsequent hybrids. The
new hybrid argument we make for RISE only works for schemes with random-
ized updates and is, therefore, not applicable to BLMR. Our modified proof for
BLMR only holds in a static corruption model where the adversary announces
the corruptions at the beginning of each epoch.

2 Preliminaries

Symmetric Encryption. A symmetric encryption scheme SE consists of a key
space K and three polynomial-time algorithms SE.kgen, SE.enc, SE.dec satisfying
the following conditions:

2 The computation of the key-homomorphic PRF requires 2 exponentiations—one for
hashing into the group and one for computing the PRF.

7

SE.kgen: The probabilistic key generation algorithm takes as input a security
parameter and produces an encryption key k ∈ K. That is, k

r← SE.kgen(λ).
SE.enc: The probabilistic encryption algorithm takes a key k ∈ K and a message

m ∈M and returns a ciphertext C, written as C
r← SE.enc(k,m).

SE.dec: The deterministic decryption algorithm SE.dec takes a key k ∈ K and a
ciphertext C to return a message (M∪ {⊥}) 3 m← SE.dec(k,C)

For correctness we require that for any key k ∈ K, any message m ∈M and
any ciphertext C

r← SE.enc(k,m), we have m← SE.dec(k,C).

Chosen-Plaintext Security. The IND-CPA security of a symmetric encryption
scheme SE is defined through the following game GameIND-CPA(A) with adver-
sary A. Initially, choose b

r← {0, 1} and k
r← SE.kgen(λ). Run adversary A

with oracle Oenc(m), which computes C
r← SE.enc(k,m) and returns C. When

A outputs two messages m0,m1 with |m0| = |m1| and a state state, compute
C̃

r← SE.enc(k,mb) and run A(C̃, state), again with access to oracle Oenc. When
A outputs a bit b̃, the game is won if b = b̃. The IND-CPA advantage of A is
defined as |2 Pr[GameIND-CPA(A) won] − 1|, and SE is called IND-CPA-secure if
for all efficient adversaries A the advantage is negligible in λ.

Decisional Diffie-Hellman Assumption. Our final construction requires a group
(G, g, p) as input where G denotes a cyclic group G = 〈g〉 of order p in which the
Decisional Diffie-Hellman (DDH) problem is hard w.r.t. λ, i.e., p is a λ-bit prime.
More precisely, a group (G, g, p) satisfies the DDH assumption if for any efficient
adversary A the probability

∣∣Pr[A(G, p, g, ga, gb, gab)]− Pr[A(G, p, g, ga, gb, gc)]
∣∣

is negligible in λ, where the probability is over the random choice of p, g, the
random choices of a, b, c ∈ Zp, and A’s coin tosses.

3 Formalizing Updatable Encryption

We now present our formalization of updatable encryption and its desired secu-
rity features, and discuss how our security model captures these properties.

An updatable encryption scheme contains algorithms for a data owner and a
host. The owner encrypts data using the UE.enc algorithm, and then outsources
the ciphertexts to the host. To this end, the data owner initially runs an algo-
rithm UE.setup to create an encryption key. The encryption key evolves with
epochs, and the data is encrypted with respect to a specific epoch e, starting
with e = 0. When moving from epoch e to epoch e + 1, the owner invokes an
algorithm UE.next to generate the key material ke+1 for the new epoch and an
update token ∆e+1. The owner then sends ∆e+1 to the host, deletes ke and
∆e+1 immediately, and uses ke+1 for encryption from now on. After receiving
∆e+1, the host first deletes ∆e and then uses an algorithm UE.upd to update all
previously received ciphertexts from epoch e to e+1, using ∆e+1. Hence, during
some epoch e, the update token from e − 1 to e is available at the host, but
update tokens from earlier epochs have been deleted. (The host could already

8

delete the token when all ciphertexts are updated, but as this is hard to model
in the security game, we assume the token to be available throughout the full
epoch.)

Definition 1 (Updatable Encryption). An updatable encryption scheme UE
for message space M consists of a set of polynomial-time algorithms UE.setup,
UE.next, UE.enc,UE.dec, and UE.upd satisfying the following conditions:

UE.setup: The algorithm UE.setup is a probabilistic algorithm run by the owner.
On input a security parameter λ, it returns a secret key k0

r← UE.setup(λ).
UE.next: This probabilistic algorithm is also run by the owner. On input a secret

key ke for epoch e, it outputs a new secret key ke+1 and an update token
∆e+1 for epoch e+ 1. That is, (ke+1, ∆e+1)

r← UE.next(ke).
UE.enc: This probabilistic algorithm is run by the owner, on input a message

m ∈M and key ke of some epoch e returns a ciphertext Ce
r← UE.enc(ke,m).

UE.dec: This deterministic algorithm is run by the owner, on input a ciphertext
Ce and key ke of some epoch e returns {m′/⊥} ← UE.dec(ke, Ce).

UE.upd: This either probabilistic or deterministic algorithm is run by the host.
On input a ciphertext Ce from epoch e and the update token ∆e+1, it returns
the updated ciphertext Ce+1 ← UE.upd(∆e+1, Ce).

Correctness. The correctness condition of an updatable encryption scheme en-
sures that an update of a valid ciphertext Ce from epoch e to e+ 1 leads again
to a valid ciphertext Ce+1 that can be decrypted under the new epoch key ke+1.
More precisely, we require that for any m ∈ M, for any k0

r← UE.setup(λ),
for any sequence of key/update token pairs (k1, ∆1), . . . , (ke, ∆e) generated as
(kj , ∆j)

r← UE.next(kj−1) for j = 1, . . . , e through repeated applications of the
key-evolution algorithm, and for any Ci

r← UE.enc(ki,m) with i ∈ {0, . . . , e}
it holds that m = UE.dec(ke, Ce) where Ce for e > i is recursively obtained
through Cj

r← UE.upd(∆j , Cj−1) for j = i+ 1, . . . , e.

3.1 Security Properties

The main goal of updatable encryption is twofold: First, it should enable efficient
updates by a potentially corrupt host, i.e., the update procedure and compromise
of the update tokens must not reduce the standard security of the encryption.
Second, the core purpose of key rotation is to reduce the risk and impact of
key exposures, i.e., confidentiality should be preserved or even re-gained in the
presence of temporary key compromises, which can be split into forward and
post-compromise security. Furthermore, we aim for security against adaptive
and retroactive corruptions, modeling that any key or token from a current or
previous epoch can become compromised.

Token Security: The feature of updating ciphertexts should not harm the
standard IND-CPA security of the encryption scheme. That is, seeing up-
dated ciphertexts or even the exposure of all tokens does not increase an
adversary’s advantage in breaking the encryption scheme.

9

Forward Security: An adversary compromising a secret key in some epoch e∗

does not gain any advantage in decrypting ciphertexts he obtained in epochs
e < e∗ before that compromise.

Post-Compromise Security: An adversary compromising a secret key in some
epoch e∗ does not gain any advantage in decrypting ciphertexts he obtained
in epochs e > e∗ after that compromise.

Adaptive Security: An adversary can adaptively corrupt keys and tokens of
the current epoch and all previous ones.

Given that updatable encryption schemes can produce ciphertexts in two
ways—either via a direct encryption or an update of a previous ciphertext—we
require that the above properties must hold for both settings. This inspires our
split into two indistinguishability-based security notions, one capturing security
of direct encryptions (IND-ENC) and one ruling out attacks against updated
ciphertexts (IND-UPD). Both security notions are defined through experiments
run between a challenger and an adversary A. Depending on the notion, the
adversary may issue queries to different oracles, defined in the next section. At
a high level, A is allowed to adaptively corrupt arbitrary choices of secret keys
and update tokens, as long as they do not allow him to trivially decrypt the
challenge ciphertext.

The Importance of Post-Compromise Security. We have formalized updatable
encryption in the strict sequential setting it will be used in, and in particular
modeled key derivation of a new key ke+1 as a sequential update (ke+1, ∆e+1)

r←
UE.next(ke) of the old key ke. Previous works [9,14] instead model key rotation
by generating fresh keys via a dedicated ke+1

r← UE.kgen(λ) algorithm at each
epoch and deriving the token as ∆e+1

r← UE.next(ke, ke+1).
One impact of our sequential model is that post-compromise security be-

comes much more essential, as this property intuitively ensures that new keys
are independent of the old ones (which is directly ensured in the previous for-
malization where keys where generated independently). Without requiring post-
compromise security, UE.next(ke) could generate the new key by hashing the old
one: ke+1 ← H(ke). If H is modeled as a random oracle, this has no impact for
standard or forward security, but any scheme with such a key update loses all
security in the post-compromise setting. An adversary compromising a single
secret key ke can derive all future keys himself.

What we do not Model. The focus of this work is to obtain security against ar-
bitrary key compromises, i.e., an adversary can steal secret keys, update tokens,
and outsourced ciphertexts at any epoch. We do not consider attacks where an
adversary fully takes over the owner or host and starts manipulating ciphertexts,
e.g., providing adversarially generated ciphertexts to the host, or tampering with
the update procedure. Thus, we model passive CPA attacks but not active CCA
ones, and assume that all ciphertexts and updates are honestly generated. We
believe this still captures the main threat in the context of updatable encryption,
namely smash-and-grab attacks aiming at compromising the key material.

10

In fact, this restriction to passive attacks allows us to be more generous
when it comes to legitimate queries towards corrupted epochs, as we can distin-
guish challenge from non-challenge ciphertexts and only prohibit the ones that
allow trivial wins. Interestingly, Everspaugh et al. [14] use a similar approach in
their stronger CCA-like security notion for ciphertext-dependent schemes where
they are able to recognize whether a ciphertext is derived from the challenge
and prevent these from being updated towards a corrupt key. They are able to
recognize challenge ciphertexts as all keys are generated honestly, i.e., they are
known to the challenger, and updates are required to be deterministic. The latter
allows the challenger to trivially keep track of the challenge ciphertext, but it
also makes misuse of the schemes more likely: if a scheme is implemented with
probabilistic updates—which intuitively seems to only increase security—then
one steps outside of the model and loses all security guarantees. In our model,
we allow updates to be probabilistic, and in fact, the security of our strongest
construction crucially relies on the re-randomization of updated ciphertexts.

3.2 Definition of Oracles

During the interaction with the challenger in the security definitions, the adver-
sary may access oracles for encryption, for moving the key to the next epoch, for
corrupting the token or secret key, and for updating ciphertexts into the current
epoch. In the following description, the oracles may access the state of the chal-
lenger during the experiment. The challenger initializes a UE scheme with global
state (ke, ∆e,S, e) where k0 ← UE.setup(λ), ∆0 ← ⊥, and e← 0, and S consists
of initially empty sets L, L̃, C,K and T . Furthermore, let ẽ denote the challenge
epoch, and eend denote the final epoch in the game.

The sets L, L̃, C,K and T are used to keep track of the generated and updated
ciphertexts, and the epochs in whichA corrupted a secret key or token, or learned
a challenge-ciphertext:

L List of non-challenge ciphertexts (Ce, e) produced by calls to the Oenc or Oupd oracle.
Oupd only updates ciphertexts contained in L.

L̃ List of updated versions of the challenge ciphertext. L̃ gets initialized with the
challenge ciphertext (C̃, ẽ). Any call to the Onext oracle automatically updates the
challenge ciphertext into the new epoch, which A can fetch via a OupdC̃ call.

C List of all epochs e in whichA learned an updated version of the challenge ciphertext.

K List of all epochs e in which A corrupted the secret key ke.

T List of all epochs e in which A corrupted the update token ∆e.

Fig. 1. Summary of lists maintained by the challenger.

Oenc(m): On input a message m ∈ M, compute C
r← UE.enc(ke,m) where ke

is the secret key of the current epoch e. Add C to the list of ciphertexts
L ← L ∪ {(C, e)} and return the ciphertext to the adversary.

11

Onext: When triggered, this oracle updates the secret key, produces a new up-
date value as (ke+1, ∆e+1)

r← UE.next(ke), and updates the global state to
(ke+1, ∆e+1,S, e + 1). If the challenge query was already made, this call
will also update the challenge ciphertext into the new epoch, i.e., it runs
C̃e+1

r← UE.upd(∆e+1, C̃e) for (C̃e, e) ∈ L̃ and sets L̃ ∪ {(C̃e+1, e+ 1)}.
Oupd(Ce−1): On input a ciphertext Ce−1, check that (Ce−1, e− 1) ∈ L (i.e., it

is an honestly generated ciphertext of the previous epoch e − 1), compute
Ce

r← UE.upd(∆e, Ce−1), add (Ce, e) to the list L and output Ce to A.
Ocorrupt({token, key}, e∗): This oracle models adaptive corruption of the host and

owner keys, respectively. The adversary can request a key or update token
from the current or any of the previous epochs.
– Upon input token, e∗ ≤ e, the oracle returns ∆e∗ , i.e., the update token

is leaked. Calling the oracle in this mode sets T ← T ∪ {e∗}.
– Upon input key, e∗ ≤ e, the oracle returns ke∗ , i.e., the secret key is

leaked. Calling the oracle in this mode sets K ← K ∪ {e∗}.
OupdC̃: Returns the current challenge ciphertext C̃e from L̃. Note that the chal-

lenge ciphertext gets updated to the new epoch by the Onext oracle, whenever
a new key gets generated. Calling this oracle sets C ← C ∪ {e}.

Fine-grained corruption modeling. Note that in the case of key-corruption in an
epoch e∗, the oracle Ocorrupt(key, e

∗) only reveals the secret key ke∗ , but not the
update token of the epoch. This assumes erasure of the token as an ephemeral
value on the owner side. If the adversary also wants to learn the token, he can
make a dedicated query for token-corruption in the same epoch. This allows to
capture more fine-grained corruption settings.

Moreover, we have chosen to give the adversary a dedicated challenge-update
oracle OupdC̃ that simply returns the updated challenge ciphertext of the current
epoch, i.e., it does not require knowledge of the challenge ciphertext from the
previous epoch. This gives the adversary more power compared with the defini-
tion in earlier models [9,14]: Therein, an adversary wanting to know an updated
version of the challenge ciphertext for some epoch e′ > ẽ (with ẽ denoting the
challenge epoch) had to make update queries in all epochs from ẽ to e′, which
in turn is only allowed if A has not corrupted any secret key between ẽ and
e′. Consequently, A could not receive an updated challenge ciphertext after a
single key corruption, which we consider too restrictive. Therefore, we internally
update the challenge ciphertext with every key rotation and allow the adversary
to selectively receive an updated version at every epoch of his choice. Thus, in
every epoch after ẽ, the adversary A can choose whether he wants to learn the
secret key or an updated version of the challenge ciphertext.

3.3 “Leakage” Profiles

The main benefit of ciphertext-independent updatable encryption schemes is that
a single token can be used to update all ciphertexts from one epoch to the next.
However, the generality of the token also imposes a number of challenges when
modeling the knowledge of the adversary after he has corrupted a number of

12

keys:

token:

challenge:

e− 3 e− 2 e− 1 e e+ 1 e+ 2 e+ 3

ke−3 ke−2 ke−1 ke ke+1 ke+2 ke+3

∆e−2 ∆e−1 ∆e ∆e+1 ∆e+2 ∆e+3

C̃e−3 C̃e−2 C̃e−1 C̃e C̃e+1 C̃e+2 C̃e+3

epoch:

Fig. 2. Example of direct and indirect knowledge of an adversary. The boxed values
denote A’s directly received information as captured in K, T and C, whereas the circled
ones denote the inferable values for a scheme with token-inference and bi-directional
updates of ciphertexts and keys.

keys, tokens and updated challenge ciphertexts. For instance, if the adversary
knows a challenge ciphertext C̃ from epoch ẽ and an update token for epoch
ẽ + 1, he can derive an updated version of C̃ himself, which is not captured in
the set C that only reflects the challenge ciphertexts that A has directly received
from the challenger. This inference of updated ciphertexts via an update token
is clearly inherent in ciphertext-independent schemes.

