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Abstract. We introduce password-authenticated public-key encryption
(PAPKE), a new cryptographic primitive. PAPKE enables secure end-
to-end encryption between two entities without relying on a trusted third
party or other out-of-band mechanisms for authentication. Instead, resis-
tance to man-in-the-middle attacks is ensured in a human-friendly way
by authenticating the public key with a shared password, while prevent-
ing offline dictionary attacks given the authenticated public key and/or
the ciphertexts produced using this key.
Our contributions are three-fold. First, we provide property-based and
universally composable (UC) definitions for PAPKE, with the result-
ing primitive combining CCA security of public-key encryption (PKE)
with password authentication. Second, we show that PAPKE implies
Password-Authenticated Key Exchange (PAKE), but the reverse impli-
cation does not hold, indicating that PAPKE is a strictly stronger prim-
itive than PAKE. Indeed, PAPKE implies a two-flow PAKE which re-
mains secure if either party re-uses its state in multiple sessions, e.g. due
to communication errors, thus strengthening existing notions of PAKE
security. Third, we show two highly practical UC PAPKE schemes: a
generic construction built from CCA-secure and anonymous PKE and
an ideal cipher, and a direct construction based on the Decisional Diffie-
Hellman assumption in the random oracle model.
Finally, applying our PAPKE-to-PAKE compiler to the above PAPKE
schemes we exhibit the first 2-round UC PAKE’s with efficiency compa-
rable to (unauthenticated) Diffie-Hellman Key Exchange.

1 Introduction

A well-known Achilles’ heel of end-to-end encryption is the distribution and
trustworthiness of long-term cryptographic keys [38]. In particular, it is ex-
tremely hard for end users to judge the authenticity of public keys. They can
therefore easily be tricked into encrypting the data under a wrong key and
thereby lose all security. If the exchange of keys is facilitated by a third party
such as a certificate authority or a service provider, as is the case for most public-
key infrastructures (PKIs) as well as for end-to-end encrypted messengers such
as Signal, WhatsApp, or iMessage, users need to trust that third party to provide
the correct keys. Indeed, if a service provider is able to substitute its own keys



for those of the intended recipients, it can mount a man-in-the-middle (MITM)
attack and decrypt all subsequent communication.

An article in The Guardian [23] describes this trust required in the service
provider and its capability of striking MITM attacks as a “backdoor” and a
“security loophole” in the encryption scheme used by WhatsApp. This charac-
terization was repudiated in an open letter signed by over seventy cryptogra-
phers and security experts [37], stating that this is not a “backdoor”, but simply
how cryptography works. While technically correct, this explanation is not very
satisfactory from an end-user’s perspective and prompts the question: should
cryptography work like that? Is there really no way to protect encrypted com-
munication between end users from such MITM and key substitution attacks?

Ad-hoc solutions against MITM attacks. Many approaches to preventing man-
in-the-middle attacks in the context of secure end-to-end communication exist,
but they either rely on trusted third parties, or on mostly ad-hoc solutions built
on top of conventional encryption schemes, aiming to allow end-users to verify
the correctness of public keys. None of these approaches provides the degree of
usability and security that one can hope for, and which our solution provides.

Trust-on-first-use, as commonly used by Secure Shell (SSH), reduces the like-
lihood of MITM attacks, but cannot completely prevent them. The web of trust
concept [35] as used, for example, in Pretty Good Privacy (PGP), establishes
a distributed trust model via individual vetting: it requires users to endorse
associations of public keys to specific people, and to endorse other people as
trusted endorsers. Even though this approach was popular in the early days of
cryptography, it was never widely adopted, possibly because of the strong level
of involvement it requires from users to inspect each others’ keys and to issue
endorsements.

Today, the most common method to establish trust in end users’ public keys
is to let users manually verify a hash value of keys, known as a key fingerprint, us-
ing an out-of-band channel. Fingerprints are often represented in human-friendly
formats to ease verification, e.g., as digits [39], pronounceable strings [26], ASCII
art [34], or QR codes [39], but they require either physical proximity of commu-
nication partners (QR codes) or they are tedious to verify.4 A crucial problem
with key fingerprints is the far-from-optimal trade-off between security and us-
ability: Strong fingerprints with 60 decimal or 32 hexadecimal digits are simply
too long to verify by hand. Shorter fingerprints are more human-friendly but are
vulnerable to preimage attacks, allowing an adversary to generate a key with
the same fingerprint. A recent study comparing different manual key verification
mechanisms found that all were subject to attacks whose success rates ranged
between 6% and 72% [36].

Introducing a New Tool. We propose a new cryptographic primitive, Password-
Authenticated Public-Key Encryption (PAPKE), which authenticates an encryp-
tion public key using human-memorable passwords, but does so in a way which

4 Users also struggle with the notion of key fingerprints, e.g. all Telegram users in one
study [5] believed the fingerprint to be either the encryption key or a ciphertext.
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is not subject to offline dictionary attacks given the authenticated public key or
the ciphertexts encrypted using that key.

More precisely, PAPKE modifies the notion of public-key encryption so that
both the key generation and the encryption algorithms take as an additional in-
put a password, i.e. an arbitrary human-memorable string. The semantics of this
password input is that Alice, when generating her public key, implicitly authenti-
cates and “locks” this key with a password, and to encrypt a message, Bob must
use a matching password to “unlock” the authenticated public key correctly.
The correctness guarantee is that Alice decrypts the message encrypted by Bob
if Bob encrypted it using the same password that Alice used in key generation.
The notion of password-authentication of the public key which PAPKE enforces
is the following: If a man-in-the-middle attacker substitutes Alice’s public key
with its own, the confidentiality of messages which Bob encrypts under this key
is guaranteed as long as the adversary fails to guess the password shared by
Alice and Bob. Crucially, the attacker must guess this password at the time it
creates the substituted public key, and the eventual leakage of the password after
generation of the adversarial key has no impact on encryption security.

PAPKE thus enables end-to-end secure communication without relying on
a trusted party or exchanging long fingerprints on an out-of-band channel, and
instead it bootstraps security from a short human-memorizable password.

PAPKE and Offline Dictionary Attacks. The challenge of password-based schemes
is obtaining strong security based on weak secrets. In particular, such a scheme
must be resilient against offline password attacks. For PAPKE this means that
an adversary who receives an authenticated public key and the ciphertexts cre-
ated using this key cannot use offline computation to find the passwords used
to create either object. In other words, the adversary cannot use the public key
or the intercepted ciphertexts to locally test password guesses. Otherwise, the
low entropy of passwords would hardly provide any extra security: according to
NIST [14] even a 16-character human-memorizable password has only 30 bits of
entropy on average, and hence can easily be brute-forced.

To illustrate this challenge, consider a few simple but failed attempts at
constructing a secure PAPKE scheme. A natural way to password-authenticate
any information, including a public key, would be to MAC it using the (hashed)
password as a MAC key. This, however, would be subject to an offline dictionary
attack, as the attacker can locally test password guesses until it finds the one
for which the MAC verifies. More generally, any procedure which allows for
explicit verification of the authenticated public key under a password would be
subject to an offline attack. What if the key was not authenticated itself but the
encrypting party included the password in the plaintext? This would be insecure
against a man-in-the-middle attack which sends its public key to the encryptor
and decrypts it to read the encryptor’s password.

Indeed, in a secure PAPKE the authenticated public key must commit the
receiver Alice to the password used in the key generation, and the sender Bob
cannot verify this commitment explicitly, but it can create a ciphertext such
that (1) it is correct if Bob’s and Alice’s passwords match, (2) the plaintext is
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undecryptable if the two passwords differ, (3) the encryptor cannot tell which is
the case, and (4) if the two passwords do not match then no one, including Alice
who created the public key, can learn anything about Bob’s password beyond
the fact that it does not match the unique password she used to generate her
public key.

We stress that PAPKE uses passwords to strictly enhance encryption secu-
rity, i.e., for non-substituted keys, PAPKE provides standard CCA security that
does not depend on the strength of the user’s password. Thus the purpose of
the password is solely to hedge security in case the encryptor uses a substituted
key, but we stress that this hedging is applicable only if the encryptor shares a
password with the party who generates the public key.

Our Contribution. We provide a thorough study of the proposed PAPKE
primitive, and our contributions fall into the following three categories:

(Ia) Strong security notions for PAPKE. First, we formally introduce the con-
cept of password-authenticated public key encryption, and define the desired
security properties both via a universally composable (UC) functionality [17]
and a set of property-based definitions. While property-based definitions are of-
ten more intuitive, a formalization in the UC framework provides stronger and
more realistic security guarantees because it does not require any assumptions
on the password distribution and correctly models real-world phenomena such
as password reuse and making typing mistakes when entering the password. We
prove that our UC security definition implies our property-based ones, hence
proving a scheme secure in the UC setting implies its security under the more
intuitive property-based notions.

(Ib) Relation to PAKE. To better understand the strength of the PAPKE prim-
itive we compare it to the well-studied primitive of Password-Authenticated Key
Exchange (PAKE) [8, 13, 18] The relation between PAPKE and PAKE is two-
fold. First, PAPKE immediately implies a two-round PAKE: Alice and Bob can
perform password-authenticated key exchange if Alice sends to Bob a PAPKE
public key authenticated by her password, and Bob encrypts a session key using
the received key and his password. Indeed, we show that if this simple proto-
col is instantiated with any scheme satisfying our UC PAPKE notion then the
resulting protocol satisfies the strong UC notion of PAKE [18].

Regarding the other direction it might seem at first glance that any 2-round
PAKE protocol, e.g. [9, 8, 4], can generically imply a PAPKE scheme as follows:
The PAKE requester’s flow can define a PAPKE public key, and the PAKE
responder’s flow, together with an encryption of the plaintext under the estab-
lished session key, can define a PAPKE ciphertext. However, we show that this
intuition is in fact incorrect, as the non-interactive usage of encryption that is re-
quired by PAPKE is not compatible with standard PAKE security notions. This
is because PAPKE must remain secure if the encryptor uses the same public key
to encrypt multiple messages and the decryptor decrypts multiple ciphertexts
using its private key, which here would be implemented by the temporary state
of the PAKE requester. By contrast, PAKE requester flow is designed to be uti-
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lized by a single honest responder session, and the requester session is designed
to process only a single flow from the responder. Indeed, as we discuss below,
the two-round PAKE implied by PAPKE has stronger security than what is im-
plied by standard PAKE notions because it remains secure (and robust) even if
either party re-uses its state. Summing up, the relation of PAPKE and PAKE is
that PAPKE implies a 2-round PAKE with a (novel) property of security under
session state re-use.

(II) Efficient PAPKE constructions. We show two very practical constructions
that securely realize the UC PAPKE functionality. Our first construction gener-
ically builds a PAPKE scheme from a public-key encryption (PKE) scheme and
an ideal cipher: The authenticated public key is an encryption of the PKE public
key under the password, with the encryption implemented using an ideal cipher
over the space of PKE public keys. To obtain the desired UC-security, the PKE
scheme must satisfy a number of properties beyond standard CCA security, such
as key-anonymity [6] and strong robustness [1]. We show a concrete instantia-
tion of this scheme using a variant of DHIES [2] which satisfies these properties
under the so-called Oracle Diffie-Hellman (ODH) assumption. This results in a
highly-efficient construction secure under ODH in the Ideal Cipher model, which
uses 1 exponentiation for key generation, 2 for encryption, and 1 for decryption.

However, ideal ciphers over arbitrary cyclic groups, e.g. an elliptic curve,
are not so easy to implement. While generic constructions for ideal ciphers from
random oracles exist [25, 19], implementing ideal ciphers over a specific algebraic
group is not straightforward, and if not done carefully can result in timing and/or
offline password guessing attacks. Thus we also provide an alternative concrete
construction that does not rely on ideal ciphers and therefore might be easier
to implement. It uses the Fujisaki-Okamoto transform [20] of a twisted “twin-
key” ElGamal construction of independent interest. This construction uses 2
exponentiations for key generation, 2 multi-exponentiations for encryption, and
1 exponentiation and 1 multi-exponentiation in decryption, and relies on the
Decisional Diffie-Hellman (DDH) assumption in the Random Oracle Model.

(IIIa) Efficient 2-Round UC PAKE schemes. Our generic PAPKE-to-PAKE
compiler discussed above implies two highly efficient UC PAKE protocols when
instantiated with the above two PAPKE schemes. To the best of our knowledge
these are the first two-round UC-secure PAKE’s which rely on standard cyclic
groups, i.e., do not use groups with bilinear maps or other trapdoor structure,
and which resort instead to either the Ideal Cipher (IC) or the Random Oracle
Model (ROM) to achieve practical efficiency. Specifically, our results imply a UC
PAKE which uses 2 expentiations per party but relies on an ideal cipher over a
group, and a UC PAKE which uses 4 (multi)-exponentiations for the requester
and 2 exponentiations for the responder and relies on a random oracle model for
hash functions. Note that the first scheme matches and the second scheme comes
very close to the 2 exponentiations/party cost of unauthenicated Diffie-Hellman
Key Exchange, with is the minimum cost for PAKE one can reasonably expect.
The closest efficiency-wise UC PAKE we know of is by Abdalla et al. [3], which
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was shown secure under comparable assumptions, but which requires 3 message
flows while our UC PAKE’s use only 2 flows.

Beyond improving PAKE itself, a round-reduced PAKE yields round im-
provements in other protocols, e.g. the UC asymmetric PAKE (aPAKE) [21] for
client-server authentication where the server keeps a hash of the client’s pass-
word, can be realized by efficient compiler from UC PAKE [21, 27]. Shaving off
a round in the underlying PAKE implies the same round-reduction in aPAKE’s
created by these generic compilers.

(IIIb) PAKE’s with session re-use security. As we argued in (Ib) above, the
PAPKE-to-PAKE compiler results in a 2-round PAKE which has novel secu-
rity and reliability properties which follow from the fact that PAPKE enforces
ciphertext security when the same public key is used to encrypt multiple mes-
sages. Recall that the PAKE requester message is a PAPKE public key, and the
PAKE responder message is a PAPKE ciphertext encrypting a random session
key under this public key, and both the public key and the ciphertext are created
using the passwords of resp. the requester and the responder. (See Section 3.1
for the full description of this PAKE.) The reliability property of this PAKE is
that the responder can re-use the requester message flow over multiple sessions,
each of them generating a response, and for any (and all) of these responses
that reaches the requester, the requester can use the same single session which
generated the first message flow to generate multiple sub-sessions, each of which
establishes a session key with the corresponding responder session. The security
property is that each of these keys is secure even though they all re-used the
single requester session state and the single requester message flow. The stan-
dard model of PAKE security does not guarantee security in this case, but a
PAKE which is secure in this way can be beneficial to higher-level applications.
For example it can help handle communication faults: A responder session which
believes that its response has not been delivered correctly can safely respond to
the same requester message again, and a requester who gets multiple responses
can securely spin off a subprocess for each of them without re-starting a new
session from scratch.

Roadmap. In Section 2 we define PAPKE as a strengthened version of public-
key encryption, using both property-based definitions and an ideal functional-
ity in the UC framework. Section 3 discusses the relation between PAKE and
PAPKE, and shows a generic compiler building an efficient UC PAKE from
any UC PAPKE, and an argument that the converse is not true, i.e., it is un-
likely that PAKE implies PAPKE. Section 5 presents our two highly efficient UC
PAPKE schemes, and Section 4 introduces the building blocks and assumptions
needed in these constructions. In Section 6 we present the description of two
highly-efficient concrete 2-round UC PAKE protocols obtained via our generic
PAKE compiler of Section 3 applied to the PAPKE schemes of Section 5.
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2 Security Model for PAPKE

In this section we introduce our security models for password-authenticated en-
cryption. A peculiarity of formal security definitions for password-based primi-
tives is that they must model the inherent probability of an adversary correctly
guessing the low-entropy password. Property-based definitions [8] (sometimes
also called game-based definitions) typically do so by requiring that the ad-
versary’s probability of winning the security game is negligibly more than a
(non-negligible) threshold determined by its number of online queries and the
entropy of the distribution from which the password is chosen. Composable se-
curity definitions [18] such as those in Canetti’s Universal Composability (UC)
framework [17], on the other hand, model the possibility of guessing the password
directly into the ideal behavior of the primitive.