Practical schemes often enable the adversary to derive even more information,
e.g., a token might allow not only to update but also to “downgrade” a ciphertext
into the previous epoch, i.e., the updates are bi-directional, or even allow to
update and downgrade a secret key via a token. While these features are present
in all current solutions, we do not see a reason why they should be inherent
in updatable encryption in general. Thus, we model different inference options
outside of the game by defining extended sets T ∗, C∗ and K∗ that capture the
information an adversary can infer from the directly learned tokens, ciphertexts
or keys. In the security games defined in the next section, we will require the
intersection of the extended sets of known challenge ciphertexts C∗ and known
secret keys K∗ to be empty, i.e., there must not exist a single epoch where the
adversary knows both the secret key and the (updated) challenge. We give an
example of such direct and inferable information in Figure 2.

Note that such inference is less an issue for ciphertext-dependent schemes
where the owner has to a derive a dedicated token for each ciphertext. This
naturally limits the power of the token to the ciphertext it was derived for, and
prevents the adversary from using the token outside of its original purpose.

Capturing Key Updates. In many schemes (in fact all the ones we will
consider), an update token does not only allow to update ciphertexts, but also
the secret key itself. That is, if an adversary has learned a key ke of epoch e and
the update token ∆e+1 of the following epoch, then he can also derive the new
key ke+1. If that is the only possible derivation, we call this an uni-directional
key update. If in addition also key downgrades are possible, i.e., a key ke can be
derived from ke+1 and ∆e+1, we call this bi-directional key updates.

In the context of proxy re-encryption, a similar property is known as “collu-
sion-resistance”. So far only uni-directional and single-hop schemes satisfy this

13

property, though [2,3,11,16,19,20], indicating that preventing keys to be updat-
able in a more flexible setting is a challenging property.

For defining uni- and bi-directional key updates we use the information con-
tained in K and T to derive the inferable information. Recall that K denotes the
set of epochs in which the adversary has obtained the secret key. The sets K∗uni

and K∗bi are then defined via the recursive predicate corrupt-key as follows:

Uni-directional key updates:
K∗uni ← {e ∈ {0, . . . , eend} | corrupt-key(e) = true}

and true← corrupt-key(e) iff:
(e ∈ K) ∨ (corrupt-key(e− 1) ∧ e ∈ T)

Bi-directional key updates:
K∗bi ← {e ∈ {0, . . . , eend} | corrupt-key(e) = true}

and true← corrupt-key(e) iff:
(e ∈ K) ∨ (corrupt-key(e− 1) ∧ e ∈ T)
∨ (corrupt-key(e+ 1) ∧ e+ 1 ∈ T)

Capturing Token Inference from Subsequent Secret Keys. The second
indirect knowledge we model is the derivation of an update token from two sub-
sequent secret keys. This is possible in all existing schemes where a token ∆e+1 is
deterministically derived from the keys ke and ke+1. In fact, all previous defini-
tions explicitly model the token computation as an algorithm that receives both
keys as input, instead of using an algorithm that updates the key and produces
an update token at the same time. While the former is clearly a necessary de-
sign choice for proxy re-encryption, it is less so for updatable encryption where
keys are generated in a strictly sequential order. Yet, if such token inference is
possible, we define an extended set T ∗ that contains all update tokens that the
adversary has either obtained directly or derived himself from corrupted keys.

More, precisely, for schemes with token-inference, the adversary can derive
from any two subsequent keys ke and ke+1 the update token ∆e+1 from epoch e
to e+1. We capture this by defining T ∗ via the sets T of corrupted token epochs
and K∗ denoting the extended set of corrupted key epochs as defined above.

T ∗ ← {e ∈ {0, . . . , eend} | (e ∈ T) ∨ (e ∈ K∗ ∧ e− 1 ∈ K∗)}

On a first glance it might look like we could run into a definitional loop
between inferred tokens and keys, as the extended set T ∗ based on K∗ could
now also impact the definition of K∗ (which we build from T). This is not the
case though: the additional epochs e that will be contained in T ∗ are epochs
where the adversary already knew ke and ke−1. Thus the additional tokens ∆e

where e ∈ T ∗\T would have no impact on a (re-definition) of K∗ as all inferable
keys from ∆e are already in K∗.

Capturing Challenge Ciphertext Updates. For capturing all the epochs
in which the adversary knows a version of the challenge ciphertext, we define

14

the set C∗ containing all challenge-equal epochs. Informally, a challenge-equal
epoch is every epoch in which the adversary knows a current version of the
challenge ciphertext. This can be either obtained via a direct call to the challenge-
ciphertext oracle OupdC̃, or by the adversary computing it himself via a (sequence
of) updates. We have to distinguish between two cases, depending on whether
the updates are uni- or bi-directional. In schemes with uni-directional updates,
an update token ∆e can only move ciphertexts from epoch e − 1 into epoch e,
but not vice versa. Note that uni-directional updates are by definition possible
in all ciphertext-independent schemes. A scheme where a token ∆e also allows
to downgrade ciphertexts from epoch e to e− 1, is called bi-directional.

Clearly, for security, uni-directional schemes are desirable, as the bi-direc-
tional property does not provide additional useful features but only allows the
adversary to trivially derive more information. However, bi-directional schemes
are easier to build, as this is related to the problem of designing uni-directional
and multi-hop proxy re-encryption schemes, for which a first (compact) lattice-
based solution was proposed only recently [24].

In both cases, we define C∗uni and C∗bi by using the information contained in C,
T ∗ and ẽ to derive the inferable information. Recall that ẽ denotes the challenge
epoch, C denotes the set of epochs in which the adversary has obtained an
updated version of the ciphertext (via OupdC̃), and T ∗ is the augmented set
of tokens known to the adversary. The sets C∗uni and C∗bi of all challenge-equal
ciphertexts are then defined via the recursive predicate challenge-equal as follows:

Uni-directional ciphertext updates:
C∗uni ← {e ∈ {0, . . . , eend} | challenge-equal(e) = true}

and true← challenge-equal(e) iff:
(e = ẽ) ∨ (e ∈ C) ∨ (challenge-equal(e− 1) ∧ e ∈ T ∗)

Bi-directional ciphertext updates:
C∗bi ← {e ∈ {0, . . . , eend} | challenge-equal(e) = true}

and true← challenge-equal(e) iff:
(e = ẽ) ∨ (e ∈ C)
∨ (challenge-equal(e− 1) ∧ e ∈ T ∗)
∨ (challenge-equal(e+ 1) ∧ e+ 1 ∈ T ∗)

Optimal Leakage. The optimal leakage, capturing only the inference mini-
mally necessary to perform ciphertext-independent updates would be T ∗ = T ,
K∗ = K and C∗ = C∗uni. That is, there is no token inference, keys cannot be
updated via a token and ciphertext updates are only uni-directional. All our
schemes have leakage (T ∗, C∗bi,K∗bi), and we leave it as an interesting open prob-
lem whether efficient schemes with less leakage exist. Interestingly, the extended
set of corrupted tokens T ∗ does not give the adversary more power in our
IND-ENC and IND-UPD definitions, compared with definitions that are based
only on T .

15

3.4 Security Notions for Updatable Encryption

We are now ready to formally define the security notions for updatable encryp-
tion schemes in the remainder of this section. We propose two indistinguisha-
bility-based notions—the first capturing the security of fresh and updated en-
cryptions in the presence of key evolutions and adaptive corruptions, and the
second capturing an additional unlinkability property ensuring that an updated
ciphertext cannot be linked to its old version.

Adaptive Encryption Indistinguishability (IND-ENC). Our IND-ENC no-
tion ensures that ciphertexts obtained from the UE.enc algorithm do not reveal
any information about the underlying plaintexts even when A adaptively com-
promises a number of keys and tokens before and after the challenge epoch. Thus
this definition captures forward and post-compromise security.

Definition 2 (IND-ENC). An updatable encryption scheme UE is said to be
IND-ENC-secure if for all probabilistic polynomial-time adversaries A it holds
that |Pr[ExpIND-ENC

A,UE (λ) = 1]− 1/2| ≤ ε(λ) for some negligible function ε.

Experiment ExpIND-ENC
A,UE (λ):

k0
r← UE.setup(λ)

e← 0; ẽ← ⊥; L ← ∅ // these variables are updated by the oracles
(m0,m1, state)

r← AOenc,Onext,Oupd,Ocorrupt(λ)
proceed only if |m0| = |m1|
ẽ← e; d

r← {0, 1}
C̃

r← UE.enc(kẽ,md), L̃ ← {(C̃, ẽ)}
d′

r← AOenc,Onext,Oupd,Ocorrupt,OupdC̃(C̃, state)
return 1 if d′ = d and the following condition holds:
A has not learned ke∗ in any challenge-equal epoch e∗, i.e., let C∗ denote
the set of all challenge-equal epochs and K∗ the set of epochs in which A
learned the secret key, then it must hold that C∗ ∩ K∗ = ∅

This experiment follows the typical IND-CPA definition, but additionally
grants the adversary access to the Onext, Oupd, Ocorrupt and OupdC̃ oracles defined
in Section 3.2. To exclude trivial wins, we require that A has not learned the
secret key in any challenge-equal epoch. Recall that a “challenge-equal” epoch is
every epoch in which the adversary knows a current version of the challenge ci-
phertext. This can be either obtained via a direct call to the challenge-ciphertext
oracle or by the adversary computing it himself via a (sequence of) updates. The
exact set of challenge-equal epochs (C∗) and secret keys that are known to the
adversary (K∗) depends on the leakage profile, which has to specified when prov-
ing IND-ENC security. For all schemes proven secure in this work, the leakage
profile is the one defined in Section 3.3.

We stress that the IND-ENC notion does guarantee the desired security prop-
erties not only for fresh but also for updated ciphertexts. This is captured through

16

the OupdC̃ oracle that returns updated versions of the challenge ciphertext at re-
quested epochs. While the adversary is not allowed to also corrupt the secret
key in such epochs, he can do so before and after.

The risk of linkability (not covered by IND-ENC). The IND-ENC property does
capture the most essential features of updatable encryption, but there are subtle
attacks that remain outside of the model. The above definition does not request
updates to look like fresh ciphertexts, and in particular does not require them
to be unlinkable across epochs. In fact, the original scheme by Boneh et al. [9],
that satisfies (a static version of) IND-ENC security, keeps part of the ciphertexts
static among all epochs, and allows for trivial linkage.

While linkability among ciphertexts does not necessarily leak information
about the underlying plaintexts, it can leak substantial information when con-
sidered in context: Lets assume we use an IND-ENC secure scheme with linkable
updates, and consider its applied in a medical context to protect sensitive pa-
tient information. Lets further assume the adversary gains early access to the
database and all keys, e.g., being an inside attacker. Clearly, all patient informa-
tion gained at that moment has lost its security protection. However, once the
adversary is outside of the system, and keys and ciphertexts have been refreshed,
one would expect to have fully recovered from that breach. With linkable updates
however, the adversary can exploit the information he compromised earlier when
gaining access to another encrypted copy of the, by then updated and extended,
patient database. He can tell which patients from the earlier breach are still in
the database (being an indication for continued treatment) and infer a patient’s
health status by the amount of new ciphertexts that have gotten added to her
record. If encryption is applied on an attribute level, i.e., encrypting individual
attributes such as “pregnant: yes/no”, “HIV: yes/no”, then the linkability of
their encrypted versions even allows the adversary to learn about the patients’
current health status.

None of that violates the security properties of IND-ENC — which captures
the confidentiality for ciphertexts that have never been corrupted — but it does
contradict the intuitive security guarantees one might expect from updatable en-
cryption: namely that after the update, all previously compromised information
becomes useless to the attacker.

We therefore also propose a second definition that captures this intuition and
requires unlinkability of updates.

Adaptive Update Indistinguishability (IND-UPD). The IND-UPD notion
ensures that an updated ciphertext obtained from the UE.upd algorithm does not
reveal any information about the previous ciphertext, even when A adaptively
compromises a number of keys and tokens before and after the challenge epoch.
Thus this definition again captures forward and post-compromise security in an
adaptive manner. We will informally refer to this notion also as unlinkability.

17

Definition 3 (IND-UPD). An updatable encryption scheme UE is said to be
IND-UPD-secure if for all probabilistic polynomial-time adversaries A it holds
that |Pr[ExpIND-UPD

A,UE (λ) = 1]− 1/2| ≤ ε(λ) for some negligible function ε.

Experiment ExpIND-UPD
A,UE (λ):

k0
r← UE.setup(λ)

e← 0; ẽ← ⊥; L ← ∅ // these variables are updated by the oracles

(C0, C1, state)
r← AOenc,Onext,Oupd,Ocorrupt(λ)

proceed only if (C0, ẽ− 1) ∈ L and (C1, ẽ− 1) ∈ L and |C0| = |C1|
ẽ← e; d

r← {0, 1}
C̃

r← UE.upd(∆ẽ, Cd), L̃ ← {(C̃, ẽ)}
d′

r← AOenc,Onext,Oupd,Ocorrupt,OupdC̃(C̃, state)
return 1 if d′ = d and all of the following conditions hold

1) A has not learned ∆ẽ, i.e., ẽ /∈ T ∗
2) A has not learned ke∗ in any challenge-equal epoch e∗, i.e., let C∗ denote

the set of all challenge-equal epochs and K∗ the set of epochs in which A
learned the secret key, then it must hold that C∗ ∩ K∗ = ∅

3) if UE.upd is deterministic, then A has neither queried Oupd(C0)
nor Oupd(C1) in epoch ẽ

This experiment is similar to IND-ENC, but instead of requiring a fresh en-
cryption to be indistinguishable, we let the adversary provide two ciphertexts
C0 and C1 and return the update C̃ of one of them. The task of the adversary
is to guess which ciphertext got updated. Note that the adversary is allowed to
corrupt the secret key kẽ−1, i.e., from right before the challenge epoch. Similar as
in IND-ENC we exclude trivial wins where the adversary learned the secret key
of a challenge-equal epoch. Moreover, if the update algorithm is deterministic,
A is also not allowed to update any of the two challenge ciphertexts into the
challenge epoch himself.

4 Comparison with Existing Models

We now compare our security notion with the definition proposed by Everspaugh
et al. [14], which in turn builds upon the work by Boneh et al. [8]. We also discuss
the XOR-KEM scheme that was claimed to be a secure ciphertext-independent
scheme [14]. Note that, for ciphertext-independent schemes, only the property of
encryption indistinguishability (UP-IND-BI in [14]) was previously defined but
not the additional update indistinguishability, and thus our comparison focuses
on IND-ENC.

The UP-IND-BI definition by Everspaugh et al. [14] is ambiguous, and we
show that one can either interpret the model such that it excludes any key
compromises before the challenge (i.e., it does not cover post-compromise se-
curity), or it is closer to our model and allows a restricted form of key cor-
ruptions before the challenge. We refer to the former as weakUP-IND-BI and to

18

the latter as strongUP-IND-BI model. We stress that neither weakUP-IND-BI nor
strongUP-IND-BI used in our comparison is the verbatim definition presented
in [14]. Both are adaptions of the UP-IND-BI model to the sequential setting
that we use in our work and in which updatable schemes are naturally used.
This adaptation revealed an ambiguity in the UP-IND-BI model w.r.t. whether
it allows key corruptions before the challenge.

One reason for the ambiguity is that the XOR-KEM scheme, which is claimed
secure, is secure only in the weakUP-IND-BI model, but not in strongUP-IND-BI:
we show that it loses all security if the adversary can corrupt an old key, which
is allowed in the stronger model, as well as in our IND-ENC game.

Overall we show the following:

Theorem 1. IND-ENC =⇒ weakUP-IND-BI, IND-ENC 6⇐⇒ strongUP-IND-BI.

4.1 weakUP-IND-BI vs. strongUP-IND-BI

The key reason for the ambiguity of the security definition by Everspaugh et
al. [14] is that the security game does not convey the notion of epochs and
thus it is not clear when the adversary is allowed to corrupt secret keys. The
definition considers static corruptions, and assumes a known threshold t that
separates honest from corrupted keys. That is, all keys k1, . . . , kt are assumed to
be uncorrupted, whereas the keys kt+1, . . . , kκ are considered corrupted and are
given to the adversary. Jumping ahead, the security notion then allows challenge
queries for all keys ki where i ≤ t and disallows any update or token corruption
queries towards a corrupt key kj , i.e., where j > t.

One interpretation is that the threshold t strictly separates honest from cor-
rupt epochs, i.e., the uncorrupted keys k1, . . . , kt belong to the first t epochs in
which the adversary can request the challenge. We call this the weakUP-IND-BI
model, as all corrupted keys kt+1, . . . , kκ must occur after the challenge epoch(s).

The second interpretation is that k1, . . . , kt merely refer to some t honest
keys, but not necessarily to the first t epochs. That is, the corrupt keys could
belong to arbitrary epochs, and key compromises before the challenge epoch(s)
would be allowed. We call this the strongUP-IND-BI model.

Honest vs. Adversarial Ciphertexts. The weakUP-IND-BI and strongUP-IND-BI
definitions do not distinguish between challenge and non-challenge ciphertexts
in the responses to the update oracle, and allow Oupd to be called with ar-
bitrary ciphertexts. Thus, in contrast to our definition that only allows up-
dates of honestly generated ciphertexts, the oracle Oupd(Ce) omits the check
whether (Ce, e) ∈ L and simply returns the updated ciphertext for any input.
Consequently, the adversary is not allowed to make any update query towards
a corrupted epoch, as the query could be the challenge ciphertext. We show
that for strongUP-IND-BI security, this difference of updating also adversarially
crafted ciphertexts prevents our IND-ENC notion to be strictly stronger than
strongUP-IND-BI. For weakUP-IND-BI this does not give the adversary any ad-
ditional advantage though.

19

The weakUP-IND-BI Model. We follow the original definition by Everspaugh
et al. [14] (in its weaker sense) and adopt it to our notation. As our scheme is
strictly sequential, we cannot give the adversary all corrupted keys kt+1, . . . , kκ
already at the beginning of the game, but rather let A corrupt them via the
Ocorrupt(key, ·) oracle. Further, we consider a single challenge query in some epoch
ẽ ≤ t, whereas [14] granted the adversary a dedicated left-or-right oracle for all
keys before t.

Experiment ExpweakUP-IND-BI
A,UE (λ):

k0
r← UE.setup(λ)

e← 0; ẽ← ⊥ // these variables are updated by the oracles
(m0,m1, state)

r← AOenc,Onext,Oupd,Ocorrupt(λ)
proceed only if ẽ ≤ t and |m0| = |m1|
ẽ← e; d

r← {0, 1}
C̃

r← UE.enc(kẽ,md)

d′
r← AOenc,Onext,Oupd,Ocorrupt(C̃, state)

return 1 if d′ = d and the following condition holds:
1) no query Ocorrupt(key, e

′) was made where e′ < t+ 1
2) no query Ocorrupt(token, t+ 1) was made in epoch t+ 1
3) no query Oupd(·) was made in epoch t+ 1

The winning condition requires that A does not learn the update token to-
wards the first corrupted epoch et+1, nor makes any update query in et+1, as
both would enable the adversary to update the challenge ciphertext into a cor-
rupted epoch.

This weaker interpretation does not guarantee any confidentiality after a
secret key got compromised, as it allows key corruption only after the challenge
epoch. Thus, an updatable scheme that is secure only in the weakUP-IND-BI
model does not provide the intuitive security one would expect from key rotation:
namely that after migrating to the new key, the old one becomes useless and no
longer of value to the adversary. To the contrary, all previous keys still require
strong protection or secure deletion.

The strongUP-IND-BI Model. In the stronger interpretation, A can corrupt
a set of arbitrary epochs, i.e., also before he makes the challenge query, but has
to commit to them upfront. Whereas Everspaugh et al. [14] hand the adver-
sary all keys already at the beginning, we let A retrieve them sequentially via
the Ocorrupt(key, ·) oracle in all epochs that he announced as corrupted in the
beginning of the game.

20

Experiment ExpstrongUP-IND-BI
A,UE (λ):

k0
r← UE.setup(λ)

e← 0; ẽ← ⊥ // these variables are updated by the oracles

(K∗, state)
r← A(λ)

(m0,m1, state)
r← AOenc,Onext,Oupd,Ocorrupt(state)

proceed only if ẽ /∈ K∗ and |m0| = |m1|
ẽ← e; d

r← {0, 1}
C̃

r← UE.enc(kẽ,md)

d′
r← AOenc,Onext,Oupd,Ocorrupt(C̃, state)

return 1 if d′ = d and the following condition holds:
1) no query Ocorrupt(key, e) was made where e /∈ K∗
2) no query Ocorrupt(token, e

′) was made where e′ ∈ K∗ or e′ − 1 ∈ K∗
3) no query Oupd(·) was made in an epoch e′′ where e′′ ∈ K∗

The second winning condition forbids the adversary to receive any token that
is connected to an epoch where A knows the secret key. This can be seen as the
bi-directionality of key updates hard-coded in the experiment, which is captured
in our IND-ENC definition via the definition of K∗bi. The third condition forbids
any ciphertext updates towards a corrupted epoch.

4.2 Insecurity of XOR-KEM in the strongUP-IND-BI and IND-ENC
Model

Everspaugh et al. [14] proposed a simple construction, termed XOR-KEM, as a
secure ciphertext-independent updatable encryption scheme. We now show that
this scheme is neither secure in the stronger interpretation of their model nor in
our IND-ENC definition.

The XOR-KEM scheme relies on a standard symmetric encryption scheme
SE which it uses in a simple hybrid construction. Therein, every message gets
encrypted under a fresh key x and x gets xor’d under the epoch key ke. For
updating a ciphertext, only the part depending on ke gets updated via the token
∆e+1 ← (ke ⊕ ke+1).

XOR-KEM.setup(λ): return k0
r← SE.kgen(λ)

XOR-KEM.next(ke): ke+1
r← SE.kgen(λ),∆e+1 ← (ke⊕ke+1), return (ke+1, ∆e+1)

XOR-KEM.enc(ke,m): x
r← SE.kgen(λ), return Ce ← ((ke ⊕ x),SE.enc(x,m))

XOR-KEM.upd(∆e+1, Ce): parse Ce = (C1, C2), return Ce+1 ← ((C1⊕∆e+1), C2)

XOR-KEM.dec(ke, Ce): parse Ce = (C1, C2), return SE.dec(ke ⊕ C1, C2)

Attack against XOR-KEM. We now present a simple attack against the XOR-KEM
scheme, for which we only require the adversary to learn one key in some epoch
before the challenge epoch. Let this epoch be e < ẽ, to which A commits before
the game starts. In epoch e, A requests the secret key ke via Ocorrupt(key, e).

21

and also makes a standard encryption query Oenc(m) receiving a ciphertext
Ce = ((ke⊕x),SE.enc(x,m)). The adversary then computes x← C1

e ⊕ke, where
C1
e denotes the first part (ke ⊕ x) of the ciphertext. Then, in all epochs from

e to ẽ, the adversary requests an updated version of Ce via Oupd(·). Note that
strongUP-IND-BI forbids updates only towards but not from a corrupt key, and
thus these queries are legitimate. Finally, in the challenge epoch ẽ, A uses the
updated (non-challenge) ciphertext Cẽ = ((kẽ ⊕ x),SE.enc(x,m)) and its previ-
ously computed x to derive the secret key kẽ of the challenge epoch. Clearly, he
can now trivially win the strongUP-IND-BI game, and did not violate any of the
winning restrictions. The same attack applies in our IND-ENC game.

In the weakUP-IND-BI game, however, this attack is not possible, as A does
not see a secret key before the challenge epoch, and is also not allowed to update
any ciphertext into a corrupt epoch (i.e., he cannot perform the same attack by
updating a non-challenge ciphertext into a corrupt epoch after ẽ).

Weakening the strongUP-IND-BI Model. A tempting easy “fix” would be to forbid
any updates from a corrupted epoch into an honest epoch in the strongUP-IND-BI
model. This would allow the XOR-KEM scheme to be proven secure, and at the
same time preserve A’s capability of corrupting keys before the challenge epoch.

However, this “fix” would significantly weaken the guaranteed security, as it
essentially disallows the adversary to see any updated ciphertexts after an at-
tack. For instance, the following attack would be excluded by the model: Assume
the adversary at some epoch e corrupts the secret key ke and one ciphertext Ce
from a large set of outsourced ciphertexts. Then, the key gets rotated into ke+1

and all ciphertexts get re-encrypted to the new key. In that new epoch e + 1,
the adversary learns neither ke+1 nor the update token, but steals all cipher-
texts from the database. Intuitively, confidentiality of these updated ciphertexts
should be guaranteed, as the adversary never compromised the key and all ci-
phertexts in the same epoch. This attack would not be covered by the model
though, and the XOR-KEM scheme becomes entirely insecure if such an attack
happens, as it allows the adversary to decrypt all re-encrypted ciphertexts even
though he never corrupted ke+1.

4.3 IND-ENC vs. strongUP-IND-BI (and weakUP-IND-BI)

XOR-KEM serves as a separating example between the weakUP-IND-BI and the
two stronger strongUP-IND-BI, IND-ENC models, and both models are in fact
strictly stronger than weakUP-IND-BI. Such a strict relation does not exist be-
tween strongUP-IND-BI and IND-ENC though: we show that both models are
incomparable.

Separating Example I (strongUP-IND-BI 6=⇒ IND-ENC). The first sep-
arating example exploits the fact that in strongUP-IND-BI, the adversary is not
allowed to update any ciphertext into a corrupt epoch, whereas IND-ENC al-
lows such updates for non-challenge ciphertexts. Assume that UE is a secure

22

updatable encryption scheme in both models. We then derive a scheme UE′

that remains secure in the strongUP-IND-BI model but loses all security in our
IND-ENC game. In addition to UE we use a standard CPA secure encryption
scheme SE = (SE.kgen,SE.enc,SE.dec), such that both share the same key space
K from which they sample uniformly random keys.

We now derive a scheme UE′ where we let the token ∆e+1 contain an en-
cryption Ckey of the old key ke under the new key ke+1. That is, an adversary
knowing ke+1 and seeing the token towards the corrupted epoch can immedi-
ately learn the old key as well. We further include this encrypted key Ckey of the
token in every updated ciphertext, as otherwise we would only get a separation
for IND-ENC with no key-updates (which in turn seems to be hard to realize).

UE′.setup(λ): as UE.setup(λ)

UE′.next(ke): (ke+1, ∆e+1)
r← UE.next(ke), Ckey

r← SE.enc(ke+1, ke),
set ∆′e+1 ← (∆e+1, Ckey), return (ke+1, ∆

′
e+1)

UE′.enc(k′e,m): return Ce
r← (UE.enc(ke,m),⊥)

UE′.upd(∆′e+1, C
′
e): parse ∆′e+1 = (∆e+1, Ckey), and C ′e = (Ce, Ce),

Ce+1
r← UE.upd(∆e+1, Ce), return C ′e+1 ← (Ce+1, Ckey)

UE′.dec(k′e, C
′
e): parse C ′e = (Ce, Ckey), return UE.dec(ke, Ce)

In the strongUP-IND-BI game, this change cannot increase A’s advantage
as he is not allowed to see any token towards a corrupt epoch e∗, nor make
any updates towards e∗. In all other epochs, Ckey is an encryption under a key
unknown to the adversary. However, in the IND-ENC game, A can corrupt the
secret key kẽ+1 in the epoch after he makes the challenge query, and update an
arbitrary non-challenge ciphertext from ẽ to ẽ + 1 using the Oupd oracle. From
there he extracts Ckey , decrypts kẽ and can now trivially win the IND-ENC game
as he knows the secret key of the challenge epoch. Note that the adversary does
not have to make a Ocorrupt(token, ẽ) query which would be prohibited if the
scheme allows uni- or bidirectional key updates.

Separating Example II (IND-ENC 6=⇒ strongUP-IND-BI). Our model
is not strictly stronger than strongUP-IND-BI, due to fact that we are more
restrictive for ciphertexts that can be updated. Whereas we only allow honestly
generated ciphertexts Ce to be updated (which is enforced by Oupd checking
whether Ce ∈ L), strongUP-IND-BI is more generous and returns the update of
any ciphertext (as they aim for authenticated encryption). This can be exploited
to turn a secure scheme UE into UE′′ that is secure in our IND-ENC model,
but insecure according to strongUP-IND-BI. The idea is to modify the update
algorithm, such that it returns the update token when it gets invoked with a
special ciphertext, that would never occur for an honest encryption.

More precisely, the scheme UE′ derived from UE works as follows:

UE′′.setup(λ), UE′′.next(ke): as UE.setup(λ) and UE.next(ke)

UE′′.enc(ke,m): Ce
r← UE.enc(ke,m), return C ′e ← (0||Ce)

23

UE′′.upd(∆e+1, C
′
e): parse C ′e ← (b||Ce),

if b = 0 then return (0||Ce+1) with Ce+1
r← UE.upd(∆e+1, Ce),

if b = 1 then return ∆e+1

UE′′.dec(ke, C
′
e): parse C ′e = (b||Ce), return UE.dec(ke, Ce)

In our IND-ENC definition UE′′ is secure if UE is, as the Oupd oracle can
only be invoked with ciphertexts that were generated by the Oenc oracle and
thus always have the leading 0 bit for which UE′′ and UE behave identical. An
adversary in the strongUP-IND-BI model can easily win though: A corrupts the
secret key kẽ−1, i.e., right before the challenge epoch ẽ and in ẽ then makes an
update query Oupd(1||Ce) for some arbitrary ciphertext Ce upon which A learns
∆ẽ. If the UE scheme allows to update kẽ−1 with ∆ẽ to kẽ, then A knows the
secret key of the challenge epoch and can simply decrypt the challenge ciphertext
C̃. Note that A did not violate the winning conditions of strongUP-IND-BI as it
learned ∆ẽ without having to query Ocorrupt(token, ẽ), which would be forbidden.

IND-ENC =⇒ weakUP-IND-BI. One might wonder whether the previous exam-
ple can also be used to show that weakUP-IND-BI can be stronger than IND-ENC.
This is not the case though. Recall that in weakUP-IND-BI there is a clear split
t that separates honest and from corrupt epochs, and it must hold that ẽ ≤ t,
i.e., adversary is not allowed to corrupt any key before the challenge epoch ẽ.
Considering the same adversary in our IND-ENC game allows A to get all up-
date tokens until epoch et. Knowing all tokens ∆1, . . . ,∆t, A can simply run
the update algorithm himself where he can clearly invoke it on ciphertexts of
his choice. Thus, any adversary A winning in the weakUP-IND-BI game can be
turned into an adversary A′ that has the same advantage in our IND-ENC game.

4.4 IND-UPD vs. UP-REENC

Our IND-UPD definition is similar in spirit to the re-encryption indistinguisha-
bility notion UP-REENC by Everspaugh et al. [14], which captures unlinka-
bility of updates as well. However, the UP-REENC notion was only proposed
for ciphertext-dependent schemes. Note that the difference between ciphertext-
dependent and independent schemes has a significant impact on the achievable
security: a single update token in the ciphertext-independent setting has much
more functionality than in ciphertext-dependent schemes, which in turn gives the
adversary more power when he compromises such tokens. Thus, no ciphertext-
independent scheme can satisfy the UP-REENC definition. Our IND-UPD defini-
tion formalizes this extra power in ciphertext-independent schemes in a way that
carefully excludes trivial wins but still captures strong post-compromise guaran-
tees. The aspect that IND-UPD allows adaptive corruptions, whereas UP-REENC
only considers static ones, makes both definitions incomparable.