As argued by Canetti et al. [18], composable definitions provide stronger and
more realistic security guarantees than property-based ones, because they do not
make any implicit assumptions about the password distribution and correctly
model real-world phenomena such as password reuse and typos while entering
the password. Nevertheless, property-based definitions are often more intuitive
and easier to understand than UC definitions. We therefore present both types
of definitions: we first show the property-based PAPKE security notions in Sec-
tion 2.1, and then the UC notion of PAPKE in Section 2.2. Finally, we prove
that our UC security definition implies our property-based ones.

Syntax and High-Level Properties. Before we dive into our formal definitions,
we define the syntax of PAPKE schemes and introduce their desired security
properties. To this end, we first define the algorithms of a PAPKE scheme in
the spirit of property-based definitions, i.e., there is no session identifier sid in
the inputs to the algorithms, and the secret key is an output of key generation
algorithm and an input to the decryption algorithm.

Definition 1 (PAPKE). Let D be a dictionary of possible passwords, and M
be a message space. A password-authenticated public-key encryption scheme is a
tuple of algorithms PAPKE = (KGen,Enc,Dec) with the following behavior:

KGen(κ, pwd) →R (apk , sk): on input a security parameter κ and password
pwd ∈ D, output an authenticated public key apk and a secret key sk.

Enc(apk , pwd ,m) →R c: on input an authenticated public key apk, password
pwd and a message m ∈M, output a ciphertext c.

Dec(sk , c) → m: on input a secret key sk and ciphertext c, output a message
m ∈M∪ {⊥} where ⊥ indicates that the ciphertext is invalid.

For correctness we require that for any password pwd ∈ D, key pair (apk , sk)←R

KGen(κ, pwd), and ciphertexts c←R Enc(apk , pwd ,m), we have thatm = Dec(sk , c).

Informally, the desired security properties of PAPKE schemes are:

Resistance against Offline-Attacks: None of the values that are (partially)
derived from a password allows offline dictionary attacks on the passwords
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that were used to generate them: The authenticated public key apk does
not leak anything about the setup password pwd , and ciphertexts c formed
under apk do not leak any information about the password attempt pwd ′

that was used in the encryption. The only and inevitable information leaked
is that the party who holds the secret key sk corresponding to apk learns
whether pwd ′ = pwd , because that holds if and only if Dec(sk , c) 6= ⊥.

CCA Security: Ciphertexts encrypted under an honestly generated authenti-
cated public key apk hide the encrypted message from any adversary who
doesn’t know the secret key. This property is modeled in the standard CCA
setting, and it holds even if the adversary knows all passwords used.

Security against Man-in-the-Middle (MITM) Attacks: The choice of an
authenticated public key apk∗ commits the adversary to some single pass-
word guess pwd∗, and all ciphertexts encrypted under apk∗ using any pass-
word pwd 6= pwd∗ hide the encrypted message. The only available attack is
an online attack, where the adversary guesses password pwd used by the hon-
est encryptor and generates apk∗ so that it commits to pwd∗ = pwd . Thus
the MITM attack gains effectively one password guess per each adversarial
public key apk∗ which the honest party uses in encryption.

Long-Term Security: The security of encryptions under an adversarially cho-
sen key apk∗ is preserved in a forward-secure manner because it holds even
if the adversary (eventually) learns the encryptor’s password pwd 6= pwd∗.

Ciphertext Authenticity: The password also guarantees authenticity of ci-
phertexts. That is, an adversary who knows an honestly generated key apk ,
but not the password pwd (or the secret key sk), cannot create valid cipher-
texts, i.e., ciphertexts that decrypt under sk into some message m 6= ⊥.

2.1 Property-Based Security Definition

We formalize the above intuitive security requirements using two game-based
definitions, namely indistinguishability against chosen-ciphertext and chosen-key
attack (IND-CCKA), and ciphertext authenticity (AUTH-CTXT). For the sake of
brevity, we will refer to property IND-CCKA as the privacy property.

Privacy (IND-CCKA). Our notion of indistinguishability against chosen-cipher-
text and chosen-key attacks (Def. 2) formalizes the first four properties sketched
above. It can be seen as an extended version of the standard CCA notion that
also incorporates active, man-in-the-middle attacks. We start by describing the
passive CCA notion for our setting and then explain how defense against active
attacks can be incorporated into it.

Passive Attacks. First, the adversary A receives the authenticated public key
apk of a challenge key pair (apk , sk) ←R KGen(κ, pwd) that gets generated for
a password pwd , chosen at random in some password space D. The adversary
is then given access to a “left-or-right” encryption oracle LoR which takes two
messages m0,m1 and returns an encryption Cb ←R Enc(apk , pwd ,mb) for a
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random choice of the bit b, and the task of the adversary is to determine this
bit with probability non-negligibly better than random guessing. Equipped also
with a decryption oracle for the corresponding secret key sk , this captures CCA
security. We stress that this property does not rely on the password at all. In
fact, the adversary is allowed to learn the password via a Reveal query.

Active Attacks. The standard CCA notion only guarantees indistinguishability
for ciphertexts that are generated under the honest public key apk . PAPKE
extends these guarantees to active attacks where the adversary tricks an honest
encryptor into using his malicious public key apk∗ instead of the real one. This
is modeled in our IND-CCKA game by letting the adversary provide any public
key apk∗ as additional input to the LoR oracle. When the adversary provides
a key apk∗ 6= apk to the LoR oracle he receives Cb ←R Enc(apk∗, pwd ,mb).
Note that the password pwd used in the encryption by the LoR oracle is the
“honest” one that was used to derive the challenge public key apk . As long as
the adversarial key apk∗ was not generated using the “honest” password, the
ciphertext Cb should not leak any information about the encrypted message mb.

Clearly, for such active attacks we must consider the possibility that the ad-
versary correctly guesses the password pwd when generating apk∗, which allows
him to decrypt the challenge ciphertext for apk∗ and trivially win the security
game. As every query to the LoR oracle where apk∗ 6= apk could be a potential
password-guessing attack, we bound A’s advantage in the formal definition by
the number of such online guesses over the size of the password dictionary. The
LoR oracle is not the only chance for A to try to guess the password though – if
the adversary computes a ciphertext C∗ using a guessed password pwd∗ and the
honest apk , then the decryption oracle will return m 6= ⊥ only if pwd∗ = pwd .
Thus, the number of online password guesses considered in the active attack
bound is the sum of A’s decryption queries and the number of bad apk∗’s that
A used towards the LoR oracle.

Online vs Offline Password Guessing. We stress that such online guessing at-
tacks are unavoidable for active attacks and much less harmful than offline at-
tacks against the password: every online attack requires the participation of an
honest encryptor or decryptor, which naturally slows down the password guesses
and allows an honest party to detect and throttle the attack. For instance, an
honest user being notified that the public key of his friend changes on a daily
basis will get suspicious and stop encrypting under these keys. Furthermore, the
online guessing attacks only impact the achievable security for active attacks,
but not for the passive attacks described above. This is modeled in our definition
by checking if qapk∗ = 0, i.e., all LoR queries were made for the honest public
key apk , in which case the experiment reduces to standard CCA security and
the desired bound becomes independent of the number of A’s oracle queries.

Long-Term Security. Finally, confidentiality of already generated ciphertexts
should not be harmed by a subsequent exposure of the encryptor’s password.
We therefore grant A access to a Reveal oracle which will return the password
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pwd that was used to derive apk and that is used in the LoR oracle. The Reveal
oracle can be queried at any time in the game. However, after the adversary
learns the password via a reveal query, he is no longer allowed to query the
LoR oracle under malicious public keys apk∗ 6= apk , as he could trivially win
otherwise. He can still get challenge ciphertexts under the honest public key apk
though, modeling that passive security does not rely on the password at all.

We describe this privacy experiment formally as follows:

ExperimentExpIND-CCKA
A,PAPKE (κ):

pwd ←R D, L← ∅, (apk , sk)←R KGen(κ, pwd)
b←R {0, 1}, revealed← 0
b′ ←R ALoR(b,pwd,·,·,·),Dec(sk,·),Reveal(pwd)(apk)
oracle LoR on input a public key apk∗ and
two messages m0 and m1 where |m0| = |m1|

if apk∗ 6= apk and revealed = 1, return ⊥
else, compute C ←R Enc(apk∗, pwd ,mb),

if apk∗ = apk add C to L
return C

oracle Dec on input a ciphertext C /∈ L :
return m← Dec(sk, C) where m ∈M∪ {⊥}

oracle Reveal: return pwd and set revealed← 1
return 1 if b′ = b

Definition 2 (IND-CCKA). A PAPKE scheme is called indistinguishable under
chosen-ciphertext and key attacks if for all efficient adversaries A, and any
password space D it holds that

Pr[ExpIND-CCKA
A,PAPKE (κ) = 1] ≤ 1

2
+

1

2
· qapk

∗ + qDec

|D|
+ negl(κ)

for a negligible function negl, where qapk∗ denotes the number of public keys
apk∗ 6= apk that A used in its queries to the LoR oracle, and where:

– if qapk∗ > 0, then qDec is the number of A’s queries to the Dec oracle while
revealed = 0 (active/MITM security)

– if qapk∗ = 0, then qDec ← 0 (passive/CCA security)

In the IND-CCKA definition above we set qDec = 0 for passive attacks, i.e. if
qapk∗ = 0, then the security bound is 1/2 + negl(κ). In other words, if A does
not stage any MITM attack, i.e. it never substitutes the challenge public key
apk with apk∗ 6= apk , then IND-CCKA is like standard CCA-security of PKE,
i.e. A can make any number of encryption and decryption queries and they will
not impact its success probability.

Authenticity (AUTH-CTXT). The ciphertext authenticity property (Def. 3)
formalizes that the adversary A, given apk generated for password pwd chosen at
random in dictionary D, cannot create a valid ciphertext except for probability
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(1 + qapk∗ + qDec)/|D|, where qapk∗ is the number of encryption queries A makes
under bad and distinct keys apk∗ 6= apk , and qDec is the number of decryption
queries. The reason that each decryption query and each encryption query for
apk∗ 6= apk can both serve as password-guessing oracles are explained in the
privacy game discussion above. Note that here we do not ever let A learn pwd
because knowing pwd suffices to form a valid ciphertext. The additional constant
1 in the password-guessing count 1 + qapk∗ + qDec is included because the final
ciphertext A creates, can itself be used to guess a password.

The authenticity experiment is defined as follows:

ExperimentExpAUTH-CTXTA,PAPKE (κ):
pwd ←R D, L← ∅, (apk , sk)←R KGen(κ, pwd)
C∗ ←R AEnc(pwd,·,·),Dec(sk ,·)(apk)
oracle Enc on input a key apk∗ and message m :

compute C ←R Enc(apk∗, pwd ,m)
if apk∗ = apk add C to L
return C

oracle Dec on input a ciphertext C :
return m← Dec(sk, C), where m ∈M∪ {⊥}

return 1 if Dec(sk , C∗) 6= ⊥ and C∗ /∈ L

Definition 3 (AUTH-CTXT). A PAPKE scheme provides authenticity of ci-
phertexts if for all efficient adversaries A, and any password space D it holds
that

Pr[ExpAUTH-CTXTA,PAPKE (κ) = 1] ≤ qapk∗ + qDec + 1

|D|
+ negl(κ)

for a negligible function negl, where qapk∗ is the number of bad keys apk∗ 6= apk
that A used in queries to the Enc oracle and qDec is the number of queries to the
Dec oracle.

2.2 Security Definition of PAPKE in the UC Framework

It is well-known that property-based definitions have limitations when it comes
to capturing natural password distributions and usages: they assume that honest
users choose their passwords at random from known, fixed, independent distri-
butions, whereas in reality users tend to share or reuse passwords and also leak
information related to their passwords.

We therefore also formalize PAPKE security in the Universal Composability
(UC) framework [17] which models passwords more naturally. In UC, one defines
security by describing an ideal functionality F that performs the desired task
in a way that is secure-by-design. A real-world cryptographic scheme is then
said to securely realize a certain ideal functionality F , if an environment Z
cannot distinguish whether it is interacting with the real scheme or with F
and a simulator SIM. The crux is that all inputs to honest parties, such as their
passwords, are provided by the environment which avoids assumptions regarding
the distributions, dependencies, or leakages of user passwords.
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1. Key Generation. On input (KEYGEN, sid , pwd) from party P:

– If sid 6= (P, sid ′) or a record (keyrec, sid , ·, ·) exists, ignore.

– Send (KEYGEN, sid) to A and wait for (KEYCONF, sid , apk ,M) from A.

– If a record (badkeys, sid , apk j , ·) with apk j = apk exists, abort.

– Create record (keyrec, sid , apk , pwd) and output (KEYCONF, sid , apk) to P.

2. Encryption. On input (ENCRYPT, sid , apk ′, pwd ′,m) from party Q where m ∈M:

– If a record (keyrec, sid , apk , pwd) with apk = apk ′ exists and P (from sid = (P, sid ′)) is
honest, then do the following:

• Send (ENC-L, sid , |m|) to A and wait for (CIPHERTEXT, sid , c) from A.

• Abort if a record (encrec, sid , ·, c) for c already exists.

• Create record (encrec, sid ,m′, c) with m′ ← m if pwd ′ = pwd , and m′ ← ⊥ else.

– Otherwise do the following:

• If a record (badkeys, sid , apk j , pwd j) with apk j = apk ′ exists, set pwd∗ ← pwd j .

• Else, send (GUESS, sid , apk ′) to A, wait for (GUESS, sid , pwd∗) from A and create
record (badkeys, sid , apk ′, pwd∗).

• If pwd ′ = pwd∗, send (ENC-M, sid ,m) to A, wait for (CIPHERTEXT, sid , c) from A.

• If pwd ′ 6= pwd∗, send (ENC-L, sid , |m|)) to A, wait for (CIPHERTEXT, sid , c) from A.

– Output (CIPHERTEXT, sid , c) to Q.

3. Decryption. On input (DECRYPT, sid , c) from party P:

– If sid 6= (P, sid ′) or no record (keyrec, sid , apk , pwd) exists, ignore.

– If a record (encrec, sid ,m, c) for c exists, where m ∈M∪ {⊥}:
• Output (PLAINTEXT, sid ,m) to P.

– Else (i.e., if no such record exists):

• Send (DECRYPT, sid , c) to A and wait for (PLAINTEXT, sid ,m, pwd∗) from A.

• If pwd∗ = pwd , set m′ ← m and m′ ← ⊥ otherwise.

• Create record (encrec, sid ,m′, c).

• Output (PLAINTEXT, sid ,m′) to P.

Fig. 1. Password-Authenticated PKE (PAPKE) functionality FPAPKE parametrized
with message space M.

Ideal Functionality FPAPKE. We define our functionality FPAPKE, Figure 1,
that models the ideal behavior of a PAPKE scheme in the UC framework. FPAPKE

is an extension of the functionality FPKE for standard public-key encryption [17,
15], and improves the confidentiality and authenticity guarantees by leveraging a
(shared) password. For ease of comparison between FPKE and FPAPKE, we present
the standard functionality FPKE adapted to our notation in Appendix B. We
assume static corruptions in our paper, which is the standard in the context of
PKE for which PAPKE is an extension of. Considering adaptive corruptions for
PKE hardly increase practical security but requires non-committing ciphertexts
which is not achievable in the standard model [33]. We also stress that our model
protects against adaptive corruption of passwords, which is a more important
threat: PAPKE ensures forward security of past encryptions under malicious
keys, even if the password used in encryption is subsequently leaked.

In the following we discuss the intuition behind functionality FPAPKE and
explain how it enforces the desired PAPKE security properties.
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Interfaces and Parties. The functionality provides three interfaces: KEYGEN,
ENCRYPT and DECRYPT which resemble the PAPKE algorithms introduced
before. As required by the UC framework, all interfaces get a globally unique
session identifier sid as input, which allows us to focus the analysis on a single
scheme instance. We use session identifiers of the form sid = (P, sid′) for some
party P and a unique string sid ′. The KEYGEN and DECRYPT interface are only
accessible to the party P that is specified in the sid , whereas the ENCRYPT
interface can be invoked by any party Q. This reflects the public-key setting:
everyone can encrypt, but only the designated receiver of a message can decrypt.
The high-level idea is to model secure encryption by letting the functionality only
output dummy ciphertexts c that are independent of the plaintext m. Decryption
is realized by keeping internal records that link these dummy ciphertexts to the
encrypted messages.