5 Constructions

We analyze several constructions of updatable encryption with respect to our
security notions of indistinguishability of encryptions (IND-ENC) and updates

24

(IND-UPD). First, we analyze the simple double-encryption construction that is
purely based on symmetric primitives (Section 5.1). Unfortunately, the scheme
cannot satisfy our strong security notions. We formulate the additional con-
straints on the adversarial behavior that suffices to prove its security in relaxed
versions of our IND-ENC and IND-UPD models.

We then proceed to less efficient but more secure schemes, starting with
the BLMR construction by Boneh et al. [9] based on key-homomorphic PRFs
(Section 5.2). We show that the original BLMR scheme satisfies IND-ENC but
not IND-UPD, and also propose a slight modification BLMR+ that improves the
latter and achieves a weak form of update indistinguishability.

In Section 5.3, we introduce a new ElGamal-based scheme RISE and show
that it fully achieves both of our strong security definitions. While proposing
a “public-key solution” for a symmetric key primitive might appear counter-
intuitive at first, we stress that the efficiency is roughly comparable to that of
BLMR under known instantiations for the key-homomorphic PRF (same number
of exponentiations). Also, taking advantage of the underlying group operations
allows us to get full IND-UPD security.

All of our schemes allow to infer token from two subsequent keys and bi-
directional updates of the ciphertexts and keys. Thus, all theorems are with
respect to the leakage profile (T ∗,K∗bi, C∗bi) as defined in Section 3.3.

In the Appendix A, we additionally describe and analyze a symmetric KEM
construction SE-KEM, which is widely used in practice since it does not require an
(expensive) re-encryption of the payload data upon key rotation. This scheme is,
however, better suited for deployment within the cloud infrastructure, because it
requires the encryption keys to be sent to the host performing the re-encryption.
Furthermore, the fact that the data is not re-encrypted makes ciphertexts fully
linkable. We therefore show only basic encryption security and under a weak
adversary model.

5.1 Double Encryption (2ENC)

An approach that is based only on symmetric encryption is to first encrypt the
plaintext under an “inner key,” and subsequently encrypt the resulting cipher-
text under a second, “outer key.” In each epoch, the outer key is changed, and
the ciphertext is updated by decrypting the outer encryption and re-encrypting
under the new key. This scheme has been proposed by Ivan and Dodis [17] as
symmetric uni-directional proxy re-encryption.3 It has also appeared in other
contexts, such as so-called “over-encryption” for access revocation in cloud stor-
age systems [4]. More formally, this scheme can be phrased as an updatable
encryption scheme 2ENC as follows.

2ENC.setup(λ): ko0
r← SE.kgen(λ), ki

r← SE.kgen(λ), return k0 ← (ko0, k
i)

3 It is uni-directional in a proxy re-encryption scheme; the proxy removes the outer
layer. As an updatable scheme, which replaces the outer layer, it is bi-directional.

25

2ENC.next(ke): parse ke = (koe , k
i), create koe+1

r← SE.kgen(λ),
∆e+1 ← (koe , k

o
e+1), ke+1 ← (koe+1, k

i),
return (ke+1, ∆e+1)

2ENC.enc(ke,m): parse ke = (koe , k
i)← ke,

return Ce ← SE.enc(koe ,SE.enc(k
i,m))

2ENC.upd(∆e+1, Ce): parse ∆e+1 = (koe , k
o
e+1),

return Ce+1 ← SE.enc(koe+1,SE.dec(k
o
e , Ce))

2ENC.dec(ke, Ce): parse ke = (koe , k
i), return SE.dec(koe ,SE.dec(k

i, C))

Clearly this scheme does not achieve our desired IND-ENC security: A cipher-
text can be decrypted if an adversary sees the secret key of some epoch and one
of the tokens relating to the epoch where he learned the ciphertext. However, we
show that this is the only additional attack, i.e., if the adversary never sees such
a combination of tokens and keys, then the scheme is secure, which is formalized
by the following theorem.

Theorem 2 (2ENC is weakly IND-ENC secure). Let SE be an IND-CPA-secure
encryption scheme, then 2ENC is (weakly) IND-ENC-secure if the following ad-
ditional condition holds: If A makes any query to Ocorrupt(key, ·), then, for any
challenge-equal epoch e ∈ C∗, A must not call Ocorrupt(token, ·) for epochs e or
e+ 1.

The proof of this theorem turns out to be surprisingly subtle and is provided
in Appendix B.1. As intuitively expected, it consists of two reductions to the
IND-CPA security of SE, but the reduction for the outer encryption part is com-
plicated by the fact that A may call either Ocorrupt or OupdC̃ adaptively and in
multiple epochs. Instead of guessing all epochs, which would lead to a large loss
in tightness, we devise a specific hybrid argument and formalize the intuition
that only epochs with a query to OupdC̃ can help A in gaining advantage.

It is also easy to see that the double encryption scheme is not IND-UPD
secure: The inner ciphertext remains static and an adversary seeing tokens that
allow him to unwrap the outer encryption can trivially link ciphertexts across
epochs. But we again show that this is the only attack, i.e., 2ENC achieves a
weak form of IND-UPD security if the adversary is restricted to learn at most
one update token ∆e for an epoch e for which he also obtained the challenge
ciphertext in epochs e or e− 1.

Theorem 3 (2ENC is weakly IND-UPD secure). Let SE be an IND-CPA-secure
encryption scheme, then 2ENC is (weakly) IND-UPD-secure if the following ad-
ditional condition holds: For any challenge-equal epoch e ∈ C∗, A must not call
Ocorrupt(token, ·) for epochs e or e+ 1.

The proof follows along the lines of that for Theorem 2, with the main dif-
ference that we have to distinguish between the cases where the single special
query Ocorrupt(token, e) occurs before or after the challenge epoch ẽ. The proof is
given in Appendix B.2 .

26

5.2 Schemes from Key-Homomorphic PRFs (BLMR and BLMR+)

Boneh et al. [9] proposed an updatable encryption scheme based on key-homo-
morphic pseudorandom functions, to which we will refer to as BLMR-scheme. We
first recall the notion of key-homomorphic PRFs and then present the BLMR and
our improved BLMR+ scheme.

Definition 4 (Key-homomorphic PRF [8]). Consider an efficiently com-
putable function F : K × X → Y such that (K,⊕) and (Y,⊗) are both groups.
We say that F is a key-homomorphic PRF if the following properties hold:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K, and every x ∈ X : F(k1, x)⊗ F(k2, x) = F((k1 ⊕ k2), x)

A simple example of a secure key-homomorphic PRF is the function F(k, x) =
H(x)k where Y = G is an additive group in which the DDH assumption holds,
and H is a random oracle [22].

Based on such a key-homomorphic PRF F, the BLMR construction is de-
scribed as the following scheme:

BLMR.setup(λ): compute k0
r← F.kgen(λ), return k0

BLMR.next(ke): ke+1
r← F.kgen(λ), return (ke+1, (ke ⊕ ke+1))

BLMR.enc(ke,m): N
r← X , return ((F(ke, N)⊗m), N)

BLMR.dec(ke, Ce): parse Ce = (C1, N), return m← C1 ⊗ F(ke, N).

BLMR.upd(∆e+1, Ce): parse Ce = (C1, N), return ((C1 ⊗ F(∆e+1, N)), N)

The subsequent theorem shows that BLMR is IND-ENC-secure with respect
to static adversaries that choose the corruptions at the beginning of each epoch.
This is formalized by adding a parameter to oracle UE.next that determines
whether the adversary will request the token and/or the ciphertext or key in the
new epoch. The adversary is additionally restricted by the same conditions as
in the adaptive case. This type of corruption modeling originates from a recent
paper by Jarecki, Krawczyk, and Resch [18].

Theorem 4 (BLMR is IND-ENC-secure). Let F be a key-homomorphic PRF
where F.kgen(λ) returns uniformly random elements from K, then BLMR is
IND-ENC-secure against static adversaries that choose corruptions at the begin-
ning of each epoch.

The proof uses an alternative characterization of PRF (as in the original
proof in [9]) together with the techniques already used in the proofs of the 2ENC
scheme. The proof is given in Appendix C.1 . The BLMR scheme does not achieve
the notion IND-UPD of update-indistinguishability though, as the second part of
the ciphertext remains static throughout the updates. This might have inspired
the change to the ciphertext-dependent setting in the full version of Boneh et
al.’s paper [8]. Ciphertext-dependent updates, however, have the disadvantage
that the key owner must produce one update token for each ciphertext to be
updated. We show that a mild form of IND-UPD security can be achieved in the
ciphertext-independent setting via a simple modification to the BLMR scheme.

27

The BLMR+ scheme. The BLMR+ scheme follows the basic structure of BLMR,
but additionally encrypts the nonce. In more detail, in every epoch the owner
also generates a second key k′e

r← SE.kgen(λ) of a symmetric encryption scheme
and encrypts the nonce-part N of each ciphertext under that key. In BLMR+,
we simply include the old and new symmetric key into the update token and let
the host re-encrypt the nonce.

The choice to simply reveal both keys might seem odd, but (in certain attack
scenarios) it does not reveal more information to a corrupt host than what every
updatable encryption scheme leaks anyway. Looking at two consecutive epochs,
a corrupt host knows which updated and old ciphertext belong together – as he
generated them – and thus letting him re-encrypt a static nonce does not reveal
any additional information. The main advantage of BLMR+ over BLMR is that
an adversary seeing only (updated) ciphertexts of different epochs cannot tell
anymore which of them belong together. Clearly, this unlinkability is limited,
though, as an adversary can still link ciphertexts whenever he also learned a
related token which allows him to decrypt the static nonce.

In more detail, this modification results in the following scheme BLMR+:

BLMR+.setup(λ): k1
0

r← F.kgen(λ), k2
0

r← SE.kgen(λ), return k0 ← (k1
0, k

2
0)

BLMR+.next(ke): parse ke = (k1
e , k

2
e),

create k1
e+1

r← F.kgen(λ), k2
e+1

r← SE.kgen(λ),
ke+1 ← (k1

e+1, k
2
e+1), ∆e+1 ← (k1

e ⊕ k1
e+1, (k

2
e , k

2
e+1)),

return (ke+1, ∆e+1)

BLMR+.enc(ke,m): parse ke = (k1
e , k

2
e), draw N

r← X ,
C1 ← F(k1

e , N)⊗m, C2 r← SE.enc(k2
e , N), return Ce ← (C1, C2)

BLMR+.dec(ke, Ce): parse ke = (k1
e , k

2
e) and Ce = (C1, C2),

N ← SE.dec(k2
e , C

2), return m← C1 ⊗ F(k1
e , N)

BLMR+.upd(∆e+1, Ce): parse ∆e+1 = (∆′e+1, (k
2
e , k

2
e+1)) and Ce = (C1

e , C
2
e),

N ← SE.dec(k2
e , C

2), C1
e+1 ← C1

e ⊗ F(∆′e+1, N), C2
e+1

r← SE.enc(k2
e+1, N),

return Ce+1 ← (C1
e+1, C

2
e+1)

We first state the following corollary as an easy extension of Theorem 4 on
BLMR. The encryption of the nonce can be easily simulated in the reduction.

Corollary 1. The BLMR+ scheme is IND-ENC secure.

We then prove that the modified BLMR+ scheme described above indeed
achieves a weak form of IND-UPD security. The intuition behind the level of
security specified in the following theorem is that knowing either a token or
the key of the ciphertexts later used in the challenge in a round before the
challenge allows the adversary to decrypt the nonce. Also, obtaining the challenge
ciphertext and a related token after the challenge query allows the adversary to
decrypt the nonce. To obtain unlinkability, we cannot allow the adversary to
access the nonce both before and after the challenge query in epoch ẽ. The
theorem formalizes that we have security unless the adversary gains this access.

28

Theorem 5 (BLMR+ is weakly IND-UPD secure.). Let F be a key-homomor-
phic PRF, and assume that all elements of X are encoded as strings of the same
length. Let SE be a IND-CPA-secure symmetric encryption scheme. Then, the
scheme BLMR+ is (weakly) IND-UPD-secure if the following additional condition
holds: Let efirst denote the epoch in which the first ciphertext that is later used
as challenge C0 or C1 was encrypted. If there exist some e∗ ∈ {efirst, . . . , ẽ − 1}
where e∗ ∈ K∗ ∪ T ∗, i.e., A knows the secret key ke∗ or token ∆e∗ , then for any
challenge-equal epoch e ∈ C∗, A must not call Ocorrupt(token, ·) for epochs e or
e+ 1.

The proof of this theorem is essentially a combination of the techniques used
in the proofs of Theorems 3 and 4. It is provided in Appendix C.2 .

5.3 Updatable Encryption based on ElGamal (RISE)

We finally present a scheme that achieves both strong notions of indistinguisha-
bility of encryptions (IND-ENC) and updates (IND-UPD). This scheme uses the
classical proxy re-encryption idea based on ElGamal that was originally pro-
posed by Blaze et al. [7], but uses it in the secret-key setting. This alone would
not be secure though, as parts of the ciphertext would remain static. What we
additionally exploit is that ElGamal ciphertexts can be re-randomized by know-
ing only the public key. Thus, we add the “public-key” element of the epoch to
the token and perform a re-randomization whenever a ciphertext gets updated.
This makes it the first of the considered schemes where the update algorithm is
probabilistic. Interestingly, probabilistic updates are not allowed in the work by
Everspaugh et al. [14] which require updates to be deterministic such that the
challenger in the security game can keep track of the challenge ciphertexts. Our
security proof, however, makes crucial use of the fact that updates are proba-
bilistic, which we explain in a bit more detail below.

The use of public-key techniques for secret-key updatable encryption may
appear unnecessary. We emphasize, however, that previous constructions are
based on key-homomorphic PRFs, all instantiations of which are based on such
techniques as well. By contrast, the direct use of the group structure without
the intermediate abstraction allows us to implement the re-randomization and
thereby achieve full IND-UPD security.

In fact, in terms of exponentiations, an encryption in our RISE scheme is as
efficient as in BLMR and in Everspaugh et al.’s ReCrypt scheme [14], whereas the
computations of update tokens and ciphertext updates are even more efficient
than in [14] due to the ciphertext-independent setting of our work.

Let (G, g, q) be system parameters available as CRS such that the DDH
problem is hard w.r.t. λ, i.e., q is a λ-bit prime. The scheme RISE is described
as follows.

RISE.setup(λ): x
r← Z∗q , set k0 ← (x, gx), return k0

RISE.next(ke): parse ke = (x, y), draw x′
r← Z∗q ,

ke+1 ← (x′, gx
′
), ∆e+1 ← (x′/x, gx

′
) return (ke+1, ∆e+1)

29

RISE.enc(ke,m): parse ke = (x, y), r
r← Zq , return Ce ← (yr, grm)

RISE.dec(ke, Ce): parse ke = (x, y) and Ce = (C1, C2), return m′ ← C2 · C−1/x
1

RISE.upd(∆e+1, Ce): parse ∆e+1 = (∆, y′) and Ce = (C1, C2),

r′
r← Zq , C ′1 ← C∆1 · y′

r′
, C ′2 ← C2 · gr

′
, return Ce+1 ← (C ′1, C

′
2)

The keys x for the encryption scheme are chosen from Z∗q instead of Zq as
usual. The reason is that the update is multiplicative, and this restriction makes
sure that each key is uniformly random in Z∗q . As this changes the distribution
only negligibly, the standard Diffie-Hellman argument still applies. (However,
the adaptation simplifies the security proof.)

The detailed proofs of the following theorems are provided in Appendix D.1
and D.2 .

Theorem 6 (RISE is IND-ENC secure). The updatable encryption scheme
RISE is IND-ENC secure under the DDH assumption.

We define a sequence of hybrids H0, . . . ,Hê such that each Hi sets the chal-
lenge ciphertext to an actual encryption up to epoch i − 1 and to a random
ciphertext from epoch i onward. As the adversary could request the challenge
ciphertexts in epochs i − 1 and i, as well as the update token between these
epochs, but the ciphertexts in those epochs encrypt different messages, the same
strategy cannot work for schemes in which updates are deterministic. The re-
duction between Hi−1 and Hi guesses a single streak of challenge-equal epochs,
and loses a factor ē2 in each step (i.e. ē3 overall). We stress that this guess only
appears in the reduction, not in the hybrid games. In hybrid H0, the challenge
ciphertext is independent of the challenge bit.

We also show that the scheme RISE is unlinkable. This property is mainly
achieved by the re-randomization of the updates.

Theorem 7 (RISE is IND-UPD secure). The updatable encryption scheme
RISE is IND-UPD secure under the DDH assumption.

The proof follows roughly along the same lines as that of Theorem 6. It is
complicated a bit by the fact that, in contrast to IND-ENC, non-updated versions
of the challenge-ciphertexts exist in the game even prior to the actual challenge
epoch, which means that in the reduction we have to guess certain parameters,
such as the epochs directly preceding the challenge epoch in which the adver-
sary obtains update tokens, to keep the simulation consistent. Nevertheless, we
show that, with a proper construction of the hybrid argument, the loss remains
polynomial.

One might wonder whether one could more generally build a secure updatable
encryption scheme from any secure symmetric proxy re-encryption with key-
anonymity that additionally allows public re-randomization of ciphertexts. For
that analysis one would need a security notion for such a primitive schemes that
also allows adaptive corruptions as in our models. However, so far, even for plain
(symmetric) proxy re-encryption adaptive corruptions have only been considered
for schemes that are uni-directional and single-hop, i.e., where the re-encryption
capabilities would not be sufficient for updatable encryption.

30

6 Conclusion and Open Problems

We have provided a comprehensive model for ciphertext-independent updatable
encryption schemes, complementing the recent work of Everspaugh et al. [14]
that focuses on ciphertext-dependent schemes. Ciphertext-independent schemes
are clearly superior in terms of efficiency and ease-of-use when key rotation is
required for large volumes of ciphertexts, whereas ciphertext-dependent solutions
give a more fine-grained control over the updatable information.

We formalized updatable encryption and its desired properties in the strict
sequential manner it will be used, avoiding the ambiguity of previous security
models. Our two notions IND-ENC and IND-UPD guarantee that fresh encryp-
tions and updated ciphertext are secure even if an adversary can adaptively
corrupt several keys and tokens before and after learning the ciphertexts.

Somewhat surprisingly, and contradictory to the claim in [14], we have shown
that the XOR-KEM scheme is not a secure ciphertext-independent schemes in
such a strong sense. For the (existing) schemes 2ENC, BLMR, BLMR+, and
SE-KEM, we formalized the security of the schemes by specifying precisely the
conditions on the adversary under which a weak form of IND-ENC and IND-UPD
security is achieved. We also specified a scheme that builds on ElGamal encryp-
tion. By additionally exploiting the algebraic structure of the underlying groups,
instead of using the key-homomorphic PRF abstraction as in previous works, we
were able to build a scheme that fully achieves our strong security notions while
being at least as efficient as existing schemes that are either weaker or require
ciphertext-dependent tokens.

All schemes we analyze allow to infer tokens from keys, and enable bi-
directional updates of ciphertexts and keys, whereas an ideal updatable encryp-
tion scheme should only allow uni-directional updates of ciphertexts. Building
such an ideal scheme is related to the open challenge of building proxy re-
encryption schemes that are uni-directional, multi-hop and collusion-resistant.
Yet, while most proxy re-encryption work is in the public-key setting, updatable
encryption has secret keys, so the construction of schemes with similar properties
may be easier and is an interesting and challenging open problem.

Acknowledgments. We thank Joseph Jaeger, Michael Klooss, Stanislaw Jarecki,
Hugo Krawczyk, and the anonymous reviewers for their valuable comments. This
work has been supported in part by the European Commission through the Hori-
zon 2020 Framework Programme (H2020-ICT-2014-1) under grant agreements
number 644371 WITDOM and 644579 ESCUDO-CLOUD, and through the Sev-
enth Framework Programme under grant agreement number 321310 PERCY,
and in part by the Swiss State Secretariat for Education, Research and Innova-
tion (SERI) under contract numbers 15.0098 and 15.0087.

References

1. Ananth, P., Cohen, A., Jain, A.: Cryptography with updates. In: Coron, J., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 445–472. Springer,

31

Heidelberg (May 2017)
2. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:

Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidel-
berg (Apr 2009)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

4. Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa, M.,
Samarati, P.: Access control management for secure cloud storage. In: Proc. of
the 12th EAI International Conference on Security and Privacy in Communication
Networks (SecureComm 2016). Guangzhou, China (October 2016)

5. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted en-
cryption and key exchange: The security of messaging. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 619–650. Springer, Heidel-
berg (Aug 2017)

6. Berners-Lee, E.: Improved security notions for proxy re-encryption to enforce ac-
cess control. Cryptology ePrint Archive, Report 2017/824 (2017), http://eprint.
iacr.org/2017/824

7. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT’98. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (May / Jun 1998)

8. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. Cryptology ePrint Archive, Report 2015/220 (2015), http:
//eprint.iacr.org/2015/220

9. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (Aug 2013)

10. Cachin, C., Camenisch, J., Freire-Stoegbuchner, E., Lehmann, A.: Updatable tok-
enization: Formal definitions and provably secure constructions. Cryptology ePrint
Archive, Report 2017/695 (2017), http://eprint.iacr.org/2017/695

11. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 10. LNCS, vol.
6055, pp. 316–332. Springer, Heidelberg (May 2010)

12. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: EuroS&P (2017)

13. Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise security. Cryptol-
ogy ePrint Archive, Report 2016/221 (2016), http://eprint.iacr.org/2016/221

14. Everspaugh, A., Paterson, K.G., Ristenpart, T., Scott, S.: Key rotation for au-
thenticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III.
LNCS, vol. 10403, pp. 98–129. Springer, Heidelberg (Aug 2017)

15. Günther, F., Mazaheri, S.: A formal treatment of multi-key channels. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 587–618.
Springer, Heidelberg (Aug 2017)

16. Hohenberger, S., Rothblum, G.N., shelat, a., Vaikuntanathan, V.: Securely ob-
fuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
233–252. Springer, Heidelberg (Feb 2007)

17. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS 2003. The Internet
Society (Feb 2003)

18. Jarecki, S., Krawczyk, H., Resch, J.K.: Updatable oblivious key management for
storage systems. IACR Cryptology ePrint Archive 2019, 1275 (2019), https://

eprint.iacr.org/2019/1275

32

http://eprint.iacr.org/2017/824
http://eprint.iacr.org/2017/824
http://eprint.iacr.org/2015/220
http://eprint.iacr.org/2015/220
http://eprint.iacr.org/2017/695
http://eprint.iacr.org/2016/221
https://eprint.iacr.org/2019/1275
https://eprint.iacr.org/2019/1275

19. Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures. In: Ning,
P., Syverson, P.F., Jha, S. (eds.) ACM CCS 08. pp. 511–520. ACM Press (Oct
2008)

20. Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In:
Galbraith, S.D., Paterson, K.G. (eds.) PAIRING 2008. LNCS, vol. 5209, pp. 332–
353. Springer, Heidelberg (Sep 2008)

21. Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revocation
and key rotation. Cryptology ePrint Archive, Report 2017/833 (2017), http://

eprint.iacr.org/2017/833

22. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (May 1999)

23. PCI Security Standards Council: Requirements and security assessment proce-
dures. PCI DSS v3.2 (2016)

24. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanthan, V.: Fast proxy re-encryption
for publish/subscribe systems. Cryptology ePrint Archive, Report 2017/410 (2017),
http://eprint.iacr.org/2017/410

A Symmetric Key-Encapsulation (SE-KEM)

We additionally analyze a scheme that can be considered as a symmetric key-
encapsulation mechanism (KEM) together with a standard symmetric encryp-
tion scheme. The KEM has one key ke per epoch e, and for each ciphertext it
wraps an “inner” key x under which the actual message is encrypted. During an
update, where the token is given by two keys (ke, ke+1) of subsequent epochs,
all inner keys are simply un-wrapped using ke and re-wrapped under the new
key ke+1.

This scheme is used in practical data-at-rest protection at cloud storage
providers. The keys are, however, managed within the cloud storage systems.
Not all nodes are equal; there are nodes that have access to the keys, and nodes
that store the encrypted data.4 In this scenario, it is acceptable to have the
proxy nodes perform the updates. We stress that the scheme is not applicable
for outsourcing encrypted data, as it fully reveals the secret keys in the update
procedure!

We describe the algorithms in a slightly different way to consider SE-KEM
as a ciphertext-independent updatable encryption scheme. The algorithms are
described in more detail as the scheme SE-KEM as follows.

SE-KEM.setup(λ): return k0
r← SE.kgen(λ)

SE-KEM.next(ke): ke+1
r← SE.kgen(λ), ∆e+1 ← (ke, ke+1), return (ke+1, ∆e+1)

SE-KEM.enc(ke,m): x
r← SE.kgen(λ), return Ce ← (SE.enc(ke, x),SE.enc(x,m))

SE-KEM.upd(∆e+1, Ce): parse Ce = (C1, C2), and ∆e+1 = (ke, ke+1),
return Ce+1 ← (SE.enc(ke+1,SE.dec(ke, C

1)), C2)

SE-KEM.dec(ke, Ce): parse Ce = (C1, C2), return SE.dec(SE.dec(k,C1), C2)

4 In OpenStack Swift, for instance, the “proxy server” nodes have access to the keys,
whereas the role of the “object server” nodes is to store the ciphertext.

33

http://eprint.iacr.org/2017/833
http://eprint.iacr.org/2017/833
http://eprint.iacr.org/2017/410

While this scheme is very similar to the hybrid AE as described by Ev-
erspaugh el al. [14], our description differs in that the token is independent of
the ciphertext, and consists of the keys (ke, ke+1) used for encryption in epochs
e and e+ 1. In cloud storage systems where the keys for data-at-rest encryption
are managed within the cloud, this is a faithful description of the real behavior.

The security that can be offered by such a solution is necessarily limited.
First, if the adversary obtains a challenge in epoch e and also sees one of the
tokens in epochs e or e + 1, the IND-ENC security is immediately broken. Fur-
thermore, as the ciphertext update does not re-encrypt the second component,
the ciphertexts are linkable through the epochs, i.e., SE-KEM cannot achieve
any form of IND-UPD security. Still, we show that under the described (strict)
constraints, the scheme guarantees a mild form of IND-ENC security.

Theorem 8 (SE-KEM is weakly IND-ENC secure). Let SE be an IND-CPA-
secure encryption scheme, then SE-KEM is (weakly) IND-ENC-secure if the fol-
lowing additional condition holds: For any challenge-equal epoch e ∈ C∗, A must
not call Ocorrupt(token, ·) for epochs e or e+ 1.

The proof is very similar to the one of Theorem 2 and is provided in the
following.

Proof. Given an adversary A against the IND-ENC security of SE-KEM, we de-
scribe two adversaries Bin = Bin(A) and Bout = Bout(A) against the IND-CPA
security of SE. To that end, we first describe an additional game in which the
challenge ciphertext is generated by choosing two keys x, x′

r← SE.kgen(λ), and
computing the ciphertexts as Cb

r← (SE.enc(ke, x),SE.enc(x′,mb)). We then first
show that this game is difficult to win, and then that the adversary advantages
in that game and in the original one differ only by a negligible amount.

Adversary Bin attacks the inner encryption and emulates the modified game
described above to A as follows. Initially, it sets e ← 0, L ← ∅, generates
the outer key ko0

r← SE.kgen(λ), and runs A on empty input. It then emulates
the oracles Oenc, Onext, Oupd, and Ocorrupt as follows. Upon Oenc(m), adversary
Bin chooses ki

r← SE.kgen(λ), and computes Ci
r← SE.enc(ki,m) and Co

r←
SE.enc(koe , k

i), sets C ← (Ci, Co) and L ← L ∪ {(C, e)}, and returns C to
A. Upon Onext, adversary Bin generates a new koe+1

r← SE.kgen(λ) and sets
e← e+ 1. Upon Oupd(Ce−1), adversary Bin checks that (Ce−1, e−1) ∈ L, parses
(Coe−1, C

i) ← Ce−1, computes Coe ← SE.enc(koe ,SE.dec(k
o
e−1, C

o
e−1)), sets Ce ←

(Coe , C
i) and L ← L ∪ {(Ce, e)}, and returns Ce to A. Upon Ocorrupt(token, e

∗),
if e∗ ≤ e, then return (koe−1, k

o
e). Upon Ocorrupt(key, e

∗), with e∗ ≤ e, return koe .
When A outputs m0,m1 in epoch ẽ, adversary Bin outputs the same mes-

sages m0,m1 and obtains challenge ciphertext C̃i. It chooses x
r← SE.kgen(λ),

computes C̃o
r← SE.enc(koẽ , x), and sets C̃ ← (C̃o, C̃i) and L̃ ← {(C̃, ẽ)}, and

provides C̃ to A. Furthermore, Bin continues to provide oracles Oenc, Oupd, and
Ocorrupt as before. Oracle Onext is modified (as in IND-ENC) to additionally set

L̃ ← L̃∪{(C̃, e)} with (C̃oe−1, C̃
i)← C̃e−1 ; C̃oe ← SE.enc(koe ,SE.dec(k

o
e−1, C̃

0
e−1))

; C̃e ← (C̃oe , C̃
i). Furthermore, Bin provides A with an oracle OupdC̃ that returns

the current challenge ciphertext C̃e.

34

Observe that all computations performed by Bin are exactly the same as in
the game described above, and therefore the advantage of A is retained. We next
show that the advantages of A in that game and in IND-ENC differ only by a
negligible amount.

Adversary Bout attacks the outer encryption and emulates either the above-
described game or the IND-ENC game toA. Initially, it sets e← 0, L ← ∅, guesses
the challenge epoch e′ uniformly random from {0, . . . , ê}, where ê is an upper
bound on the number of epochs for A, and then uses Be′out which is described
as follows. Initially, it chooses d

r← {0, 1}. Adversary Be′out then generates the
initial outer key ko0

r← SE.kgen(λ) and runs A on empty input. It then emulates
the oracles Oenc, Onext, Oupd, and Ocorrupt as follows. Upon Oenc(m), adversary

Be′out chooses x
r← SE.kgen(λ) and computes Ci

r← SE.enc(x,m). If e 6= e′, then
adversary Be′out computes Co

r← SE.enc(koe , x), else it queries x to its own oracle
Oenc to obtain Co. Then, Be′out sets C ← (Co, Ci) and L ← L ∪ {(C, e)} and
returns C to A. Oracles Onext and Ocorrupt are dealt with exactly as in the case
of Bin above.5 Oracle Oupd behaves (apart from the format of L) as in Bin for

e 6= e′, but for e = e′ adversary Be′out uses its Oenc oracle to compute the updated
ciphertexts.