Security Against Active & Passive Attacks. As in FPKE, the ideal functionality
for public key encryption, we let the adversary A provide the dummy ciphertexts
c, but extend the cases where he has to do this blindly, i.e., without learning the
plaintext. In FPKE, the adversary learns the plaintext whenever a party Q calls
the ENCRYPT interface for a wrong key pk ′ 6= pk , i.e., not the key pk that was
registered by the KEYGEN interface. In our FPAPKE definition this is no longer
the case, and A only receives the plaintext when a message is encrypted under
a wrong key apk ′ 6= apk and A correctly guesses the encryption password pwd ′

used by the encryptor Q.

If A’s password guess is incorrect, he does not receive the message but only
the length of the plaintext. Thus, if A doesn’t know the password, FPAPKE treats
encryption under a malicious apk ′ the same way as encryption under the correct
and “honest” public key. As the adversary has to provide c without having
learned m, it follows that c cannot leak information about m either. Note that
we only give the adversary a single password guess per bad apk ′ and also ensure
that a bad apk ′ can never become a good one (via the KEYGEN interface).

Authenticity. The functionality FPAPKE realizes decryption via internal records
(encrec, sid ,m, c) that it creates whenever the ENCRYPT interface is invoked on
the correct key apk . Upon a DECRYPT call for some ciphertext c, FPAPKE either
retrieves m from the record or, if no record exists, asks the adversary to provide
a plaintext.

In contrast to FPKE, our functionality FPAPKE guarantees that decryption can
only succeed if the ciphertext is generated using the correct password. That is,
if an ENCRYPT call is made for an incorrect password, then an internal record
gets still created, but with m← ⊥. Likewise, for any decryption of a ciphertext
c for which no record exists, i.e., c was created outside of the functionality, the
adversary is asked to provide a password guess pwd∗ along with the plaintext
m. Only if the password guess matches the setup password, this message gets
returned to P.
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Modeling Password Compromise. Finally, we stress that our FPAPKE definition
captures password compromise, even though it does not show up in a dedicated
interface: In the UC framework, inputs to honest participants are provided by
the environment. That is, the environment is always privy of the setup password
of the honest users, as it chooses them. The environment can pass arbitrary
information to the adversary, including the password, so there is no need to
provide an additional reveal interface. FPAPKE defines the impact of knowing or
guessing the correct password when encrypting messages.

FPAPKE ⇒ IND-CCKA + AUTH-CTXT. Our ideal functionality FPAPKE im-
plies our property-based definitions, in the sense that any scheme ΠPAPKE =
(KEYGEN,ENCRYPT,DECRYPT) that securely implements the FPAPKE func-
tionality in the UC framework is also IND-CCKA and AUTH-CTXT secure (where
these definitions are adapted to the syntax of the UC algorithms KEYGEN,
ENCRYPT, and DECRYPT). Therefore our proofs of UC security in later sections
imply security under the property-based notions.

Theorem 1. Any PAPKE scheme ΠPAPKE that securely realizes FPAPKE is also
IND-CCKA and AUTH-CTXT secure.

The proof of the above theorem is deferred to Appendix A.

3 Relation between PAPKE and PAKE

PAPKE, the new cryptographic primitive we propose, is closely related to Pass-
word Authenticated Key Agreement (PAKE) [8, 13, 18]. Specifically, we show
that it is easy to build a (UC-secure) two-round PAKE scheme from a (UC-
secure) PAPKE scheme, but that while the converse looks like it should be true
at first sight, it is not true in general, because PAPKE has stricter properties
than a standard PAKE. In particular, we give a counterexample of a secure
two-round PAKE scheme that, when converted into a PAPKE scheme in the
straightforward fashion, yields an insecure PAPKE scheme. Indeed, PAPKE can
be thought of as a two-round PAKE with a novel property of security under
session state re-use, which to the best of our knowledge has not been observed
and provably realized before.

3.1 Constructing PAKE from PAPKE

We show that any UC-secure PAPKE can be converted into a two-round UC-
secure PAKE. (We include the standard UC PAKE security notion defined via
an ideal functionality FPAKE [18] in Figure 10 in Appendix B.) This construc-
tion is shown in Figure 2, and it is fairly simple: The initiator Pi generates an
authenticated public key apk from the input password pwd and sends it to Pj .
The responder Pj , given its password pwd ′ and the received public key apk ,
picks a random session key k ←R {0, 1}κ, and responds to Pi with an encryption
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of k under apk and pwd ′. Pi receives key k by decrypting the received cipher-
text, or outputs ⊥ if the decryption fails. Note that all communication is done
over an insecure channel, fully controlled by the adversary. In particular, an ad-
versary can replace Pi’s public key and/or Pj ’s ciphertext. However, PAPKE
security implies that neither Pi’s public key or Pj ’s ciphertext reveal anything
about passwords, resp. pwd and pwd ′, and the only attack the adversary can
stage is an on-line guessing attack, because each substituted public key apk∗ or
ciphertext c∗ commits the adversary to a single password guess pwd∗, and is
guaranteed to fail (e.g. Pj fails to encrypt anything useful under apk∗ or Pi fails
to decrypt c∗) unless the guessed password pwd∗ matches the password of resp.
Pj or Pi.

Party Pi on input (Pi,Pj , pwd , client) Party Pj on input (Pj ,Pi, pwd ′, server)

(sk , apk)← PAPKE.KGen(κ, pwd)
-apk

choose k ←R {0, 1}κ
c← PAPKE.Enc(apk , pwd ′, k)

output k
� c

m← PAPKE.Dec(sk , c)
if m 6= ⊥, set k ← m; else k ←R {0, 1}κ
output k

Fig. 2. Two-round PAKE protocol PAPKE-2-PAKE assuming a UC-secure PAPKE =
(KGen,Enc,Dec). Note that the messages are sent over an insecure channel, i.e., an
adversary is able to see and modify both apk and c.

The proof of the following theorem is deferred to Appendix C:

Theorem 2. If PAPKE realizes the UC PAPKE functionality FPAPKE of Figure
1, Section 2.2), then the PAPKE-2-PAKE scheme shown in Figure 2 realizes the
UC PAKE functionality FPAKE shown in Figure 10, Appendix B.

3.2 An intuitive PAKE-2-PAPKE compiler, and why it doesn’t work

It turns out that the intuitive approach of building PAPKE from two-round
PAKE does not work due to subtle differences in the security notions of both
primitives. Indeed, PAPKE has some security properties which are stronger than
PAKE, and this in particular implies that the PAPKE-to-PAKE compiler of Sec-
tion 3.1 adds a new security property to the resulting PAKE. (We discuss that
PAKE security property in Section 3.3 below.) For the ease of exposition, we
state our results for the game-based representations of PAKE and PAPKE in-
stead of using their UC variants, and refer to parties Pi and Pj as A and B
respectively. On a first glance, it seems reasonable to generically build a PAPKE
scheme from any two-round PAKE protocol, e.g. [9, 8, 4]. Specifically, any two-
round PAKE protocol 〈(A1,A2) 
 (B1,B2)〉 can be abstracted as follows:
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Party A (input pwd ) Party B (input pwd ′ )

(stateA,mA)←R A1(κ, pwd) -
mA

�
mB (stateB ,mB)←R B1(κ, pwd ′)

kA ← A2(stateA,mB) kB ← B2(stateB ,mA)

The natural approach to constructing PAPKE would combine a two-round
PAKE with an authenticated encryption scheme AE: The PAKE message mA

from A would be A’s static authenticated public key apk , and to encrypt message
m under A’s key apk = mA any party could complete the two-round PAKE
protocol in the role of B and append the AE encryption of m under the derived
session key kB to B’s PAKE message mB . For decryption, A uses mB to complete
her side of the PAKE protocol to derive the same session key kA = kB (if
pwd = pwd ′) and uses kA to decrypt the attached ciphertext. More formally,
given a 2-round PAKE = 〈(A1,A2) 
 (B1,B2)〉 and authenticated encryption
AE = (AE.Enc,AE.Dec) sharing the same key space K, one could consider the
following PAPKE construction:

PAPKE.KGen(κ, pwd):
run (stateA,mA)←R A1(κ, pwd), return (sk ← stateA, apk ← mA)

PAPKE.Enc(apk , pwd ′,m):
run (stateB ,mB)←R B1(κ, pwd ′) and kB ← B2(stateB , apk)
encrypt c← AE.Enc(kB ,m) and return c′ ← (mB , c)

PAPKE.Dec(sk , c′):
parse c′ = (mB , c) and sk = stateA
get kA ← A2(stateA,mB) and return m← AE.Dec(kA, c)

Intuitively, this should yield a secure PAPKE if PAKE is secure and AE is a
secure authenticated encryption scheme. However, this generic construction uses
PAKE in a way that is not covered by its security definition: Whenever party A
decrypts a PAPKE ciphertext it effectively re-uses the same local PAKE session
state stateA (and the same first-round message mA) across multiple PAKE ses-
sions. Indeed, this gap can be exploited to craft special PAKE and AE schemes
that are secure by themselves but result in an insecure PAPKE when used in this
natural compiler.

Counterexample: PAKE + AE 6=⇒ PAPKE. The basic idea is that we extend a
secure PAKE scheme such that it allows a malicious party to recover A’s input
password pwd when A reuses the same message mA (or rather internal state
stateA) multiple times in different PAKE executions. For the sake of simplicity
we assume that pwd is encoded as a κ-bit long string.

PAKE′ : Given a secure scheme PAKE (and a secure PRG : {0, 1}κ → {0, 1}2κ) we
derive the scheme PAKE′ described in Figure 3. In our modified scheme we steer
A’s behavior with two bits b = b1b2 that get prepended to B’s round message
mB . An honest party B will always use b = 00 for which A will normally execute
the PAKE protocol and both parties extend their key via a PRG. A malicious
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Party A (input pwd ) Party B (input pwd ′ )

A′1(κ, pwd) :

(stateA,mA)←R A1(κ, pwd)
r ←R {0, 1}κ
state ′A ← (stateA, r, pwd)
return (state ′A,mA)

-mA B′1(κ, pwd ′) :

(stateB ,mB)←R B′1(κ, pwd ′)
return (stateB ,m

′
B ← 00||mB)

�m
′
B = 00||mB

A′2(state ′A,m
′
B) : B′2(stateB ,mA) :

parse state ′A = (stateA, r, pwd), m′B = b||mB kB ← B2(stateB ,mA)
choose r′ ←R {0, 1}κ output k′B ← PRG(kB)
if b = 00: kA ← A2(stateA,mB), output k′A ← PRG(kA)
if b = 10: output k′A ← (r||r′)
if b = 11: output k′A ← (r ⊕ pwd ||r′)

Fig. 3. PAKE′ construction for our counterexample.

user B can set b1 = 1 that invokes A in a “bad” mode in which A either returns
or (r||r′) or (r⊕pwd ||r′) as session key. While r′ is chosen fresh for every second
round message, r is a random value that gets chosen at the beginning of every
PAKE session and becomes part of A’s state stateA. In the standard PAKE
context, where a malicious B can run only a single session with A using the same
state r, our modified PAKE′ scheme is as secure as PAKE. However, it loses all
security if an adversary can force an honest party to reuse its state stateA (and
thus r) in multiple sessions, as it then learns pwd .

AE′ : We also change a secure authenticated encryption scheme AE = (AE.Enc,
AE.Dec) into the following version AE′ with keys whose length is 2 · κ.

AE′.Enc(k,m): parse k = kL||kR and return c′ ← (0, c) where c←R AE.Enc(kR,m)
AE′.Dec(k, c): parse k = kL||kR and c′ = (b, c),

if b = 0 then return m← AE.Dec(kR, c); else return kL

When used “correctly”, AE′ will always use the right half of the key and behave
exactly as AE. Only when decryption is invoked on special ciphertexts, it will
reveal the left part of the key (which in combination with PAKE′ will be the
masked password or the random mask). Clearly, AE′ is still a secure encryption
scheme, as the left halve of the key never gets used.

While PAKE′ and AE′ are secure building blocks by itself, the derived PAPKE
scheme would not satisfy our IND-CCKA notion. An adversary simply makes two
decryption queries for m′B = 10‖mB and m′B = 11‖mB upon which he learns
both r and r ⊕ pwd and can recover the password pwd .

3.3 Implications for UC PAKE protocols

We discuss the main conclusions we draw from the two technical facts above.

First 2-round UC PAKE’s competitive with game-based PAKE’s. In
Section 6.2 we include two highly efficient UC PAKE protocols by instantiating
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the PAPKE-2-PAKE compiler with the PAPKE constructions of Section 5. To
the best of our knowledge these are the first 2-round UC PAKE’s which rely
on standard cyclic groups with efficiency comparable to the Diffie-Hellman key
exchange in the IC or RO model. While UC PAKE can be achieved using even
1 (simultaneous) round of communication, all 1-round UC PAKEs we know, e.g.
[32, 31], use groups with bilinear maps and are significantly costlier. Thus prac-
titioners are likely to resort to constructions which require IC or ROM models
but give much better concrete efficiency.

Concretely, we show two 2-round UC PAKE protocols: PAKE-IC-DHIES, se-
cure under Oracle Diffie-Hellman (ODH) assumption (see Section 4) in the IC
model which uses 2 exponentiations per party, and PAKE-FO, secure under DDH
in ROM which uses 4 (multi-)exps for the requester and 2 for the responder.
These schemes almost match the efficiency and assumptions used by 2-round
PAKE’s that satisfy only game-based PAKE security notions [8, 13, 4], e.g. 2
exps per party under DDH in ROM in [4]. By contrast, the previously known
UC PAKE shown secure under comparable assumptions, specifically DDH in IC
model, by Abdalla et al. [3], requires 3 rounds, while our UC PAKE’s use only
2 rounds, thus matching the round complexity of efficient game-based PAKE’s.

The Universally Composable notion of PAKE security [18] has long been
recognized as stronger than the game-based notions [8, 13], not only because
it implies concurrent security and can be used in protocol composition, but
also because, unlike the game-based notions, the UC PAKE implies security
for non-uniform password distributions, password re-use, correlated passwords,
misstyped passwords, and any other forms of information leakage. However,
there has been an efficiency and round-complexity gap between UC PAKE’s
and PAKE’s shown secure only under game-based notions, with the 3-round
2-exp/party UC PAKE of Abdalla et al. [3] coming closest to the 2-round 2-
exp/party game-based PAKE’s, e.g. [8, 13, 4]. Bridging this gap allows practition-
ers to adopt solutions which provably achieve these strong security properties,
i.e. a UC PAKE, without paying a penalty in computation or round complexity.

PAKE with security on session re-use. As we argued in section 3.2 above,
the reason the compiler from 2-round PAKE to PAPKE does not work is that a
standard PAKE security model does not extend to the case of the requester party,
A, re-using the local state stateA of a single PAKE session across many sessions,
each of which would derive a session key kA from same state kA but potentially
different responder messages mB . By contrast, PAKE created from the secure
PAPKE in Figure 2 does have this property: The requester party Pi can use
the same local state, which is the PAPKE secret key sk , across many sessions,
deriving kA ← PAPKE.Dec(sk , c) on any number of responder messages c. By the
same token, the responder Pj in this PAKE protocol is free to re-use Pi’s first-
round message apk in multiple sessions, because PAPKE ciphertexts created in
each such session are all secure, and their plaintexts can all be used as session
keys. Note that we do not formally model this “session state re-use” PAKE
security property, but the security of this usage of PAPKE follows immediately
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from PAPKE security definition, because CCA security of PAPKE implies that
the public key pair (sk , apk) can be used to securely encrypt multiple messages.

Indeed, this shows that protocol PAPKE-2-PAKE is a secure 2-round PAKE
with security under re-use of requester’s session state across multiple sessions.
This novel security property can simplify PAKE implementations in practice
because it means that it is safe for the responder to re-use the requester message
flow over several sessions, and it is safe for the requester to use the same session
state to process each of such responses. This makes it easier for the higher-level
application to handle faults, because both parties can keep their session infor-
mation, the session state stateA = sk for the requester and the requester’s first
message mA = apk for the responder, and re-use them in case of communication
faults instead of re-starting a new session from scratch.