Let now e′ denote the epoch in which A outputs m0,m1; adversary Be′out

computes C̃
r← SE.enc(ki,md), and selects x′

r← SE.kgen(λ). If e′ < ẽ, then
Be′out computes C̃o

r← SE.enc(koe′ , x
′); if e′ = ẽ then Be′out outputs x, x′ to obtain

challenge ciphertext C̃o; and if e′ > ẽ, then computes C̃
r← SE.enc(koe′ , x). In any

case, Be′out outputs C̃ = (C̃o, C̃i) as the challenge ciphertext. Then, Be′out sets L̃ ←
{(C̃, ẽ)}, and provides C̃ to A. Furthermore, Be′out continues to provide oracles
Oenc, Oupd, and Ocorrupt as before. Oracle Onext is modified (as in IND-ENC)

to additionally set L̃ ← L̃ ∪ {(C̃, e)} where C̃e is computed analogously to the
challenge ciphertext C̃ depending on whether e < ẽ, e = ẽ, or e > ẽ. Furthermore,
as Bin, Be′out provides A with an oracle OupdC̃ that returns the current challenge

ciphertext C̃e.
Note that with ẽ = 0 and challenge bit 0 in the embedded IND-CPA game,

the view of A is exactly the same as in the IND-ENC game with challenge bit 0,
and that with ẽ = ê and challenge bit 1 in the embedded IND-CPA game, the
view of A is exactly the same as in the IND-ENC game with challenge bit 1. The
hybrid argument then states that there is one e′ ∈ {0, . . . , ê} in which Bout wins
with advantage at least ε/ê; denote by Be′out the adversary that always embeds
the IND-CPA challenge in epoch e′.

We now have to deal with the fact that the reduction may fail. Assume,
hypothetically, that Be′out could obtain the key used in the IND-CPA game, in
which case the emulation would always be perfect. Whenever A does not obtain
the challenge ciphertext in epoch e′, however, the entire view is independent of

5 Queries Ocorrupt(key, e
∗) for e∗ = e′, and Ocorrupt(token, e

∗) for e∗ = e′ or e∗ = e′ + 1

cannot be answered, in that case Be′
out aborts and outputs a random bit. We argue

below that in these cases Bout may fail. All other cases can be dealt with because
Be′

out chose all keys ki and koe for e 6= e′ internally, and the oracles return (koe∗ , k
i)

and (koe∗−1, k
o
e∗), respectively.

35

the challenge bit. Therefore, in such rounds Be′out can safely randomize its output
without decreasing the advantage. The condition on the challenge and token
queries ensures that Be′out will never actually need to get the key in the modified
game.

On the other hand, ifA does not make any query of the typeOcorrupt(token, e
′),

Ocorrupt(token, e
′ + 1), or Ocorrupt(key, e

′) for any e′ being challenge-equal, which
means in particular that Bout as described above does not fail.

As Bout perfectly emulates the two games, based on the challenge bit, a
noticeable advantage of A translates into a noticeable advantage of Bout in dis-
tinguishing the two cases. This concludes the proof. ut

B Security of 2ENC

This section contains the detailed proofs of the weak IND-ENC and weak IND-UPD
security of the 2ENC scheme presented in Section 5.1.

B.1 Proof of Theorem 2 (weak IND-ENC Security of 2ENC)

The updatable encryption scheme 2ENC as defined in Section 5.1 is IND-ENC-
secure if SE is an IND-CPA-secure encryption scheme and for adversaries with
the following restriction: If A makes a query Ocorrupt(token, e

′) where e′ or e′− 1
are challenge-equal, then A must not make any query to Ocorrupt(key, ·).

Proof. Let A be an adversary against the IND-ENC security of 2ENC, then we
construct from it adversaries Bin = Bin(A) and Bout = Bout(A) such that at least
one of Bin and Bout breaks the CPA security of SE. We can then combine Bin and
Bout into a single adversary B that chooses one of those strategies at random to
break the CPA security of SE. Intuitively, Bout can be seen as dealing with the
cases where B makes a query of the type Ocorrupt(key, ·), whereas Bin can be seen
as dealing with the cases where B does not make such a query.

Adversary Bin attacks the inner encryption and emulates the IND-ENC game
to A as follows. Initially, it sets e ← 0, L ← ∅, generates the outer key ko0

r←
SE.kgen(λ), and runs A on empty input. It then emulates the oracles Oenc,
Onext, Oupd, and Ocorrupt as follows. Upon Oenc(m), adversary Bin queries m to
its own Oenc oracle and obtains as a result a ciphertext Ci. Using the key koe ,
Bin computes Co

r← SE.enc(koe , C
i), sets L ← L ∪ {(Co, e)}, and returns Co to

A. Upon Onext, adversary Bin generates a new koe+1
r← SE.kgen(λ) and sets e←

e+ 1. Upon Oupd(Ce−1), adversary Bin checks that (Ce−1, e− 1) ∈ L, computes
Ce ← SE.enc(koe ,SE.dec(k

o
e−1, Ce−1)), L ← L ∪ {(C, e)}, and returns Ce to A.

Upon Ocorrupt(token, e
∗), if e∗ ≤ e, then return (koe−1, k

o
e). Upon Ocorrupt(key, e

∗),
if e∗ ≤ e, then fail (i.e., output a uniformly random bit in the game).

When A outputs m0,m1 in epoch ẽ, adversary Bin outputs the same messages
m0,m1 and obtains challenge ciphertext C̃ ′. It computes C̃

r← SE.enc(koẽ , C̃
′),

sets L̃ ← {(C̃, ẽ)}, and provides C̃ toA. Furthermore, Bin continues to provide or-
acles Oenc, Oupd, and Ocorrupt as before. Oracle Onext is modified (as in IND-ENC)

36

to additionally set L̃ ← L̃ ∪ {(C̃, e)} with C̃e ← SE.enc(koe ,SE.dec(k
o
e−1, C̃e−1)).

Furthermore, Bin provides A with an oracle OupdC̃ that returns the current chal-

lenge ciphertext C̃e.

Observe that if A does not make any query of the type Ocorrupt(key, e
∗), then

all computations performed by Bin are exactly the same as in the IND-ENC game,
and therefore the advantage of A is retained.

Adversary Bout attacks the outer encryption and emulates the IND-ENC game
to A. Initially, it sets e← 0, L ← ∅, and guesses the challenge epoch e′ uniformly
random from {0, . . . , ê}, where ê is an upper bound on the number of epochs for
A. Adversary Bout then runs the strategy Be′out, which generates the initial outer
key ko0

r← SE.kgen(λ) and inner key ki
r← SE.kgen(λ), and runs A on empty

input. It then emulates the oracles Oenc, Onext, Oupd, and Ocorrupt as follows.
Upon Oenc(m), adversary Bout computes Ci

r← SE.enc(ki,m). If e 6= e′, then
adversary Bout computes Co

r← SE.enc(koe ,), else it queries Ci to its own oracle
Oenc to obtain Co. Then, Be′out sets L ← L ∪ {(Co, Ci, e)} and returns Co to A.
Oracles Onext and Ocorrupt are dealt with exactly as in the case of Bin above.6

Oracle Oupd behaves (apart from the format of L) as in Bin for e 6= e′, but for

e = e′ adversary Be′out uses its Oenc oracle to compute the updated ciphertexts.

Let now e′ denote the epoch in which A outputs m0,m1; adversary Be′out

computes C̃b
r← SE.enc(ki,mb) for b ∈ {0, 1}. If e′ < ẽ, then Be′out computes C̃

r←
SE.enc(koe′ , C̃0); if e′ = ẽ then Be′out outputs C̃0, C̃1 to obtain challenge ciphertext

C̃; and if e′ > ẽ, then computes C̃
r← SE.enc(koe′ , C̃0). Then, Be′out sets L̃ ←

{(C̃, ẽ)}, and provides C̃ to A. Furthermore, Bout continues to provide oracles
Oenc, Oupd, and Ocorrupt as before. Oracle Onext is modified (as in IND-ENC)

to additionally set L̃ ← L̃ ∪ {(C̃, e)} where C̃e is computed analogously to the
challenge ciphertext C̃ depending on whether e < ẽ, e = ẽ, or e > ẽ. Furthermore,
as Bin, Be′out provides A with an oracle OupdC̃ that returns the current challenge

ciphertext C̃e.

Assume, for now and hypothetically, that Be′out emulates the embedded IND-CPA
game and can open the respective key koe′ for theOcorrupt(token, ·) orOcorrupt(key, ·)
queries, if necessary. (We will later explain why this assumption is not a prob-
lem.) Note that with e′ = 0 and challenge bit 0 in the embedded IND-CPA game,
the view of A is exactly the same as in IND-ENC with challenge bit 0, and that
with e′ = ê and challenge bit 1 in the embedded IND-CPA game, the view of A is
exactly the same as in IND-ENC with challenge bit 1. The hybrid argument then
states that there is one e′ ∈ {0, . . . , ê} in which Bout wins with advantage at least
ε/ê; denote by Be′out the adversary that always embeds the IND-CPA challenge in
epoch e′.

6 Queries Ocorrupt(key, e
∗) for e∗ = e′, and Ocorrupt(token, e

∗) for e∗ = e′ or e∗ = e′ + 1

cannot be answered, and Be′
out aborts the emulation and outputs a random bit. Indeed,

we argue below that in these cases Be′
out may fail. All other cases can be dealt with

because Be′
out chose all keys ki and koe for e 6= e′ internally, and the oracles return

(koe∗ , k
i) and (koe∗−1, k

o
e∗), respectively.

37

What remains to be shown is how we deal with the fact that the reduction
may fail; for this, we first further consider the case where Be′out can obtain the
key from the IND-CPA game. Indeed, whenever A does not obtain the challenge
ciphertext in epoch e′, then the entire view is independent of the challenge bit.
Therefore, in cases where A does not obtain the challenge in round e′, which
means A may make queries of the types Ocorrupt(token, ·) or Ocorrupt(key, ·), we

can safely randomize the output of Be′out without decreasing its advantage—this
is why Be′out may abort here, without decreasing its advantage!

On the other hand, if A obtains the challenge ciphertext in round e′, either
because it is the challenge oracle or through the OupdC̃ oracle, then the condition
stated in the lemma ensures that A does not make any query of the types
Ocorrupt(token, e

′), Ocorrupt(token, e
′+ 1), or O(key, e′), which means in particular

that Be′out as described above does not fail. Therefore, the advantage of Be′out is at
least 1/ê times the advantage of A.

As the emulation of Bin is perfect, and by the above arguments for Bout, the
sum of the advantage of Bin and ê times the advantage of Bout is at least as large
as the advantage of A. Together, this concludes the proof. ut

B.2 Proof of Theorem 3 (weak IND-UPD Security of 2ENC)

Our updatable encryption scheme 2ENC defined in Section 5.1 is IND-UPD-secure
if SE is an IND-CPA-secure encryption scheme, and adversary A makes at most
one query Ocorrupt(token, e) for e, e− 1 ∈ C∗.

Proof. Let A be an adversary that achieves advantage at least ε > 0 against the
unlinkability of 2ENC, then we construct from it an adversary B = B(A) that
breaks the IND-CPA security of SE. Adversary B uses one of two strategies B1

and B2 at random, where B1 works for the case in which A makes the query
Ocorrupt(token, e) for e, e− 1 ∈ C∗ for e < ẽ and B2 makes for e > ẽ.

Adversary B1 initially generates keys ki
r← SE.kgen(λ) and ko0

r← SE.kgen(λ),
sets e ← 0, L ← ∅, and guesses the challenge epoch e′ uniformly random from
{0, . . . , ê}, where ê is an upper bound on the number of epochs for A. Adversary
B1 then runs A on empty input and emulates oracles Oenc, Onext, Oupd, and
Ocorrupt as follows. Upon Oenc(m), compute Ci

r← SE.enc(ki,m). If e = e′, then
B1 queries Ci to its own oracle Oenc to obtain a ciphertext Co, otherwise B1

computes Co
r← SE.enc(koe , C

i). Subsequently, set L ← L ∪ {(Co, Ci, e)}, and
return Co to A. Upon Onext, generate key koe+1

r← SE.kgen(λ) and set e← e+ 1.
Upon inputOupd(Ce−1), adversary B1 checks that (Ce−1, C

i, e−1) ∈ L, computes
Ce ← SE.enc(koe , C

i) if e 6= e′ or obtains Ce by querying Ci to its own Oenc

oracle, sets L ← L∪ {(Ce, Ci, e)}, and returns Ce to A. Upon Ocorrupt(token, e
∗)

with 1 ≤ e∗ ≤ e, return (koe∗−1k
o
e∗). Upon Ocorrupt(key, e

∗) with e∗ ≤ e, output
(koe , k

i). These two operations may fail since we only know e∗ 6= ẽ, ẽ+ 1 but not
e∗ 6= e′, e′ + 1, as would be required for B1 to not have to open in epoch e′. We
ignore this issue for now and explain how this is dealt with below.

If A outputs C0, C1, of which we know that they have been obtained either
through Oenc or Oupd, then it also holds that that (C0, C

i
0, e − 1), (C1, C

i
1, e −

38

1) ∈ L. If e < e′, then compute C̃
r← SE.enc(koe , C

i
0); if e = e′, then obtain C̃

by providing C0, C1 as challenge messages in the IND-CPA game for SE (here
we require that |C0| = |C1|); if e > e′, then compute C̃

r← SE.enc(koe , C
i
1).

Subsequently, provide A with C̃ and access to the oracles as before as well as
OupdC̃. Oracles Oenc and Oupd are as before. Oracle Onext must now also transfer
the challenge ciphertext into the next epoch. This is done analogously to the
computation of the challenge above, namely for e < e′ by encrypting C0 under
koe , for e = e′ using the CPA game for SE, and for e > e′ by encrypting C1 under
koe . Oracle OupdC̃ returns the current challenge ciphertext C̃e computed during
Onext.

The proof now proceeds by concluding the hybrid argument. First, if e′ = ê
and the IND-CPA game for SE has its challenge bit set to 0, then the view of A is
exactly as in the IND-UPD game with challenge bit 0. This can be seen since the
encryption and update of the challenge ciphertext are consistently done with
respect to C0. By contrast, if e′ = 0 and the IND-CPA game for SE has its
challenge bit set to 1, then the view of A is the same as in the IND-UPD game
with challenge bit 1. All operations are consistently done with C1. Furthermore,
for any e′ ∈ {0, . . . , ê−1}, the view of A when e = e′ and the IND-CPA challenge
bit is 0 is the same as the view when e = e′ + 1 and the challenge bit is 1. This
is so because in all rounds prior to and including e′, the challenge ciphertext
contains C0, whereas in all rounds starting with e′ + 1 it contains C1. The
hybrid argument then states that there is one e′ ∈ {0, . . . , ê} in which B1 wins
with advantage at least ε/ê; denote by B1

e′ the adversary that always embeds
the IND-CPA challenge in epoch e′.

What remains to be shown is how we deal with the fact that the reduction
may fail. Assume, hypothetically, that B1

e′ could obtain the key used in the
IND-CPA game, in which case the emulation would always work. Whenever A
does not obtain the challenge ciphertext in epoch e′, however, the entire view
is independent of the challenge bit. Therefore, in such rounds B1

e′ can safely
randomize its output without decreasing the advantage. The condition on the
challenge and token queries ensures that B1

e′ will never actually need to get the
key in the modified game.

Adversary B2 behaves similarly to B1, with two major differences. First, B2

has to guess the Oenc(m) query during which one of the challenge ciphertexts is
first encrypted. Then, it encrypts either this nonce or a random one; this reduces
to the Real-or-Random variant of IND-CPA and requires an additional hybrid
argument. In epochs e > e′ it will then encrypt under the respective epoch key.
This completes the proof. ut

C Security of BLMR and BLMR+

This section contains the detailed proofs of the IND-ENC security of the BLMR
scheme and the weak IND-UPD security of BLMR+ presented in Section 5.2.

39

C.1 Proof of Theorem 4 (IND-ENC Security of BLMR)

BLMR is a IND-ENC-secure updatable encryption scheme if F be a key-homo-
morphic PRF such that F.kgen(λ) returns uniformly random elements from G.