Applications to Higher-Level Protocols. The 2-round UC PAKE’s yield
round improvements for higher-level protocols that rely on UC PAKE. For ex-
ample, in the client-server setting for password authentication the server does
not hold the client’s password itself, but only password hashes, so that server
compromise can reveal passwords only via an explicit offline dictionary attack.
This setting, known as asymmetric, a.k.a. augmented or verifier-based, PAKE
(aPAKE), was formalized first in the game-based approach by Boyko et al. [13]
and then in the UC framework by Gentry et al. [21]. Known UC aPAKE’s include
two PAKE-to-aPAKE compilers of [21, 27] which add 1 exp/party and resp. 2
or 1 message flows to UC PAKE, the 1 round (of simultaneous communication)
aPAKE of [30] which relies on bilinear maps and is significantly more expensive,
and a 3-round and 3 - 4 exp/party aPAKE scheme OPAQUE of [28] based on the
One-More Diffie-Hellman (OM-DH) assumption.5 Using our 2-round PAKE’s in
the compiler of [27] gives 3-round aPAKE’s which use resp. 5 - 3 exp/party
based on DDH or 3 exp’s based on ODH. We note that [28] constructs a strong
aPAKE, which strengthens aPAKE’s by eliminating the benefits of precompu-
tation in an offline dictionary attack, while the aPAKE implied by PAKE-FO
and the compiler of [27] would not have that property. On the other hand, the
aPAKE construction of [28] requires an interactive OM-DH assumption while
the aPAKE implied by PAKE-FO and the compiler of [27] requires only DDH.

4 Building Blocks in PAPKE Constructions

We include the building blocks and assumptions needed in the PAPKE construc-
tions of Section 5. The first construction relies on generic public-key encryption
with additional key-anonymity and robustness properties, while the second con-
struction is based on the Decisional Diffie-Hellman assumption.

Public-Key Encryption. We recall the standard notion of public-key encryp-
tion scheme, PKE = (KGen,Enc,Dec), which consists of a key generation al-

5 In the original publication [29] OPAQUE was presented as a 2-round protocol, but
its security as a realization of the UC aPAKE functionality seems to require a third
round with an explicit client-to-server authentication.
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gorithm that on input a security parameter outputs a key pair (pk , sk) ←R

PKE.KGen(κ), an encryption algorithm that on input the public key and a
message outputs a ciphertext c ←R PKE.Enc(pk ,m), and a decryption algo-
rithm that on input the secret key and a ciphertext outputs a message m ←
PKE.Dec(sk , c) or outputs ⊥ to indicate that the ciphertext is invalid. Correct-
ness requires that PKE.Dec(sk ,PKE.Enc(pk ,m)) = m with probability one for
all m and (pk , sk)←R PKE.KGen(κ).

Uniform Public-Key Space. We say that PKE has uniform public-key space PK
if the public key output of PKE.KGen(κ) induces a uniform distribution over set
PK. All PKE schemes in a prime-order group setting have this property, e.g.
their public keys are uniformly chosen group elements.

Anonymity & Indistinguishability (AI-CCA). In addition to standard CCA se-
curity, we also need the PKE scheme to be key anonymous, meaning that a
ciphertext cannot be linked to the public key under which it is encrypted. We
use the AI-CCA notion of [12, 1], which combines indistinguishability [22, 7] and
anonymity [6], both under CCA attacks.

Definition 4 (AI-CCA). A public-key encryption scheme PKE = (PKE.Enc,
PKE.Dec) is AI-CCA-secure if for all efficient adversaries A, it holds that
|Pr[ExpAI-CCAA,PKE (κ) = 1]− 1/2| ≤ negl(κ) for some negligible function negl.

Experiment ExpAI-CCAA,PKE (κ):
(pk0, sk0)←R PKE.KGen(κ), (pk1, sk1)←R PKE.KGen(κ)
b←R {0, 1}
b′ ←R ALoR(b,·,·),Dec(·,·)(κ, pk0, pk1) where

oracle LoR can be queried only once on input two messages m0,m1 with
|m0| = |m1| to return c∗ ←R PKE.Enc(pk b,mb)

oracle Dec on input d ∈ {0, 1} and a ciphertext c 6= c∗ :
return m← PKE.Dec(skd, c)

return 1 if b′ = b

Strong Robustness (SROB-CCA). We also need the robustness property of PKE,
which enforces that an adversary cannot create a ciphertext which is valid under
two different keys. We use the notion of strong robustness under chosen cipher-
text attacks, SROB-CCA, by Abdalla et al. [1], except we restrict it to PKE
schemes instead of considering general encryption schemes that encompass both
PKE and identity-based encryption.

Definition 5 (SROB-CCA). A public-key encryption scheme PKE = (PKE.Enc,
PKE.Dec) is SROB-CCA-secure if for all efficient adversaries A, it holds that
|Pr[ExpSROB-CCA

A,PKE (κ) = 1]| ≤ negl(κ) for some negligible function negl.
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Experiment ExpSROB-CCA
A,PKE (κ):

(pk0, sk0)←R PKE.KGen(κ), (pk1, sk1)←R PKE.KGen(κ)
c ←R ADec(·,·)(κ, pk0, pk1) where

oracle Dec on input d ∈ {0, 1} and a ciphertext c :
return m← PKE.Dec(skd, c)

m0 ← PKE.Dec(sk0, c), m1 ← PKE.Dec(sk1, c)
return 1 if m0 6= ⊥ and m1 6= ⊥

Secure Instantiation. Abdalla et al. [1] show that the DHIES scheme satisfies the
SROB-CCA and AI-CCA notion when a minor modification is made to exclude
zero randomness and rejects ciphertexts that have 1 as first component. We
recall their DHIES∗ scheme of [1] in Section 6.

Diffie-Hellman Assumptions. Our second construction requires a group (G, g, p)
as input where G denotes a cyclic group G = 〈g〉 of prime order p in which
the Decisional Diffie-Hellman (DDH) problem is hard with respect to a secu-
rity parameter κ, i.e., p is a κ-bit prime. A group (G, g, p) satisfies the DDH
assumption if for all efficient adversaries A,

∣∣Pr[A(G, p, g, ga, gb, gab) = 1] −
Pr[A(G, p, g, ga, gb, gc) = 1]

∣∣ is negligible in κ, where the probability is over the
random choices of p, g, the random choices of a, b, c ∈ Zp, and A’s coin tosses.

In some game hops of our proof, we only need the weaker assumption of the
Computational Diffie-Hellman (CDH) problem. Using the notation from above, a
group (G, g, p) satisfies the CDH assumption if for all efficient adversaries A, the
probability Pr[A(G, p, g, ga, gb) = gab] is negligible in κ, where the probability
is over the random choices of p, g, the random choices of a, b ∈ Zp, and A’s coin
tosses.

Oracle Diffie-Hellman (ODH) Assumption. In one concrete instantiation of our
first PAPKE construction we use a variant of the Diffie-Hellman assumption
called the Oracle Diffie-Hellman (ODH) assumption. Using the notation from
above, a group (G, g, p) and a hash function H : G → {0, 1}κ satisfy the ODH
assumption if for all efficient adversaries A, the probability∣∣Pr[AHb(·)(G, p, g, ga, gb, H(gab)) = 1]− Pr[AHb(·)(G, p, g, ga, gb, r) = 1]

∣∣
is negligible in κ, where Hb(·) is defined as Hb(x) =

{
H(xb) (x 6= ga)

⊥ (x = ga)
, and the

probability is over the random choices of p, g, the random choices of a, b ∈ Zp
and r ∈ {0, 1}κ, and A’s coin tosses.

5 Efficient & UC-Secure PAPKE Constructions

First attempts to construct PAPKE schemes that authenticate public keys and
plaintexts with a password would probably involve message authentication codes
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(MACs) of the public key and/or the enrypted plaintext under a key derived from
the password. Such solutions, however, fall prey to offline dictionary attacks,
either given just the authenticated public key, or by substituting the real public
key with an adversarial one and testing the decrypted MAC. Thus the challenge
is to devise schemes that withstand offline attacks and achieve the strong security
guarantees formalized in our UC and property-based definitions. We present two
very practical PAPKE constructions that achieve this goal.

The first construction, PAPKE-IC in Section 5.1, combines any CCA secure
public-key encryption and an ideal cipher, using the ideal cipher to encrypt the
public key with the password as a key. We prove this PAPKE scheme secure in
the ideal-cipher model if the PKE scheme satisfies a number of properties that
go beyond the standard CCA security, namely key anonymity, robustness, and
the requirement that public keys are uniform in the (ideal) cipher domain.

While the PAPKE-IC construction is conceptually simple, instantiating the
combination of ideal ciphers and public-key encryption requires some care, and
subtle implementation mistakes could render the PAPKE-IC construction inse-
cure (see the discussion in Section 5.1 below). Hence we propose a second PAPKE
construction, PAPKE-FO in Section 5.2, which is not generic, but it does not need
an ideal cipher and therefore might be easier to implement. It is based on a twin-
key version of the Fujisaki-Okamoto transform of ElGamal encryption, and it is
secure under the DDH assumption in ROM.

5.1 PAPKE-IC: Generic Construction from PKE and Ideal Cipher

Our first construction, protocol PAPKE-IC in Figure 4, builds PAPKE generically
from a public-key encryption PKE and an ideal cipher IC = (IC.Enc, IC.Dec).
The basic idea of the construction is simple and similar to the Encrypted Key
Exchange (EKE) PAKE of Bellovin and Merritt [9]: The receiver generates a key
pair for the PKE scheme and encrypts the public key under the ideal cipher using
the password as a key. The resulting encrypted public key is used as PAPKE
authenticated public key apk . To encrypt a message, the sender decrypts apk
under the ideal cipher using the password as a key, and encrypts the message
under the resulting public key. Our PAPKE-IC shares this basic design with EKE,
except that we use a CCA-secure encryption while EKE implicitely uses a version
of (CPA-secure) ElGamal whose security as encryption is less clear.

Protocol PAPKE-IC requires a number of properties of the PKE scheme that
go beyond the standard notion of indistinguishability under adaptive chosen-
ciphertext attack. First, its public keys must be uniformly distributed over the
domain of the ideal cipher, because otherwise an attacker can test passwords
offline by trying to decrypt apk . Second, ciphertexts of the PKE cannot reveal
under which public key they were encrypted, as that would allow offline attacks
as well. The second property is known as key privacy or anonymity [6]. Third, and
perhaps a bit harder to see, is that an adversary should be unable to construct
ciphertexts that decrypt correctly under multiple secret keys, but such ciphertext
would allow the adversary to test multiple password guesses in one query to the
decryption oracle. This property is known as strong robustness [1]. The latter two
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Setup: Let PKE = (KGen,Enc,Dec) be a public-key encryption scheme with uniform
public-key space PK and let IC = (IC.Enc, IC.Dec) be an ideal cipher over PK.

PAPKE.KGen(κ, pwd):

Generate (pk , sk)←R PKE.KGen(κ) and apk ← IC.Enc(pwd , pk) and output (sk , apk).

PAPKE.Enc(apk , pwd ′,m):

Decrypt the public key, pk ← IC.Dec(pwd , apk) and output c ←R PKE.Enc(pk ,m).

PAPKE.Dec(sk , c′:

Decrypt m ← PKE.Dec(sk , c′) and output m.

Fig. 4. The generic PAPKE scheme PAPKE-IC.

properties are formalized in Section 4, as AI-CCA and SROB-CCA, respectively.
Finally, PKE and IC have to be “compatible” in the sense that IC is an ideal
cipher over the key space PK of PKE.

The proof of the following theorem is included in Appendix D:

Theorem 3. Protocol PAPKE-IC in Figure 4 securely realizes functionality FPAPKE

in the FIC-hybrid model, if the public key encryption PKE has uniform public-key
space PK and is AI-CCA and SROB-CCA-secure.

Implementing Ideal Ciphers over Groups. Our PAPKE-IC construction assumes
an ideal cipher over a key space PK that for many PKE schemes will be a
cyclic group G. We stress that such an assumption is also used in several PAKE
schemes, beginning from the Bellare et al. analysis [8] of the Encrypted Key
Exchange (EKE) PAKE scheme of Bellovin and Merritt [9]. Ideal ciphers over
variable domains can be implemented for a variety of domains, e.g. [11]. How-
ever, for many groups implementing an ideal cipher is somewhat cumbersome
and can introduce possibilities for offline and/or timing attacks. Simply applying
a block cipher to the public key doesn’t work as not all strings of the same length
are valid group elements, and an adversary could offline tests by decrypting the
authenticated public key under a guessed password and testing if the decryption
yields a valid group element. If PK = G is any elliptic curve group, there are
deterministic methods that map any string onto a group element [10] and hence
offline and timing attacks are not a concern. The opposite direction can be im-
plemented as in [10], but that encoding works only for subspace S of roughly 1/2
of G elements. This slows down key generation, i.e. pair (pk , sk)←R PKE.KGen
has to be chosen s.t. pk ∈ S, but it does not lead to timing attacks on pass-
words. Still, these mappings complicate key generation and are non-trivial to
implement, which motivates searching for alternative solutions that do not rely
on ideal ciphers over arbitrary groups.

DHIES-based Instantiation. In Section 6.1, we specify an efficient concrete in-
stantiation of PAPKE-IC, called PAPKE-IC-DHIES, which uses a variant of DHIES
as the robust and anonymous PKE. Scheme PAPKE-IC-DHIES is as efficient as
one could hope for in a DH-based cryptosystem, i.e. it uses 1 exponentiation
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in key generation, 2 exponentiations in encryption, and 1 in decryption. The
DHIES variant we use (DHIES∗) was shown to satisfy the required properties
under the Oracle-Diffie-Hellman assumption (ODH), using a collision-resistant
hash function and a secure authenticated encryption scheme [1]. The authen-
ticated encryption (or rather the combination of symmetric encryption and a
MAC) needs to satisfy some additional, non-standard properties, and the ODH
assumption also has an impact on the choice of the hash function. We refer to
Section 6.1 for a more detailed discussion. Thus, similar to the challenges that
arise when securely instantiating the ideal cipher, implementing DHIES∗ also
requires some care in the implementation and choice of its underlying primi-
tives. Overall, this reliance of PAPKE-IC and PAPKE-IC-DHIES on non-standard
assumptions motivates our second PAPKE protocol (Sec. 5.2) that trades the
generic construction for simple and standard assumptions.

5.2 PAPKE-FO: Concrete Construction from DDH and ROM

Our second PAPKE construction, protocol PAPKE-FO in Figure 5, does not re-
quire an ideal cipher over a group of PKE public keys, or other building blocks
with non-standard assumptions,nd may thus be easier to implement. It is how-
ever slightly more costly, with 2 exponentiations for key generation, 2 multi-
exponentiations (with two bases) for encryption, and 1 exponentiation and 1
(two base) multi-exponentiation for decryption. This construction is built using
the Fujisaki-Okamoto (FO) transform [20] for ElGamal encryption but with a
“twin” Diffie-Hellman key instead of a single key.

The high-level idea is to derive the authenticated public key apk by “blind-
ing” the public key gx of the ElGamal encryption scheme with the hash of the
password as apk ← gx ·H0(pwd), where H0 is a hash function onto G, which can
be implemented in deterministic way (to avoid timing attacks) using e.g. [10]. To
encrypt message m under password pwd ′ and key apk , the encryptor “unblinds”
the public key as y ← apk ·H0(pwd ′)−1 and then encrypts m under y using FO-
ElGamal, i.e. the Fujisaki-Okamoto transform applied to ElGamal which lifs its
security from CPA to CCA, required to achieve the CCA-security and ciphertext
authenticity properties of PAPKE.

None of the password-derived values apk or c allows an offline attack: Any
“unblinding” of apk would yield a valid public key gx for some x, and ElGamal
ciphertexts are known to guarantee key anonymity [6], meaning that cipher-
texts do not leak information about the public key used in encryption. (Note
that the leakage of the unblinded public key y = gx used in encryption would
allow an adversary who sees apk = y · H0(pwd) to mount an offline attack on
pwd .) The scheme is correct because if pwd ′ = pwd then the hash values can-
cel and encryption is done under the “original” public key y = gx. However, if
the passwords do not match then encryption is done under an effectively ran-
dom public key y ←R G. The latter gives us the desired security against active
attacks: If an honest party is tricked into encryption under a malicious apk∗

but uses a different password than was used to blind apk∗, then the ciphertext
will be indistinguishable from random, even if A knows the secret key to apk∗.
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Note, however, that unlike the ideal cipher encryption of apk under pwd used
in PAPKE-IC, the method used here to blind key gx and form the authenticated
key apk is essentially a one-time pad over G, and thus is not by itself a commit-
ment to password pwd . Below we discuss how we modify the above sketch and
in particular make this blinding password-committing.