We use a non-standard formalization of PRF security, because it better
matches what we need in the proof.7 In more detail, we say that a function
F is called a pseudo-random function (PRF) if no efficient adversary A can dis-
tinguish between two settings with non-negligible advantage. The challenger first
chooses a key k

r← F.kgen(λ) and then gives A access to an oracle Oeval(x) to
evaluate F(k, x), and Ochallenge(x) to either evaluate F(k, x) or a uniformly ran-
dom function f : X → Y. Of course, the oracles may only be called on different
inputs.

Proof. We again prove the statement by reduction. In more detail, for each
adversary A that breaks the IND-ENC security of BLMR, there is an adversary
B that breaks the PRF security of F. Let ê be an upper bound on the epochs,
such that A does not proceed beyond epoch ê.

We begin by describing a sequence of hybrid games H0, . . . ,Hê+1. In He, the
challenger behaves identically as in the IND-ENC game up to and including epoch
e− 1. The behavior may start to differ in epoch e, or later. Let us elaborate. On
a high level, we want to identify the first round e ≥ e that is challenge-equal, but
not in a (continuous) sequence of challenge-equal epochs with epoch e− 1. The
reason is that we want to replace the challenge ciphertext in epoch e (and all
subsequent ones) by a ciphertext where the second component is random, but
as updates are deterministic and the adversary can use update tokens to find
inconsistencies between challenge ciphertexts of subsequent epochs, we can only
do the replacement at the beginning of a sequence of challenge-equal epochs. So
we choose the beginning of the next sequence after (inclusive) epoch e. Let ē,
analogously, denote the last epoch of the continuous sequence of challenge-equal
epochs starting with e.

If epoch e−1 was challenge-equal, then the challenger proceeds as before until
A makes epoch e′ ≥ e not challenge-equal. (If epoch e−1 is not challenge-equal,
then set e′ = e− 1.) The challenger again behaves as before until the first epoch
e > e′ that is challenge-equal. (Note that here e ≥ e, with e = e occurring if e−1
is not challenge-equal but e is.) In the first following epoch (possibly starting
with epoch e), the adversary does not compute the first challenge ciphertext as
an update, but rather as a random one. We now show a sequence of reductions
that, if A distinguishes between any subsequent pair of hybrids, break F.

Adversary B is described as follows. Given a parameter e′ ∈ {0, . . . , ê},
where ê is an upper bound on the number of epochs, Be′ initially samples
k0

r← F.kgen(λ) and d
r← {0, 1}, sets e ← 0, L ← ∅, and runs A on empty

input. It sets e analogously to He′ . It then emulates the oracles Oenc, Onext,
Oupd, and Ocorrupt as follows.

Upon Onext, adversary Be′ generates a new ke+1
r← F.kgen(λ) and computes

∆e+1 ← ke ⊕ ke+1. Furthermore, if e > ẽ then Be′ updates L̃, i.e., it first parses

7 This variant is equivalent to standard PRF security, see [8, Theorem 7.2].

40

(C̃ie, N)← C̃e and then: If e+1 < e, or e′ 6= e and e+1 ≤ ē, then compute C̃ie+1 ←
F(ke+1, N) ⊗ md. If e′ = e, then for e + 1 = e set C̃ie+1 ← Ochallenge(N) ⊗ md

and for e′ < e + 1 ≤ ē set C̃ie+1 ← C̃ie. For e + 1 > ē, then choose C̃ie+1
r← G

at the beginning of each continuous sequence of challenge-equal epochs, and
update it consistently for the remaining epochs of that sequence. Additionally,
set C̃e+1 ← (C̃ie+1, N) and L̃ ← L̃ ∪ {(C̃e+1, e+ 1)}. Finally, set e← e+ 1.

Upon Oenc(m), if e /∈ {e, . . . , ē}, then adversary Be′ chooses8 N
r← X and

computes C̃ ← F(ke, N)⊗m, sets L ← L∪{(C,m, e)}, and returns C to A. If e ∈
{e, . . . , ē}, then Be′ computes C ← (Oeval(N)⊗ (F(∆e+1, N)⊗· · ·⊗F(∆e, N))⊗
m,N). Upon Oupd(Ce−1), adversary Be′ first verifies that (Ce−1, e − 1) ∈ L. If
e 6= e, ē + 1, then parse (Cie−1, N) ← Ce−1, compute Cie ← Cie−1 ⊗ F(∆e, N),
set Ce ← (Cie, N) and L ← L ∪ {(Ce,m, e)}, and return Ce to A. For e = e, ē,
use the plaintext message stored in L with Ce−1 to provide a fresh encryption
analogous to the computations in Oenc.

Upon Ocorrupt(token, e
∗), if e∗ ≤ e, with e∗ 6= e, ē+ 1, then return ∆e∗ . Upon

Ocorrupt(key, e
∗), with e∗ ≤ e and e∗ /∈ {e, . . . , ē}, return ke∗ .

When A outputs m0,m1 in epoch ẽ, then create an encryption analogously
to the procedure described in Onext. Chooses N

r← X ; if this nonce N collides
with previous nonces used in Oenc, adversary Be′ fails. For ẽ < e, or e′ 6= e
and ẽ ≤ ē, compute a real encryption of md. For e ≤ ẽ ≤ ē with e′ = e,
compute the encryption using Oeval(N) ⊗ F(∆ẽ, N). For ẽ > ē, use a uniformly
random mask. Sets C̃ ← (C̃o, C̃i) and L̃ ← {(C̃, ẽ)}, and provide C̃ to A.
Adversary Be′ continues to provide A with oracles Oenc, Onext, Oupd, and Ocorrupt

as before. Furthermore, Be′ provides A with an oracle OupdC̃ that returns the

current challenge ciphertext C̃e. Finally, when A provides output bit b, then Be′
outputs b⊕ d.

The view of adversary A in interaction with Be′ in case the PRF game is ideal
is the same as in He′−1. All (continuous) sequences of challenge-equal epochs
starting on or before e′ − 1 have real encryptions, all later epochs have random
encryptions. The view in interaction with Be′ in case the PRF game is real is
the same as that in He′ . Here, sequences starting in epoch e′ have real encryp-
tions, all subsequent ones have random encryptions. The IND-ENC game is Hê+1,
where A has advantage some ε, whereas in game H0 all challenge ciphertexts are
randomized, and therefore A has no advantage. The hybrid argument implies
that there is at least one epoch e such that the advantage between He and He+1

is at least ε/ê.

We can build adversary Be as described above to win the PRF game. Note
that the failure probability of Be due to collision of nonces is upper bounded
by q/|X |, where q is the number of encryption queries per epoch. This term is
negligible if X has exponential size. If the advantage of A is noticeable, then
b⊕ d is biased noticeably away from uniform, and therefore the advantage of Be
is also noticeable. ut

8 Adversary Be′ fails if e > ẽ and N collides with the nonce used in the challenge.

41

C.2 Proof of Theorem 5 (weak IND-UPD Security of BLMR+)

Let F be a key-homomorphic PRF, and assume that all elements of X are encoded
as strings of the same length. Let SE be a IND-CPA-secure symmetric encryption
scheme. Then, the scheme BLMR+ is (weakly) IND-UPD-secure (only) against
adversaries for which the following condition holds: Let efirst denote the epoch in
which the first ciphertext that is later used as challenge C0 or C1 was encrypted.
If there exist some e∗ ∈ {efirst, . . . , ẽ− 1} where e∗ ∈ K∗ ∪ T ∗, i.e., A knows the
secret key ke∗ or token ∆e∗ , then for any challenge-equal epoch e ∈ C∗, A must
not call Ocorrupt(token, ·) for epochs e or e+ 1.

The reason for considering only key-corruptions before the challenge epoch ẽ
in the above restricting is the determinism of the update algorithm in BLMR+.
For deterministic updates, the IND-UPD game does not allow the adversary to
update C0 or C1 into the challenge epoch ẽ via the Oupd oracle. As the adversary
is also not allowed to learn ∆ẽ either, both ciphertexts exist in a non-challenge
form only up to epoch ẽ− 1. Similarly, all challenge-equal epochs must be after
the challenge epoch ẽ due to the restrictions of the IND-UPD game.

Proof. Let A be the adversary breaking the unlinkability of BLMR+, then we
build either an adversary Benc breaking the IND-CPA security of SE, or an ad-
versary Bprf breaking the PRF security of F. We first consider a hybrid game in
which the first element of the challenge ciphertext is a uniformly random ele-
ment from X . We then show that (a) this game is difficult to win, based on the
IND-CPA security of SE, and that (b) the hybrid game is indistinguishable from
the unlinkability game, based on the PRF security of F.

Adversary Benc has to behave in one out of two ways. The first behav-
ior applies if A makes its Ocorrupt(token, ·) or Ocorrupt(key, ·) query in an epoch
e < ẽ with the challenge epoch ẽ. The second behavior applies of A makes it
Ocorrupt(token, e) query in an epoch e > ẽ. We first describe the first strategy,
denoted as B1

enc.
Adversary B1

enc is described in terms of adversaries B1,e′

enc , where e′ ∈ {0, . . . , ê}
and ê is an upper bound on the number of epochs invoked by A. Adversary B1,e′

enc

first sets e ← 0 and L ← ∅, and then generates keys k1
0

r← F.kgen(λ) and k2
0

r←
SE.kgen(λ), sets k0 ← (k1

0, k
2
0), and starts A on empty input, providing access

to oracles Oenc, Onext, Oupd, and Ocorrupt, described as follows. Upon Oenc(m), if

e 6= e′, then adversary B1,e′

enc computes C
r← BLMR+.enc(ke,m) and sets L ← L∪

{(C, e,N)} for the nonce N used in the encryption. If e = e′, then adversary B1,e′

enc

parses (k1
e , k

2
e) ← ke, chooses a random N

r← X , computes C1 ← F(k1
e , N)⊗m

and queries its own enc oracle on N to obtain C2, and returns C ← (C1, C2).
It also sets L ← L ∪ {(C, e,N)}. Upon Onext, adversary B1,e′

enc generates a new
key (ke+1, ∆e+1)

r← BLMR+.next(ke) and sets e ← e + 1. Upon Oupd(Ce−1),
first check that (Ce−1, e − 1, N) ∈ L. Then, if e 6= e′, then compute Ce

r←
BLMR+.upd(∆e, Ce−1), set L ← L ∪ {(Ce, e,N)} and return Ce. If e = e′,
then parse (∆1

e, (k
2
e−1, k

2
e)) ← ∆e and (C1

e−1, C
2
e−1) ← Ce−1, compute N ←

SE.dec(k2
e−1, C

2) and C1
e ← C1

e−1 ⊗ F(∆1
e, N), obtain C2

e by invoking the own
enc oracle on N , output Ce ← (C1

e , C
2
e), and set L ← L ∪ {(Ce, e,N)}. Upon

42

Ocorrupt(token, e
∗) with e∗ ≤ e and e∗ < ẽ, return ∆e∗ . Upon Ocorrupt(key, e

∗)
with e∗ ≤ e and e∗ < ẽ, return ke. These query can always be answered, since
e∗ 6= ẽ for both queries and epochs e < e∗.

When A outputs the two challenge ciphertexts C0, C1 in epoch ẽ, adversary
B1,e′

enc parses them as (C1
0 , C

2
0)← C0 and (C1

1 , C
2
1)← C1, sets C̃1 to a uniformly

random value, and computes N0 ← SE.dec(k2
ẽ , C

2
0) and N1 ← SE.dec(k2

ẽ , C
2
1).

If ẽ < e′, then set C̃2
r← SE.enc(kẽ, N0). If ẽ = e′, then obtain C̃2 by pro-

viding N0, N1 as challenge plaintexts in the IND-CPA game. If ẽ > e′, then
set C̃2

r← SE.enc(kẽ, N1). Adversary B1,e′

enc then returns the challenge ciphertext
C̃ ← (C̃1, C̃2) where C̃1 is a uniformly random element from Y, and also sets
L̃ = {(C̃, ẽ)}.

After generating the challenge, B1,e′

enc again runs A with access to oracles
Oenc, Onext, Oupd, and Ocorrupt, and additionally to an oracle OupdC̃. Oracle Oenc

behaves as described above. Oracle Onext now additionally updates the challenge
ciphertext, meaning that for (C̃e, e) ∈ L̃, it updates the PRF value and re-
encrypts the nonce depending on the epoch as in the challenge ciphertext, and
sets L̃ ← L̃ ∪ {(C̃e+1, e + 1)}. Oracle Oupd(Ce−1) behaves as above for e = ẽ.
For e > ẽ + 1, behave as above for e 6= ẽ, and for e = ẽ + 1 the only difference
is that the nonce is taken from L instead of by decryption from Ce−1. Oracle
Ocorrupt(key, ·) again behaves as above, whereas querying Ocorrupt(token, ·) is no

longer permitted, and OupdC̃ simply returns C̃e.

Since the view of A with B1,ê
enc and challenge bit 0 is the same as in the hybrid

game with challenge bit 0, the view with B1,0
enc and challenge bit 1 is the same

as in the hybrid game with challenge bit 1, and every two subsequent B1,e
enc and

B1,e+1
enc are linked in a similar way, the hybrid argument to obtain that at least

one B1,e
enc will be successful in its CPA security game against SE.

Adversary B2
enc deals with the case where the Ocorrupt(token, e) query is for

an epoch e > ẽ. The reduction operates similarly to the one above, with two
major differences. First, B2

enc has to guess the Oenc(m) query during which one
of the challenge ciphertexts is first encrypted. Then, it encrypts either this nonce
or a random one; this reduces to the Real-or-Random variant of IND-CPA and
requires an additional hybrid argument. In epochs e > e′ it will then encrypt
the actual nonce under the respective epoch key.

We now have to show that the original game is not substantially easier to win
than the hybrid game. For this, we again use the upper bound ê on the number of
epochs and describe an adversary Bprf in the PRF security game for F. Similarly
to Benc above, Bprf guesses the target epoch e′ ∈ {0, . . . , ê} uniformly at random
and fails if the guess is incorrect. Bprf also guesses the first epoch ē > e′ in which
A makes a Ocorrupt(key, ē)-query.9 Adversary Benc further initializes e← 0, L ← ∅
and generates keys k1

0
r← F.kgen(λ) and k2

0
r← SE.kgen(λ), sets k0 ← (k1

0, k
2
0),

and chooses a random bit b
r← {0, 1}. Adversary Bprf then runs A and emulates

the oracles Oenc, Onext, Oupd, and Ocorrupt as described below.

9 That means that Bprf also if A uses a different challenge epoch or if A queries
Ocorrupt(key, e) with e′ ≤ e < ē or either of Ocorrupt(token, ē) and Ocorrupt(token, ē+ 1).

43

UponOenc(m), if e 6= ẽ, then adversary Bprf computes C
r← BLMR+.enc(ke,m)

and sets L ← L ∪ {(C, e,N)} for the nonce N used in the encryption. If
e = e′, then adversary Bprf parses (k1

e , k
2
e) ← ke, chooses a random N

r← X ,
queries N to its PRF oracle to obtain output Y , computes C1 ← Y ⊗ m and
C2 r← SE.enc(k2

e , N), and returns C ← (C1, C2). It also sets L ← L∪{(C, e,N)}.
Upon Onext, adversary Bprf generates a new key (ke+1, ∆e+1)

r← BLMR+.next(ke)
and sets e← e+1. Upon Oupd(Ce−1), first check that (Ce−1, e−1, N) ∈ L. Then,
if e 6= e′, then compute Ce

r← BLMR+.upd(∆e, Ce−1), set L ← L ∪ {(Ce, e,N)}
and return Ce. If e = e′, then parse (∆1

e, (k
2
e−1, k

2
e)) ← ∆e and (C1

e−1, C
2
e−1) ←

Ce−1, compute N ← SE.dec(k2
e−1, C

2) and C1
e ← C1

e−1 ⊗ Y , where Y is ob-

tained by querying the PRF oracle on N , compute C2
e

r← SE.enc(k2
e , N), output

Ce ← (C1
e , C

2
e), and set L ← L ∪ {(Ce, e,N)}. Upon Ocorrupt(token, e

∗) with
e∗ ≤ e, return ∆e∗ . Upon Ocorrupt(key, e

∗) with e∗ ≤ e, return ke. This query can
always be answered, since e∗ 6= ẽ for both queries and additionally e∗ 6= ẽ + 1
for corrupting token.