For the sake of simplicity in Figure 5 we describe PAPKE-FO for a message
spaceM = {0, 1}n where n is the output length of H2, but this can be extended
to general message spaceM← {0, 1}∗ using a flexible-output length hash func-
tion for H2 (which can easily be built in the random oracle model), or using the
hashed value as a key in a symmetric-key encryption.

Setup: Let G be a group of prime order p such that 2κ−1 < p < 2κ, and let g1, g2 be
two random generators in G. We use three hash functions modeled as random oracles:
H0 : {0, 1}∗ → G, H1 : G3 × {0, 1}n → Z2

p and H2 : G→ {0, 1}n.

PAPKE.KGen(κ, pwd):

– Choose x←R Zp and compute y1 ← gx1 , y2 ← gx2 , Y2 ← y2 · H0(pwd).

– Output (sk , apk) for sk ← (x, y1, y2) and apk ← (y1, Y2).

PAPKE.Enc(apk , pwd ′,m):

– Abort if |m| > n.

– Parse (y1, Y2)← apk , and “unblind” the second public key, y2 ← Y2 · H0(pwd)−1.

– Generate randomness via the RO: compute (r1, r2)← H1(R, y1, y2,m) for R←R G.

– Encrypt R under y1 and y2: c1 ← gr11 g
r2
2 , c2 ← yr11 y

r2
2 ·R, c3 ← H2(R)⊕m .

– Output c← (c1, c2, c3).

PAPKE.Dec(sk , c′):

– Parse (x, y1, y2)← sk .

– Decrypt c = (c1, c2, c3): R← c2/c
x
1 , m← c3 ⊕H2(R), and (r1, r2)← H1(R, y1, y2,m).

– Verify the correctness of decryption: if c1 = gr11 g
r2
2 set m′ ← m, else set m′ ← ⊥.

– Output m′

Fig. 5. Our DDH-based PAPKE scheme PAPKE-FO.

Achieving UC-Security via “Twin” Keys. To achieve UC security we have to
ensure that both the key apk and the ciphertext c commit each party to a well-
defined password choice. Technically, the simulator SIM must be able to extract
(i) pwd from an adversarial apk∗ and (ii) pwd ′ and m from an adversarial cipher-
text c. While (ii) can be realized via the Fujisaki-Okamoto transform, case (i)
requires more care. We need (i) for the reasons outlined above, i.e. a ciphertext
encrypted by an honest party under an adversarial key apk∗ must be decrypt-
able only if apk∗ commits to the encryptor’s password. In the UC functionality
FPAPKE this is enforced by SIM having to pass a single password guess pwd∗ cor-
responding to the real-life adversary’s choice of apk∗, and if pwd∗ 6= pwd ′, i.e.,
the guess does not match the encryptor’s password pwd ′, then the encryption
must reveal no information on the encrypted plaintext.
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We achieve this by generating a “twin” public key using two generators g1, g2
in the CRS. The apk then consists of y1 ← gx1 and Y2 ← gx2 · H0(pwd), i.e., we
keep one public key in the clear and the other one is blinded with the pass-
word hash. In the security proof we set g2 ← gs1, which allows the simulator to
decrypt H0(pwd) from apk , and look up pwd from the random oracle queries.
Further, encryption is done under both public keys: y1 and the “unblinded”
y2 = Y2 ·H0(pwd)−1. This double encryption under the plain and derived key is
crucial, as it prevents an adversary A from providing a malformed apk∗ which
would allow A to still decrypt, but from which SIM cannot extract a password.
Thus, our “twin” key construction enforces that only a well-formed apk can lead
to decryptable ciphertexts (if the passwords match), without requiring heavy
tools such as zero-knowledge proofs.

The proof of the following theorem is included in Appendix E. In the security
proof we assume that a common reference string functionality FCRS [16] provides
all parties with the system parameters, and we model hash functions H0,H1,H2

via a random oracle functionality FRO [24].

Theorem 4. Protocol PAPKE-FO in Figure 5 securely realizes functionality FPAPKE

under the DDH assumption in group G in the FCRS,FRO-hybrid model.

6 Concrete PAPKE and PAKE Instantiations

Here we show particular instantiations of some of our results, a PAPKE scheme
called PAPKE-IC-DHIES, and two PAKE protocols, PAKE-IC-DHIES and PAKE-FO.
PAPKE-IC-DHIES is a particular instantiation of the generic PAPKE-IC scheme
of Section 5.1 based on the DHIES∗ PKE by Abdalla et el. [1], while the PAKE
protocols are derived via the PAPKE-2-PAKE compiler of Section 3.1 applied to
two concrete PAPKE schemes, PAPKE-IC-DHIES shown below and PAPKE-FO
of Section 5.2.

6.1 Concrete Instantiation of PAPKE-IC Using DHIES

In Section 5.1 we show a generic UC-secure PAPKE scheme that relies on an ideal
cipher and a public-key encryption scheme that is both AI-CCA and SROB-CCA-
secure. Abdalla et al. [1] show that these properties can be realized by DHIES
[2] modified such that it excludes zero randomness at encryption, i.e., samples
r from Z∗p instead of Zp, and rejects ciphertexts that have 1 as first component.
This DHIES∗ scheme relies on authenticated encryption AE, a hash function H
and a cyclic group (G, p, g) of prime order p and is defined as follows:

DHIES∗.KGen(κ): x←R Zp, y ← gx, set pk ← y, sk ← x and return (pk , sk)
DHIES∗.Enc(pk,m): parse pk = y, get r ←R Z∗p, k ← H(yr), c1 ← gr, c2 ←

AE.Enc(k,m) and return c = (c1, c2).
DHIES∗.Dec(sk, c): parse c = (c1, c2) and sk = x, get k ← H(cx1). If c1 = 1

output m← ⊥ and m← AE.Dec(k, c2) else.
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Lemma 1. PKE DHIES∗ shown above is AI-CCA and SROB-CCA-secure if the
Oracle-Diffie-Hellman assumption holds in G, H is a collision-resistant hash,
and AE is a secure, strongly unforgeable and collision-resistant authentication
encryption scheme [1].

There is a small caveat here: For historic reasons Abdalla et al. [1] have used
a symmetric encryption scheme together with a MAC instead of an authenti-
cated encryption we use in our exposition of DHIES∗. Their result holds if MAC
is collision-resistant and strongly unforgeable, i.e., we need the same proper-
ties to hold for the AE scheme as well. We refer to [1] for formal definitions of
these additional assumptions, and to [2] for a detailed discussion of the Oracle-
Diffie Hellman assumption and its impact on the choice of the hash function H.
Scheme PAPKE-IC-DHIES shown in Figure 6 is a (semi) concrete instantiation
of PAPKE-IC based on DHIES∗. It requires only 2 exponentiations for encryp-
tion and 1 for decryption, and these costs dominate the costs of authenticated
encryption as well as the ideal cipher over group G and hashing onto G.

Setup: G is a cyclic group of prime order p with generator g; IC = (IC.Enc, IC.Dec) is
an Ideal Cipher over G with key space {0, 1}∗, where IC.Enc : {0, 1}∗ × G → G and
IC.Dec : {0, 1}∗ × G → G; AE = (AE.Enc,AE.Dec) is an authenticated encryption with
key space {0, 1}κ; H : G→ {0, 1}κ is a collision-resistant hash function.

PAPKE.KGen(κ, pwd):

– Pick x←R Zp, compute y ← gx and apk ← IC.Enc(pwd , y).

– Assign sk ← x and output (sk , apk).

PAPKE.Enc(apk , pwd ′,m):

– Compute y ← IC.Dec(pwd , apk), r ←R Z∗p, k ← H(yr), c1 ← gr, c2 ← AE.Enc(k ,m).

– Output c = (c1, c2).

PAPKE.Dec(sk , c′):

– Parse (c1, c2)← c, compute k ← H(c x1 ).

– If c1 = 1 set m ← ⊥ otherwise set m ← AE.Dec(k , c2), and output m.

Fig. 6. Concrete PAPKE instantiation PAPKE-IC-DHIES.

6.2 Concrete PAKE Protocols

We specify two concrete UC PAKE instantiations obtained by applying the
generic PAPKE-2-PAKE compiler shown in Figure 2 to two PAPKE schemes: The
first protocol, PAKE-IC-DHIES, uses PAPKE scheme PAPKE-IC-DHIES shown in
Figure 6, and the second protocol, PAKE-FO, uses PAPKE scheme PAPKE-FO
shown in Figure 5. Both PAKE protocols are UC-secure and highly efficient.
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Indeed, to the best of our knowledge, these are the first two-round UC-secure
PAKE’s which rely on standard groups, i.e. no bilinear maps, but resort to the IC
and/or ROM model to achieve practical efficiency. Concretely, PAKE-IC-DHIES
uses 2 exponentiations per party and PAKE-FO uses 4 (multi-)exponentiations for
one party and 2 for the other. This almost matches the efficiency and assumptions
used by two-round PAKE’s which were shown secure under only game-based
security notions, e.g. [8, 13, 4], and it reduces from 3 to 2 the rounds of previously
known UC PAKE secure under comparable assumptions of Abdalla et al. [3].

PAKE-IC-DHIES. Protocol PAKE-IC-DHIES shown in Figure 7 requires the
same setup as the PAPKE scheme PAPKE-IC-DHIES in Figure 6, i.e. G is a
cyclic group of prime order p with generator g (we assume (G, p, g) is available
to all parties via a CRS functionality FCRS), IC = (IC.Enc, IC.Dec) is an ideal
cipher over group G with key space {0, 1}∗, where IC.Enc : {0, 1}∗×G→ G and
IC.Dec : {0, 1}∗ × G → G, AE = (AE.Enc,AE.Dec) is an authenticated encryp-
tion with key space {0, 1}κ, and H : G → {0, 1}κ is a collision-resistant hash.
The following security statement for PAKE-IC-DHIES follows from Theorem 2,
Theorem 3, and Lemma 1:

Corollary 1. The PAKE-IC-DHIES scheme described in Figure 7 securely real-
izes FPAKE in the FCRS,FIC-hybrid model if the Oracle-Diffie-Hellman assump-
tion is hard for G, H is a collision-resistant hash, and AE is a secure, strongly
unforgeable and collision-resistant authenticated encryption scheme.

Party Pi, upon input
(NEWSESSION, sid ′,Pi,Pj , pwd , client):

Party Pj , upon input
(NEWSESSION, sid ′,Pj ,Pi, pwd ′, server):

get x←R Zp, y ← gx wait for message with prefix sid ′

set apk ← IC.Enc(pwd , y)
store sk ← x

-sid ′, apk

choose k ←R {0, 1}κ
get y ← IC.Dec(pwd ′, apk), r ←R Z∗p, k ′ ← H(yr),

c1 ← gr, c2 ← AE.Enc(k ′,m), set c← (c1, c2)
output (NEWKEY, sid ′, k)

� sid ′, c

parse c = (c1, c2), get k ′ ← H(cx1)
if c1 = 1 set m← ⊥; else m ← AE.Dec(k ′, c2)
if m 6= ⊥, set k ← m; else k ←R {0, 1}κ
output (NEWKEY, sid ′, k)

Fig. 7. Two-round PAKE protocol PAKE-IC-DHIES.

PAKE-FO. Protocol PAKE-FO shown in Figure 8 requires the same setup as
the PAPKE scheme PAPKE-FO in Figure 5, i.e. G is a group of prime order p
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such that 2κ−1 < p < 2κ, g1, g2 are two random generators of G (we assume
(G, p, g1, g2) is available to all parties via a CRS functionality FCRS), and there
are three hash functions H0 : {0, 1}∗ → G, H1 : G3×{0, 1}n → Z2

p and H2 : G→
{0, 1}n, all implicitly prefixed with sid , which are implemented with a random
oracle functionality FRO. The following security statement for PAKE-FO follows
from Theorem 2 and Theorem 4:

Corollary 2. The PAKE-FO scheme described in Figure 8 securely realizes FPAKE

in the FRO,FCRS-hybrid model if the DDH problem is hard in G.

Party Pi, upon input
(NEWSESSION, sid ′,Pi,Pj , pwd , client):

Party Pj , upon input
(NEWSESSION, sid ′,Pj ,Pi, pwd ′, server):

x←R Zp, y1 ← gx1 , y2 ← gx2 wait for message with prefix sid ′

Y2 ← y2 · H0(pwd), apk ← (y1, Y2)
store sk ← (x, y1, y2)

-sid ′, apk

choose k ←R {0, 1}κ
parse apk = (y1, Y2), set y2 ← Y2 · H0(pwd

′)−1

get R←R G, (r1, r2)← H1(R, y1, y2, k)
get c1 ← gr11 g

r2
2 , c2 ← yr11 y

r2
2 ·R,

c3 ← H2(R)⊕ k , set c← (c1, c2, c3)
output (NEWKEY, sid ′, k)

� sid ′, c

R← c2/c
x
1 , k
′ ← c3 ⊕ H2(R),

(r1, r2)← H1(R, y, y1, y2, k
′).

if c1 = gr11 g
r2
2 , set k ← k′; else k ←R {0, 1}κ

output (NEWKEY, sid ′, k)

Fig. 8. Two-round PAKE protocol PAKE-FO.
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A Proof of Theorem 1 (FPAPKE ⇒ IND-CCKA + AUTH-CTXT)

We here give the proof of Theorem 1 of Section 2.2, stating that any PAPKE
scheme ΠPAPKE = (KEYGEN,ENCRYPT,DECRYPT) that UC-realizes function-
ality FPAPKE is IND-CCKA secure and AUTH-CTXT secure. Notice that the
syntax of ΠPAPKE and a PAPKE scheme (KGen,Enc,Dec) secure according to
the IND-CCKA and AUTH-CTXT security definitions are different: the former
algorithms take a session id as additional arguments in their inputs whereas
the key generation and decryption algorithms of the latter output a secret key
and take a secret key as input, respectively. Thus, we in the following consider
IND-CCKA and AUTH-CTXT to be the definitions adapted to the algorithms
ΠPAPKE = (KEYGEN,ENCRYPT,DECRYPT) with a dummy sid.

For both proofs we will replace the calls to algorithms (KGen,Enc,Dec) in
the games of the property-based definitions to calls to the respective interfaces
of FPAPKE|SIM, where SIM is the simulator specific to ΠPAPKE, and then analyse
the success probability of the adversary. Viewing the property-based definition,
as an environment interacting with either FPAPKE|SIM or ΠPAPKE, this success
probability in the modified and the unmodified games cannot differ by more
than a negligible amount. The analysis of the adversary’s success probability
essentially boils down to the fact that the replies by FPAPKE to the calls made
do not contain any information that could help the adversary to win the game –
unless simulator a some point submits a password guess to FPAPKE that matches
to password randomly chosen in the property-based definition. The probability
that the simulator fails to do so is at least (1− q/|D|), where q is the number of
times FPAPKE allows the simulator to provide a password guess.

Proof of Theorem 1. We will first argue that any PAPKE scheme ΠPAPKE which
UC-realizes functionality FPAPKE IND-CCKA secure and then show that it is also
AUTH-CTXT secure.

IND-CCKA Security. Let SIM the simulator for (KGen,Enc,Dec) s.t. FPAPKE|SIM
and (KGen,Enc,Dec) are indistinguishable. For convenience, let us call the origi-
nal IND-CCKA security game Game 0 and call Game 1 the one where FPAPKE|SIM
is called instead of the algorithms (KGen,Enc,Dec). That is, In Game 1, instead
of running KGen(κ, pwd), we call FPAPKE|SIM on input (KEYGEN, sid , pwd) for
some sid and the randomly chosen password pwd . We will get back an apk
from FPAPKE|SIM. This call will succeed as FPAPKE|SIM was not called before,
so there cannot be any record (badkeys, sid , apk j , ·) that could make this fail.
When executing oracle LoR, instead of computing C ←R Enc(apk∗, pwd ,mb),
we call FPAPKE|SIM with (ENCRYPT, sid , apk∗, pwd ,m∗b) to obtain C. Finally,
executing oracle Dec, instead of computing m← Dec(sk, C) we call FPAPKE|SIM
with (DECRYPT, sid , C) to obtain m.

32



Let us further consider a Game 2 that is the same as Game 1 except that
we change FPAPKE into F ′PAPKE which considers all password guesses of SIM as
being wrong (but is unchanged otherwise).

Let us next analyse the success probability of A in Game 2. The main ob-
servation is that the ciphertexts F ′PAPKE|SIM computes will be independent of
the messages mb. In fact, all messages F ′PAPKE sends SIM will be independent
of b and pwd and hence all ciphertext produced by SIM are independent of b.
Therefore the success probability of A will be at most 1/2.

Consider Game 1. This game will behave exactly as Game 2 unless pwd chosen
by the IND-CCKA-security challenger matches one of the password guesses of
SIM in Game 2. This happens with probability (qapk∗ + qDec)/|D| and thus the
success probability of A in Game 1 will be

Pr[ExpGame1
A,PAPKE(κ) = 1] =

1

2
(1− qapk∗ + qDec

|D|
) + δ(

qapk∗ + qDec

|D|
)

≤ 1

2
+

1

2
· qapk

∗ + qDec

|D|
,

where 0 ≤ δ ≤ 1 is the probability that A wins in case SIM sends a correct
password guess to FPAPKE. Because (KGen,Enc,Dec) securely realizes FPAPKE,
the differences in the success probabilities between Game 1 and Game 0 must
be negligible (after all, A and the IND-CCKA game define an environment) and
it follows that ΠPAPKE is IND-CCKA-secure.

AUTH-CTXT Security. Similarly as in the proof for IND-CCKA security, we con-
struct Game 0, Game 1, and Game 2.

Let us now analyse the success probability of A in the Game 2. The winning
condition is Dec(sk , C∗) 6= ⊥ and C∗ /∈ L. Investigating the functionality, we
can see that Dec(sk , C∗) = ⊥ if C∗ has not been produced by the functionality
and in the processing of the decryption call, the success probability will be 0.

Again, Game 1 behaves as Game 2 unless pwd chosen by the IND-CCKA-
security challenger matches one of the password guesses of SIM in Game 2. Here,
there are qapk∗ + qDec + 1 occasions for SIM to provide a password. Thus the

success probability of A in Game 1 is at most δ
qapk∗+qDec+1

|D| , where 0 ≤ δ ≤ 1

is the probability that A wins in case SIM sends a correct password guess to
FPAPKE. From this it follows that the success probability in Game 0 will be
Pr[ExpAUTH-CTXTA,PAPKE (κ) = 1] ≤ qapk∗+qDec+1

|D| + negl(κ).

B Ideal Functionalities for PKE and PAKE

We include two standard UC functionalities for reference. In Figure 9 we show
functionality FPKE which is a standard UC model of PKE, and which forms
the basis of our UC model of PAPKE defined via functionality FPAPKE given
in Figure 1 in Section 2.2. In Figure 10 we show functionality FPAKE which
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1. Key Generation. On input (KEYGEN, sid) from party P:

– If sid 6= (P, sid ′) or a record (keyrec, sid , ·) exists, ignore.

– Send (KEYGEN, sid) to A and wait for (KEYCONF, sid , pk ,M) from A.

– Create record (keyrec, sid , pk) and output (KEYCONF, sid , pk ,M) to P.

2. Encryption. On input (ENCRYPT, sid , pk ′,m) from party Q where m ∈M:

– Retrieve record (keyrec, sid , pk).

– If pk ′ = pk and P (from sid = (P, sid ′)) is honest:

• Send (ENC-L, sid , pk , |m|) to A and wait for (CIPHERTEXT, sid , c) from A.

• Abort if a record (encrec, sid , ·, c) exists.

• Create record (encrec, sid ,m, c).

– Otherwise (i.e., if pk ′ 6= pk or P is corrupt) :

• Send (ENC-M, sid , pk ′,m) to A and wait for (CIPHERTEXT, sid , c) from A.

– Output (CIPHERTEXT, sid , c) to Q.

3. Decryption. On input (DECRYPT, sid , c) from party P:

– If sid 6= (P, sid ′) or no record (keyrec, sid , pk) exists, ignore.

– If a record (encrec, sid ,m, c) for c exists:

• Output (PLAINTEXT, sid , c,m) to P.

– Else (i.e., if no such record exists):

• Send (DECRYPT, sid , c) to A and wait for (PLAINTEXT, sid ,m) from A.

• Create record (encrec, sid ,m, c).

• Output (PLAINTEXT, sid , c,m) to P.

Fig. 9. Standard public-key functionality FPKE with message space M.

is a standard UC model of Password-Authenticated Key Agreement (PAKE)
[18]. We include the UC PAKE model because in Section 3.1 we show a generic
compiler which uses UC PAPKE to build a UC PAKE protocol.

C Proof of Theorem 2 (Security of PAPKE-2-PAKE)

In this section we provide the full proof of Theorem 2, showing that our generic
PAPKE-2-PAKE construction, shown in Figure 2 in Section 3.1, securely realizes
the UC PAKE functionality FPAKE shown in Figure 10 in Appendix B. Figure 11
gives a formal presentation of the PAPKE-2-PAKE protocol in the FPAPKE-hybrid
model.

We start our proof in the “real world,” in which the environment Z, adver-
sary A and players Pi and Pj run the real-world protocol based on the ideal
functionality FPAPKE. In the ideal world, the simulator SIM interacts with FPAKE

and mimics the role of the real-world parties Pi/Pj and the functionality FPAPKE

towards A. These two interactions, the real and the ideal, are shown conceptu-
ally in Fig. 12, and the goal of the proof is to show that the two interactions are
indistinguishable in the environment’s view.

The Simulator. In the description of the simulation algorithm SIM below
we use “FPAPKE” to refer to the simulator’s sub-procedure shown in Figure 13.
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1. New Session. On input (NEWSESSION, sid ′,Pi,Pj , pwd , role) from party Pi:
– If this is the first NEWSESSION query, or if this is the second NEWSESSION query and

there is a record (Pj ,Pi, pwd ′, ·, ·) then record (Pi,Pj , pwd , fresh,⊥).

– Send (NEWSESSION, sid ′,Pi,Pj , role) to A.

2. Password Guess. On input (TESTPWD, sid ′,Pi, pwd∗) from adversary A:

– Retrieve the record of the (Pi,Pj , pwd , fresh,⊥) (abort if no such record exists).

– If pwd∗ = pwd , then update the record to (Pi,Pj , pwd , compromised,⊥) and send
(TESTPWD, sid ′, correct) to A.

– Else, update record to (Pi,Pj , pwd , interrupted,⊥) and send (TESTPWD, sid ′, wrong) to A.

3. Session Key. On input (NEWKEY, sid ′,Pi, k∗) from adversary A where |k∗| = κ:

– Retrieve record (Pi,Pj , pwd , status,⊥) for status ∈ {fresh, interrupted, compromised}, abort
if no such record exist.

– If status = compromised or either Pi or Pj is corrupted, set k ← k∗.

– If status = fresh and a record (Pj ,Pi, pwd , completed, k′) exist, set k ← k′.

– Else set k ←R {0, 1}κ.

– Update the record to (Pi,Pj , pwd , completed, k), output (NEWKEY, sid ′, k) to Pi.

Fig. 10. Standard PAKE functionality FPAKE [18] for security parameter κ.

Party Pi, upon input
(NEWSESSION, sid ′,Pi,Pj , pwd , client):

Party Pj , upon input
(NEWSESSION, sid ′,Pj ,Pi, pwd ′, server):

sid ← (Pi, sid ′) wait for message with prefix sid ′

input (KEYGEN, sid , pwd) to FPAPKE

obtain (KEYCONF, sid , apk) from FPAPKE

-sid ′, apk

choose k ←R {0, 1}κ
set sid ← (Pi, sid ′)

input (ENCRYPT, sid , apk , pwd ′, k) to FPAPKE

obtain (CIPHERTEXT, sid , c) from FPAPKE

output (NEWKEY, sid ′, k)
� sid ′, c

input (DECRYPT, sid , c) to FPAPKE

obtain (PLAINTEXT, sid ,m) from FPAPKE

if m 6= ⊥, set k ← m; else k ←R {0, 1}κ
output (NEWKEY, sid ′, k)

Fig. 11. Two-round PAKE protocol PAPKE-2-PAKE in the FPAPKE-hybrid world.

This sub-procedure is a modification of the ideal PAPKE functionality code, i.e.
algorithm FPAPKE shown in Figure 1, and it shows the heart of the simulator
algorithm SIM in a way which makes it easier for us to argue that A’s view of
interacting with Pi/Pj and FPAPKE is indistinguishable (indeed identical) to A’s
view of interaction with SIM which runs this “FPAPKE” algorithm inside.

Pi first round: Upon receiving (NEWSESSION, sid ′,Pi,Pj , client) from FPAKE,
SIM sets sid ← (Pi, sid ′) and runs “FPAPKE” on input “(KEYGEN, sid ,⊥) from
Pi” to generate apk . SIM then sends a network message (sid ′, apk), routed by
A, from “Pi” to “Pj”.
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Z Pi/Pj

FPAPKEA
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SIM

“Pi”/“Pj”

“FPAPKE”

FPAKE

Fig. 12. Real world (left) vs. ideal world (right).

Pj second round and output: Upon receiving (NEWSESSION, sid ′,Pi,Pj , server)

from FPAKE, SIM waits for a message (sid ′, apk ′) sent to “Pj” from A. (This is
the message sent in the first round, with apk possibly modified by A).

Then SIM chooses a session key k ←R {0, 1}κ, and runs “FPAPKE” on input
“(ENCRYPT, sid , apk ′,⊥, k) from Pj” to obtain c.

SIM then sends (NEWKEY, sid ′,Pj , k) to FPAKE, as well as a network message
(sid ′, c) from “Pj” to “Pi”.

Pi final output: Upon receiving message (sid ′, c′) sent to “Pi” from A, SIM sets

sid ← (Pi, sid ′). It then runs “FPAPKE” on input “(DECRYPT, sid , c′) from Pi”,
to obtain a plaintext m. SIM sets k ← m and sends (NEWKEY, sid ,Pi, k) to
FPAKE.

KEYGEN,ENCRYPT, and DECRYPT queries to FPAPKE from corrupted parties:
If any valid query is made by a corrupted party to FPAPKE, SIM runs “FPAPKE”

on the given inputs, and forwards any outputs back to that party. (Note that
any query with pwd = ⊥ is invalid, because ⊥ /∈ D).

The Proof. We show that the environment Z’s view in the real world and
its view in the ideal world are identical, i.e., that SIM’s simulation is perfect.
Figure 12 depicts the real-world and the ideal-world interactions. The left side of
Fig. 12 shows the real world interaction, which is defined by the PAPKE-2-PAKE
protocol executed by real honest parties Pi,Pi and functionality FPAPKE which is
used in that scheme. The right side of Fig. 12 shows the ideal-world interaction,
which is defined by the FPAKE functionality (with dummy ideal-world players
who merely pass messages to and from FPAKE and Z) and the simulator SIM
described above, who plays the role of the ideal-world adversary.

Below we analyze Z’s view in these two security experiments, and we argue
that the two worlds present identical views to Z. Namely, for each message in
Z’s view we explain why in both worlds this message can be seen as created by
the same interactive process. Without loss of generality, we assume that A is a
“dummy” adversary that merely passes messages from and to Z.

Pi first round:

36



1. Key Generation. On input (KEYGEN, sid , pwd) from party P:

– If sid 6= (P, sid ′) or a record (keyrec, sid , ·, ·) exists, ignore.

– Send (KEYGEN, sid) to A and wait for (KEYCONF, sid , apk ,M) from A.

– If a record (badkeys, sid , apk j , ·) with apk j = apk exists, abort.

– Create record (keyrec, sid , apk , pwd) and output (KEYCONF, sid , apk) to P.

2. Encryption. On input (ENCRYPT, sid , apk ′, pwd ′,m) from party Q where m ∈M:

– If a record (keyrec, sid , apk , pwd) with apk = apk ′ exists and P (from sid = (P, sid ′)) is
honest, then do the following:

• Send (ENC-L, sid , |m|) to A and wait for (CIPHERTEXT, sid , c) from A.

• Abort if a record (encrec, sid , ·, c) for c already exists.

• Create record (encrec, sid ,m′, c) with m′ ← m if pwd ′ = pwd , and m′ ← ⊥ else.

– Otherwise do the following:

• If a record (badkeys, sid , apk j , pwd j) with apk j = apk ′ exists, set pwd∗ ← pwd j .

• Else, send (GUESS, sid , apk ′) to A, wait for (GUESS, sid , pwd∗)
from A and create record (badkeys, sid , apk ′, pwd∗).

• Set pwd• = pwd ′.
• If pwd ′ = ⊥, run TESTPWD(sid ′,P, pwd∗) to obtain answer. If answer = correct,

reset pwd• ← pwd∗. Otherwise, do nothing.

• If pwd• = pwd∗, send (ENC-M, sid ,m) to A, wait for (CIPHERTEXT, sid , c) from A.

• If pwd• 6= pwd∗, send (ENC-L, sid , |m|) to A, wait for (CIPHERTEXT, sid , c) from

A.

–
If pwd ′ 6= ⊥ and there exists a record (keyrec, sid , apk ,⊥), create a record
(pwdguess, sid , pwd ′,m, c).

– Output (CIPHERTEXT, sid , c) to Q.

3. Decryption. On input (DECRYPT, sid , c) from party P:

– If sid 6= (P, sid ′) or no record (keyrec, sid , apk , pwd) exists, ignore.

– If a record (encrec, sid ,m, c) for c exists, where m ∈M∪ {⊥}:

• Set m′ ← m.
• If a record (pwdguess, sid , pwd∗,m, c) exists, run TESTPWD(sid ′,P, pwd∗). If

answer = wrong, reset m′ ← ⊥. Otherwise, do nothing.

• Output (PLAINTEXT, sid , m′ ) to P.

– Else (i.e., if no such record exists):

• Send (DECRYPT, sid , c) to A and wait for (PLAINTEXT, sid ,m, pwd∗) from A.

• Set pwd• = pwd .
• If pwd = ⊥, run TESTPWD(sid ′,P, pwd∗). If answer = correct, reset pwd• ←

pwd∗. Otherwise, do nothing.

• If pwd∗ = pwd• , set m′ ← m and m′ ← ⊥ otherwise.

• Create record (encrec, sid ,m′, c).

• Output (PLAINTEXT, sid ,m′) to P.

Internal function TESTPWD(sid ′,P, pwd):
– If record (testrec, sid ′,P, ·) exists, set answer = fail.

– Otherwise, send (TESTPWD, sid ′,P, pwd) to FPAKE to receive reply
(TESTPWD, sid ′, answer) where answer ∈ {correct, wrong}. Create record
(testrec, sid ′,P, pwd , answer).

– Return answer.

Fig. 13. “FPAPKE”: Modified PAPKE functionality that is used as subprocedure of
simulator SIM. Modifications from the original FPAPKE functionality are shown in boxes.
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This round starts when Z sends (NEWSESSION, sid ′,Pi,Pj , pwd , client) to
Pi. In both the real world and the ideal world, Z’s query is ignored if a record
(keyrec, sid , ·, ·) exists (i.e., Z’s message is not the first NEWSESSION query for
sid ′). Otherwise A receives (KEYGEN, sid) from FPAPKE (or “FPAPKE”). Then A
replies with (KEYCONF, sid , apk). If a record (badkeys, sid , apk j , ·) with apk j =

apk exists, the session is aborted. Otherwise A receives (sid ′, apk) from Pi (or
“Pi”). Z/A’s views in the two worlds in this round are identical.

Pj second round and output:

This round starts when Z sends (NEWSESSION, sid ′,Pi,Pj , pwd ′, server) to
Pj , and A sends (sid ′, apk ′) aimed at Pj . (Note that the prefix of A’s message
must be sid ′, i.e., the same with the session id in Z’s message; otherwise Pj will
keep waiting and not proceed any further.)

In both worlds, the view of Z/A in the second round depends on the inputs
A provides.