WhenA outputs the two challenge ciphertexts C0, C1 with (C0, ẽ−1, N0), (C1,
ẽ − 1, N1) ∈ L in epoch ẽ = e′ (with corresponding plaintexts m0 and m1, re-
spectively), adversary Bprf parses one as (C1

b , C
2
b)← Cb, sets C̃1 = Y ⊗mb where

Y is the result of the PRF challenge on Nb, and computes C̃2
r← SE.enc(k2

e , Nb).
Adversary Benc then returns the challenge ciphertext C̃ ← (C̃1, C̃2), and also
sets L̃ = {(C̃, ẽ)}.

After generating the challenge, Bprf again runs A with access to oracles
Oenc, Onext, Oupd, and Ocorrupt, and additionally to an oracle OupdC̃. Oracle Oenc

behaves as described above. Oracle Onext now additionally updates the chal-
lenge ciphertext. For ẽ ≤ e < ē and e > ē and (C̃e, e) ∈ L̃, it computes
C̃e+1

r← BLMR+.upd(∆e+1, C̃e) and sets L̃ ← L̃ ∪ {(C̃e+1, e + 1)}. For e = ē,
however, it re-computes C1 ← F(k1

e , Nb) ⊗ mb to obtain the first component
of the updated challenge ciphertext. Oracle Oupd(Ce−1) behaves as above for
ẽ ≤ e < ē and e > ē, and computes the update analogously to Onext for e = ē.
Oracle Ocorrupt again behaves as above, and OupdC̃ simply returns C̃e. The update
mechanism in Onext and Oupd ensures that the epochs ẽ < e < ē, for which A
may be querying Ocorrupt(token, e), are consistent with epoch ẽ. It also ensures
that epoch ē, for which Ocorrupt(key, ē) may be queried, is consistent with the key
kē.

In the above game, if Bprf guesses e′ and ē correctly, then the view of A
is exactly the same as in the unlinkability game if the PRF challenge is real,
and exactly the same as in the hybrid game if the PRF challenge is random.
Therefore, the difference in A’s advantage between winning the two games is
bounded by ê2 times the advantage of Bprf in the PRF game. This concludes the
proof. ut

D Security of RISE

This section contains the detailed proofs of the IND-ENC and IND-UPD security
of the RISE scheme presented in Section 5.3.

44

D.1 Proof of Theorem 6 (IND-ENC Security of RISE)

The updatable encryption scheme RISE is IND-ENC secure under the DDH as-
sumption.

Proof. We again prove the statement by reduction. In more detail, for each
adversary A that breaks the IND-ENC security of RISE, there is an adversary B
that breaks the DDH assumption.

We begin by defining a sequence of games H0, . . . ,Hê such that Hi behaves
exactly as described in the experiment for IND-ENC up to epoch i − 1, and
from epoch i onward the (new or updated) challenge ciphertext consists of two
random group elements. The IND-ENC game can then be seen as Hê+1, and no
adversary can achieve non-trivial advantage in game H0 as the entire view is
independent of the challenge bit. It remains to be shown that the distinguishing
advantage between Hi and Hi+1 is negligible for all i ∈ {0, . . . , ê}, a hybrid
argument then implies the theorem statement. We show the indistinguishability
for each subsequent pair of games by reduction to DDH.

Adversary Be′(g1, g2, g3) receives a DDH instance in G and behaves as follows.
Given parameter e′ ∈ {0, . . . , ê}, Be′ initially samples x0

r← Z∗q and d ∈ {0, 1}, as

well as e
r← {0, . . . , e′} and ē

r← {e′+1, . . . , ê}, sets k0 ← (x0, g
x0), e← 0, L ← ∅,

and runs A on empty input. The significance of e, ē is that Be′ implicitly guesses
that A will not request the key in epochs e, . . . , ē, and that A will not request
tokens ∆e or ∆ē+1. (Looking ahead, this means in particular that Be′ loses
a factor ê2 in the reduction.) The reason is that Be′ will simulate ciphertexts
in epochs e, . . . , ē without knowing the secret key, which also means that Be′
will not be able to compute the update tokens in the border epochs. Be′ then
emulates the oracles Oenc, Onext, Oupd, and Ocorrupt as follows.

Upon Onext, if e < e − 1 or e > ē, then adversary Be′ generates a new key
as xe+1

r← Z∗q , ke+1 ← (xe+1, g
xe+1), and computes ∆e+1 ← (xe+1/xe, g

xe+1). If
e = e−1, then set ∆e+1 = ⊥ (which is fine if we guessed the epochs correctly and
A does not request it) and ke+1 ← g1. If e < e+ 1 ≤ ē, then sample δe+1

r← Z∗q
and set ke+1 ← k

δe+1
e and ∆e+1 ← (δe+1, ke+1). If e = ē, then choose xe+1

r← Z∗q
and set ∆e+1 = ⊥, ke+1 ← (xe+1, g

xe+1). Furthermore, if e > ẽ then update
L̃ as follows: If e = e − 1, then choose r

r← Z∗q and set C̃e+1 ← (gr1, g
rmd). If

e = e′− 1, then set C̃e+1 ← (gδ
∗

3 , g2md) with δ∗ = δe+1 · · · δe′ . If e ≥ e′, then set

C̃ as two random group elements. Otherwise, compute C̃e+1 as a regular update.
Finally, set L̃ ← L̃ ∪ {(C̃e+1, e+ 1)} and e← e+ 1.

Upon Oenc(m), adversary Be′ computes a fresh encryption C according to
RISE.enc,10 sets L ← L ∪ {(C,m, e)}, and returns C to A. Upon Oupd(Ce−1),
adversary Be′ first verifies that (Ce−1, e−1) ∈ L. If e 6= e, ē+1, then Be′ computes
an update via RISE.upd. For e ∈ {e, ē+1}, use the plaintext message stored in L
with Ce−1 to provide a fresh encryption analogous to the computations in Oenc.

10 Note that this is possible as encryption only uses the second part of the key, which
is always defined.

45

Upon Ocorrupt(token, e
∗), if e∗ ≤ e, with e∗ 6= e, ē + 1, then return ∆e∗ . (If

e∗ ∈ {e, ē+1}, then fail.) Upon Ocorrupt(key, e
∗), with e∗ ≤ e and e∗ /∈ {e, . . . , ē},

return ke∗ . (If e∗ ∈ {e, . . . , ē}, then fail.)

When A outputs m0,m1 in epoch ẽ, then create an encryption analogously
to the procedure described in Onext. For ẽ < e′, compute a real encryption of md.
For ẽ = e′, compute the encryption using the DDH challenge, and for ẽ > e′, use
a ciphertext consisting of two random elements in G. For the resulting ciphertext
C̃, set L̃ ← {(C̃, ẽ)}, and provide C̃ to A. Adversary Be′ continues to provide A
with oracles Oenc, Onext, Oupd, and Ocorrupt as before. Furthermore, Be′ provides

A with an oracle OupdC̃ that returns the current challenge ciphertext C̃e. Finally,
when A provides output bit b, then Be′ outputs b⊕ d.

We first argue that A cannot gain any advantage unless epoch e′ is challenge-
equal, as, in case A does not obtain the challenge ciphertext in round e′, He′−1

and He′ are equivalent. We proceed assuming that Be′ guesses e, ē correctly. If
Be′ obtains a Diffie-Hellman triplet, then the view of A is the same as in He′−1:
In epochs 0, . . . , e− 1, the same happens in both cases. In epoch e, while He′−1

computes all updates via the prescribed procedure, Be′ computes them as fresh
encryptions. This, however, results in the same distribution for all ciphertexts.
As, furthermore, the token ∆e is not requested, the simulation of Be′ cannot
be detected. Epochs e + 1, . . . , ē are then again equivalent, given the minor
observation that in e′ the update of the challenge ciphertext is done by fresh
encryption, which again does not change the distribution. The argument for
epoch ē + 1 is almost the same as that for e, with all subsequent epochs again
obviously equivalent.

If Be′ obtains a random triplet, then the view of A is the same as in He′ .
Epochs 0, . . . , e′− 1 are the same as above. The challenge ciphertext in epoch e′

is now uniformly random and therefore the same as in He′ . The arguments for
the subsequent epochs follow the same arguments as above.

Note that, as the simulation of either He′−1 or He′ is perfect until A requests
any one of ∆e, ∆ē+1, or ke for e ∈ {e, . . . , ē}, the probability for Be′ guessing
the correct sequence boundaries is at least 1/ê2. The proof now concludes via
the standard hybrid argument, which results in an overall loss factor of 1/ê3. ut

D.2 Proof of Theorem 7 (IND-UPD Security of RISE)

The updatable encryption scheme RISE is IND-UPD secure under the DDH as-
sumption.

Proof. We prove the above theorem via a short sequence of three game hops,
where in the final game we develop a reduction B to the DDH assumption.

Game0. Initially, B simulates all oracles towards A by running the correct al-
gorithms of the updatable encryption scheme and maintaining the lists L and L̃
as in the IND-ENC game.

46

Game1. In the first game hop, B changes its behavior when answering Oupd and
OupdC̃ queries. It re-encrypts the underlying messages from scratch, instead of
updating the provided ciphertexts. To do so, B extends the list L to store tuples
(Ce,m, e) that now also include the message m whenever an encryption query is
made. Then, when it receives a query Oupd(Ce′), B looks up the corresponding
message m in L and returns RISE.enc(ke′ ,m). Likewise, for queries to OupdC̃ that
would normally return an updated version of the challenge ciphertext, B simply
encrypts md under the current epoch key.

As ciphertexts in RISE are freshly randomized with every update, the ad-
versary cannot distinguish an updated from a freshly generated ciphertext, and
thus he cannot notice this changed behavior.

Thus, from now on, for all consecutive epochs e and e + 1 for which the
adversary A does not know the connecting update token ∆e+1, the ciphertexts
are fresh encryptions under fully independent keys. That is, even if A knows the
secret key from epoch e, this cannot help him in extracting information from
ciphertexts learned in e+ 1 and vice versa.

Game2. This game replaces the challenge ciphertexts by randomized ones. That
is, the challenge ciphertext as well as all messages returned by OupdC̃ are pairs of
two uniformly random group elements. It is easy to see that Game2 cannot be
won by the adversary, but it remains to be shown that the adversary advantage
between games Game1 and Game2 is bounded. Let ê be an upper bound on the
number of epochs invoked by A, then we devise a sequence H0, . . . ,Hê of hybrid
games. Each hybrid game He is then described as follows. In rounds 0, . . . , e− 1,
the challenge ciphertext is computed as in Game1, namely as an encryption
of md. In rounds e, . . . , ê, the challenge ciphertext is computed as in Game2,
namely by choosing the second component uniformly and independently of md.
Note that one could define H−1 = Game2 and Hê+1 = Game1.

Suppose now that the difference in adversary advantage in Game1 and
Game2 differs by some non-negligible amount ε, then there is at least one
e′ ∈ {0, . . . , ê} such that the difference in adversary advantage between the
two subsequent games He′−1 and He′ is at least ε′ = ε/ê.

Consider now the adversary Be′ , for e′ ∈ {0, . . . , ê}, which behaves as follows.
It sets e ← 0 and L ← ∅, and chooses a random bit d

r← {0, 1} as well as two
epochs e

r← {0, . . . , e′} and ē
r← {e′ + 1, . . . , ê+ 1}. The intuition behind this is

that Be′ guesses the range [e, . . . , ē] as a “streak of challenge-equal epochs,” or
more generally, that A does not request the owner key in any of those periods.
Adversary Be′ generates an initial secret key (x0, y0) = k0

r← RISE.kgen(λ) and
runs A on empty input, providing access to oracles Oenc, Onext, Oupd, and Ocorrupt,
which we describe below. In epoch e′, Be′ embeds the challenge, and in epochs
e, . . . , ē, Be′ implicitly uses keys ke = (aδe, g

aδe). Of course, Be′ cannot know a,
but we show how to deal with this below.

UponOnext, if e+1 < e, then sample a new key (ke+1, ∆e+1)
r← RISE.next(ke).

For e ≤ e+1 ≤ ē, then Be′ chooses δe+1 ∈ Z×q (with the sole exception of δe′ = 1)

and implicitly uses the key (aδe+1, g
aδe+1) in the upcoming epoch e + 1, which

means that only the second component ye+1 = gaδe+1 of ke+1 is known to Be′ .

47

For e ≤ e < ē, adversary Be′ also sets the token to ∆e+1 ← (δe+1/δe, ye+1). For
e ≥ ē, then keys are again sampled freshly as in the beginning. Generally, if e > ẽ,
then Be′ also has to update the challenge ciphertext from (C̃e−1, e− 1) ∈ L̃. For
e < e′−1, this is simply done by encrypting via C̃e+1

r← RISE.enc(ke+1,md), note
that encryption only requires the second component of ke which is always known
to Be′ . For e = e′ − 1, the challenge is embedded into the ciphertext by defining
it as C̃ ← (gb, gcmd). For e ≥ e′, the challenge ciphertext C̃ is the encryption of
a uniformly random message. Adversary Be′ then sets L̃ ← L̃ ∪ {(C̃e+1, e+ 1)}.
Furthermore, in all cases set e← e+ 1.

Upon Oenc(m) and Oupd(Ce−1), if e < e or e > ē, then B computes the
ciphertext as usual via RISE.enc. If e ≤ e ≤ ē, then B encrypts with the partial
key ke; observe that RISE.enc with key k = (x, y) only depends on the value
y. Upon Ocorrupt(token, e

∗), for e∗ ≤ e and e∗ 6= e, ē + 1, return ∆e∗ , and upon
Ocorrupt(key, e

∗), for e∗ ≤ e and e∗ /∈ [e . . . , ē], return ke∗ .
The challenge ciphertext in period ẽ is then computed exactly as described

in the oracle Onext above. Adversary B then runs A on input C̃, giving access to
the above oracles but additionally to OupdC̃, which returns C̃e from L̃.

Recall that the difference in advantage that A obtains differs by at least ε′

between He′−1 and He′ ; this can be viewed as A distinguishing between He′−1

and He′ with advantage at least ε′. Note that if A does not obtain the challenge
ciphertext in epoch e′, then the games He′−1 and He′ are exactly equivalent,
which means that the advantage of A does not change if we change A to output
a random bit in those cases. This justifies the assumption that A obtains the
challenge ciphertext in epoch e′, which we need in the subsequent steps.

Recall that Be′ chooses e, ē with e′ ∈ [e, ē], and that Be′ fails (i.e., outputs a
random bit) if A queries Ocorrupt(key, e

∗) for e ≤ e∗ ≤ ē, or Ocorrupt(token, e
∗) for

e∗ = e, ē + 1. Informally, this means that A builds a “streak of challenge-equal
epochs” from e to ē. As by the above argument we know that A obtains the
challenge ciphertext in epoch e′, guessing e and ē correctly further decreases the
advantage of Be′ by a factor ≤ ê2.

Note that the choice of e, ē does not change the view of A until Be′ fails, and
that until then the view is exactly the same in game He′ as it is when in the
reduction with Be′ the DDH triplet is real, and the view is exactly the same in
He′−1 as it is when the DDH triplet is random. Altogether, this means that the
DDH advantage of Be′ is 1/ê3 times the unlinkability advantage of A. ut

48

	Updatable Encryption with Post-Compromise Security