If the network message (sid ′, apk ′) received by Pj has apk ′ = apk , where
apk is the authenticated public key initially provided by A for that session,
then A receives (ENC-L, sid , |m|) from FPAPKE (or “FPAPKE”). Then A replies
with (CIPHERTEXT, sid , c). If c is the result of a previous ENCRYPT query
for apk , FPAPKE aborts and the session ends. Otherwise Pj (or “Pj”) sends
(sid ′, c) to Pi (which is intercepted by A), and outputs (NEWKEY, sid ′, k) where
k ←R {0, 1}|m|. (In the real world, k is chosen by Pj , while in the ideal world, it
is chosen by FPAKE.)

If apk ′ 6= apk , then we branch again:
(case I:) If a record (badkeys, sid , apk j , pwd j) such that apk j = apk ′ exists,

then A receives (ENC-M, sid , k) from FPAPKE (or “FPAPKE”) if pwd j = pwd ′,
and (ENC-L, sid , |m|) otherwise. (The process in the ideal world is as follows:
SIM sends (TESTPWD, sid ,Pj , pwd j) to FPAKE. Since no TESTPWD query on
Pj was sent to FPAKE previously, Pj ’s session record in FPAKE is fresh, so FPAKE

replies with (TESTPWD, sid ′, correct) if and only if pwd j = pwd ′. If FPAKE’s

response is (TESTPWD, sid ′, correct), “FPAPKE” sends (ENC-M, sid , k) to A,
otherwise it sends (ENC-L, sid , |m|) to A.)

(case II:) OtherwiseA receives (GUESS, sid , apk ′) from FPAPKE (or “FPAPKE”),
and replies with (GUESS, sid , pwd∗). If pwd∗ = pwd ′, A receives (ENC-M, sid , k)
from FPAPKE (or “FPAPKE”); otherwise it receives (ENC-L, sid , |m|). (The process
in the ideal world is similar to the analysis in the case above.)

In both cases above, upon receiving (ENC-M, sid , k) or (ENC-L, sid , |m|), A
replies with (CIPHERTEXT, sid , c). Then Pj (or “Pj”) sends (sid ′, c) to Pi (which
is intercepted by A), and outputs (NEWKEY, sid ′, k) where k ←R {0, 1}|m|.

Pi final output:

This round starts when A sends (sid ′, c′) aimed at Pi.
Again, in both worlds, the view of Z/A in this round depends on the inputs

provided by A.
If a record (encrec, sid , k′/⊥, c′) exists, i.e., c′ is the result of a previous

(ENCRYPT, sid , apk , ·, ·) query, then Z receives (NEWKEY, sid ′, k) from Pi (or

38



“Pi”). Note that such ENCRYPT query may be performed by Pj in the previous
round, or by a corrupted P∗ generated by Z (separate from the PAKE protocol
execution). We split this case into three subcases regarding how k is defined:

– In the previous round, Z sets Pj ’s password pwd ′ = pwd , and A passes Pi’s
message (sid ′, apk) to Pj ; in this round, A passes (sid ′, c′) from Pj to Pi
honestly. In the real world, Pj queries (ENCRYPT, sid , apk , pwd , k′), where k′

is a random string chosen by Pj and is the session key of both Pi and Pj , i.e.,
k = k′. In the ideal world, SIM sends (NEWKEY, sid ′,Pi,⊥) to FPAKE. Since
Pi and Pj ’s passwords are the same, FPAKE will make Pi and Pj ’s session keys
the same, that is, k = k′.

– Same with the case above, except that Pj ’s password pwd ′ 6= pwd . In the
real world, Pj queries (ENCRYPT, sid , apk , pwd , k′), which generates a record
(encrec, sid ,⊥, c′) in FPAPKE. Then upon receiving (DECRYPT, sid , c′) from Pi,
FPAPKE returns (PLAINTEXT, sid ,⊥), and Pi sets k ←R {0, 1}|m|. In the ideal
world, the process is similar with that in the case above, but since Pi and Pj ’s
passwords are different, k is a random string in {0, 1}|m|.

– Z generates a corrupted P∗, and queries (ENCRYPT, sid , apk , pwd , k′) for any
k′ ∈ {0, 1}|m| it chooses. In the real world, k is set to k′. In the ideal world,
SIM sends (TESTPWD, sid ,Pi, pwd) to FPAKE, and then Pi’s session in FPAKE

is compromised. After that, SIM sends (NEWKEY, sid ′, k′) to FPAKE, and Pi’s
session key k is set to k′.

In sum, in both worlds, k = k′ in the first and third subcases above, and
k′ ←R {0, 1}|m| in the second subcase.

If a record (encrec, sid , k′, c′) does not exist, thenA receives (DECRYPT, sid , c′)
from FPAPKE (or “FPAPKE”), and replies with (PLAINTEXT, sid , k∗, pwd∗). Af-
ter this, Z receives (NEWKEY, sid ′′, k) from Pi (or “Pi”), where k = k∗ if
pwd∗ = pwd , and k ←R {0, 1}|m| otherwise. (The process in the ideal world is
as follows: SIM sends (TESTPWD, sid ,Pi, pwd∗) to FPAKE. Since no TESTPWD
query on Pi was sent to FPAKE previously, Pi’s session record in FPAKE is fresh.
If pwd∗ = pwd , the record then becomes compromised, and Pi’s session key is
set to k∗. Otherwise the record becomes interrupted, and Pi’s session key is a
random string.)

D Proof of Theorem 3 (Security of PAPKE-IC)

We present the proof of Theorem 3, showing that the scheme PAPKE-IC described
in Figure 4 securely realized our FPAPKE functionality in the ideal-cipher model
if the underlying PKE scheme is indistinguishable, anonymous, and strongly
robust (as defined in Section 4). To make the UC security proof more readable
we re-present protocol PAPKE-IC in Figure 14 using the FPAPKE syntax and using
functionality FPKE rather than a concrete PKE scheme as a tool. In the security
proof we assume that the ideal cipher IC is made available to all parties through
an ideal functionality FIC, but for the ease of exposition use the algorithm-based
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Setup: Let PKE = (KGen,Enc,Dec) be a public-key encryption scheme with uniform
public-key space PK and let IC = (IC.Enc, IC.Dec) be an ideal cipher over PK. We
assume IC to be available to all parties through an ideal functionality FIC.

KEYGEN(sid , pwd):

– Abort if a key record (sid , ·) already exists.

– Generate (pk , sk)←R PKE.KGen(κ) and compute apk ← IC.Enc(pwd , pk).

– Store (sid , sk) and output (KEYCONF, sid , apk).

ENCRYPT(sid , apk , pwd ,m):

– Decrypt the public key: pk ← IC.Dec(pwd , apk).

– Encrypt the message c ←R PKE.Enc(pk ,m) and output (CIPHERTEXT, sid , c).

DECRYPT(sk , sid , c):

– Retrieve (sid , sk); abort if no such record exists.

– Decrypt m ← PKE.Dec(sk , c) and output (PLAINTEXT, sid ,m).

Fig. 14. Scheme PAPKE-IC of Figure 4 represented in the FPKE-hybrid model.

notation of IC instead of calling the sub-functionality with dedicated session
identifiers.

The proof of Theorem 3 requires showing that for any environment Z and
adversary A there exists an efficient ideal-world adversary algorithm, called sim-
ulator SIM, such that the view of Z of the real-world interaction, interacting
with the real scheme and adversary A, is indistinguishable from the view of Z
functionality FPAPKE and simulator SIM.

Thus we first describe the behavior of our simulator SIM, and then we prove
that the interaction with A and the real scheme is indistinguishable from an
interaction with FPAPKE and SIM.

Simulator SIM. Simulator SIM keeps an initially empty list L and reacts to
queries from the adversary or the functionality FPAPKE as follows:

Ideal Cipher: SIM simulates the ideal cipher IC = (IC.Enc, IC.Dec) by lazy sam-

pling while ensuring that IC.Enc(pwd ′, ·) is a permutation, thereby keeping a set
L of tuples of the form (pwd ′, pk ′, apk ′, sk ′) where IC.Enc(pwd ′, pk ′) = apk ′ and
IC.Dec(pwd ′, apk ′) = pk ′, respectively.

More precisely, upon a query IC.Enc(pwd ′, pk ′), SIM looks up whether an
entry (pwd ′, pk ′, apk ′, sk ′) in L exists. If it is found, it returns apk ′. Otherwise,
it chooses apk ′ ←R PK \ {apk ′′ : ∃(pwd ′, pk ′′, apk ′′, sk ′′) ∈ L}. If there exists
another tuple (pwd ′′, pk ′′, apk ′′, sk ′′) ∈ L with apk ′′ = apk ′, then SIM aborts.
Otherwise, it adds (pwd ′, pk ′, apk ′,⊥) to L and returns apk ′.

Upon a decryption query IC.Dec(pwd ′, apk ′), the simulator looks up (pwd ′, pk ′,
apk ′, sk ′) ∈ L and returns pk ′ if it is found. If not, it generates key pairs
(pk ′, sk ′)←R PKE.KGen(κ) until there does not exist a tuple (pwd ′, pk ′, apk ′, sk ′′) ∈
L. It adds (pwd ′, pk ′, apk ′, sk ′) to L and returns pk ′.
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Key Generation: Upon receiving (KEYGEN, sid) from FPAPKE, SIM chooses apk ←R

PK, and sends (KEYCONF, sid , apk) to FPAPKE.

Encryption: Here the behavior of SIM depends on whether the encryption is

requested for the real apk or for a different apk ′ 6= apk . In the latter case,
FPAPKE grants the simulator one password guess pwd∗ for each apk ′. If the guess
matches the honest party’s password attempt pwd ′, then the adversary learns
the message to be encrypted, and only the length |m| of the message otherwise.

– Real apk : If the encryption was triggered for the real apk , i.e., for the au-
thenticated key that was sent by SIM to FPAPKE during key generation, then
SIM receives (ENC-L, sid , apk , |m|) from FPAPKE. SIM then chooses a dummy
message m′ such that |m′| = |m|, chooses pk ′ ←R PK, and returns c ←R

PKE.Enc(pk ′,m′) to FPAPKE via the input (CIPHERTEXT, sid , c).

– Bad apk ′ 6= apk : If encryption is triggered for a different apk ′ 6= apk , then
SIM receives (GUESS, sid , apk ′). It looks up a tuple (pwd∗, pk ′, apk ′,⊥) ∈ L;
because of how SIM simulates the ideal cipher, at most one such tuple ex-
ists. If no such tuple is found, it sets pwd∗ ← ⊥. The simulator then sends
(GUESS, sid , pwd∗) to FPAPKE.

• If pwd∗ = pwd ′, i.e., SIM correctly guessed the password attempt pwd ′ of Q,
it receives (ENC-M, sid , apk ′,m) from FPAPKE. SIM then computes an honest
ciphertext c ←R PKE.Enc(pk ′,m) and returns it via (CIPHERTEXT, sid , c)
to FPAPKE.

• If pwd∗ 6= pwd ′, i.e., SIM provided a wrong password guess, then it will only
receive the length of the message from FPAPKE as (ENC-L, sid , apk ′, |m|). As
in the case of encryption under an honest public key, SIM then creates a
dummy ciphertext by choosing a dummy message m′ such that |m′| = |m|,
choosing pk ′ ←R PK, and computing c ←R PKE.Enc(pk ′, 0|m|). It sends
(CIPHERTEXT, sid , c) to the functionality.

Decryption: When FPAPKE is invoked by the honest party P to decrypt a cipher-
text c that was not generated by the functionality, it asks the simulator for a
plaintext m∗ and a password guess pwd∗ for the setup password pwd . Only if
his guess is correct will the plaintext be returned, otherwise FPAPKE’s output to
P is m = ⊥.

To determine the message m∗ and password guess pwd∗, SIM first looks up
whether a tuple (pwd∗, pk ′, apk , sk ′) ∈ L exists, such that m = Dec(sk ′, c) 6= ⊥.
If multiple such tuples are found, the simulator aborts. If no such entry is found,
it sets m∗ ← ⊥. Otherwise, it sets m∗ ← m. Finally, the simulator sends
(PLAINTEXT, sid ,m∗, pwd∗) to FPAPKE.

We now complete the proof by showing that the above simulator provides a
correct simulation of the PAPKE-IC scheme through a sequence of games.

Proof. The proof goes by the standard technique of game changes which start
from the real interaction between the environment Z, adversary A, and scheme
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PAPKE-IC, and end with the ideal-world interaction between the same environ-
ment but interacting via functionality FPAPKE with the ideal-world adversary
whose code is specified as the simulator SIM in Section 5.1.

Let RealZ,A,PAPKE-IC(κ) be the event that the UC environment Z outputs 1
in the FRO-hybrid model with adversary A and protocol PAPKE-IC, and let
IdealZ,SIM,FPAPKE

(κ) be the event that Z outputs 1 when interacting in the ideal
world with simulator SIM and the ideal functionality FPAPKE. Then we will show
that

|Pr [RealZ,A,PAPKE-IC(κ)]− Pr [IdealZ,SIM,FPAPKE
(κ)]|

is negligible. In the following sequence of games, let Gi(κ) denote the event that
Z outputs 1 when interacting with the experiment of Game i.

Game 1 (Real world): The challenger runs the standard PAPKE-IC scheme in
the role of an honest receiver P and honest senders Qi. It simulates the ideal
cipher (IC.Enc, IC.Dec) by lazy sampling while ensuring that IC.Enc(pwd ′, ·) is a
permutation, thereby keeping a set L of tuples of the form (pwd ′, pk ′, apk ′) where
IC.Enc(pwd ′, pk ′) = apk ′ and IC.Dec(pwd ′, apk ′) = pk ′, respectively. Without
loss of generality, we assume that the environment never makes the same ideal-
cipher queries twice, and that it always makes a query IC.Dec(pwd ′, apk ′) before
making an encryption query (ENCRYPT, sid , apk ′, pwd ′,m). We have that

Pr [G1(κ)] = Pr [RealZ,A,PAPKE-IC(κ)] .

Game 2 (Ideal decryption to public keys with known secret keys.): The simulator
now stores tuples of the form (pwd ′, pk ′, apk ′, sk ′) to indicate that IC.Enc(pwd ′, pk ′) =
apk ′ and IC.Dec(pwd ′, apk ′) = pk ′, and where sk ′ is either⊥ or the secret key cor-
responding to pk ′. Namely, upon query IC.Enc(pwd ′, pk ′), store (pwd ′, pk ′, apk ′,⊥)
in L for a random apk ′ (while keeping IC.Enc(pwd ′, ·) a permutation), and
upon query IC.Dec(pwd ′, apk ′), store (pwd ′, pk ′, apk ′, sk ′) for a freshly gener-
ated (sk ′, pk ′) ←R KGen(1κ) (again, respecting permutation). This is merely a
conceptual change, so we have that

Pr [G2(κ)] = Pr [G1(κ)] .

Game 3 (Abort on ideal-cipher collisions): This game aborts when a pk ′ or apk ′

chosen at random during the simulation of a IC.Dec or IC.Enc query, respec-
tively, collides with a pk ′ or apk ′ that was chosen at random for a different pass-
word. More specifically, this game aborts whenever there either exist two tuples
(pwd1, pk1, apk ′,⊥), (pwd2, pk2, apk ′,⊥) ∈ L with (pwd1, pk1) 6= (pwd2, pk2)
(i.e., two different encryption queries have the same result apk ′), or when-
ever there exist two tuples (pwd1, pk ′, apk1, sk ′), (pwd2, pk ′, apk2, sk ′) ∈ L with
sk ′ 6= ⊥ and (pwd1, apk1) 6= (pwd2, apk2) (i.e., two different decryption queries
have the same result pk ′). When qIC denotes the total number of queries to
IC.Enc and IC.Dec, we have that

|Pr [G3(κ)]− Pr [G2(κ)]| ≤ q2IC
2 · |PK|

.
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Game 4 (Decrypting known ciphertexts via internal records): From now on, the
challenger creates a record (encrec, sid ,m′, c) whenever it is triggered to encrypt a
message m under P’s public key apk and for password attempt pwd ′. The cipher-
text in this record is the standard encryption c←R PAPKE-IC.Enc(apk , pwd ′,m).
When pwd ′ 6= pwd , i.e., encryption is done for a different password than the
challenger has chosen in the creation of apk , it sets m′ ← ⊥, otherwise it sets
m′ ← m. For decryption of some ciphertext c, the challenger first checks if a
record exists. If so, it retrieves m from there (possibly being ⊥), and only de-
crypts using the PAPKE-IC.Dec algorithm if no record was found. If more than
one record for c exists, then the challenger aborts. Also, if the decryption algo-
rithm PAPKE-IC.Dec(sk , c) returns m 6= ⊥ for a ciphertext c that was created
under a wrong password attempt pwd ′ 6= pwd , the challenger aborts. We distin-
guish between three different events causing the challenger to abort:

– bad1: There are two records (encrec, sid ,m′1, c) and (encrec, sid ,m′2, c) with
m′1 6= ⊥ and m′2 6= ⊥. This means that c was the output to two inputs
(ENCRYPT, sid , apk , pwd ,m1) and (ENCRYPT, sid , apk , pwd ,m2) for the cor-
rect password pwd . This is impossible by the correctness of PKE, so we have
that Pr [bad1] = 0.

– bad2: There are two records (encrec, sid ,m′1, c) and (encrec, sid ,m′2, c) with
m′1 6= ⊥ and m′2 = ⊥. An environment that causes this event to happen can
be used to build an adversary B against the strong robustness of PKE as follows.
Adversary B, on input public keys (pk0, pk1), runs the environment and adver-
sary A following the code of Game 4, but rather than generating a fresh key
pair (pk , sk) ←R PKE.KGen(κ) and setting apk ← IC.Enc(pwd , pk) on input
(KEYGEN, sid , pwd) from the environment, it returns apk ← IC.Enc(pwd , pk0),
and uses its Dec(0, ·) oracle to respond to DECRYPT inputs. Also, it guesses an
index i←R {1, . . . , qIC} and responds the i-th ideal-cipher query with pk1 in-
stead of a freshly generated public key. If bad2 happens then c was output both
by ENCRYPT(sid , apk , pwd ,m1) and by ENCRYPT(sid , apk , pwd ′,m2), where
pwd ′ 6= pwd . With probability 1/qIC, we have that IC.Dec(pwd ′, apk) = pk1.
This would imply that c was generated twice, once as Enc(pk0,m1) and once
as Enc(pk1,m2). By the correctness of PKE, B can therefore output c as a ci-
phertext that will decrypt correctly under both keys, breaking the SROB-CCA
security of PKE with probability

AdvSROB-CCA
PKE,B (κ) =

1

qIC
· Pr [bad2] .

– bad3: The decryption algorithm PAPKE-IC.Dec(sk , c) returns m 6= ⊥ for a
ciphertext c that was created as c←R PAPKE-IC.Enc(apk , pwd ′,m) for pwd ′ 6=
pwd . An environment causing bad3 to happen gives rise to the following
SROB-CCA adversary B. On input (pk0, pk1), B runs the code of Game 4,
but sets apk ← IC.Enc(pwd , pk0) and uses its Dec(0, ·) oracle to respond to
DECRYPT inputs. It also guesses an index i←R {1, . . . , qIC} and answers the
i-th ideal-cipher query with pk1. When bad3 occurs, then a ciphertext gen-
erated as c ←R PKE.Enc(IC.Dec(pwd ′, apk),m) decrypts correctly to m′ 6= ⊥
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under sk = sk0. With probability 1/qIC we have that IC.Dec(pwd ′, apk) = pk1,
so that, by the correctness of PKE, c decrypts correctly under both sk0 and
sk1, so B outputs c. Its probability in breaking the SROB-CCA security of PKE
is

AdvSROB-CCA
PKE,B (κ) =

1

qIC
· Pr [bad3] .

In summary, we have that

|Pr [G4(κ)]− Pr [G3(κ)]| ≤ Pr [bad1] + Pr [bad2] + Pr [bad3]

= 2qIC ·AdvSROB-CCA
PKE,B (κ) .

Game 5 (Decrypting unknown ciphertexts via the ideal-cipher history): Instead
of normally decrypting ciphertexts for which no (encrec, sid ,m′, c) record ex-
ists, we extract m and pwd∗ from the ideal-cipher queries. If pwd∗ = pwd , the
challenger returns m, otherwise it returns ⊥. This game extracts a password
pwd∗ from ciphertext c by looking for a tuple (pwd∗, pk ′, apk , sk ′) ∈ L such that
Dec(sk ′, c) = m 6= ⊥. If more than one such tuple is found, then we say that
bad4 occurred and the game aborts. If no such tuple is found, then set pwd∗ = ⊥
and m = ⊥, whereby bad5 denotes the event that Dec(sk , c) 6= ⊥ even though
no suitable tuple was found.
If bad4 happens, then there are two tuples (pwd∗0, pk0, apk , sk0) and (pwd∗1, pk1,
apk , sk1) ∈ L such that pwd∗0 6= pwd∗1 and c decrypts validly under both pk0

and pk1. Given an environment that triggers bad4, one can build a SROB-CCA
adversary B against PKE as follows. Adversary B, on input public keys (pk0, pk1)
chooses two random indices i0, i1 ←R {0, . . . , qIC}. It runs the code of Game 4,
but replaces the response of the ib-th ideal-cipher query with pk b for b ∈ {0, 1}
if ib > 0, or if ib = 0 replaces the public key pk generated at the beginning of
the game with pk b. In the latter case, it responds to further decryption queries
using its own decryption oracle Dec(b, ·). If a ciphertext c is queried that triggers
bad4 to happen, then with probability 2

qIC(qIC+1) the two tuples in L are exactly

those where pk0 and pk1 were programmed, so that B can output c. We have
that

AdvSROB-CCA
PKE,B (κ) ≥ 2

qIC(qIC + 1)
· Pr [bad4] .

Event bad5 cannot happen because there always exists a tuple (pwd , pk , apk , sk) ∈
L for the real password pwd and the real public key apk , where sk 6= ⊥ is the
secret key corresponding to pk . We have that

|Pr [G5(κ)]− Pr [G4(κ)]| ≤ Pr [bad4] + Pr [bad5]

≤ qIC(qIC + 1)

2
·AdvSROB-CCA

PKE,B (κ) .

Game 6 (Dummy plaintexts for real apk): In this game, when the challenger is
asked to generate a ciphertext for a message m and password pwd ′ under the real
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authenticated public key apk , it chooses a dummy message m′ such that |m′| =
|m|, chooses a random public key pk ′ ←R PK, and returns c ←R Enc(pk ′,m′).
One can prove that this game is indistinguishable from the previous one under
the AI-CCA security of PKE through a hybrid argument over the number of
encryption queries qE. In the i-th hybrid, the simulator responds the first i− 1
encryption queries for apk with encryptions of a dummy message m′ under a
random public key pk ′, and responds the i-th to qE-th queries with encryptions
of the real message m under the real public key pk ′ = IC.Dec(pwd ′, apk). The
first hybrid is identical to Game 5, while the (qE + 1)-st hybrid is identical to
Game 6. Given an environment that can distinguish the i-th hybrid from the
(i + 1)-st hybrid, one can build an AI-CCA adversary B that, on input public
keys (pk0, pk1), guesses an ideal-cipher query index j ←R {0, . . . , qIC}. If j = 0,
then B uses pk0 instead of a freshly generated pk to produce apk during key
generation, and uses its Dec(0, ·) oracle to answer decryption queries. If the i-th
encryption query (ENCRYPT, sid , apk ′, pwd ′,m) is not for the real apk ′ = apk
and the real password pwd ′ = pwd , then B aborts, otherwise it chooses a dummy
message m′ such that |m′| = |m|, submits (m,m′) to its LoR oracle, and returns
the resulting ciphertext c. Note that if the hidden bit b of the AI-CCA game is
zero, then c is an encryption of m under pk0, otherwise it is an encryption of
m′ under a fresh public key pk ′. If the environment indicates that it is running
in the i-th hybrid, then B outputs 0, otherwise it outputs 1. For the case that
j 6= 0, B programs pk0 as the output of the j-th ideal-cipher query, hoping that
the i-th encryption query (ENCRYPT, sid , apk ′, pwd ′,m) is for apk ′ = apk and
pwd ′ 6= pwd such that IC.Dec(pwd ′, apk) = pk0. The success probability of B is
1/(qIC+1) times the probability that the environment distinguishes the (i−1)-st
hybrid from the i-th hybrid, so that the overall probability that the environment
distinguishes Game 6 from Game 5 is

|Pr [G6(κ)]− Pr [G5(κ)]| ≤ qE(qIC + 1) ·AdvAI-CCA
PKE,B (κ) .

Game 7 (Dummy plaintexts for bad apk ′ 6= apk): In this game, we also respond
to encryption queries (ENCRYPT, sid , apk ′, pwd ′,m) under a bad authenticated
public key apk ′ 6= apk with an encryption of a dummy message under a random
key. However, we cannot do so for all such queries, because for a bad apk ′, the
environment may actually know the corresponding secret key, so that it can
detect the change. By Game 3, we have that apk ′ was only returned once as
an output of a query IC.Dec(pwd∗, pk∗), meaning that there exists only one
tuple (pwd∗, pk∗, apk ′,⊥) ∈ L. If pwd∗ 6= pwd ′, we respond with a ciphertext
c←R Enc(pk ′,m′) for a dummy message m′ such that |m′| = |m| and a random
key pk ′ ←R PK, otherwise we respond honestly with an encryption of m under
pk∗.
We show the indistinguishability from the previous game through another hybrid
on the number of encryption queries qE. In the i-th hybrid, the game returns
encryptions of dummy messages under random keys for the first i−1 encryption
queries with apk ′ 6= apk and pwd ′ 6= pwd∗, and honest encryptions for the other
ones. An environment that distinguishes between two subsequent hybrid games i
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and i+ 1 gives rise to the AI-CCA adversary B that, on input (pk0, pk1), guesses
a query index i ←R {1, . . . , qIC} and returns pk0 as the response to the i-th
ideal-cipher query. For the i-th encryption query, it returns the response of its
LoR oracle on (m,m′), where m′ is a dummy message so that |m′| = |m|. If the
environment indicates that it’s in the i-th hybrid, then B outputs 0, otherwise it
outputs 1. The success probability of B is 1/qIC times the probability that the
environment distinguishes the (i− 1)-st hybrid from the i-th hybrid, so that the
overall probability that the environment distinguishes Game 6 from Game 5 is

|Pr [G7(κ)]− Pr [G6(κ)]| ≤ qE · qIC ·AdvAI-CCA
PKE,B (κ) .

Game 8 (Dummy apk): Rather than generating the real apk by first generating
a key pair (pk , sk) and setting apk ← IC.Enc(pwd , pk), this game sets apk to be
a random element in PK. Note that the simulation at this point is independent
of the real password pwd , except for the test whether pwd∗ = pwd in Game 5.
If the environment makes a query IC.Dec(pwd , apk), then the simulator will
generate a key pair (pk , sk) ←R KGen(1κ) and program IC.Dec(pwd , apk) = pk
so that the change is purely conceptional. If the environment never makes that
query, then this entry will never be defined, but in that case also the secret key
sk corresponding to IC.Dec(pwd , apk) is never needed in the simulation, so the
change is again purely conceptional. (Note that Game 5 simply returns ⊥ for
ciphertexts that do not encrypt under any secret key in L.) We have that

Pr [G8(κ)] = Pr [G7(κ)] .

Game 9 (Challenger interacts with FPAPKE): In our final game we make the
transition from letting the challenger run the code of Game 8 to letting him
run the simulator given in Section 5.1 in interaction with the ideal functionality
FPAPKE. As one can verify, this is merely a re-organization of code, so that

Pr [G9(κ)] = Pr [G8(κ)] = Pr [IdealZ,SIM,FPAPKE
(κ)] .

Adding all the probability differences between the games above yields

|Pr [IdealZ,SIM,FPAPKE
(κ)]− Pr [RealZ,A,PAPKE-IC(κ)]|

≤ 2qE(qIC + 1) ·AdvAI-CCA
PKE,B (κ) + 2qIC(qIC + 1) ·AdvSROB-CCA

PKE,B (κ) +
q2IC

2 · |PK|
.

E Proof of Theorem 4 (Security of PAPKE-FO)

We prove Theorem 4, i.e. that the PAPKE-FO scheme in Figure 5 securely realizes
the ideal functionality FPAPKE under the DDH assumption in the random oracle
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model. The proof of Theorem 4 requires construction of simulator SIM s.t. for
any environment Z and adversary A the view of Z in the real world where honest
parties run PAPKE-FO with A, is indistinguishable from the view in the ideal
world where honest parties and SIM interact via functionality FPAPKE. Thus we
first show the simulator SIM and then we prove that the above holds for any
efficient algorithms Z and A.

Simulator SIM. Since many parts of SIM are similar with the simulator for the
PAPKE-IC scheme, we only highlight the differences. Please refer to Appendix D
for more details and intuitive explanations.

Setup (CRS and Random Oracles): SIM generates G, p and g1 at random, but sets

g2 ← gs1 for s←R Zp. (This allows SIM to decrypt pwd from malicious apk∗.)
SIM simulates the random oracles H0,H1 and H2 using lazy sampling as usual,

but aborts when a collision H0(q) = H0(q
′) or H1(q) = H1(q

′) occurs for q 6= q′.
SIM also aborts if two entries H1(q) = (r1, r2) and H1(q

′) = (r′1, r
′
2) exist such

that gr11 g
r2
2 = g

r′1
1 g

r′2
2 for q 6= q′. The random oracles allow SIM to decrypt ma-

licious ciphertexts for an honest apk , i.e., ones that are not generated via the
ideal functionality without knowing the corresponding sk .

Key Generation: Upon receiving (KEYGEN, sid) from FPAPKE, SIM creates apk ←
(y1, Y2) where y1, Y2 ←R G and sends (KEYCONF, sid , apk) to FPAPKE. Thus,
SIM does not know the secret key corresponding to apk .

Encryption: The simulation depends on whether ciphertexts for an honest or cor-
rupt public key are requested.

real apk : Upon receiving (ENC-L, sid , apk ,⊥) from FPAPKE, SIM creates a dummy
ciphertext c = (c1, c2, c3) ←R G × G × {0, 1}n and sends (CIPHERTEXT, sid , c)
to FPAPKE.

bad apk ′ 6= apk : Upon receiving (GUESS, sid , apk ′) from FPAPKE, SIM parses
apk ′ = (y′1, Y

′
2) and “extracts” pwd∗ from apk ′ by decrypting K ← Y ′2/y

′
1
s

and looking up whether a query pwd∗ was made where H0(pwd∗) = K. If no
such query was found, it sets pwd∗ ← ⊥. SIM then sends (GUESS, sid , pwd∗) to
FPAPKE.

– Upon receiving (ENC-M, sid , apk ′,m) from FPAPKE (in the case where pwd∗ =
pwd ′), SIM computes an honest ciphertext c←R Enc(apk ′, pwd∗,m) and sends
(CIPHERTEXT, sid , c) to FPAPKE.

– Upon receiving (ENC-L, sid , apk ′,⊥) from FPAPKE (in the case where pwd∗ 6=
pwd ′), SIM creates a dummy ciphertext c ←R G × G × {0, 1}n and sends
(CIPHERTEXT, sid , c) to FPAPKE.

Decryption: Upon receiving (DECRYPT, sid , c) from FPAPKE, SIM looks for a
query H1(R, y1, y2,m

∗) = (r1, r2) for some y2, m such that c1 = gr11 g
r2
2 . By

the way we simulate H1 queries, there is at most one such query. If it exists, then
SIM finds a query H0(pwd∗) = Y2/y2, of which there is also at most one. If any
of these entries does not exist, then it sets pwd∗ = m∗ = ⊥. Finally, SIM sends
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(PLAINTEXT, sid ,m∗, pwd∗) to FPAPKE.

Proof. As in the proof of Theorem 3 we describe a sequence of games starting
from the real interaction between the environment Z, adversary A, and scheme
PAPKE-IC and ending in the ideal world where the environment interacts with
the functionality FPAPKE and the simulator SIM described in Section 5.2.

In each game, we describe a challenger that interacts with a real-world adver-
sary. The challenger plays the role of all honest parties (receiver P and senders
Qi), obtaining their inputs from and passing their outputs to Z. We stepwise
change parts of the real PAPKE-FO protocol, mainly replacing real keys or cipher-
texts either by “dummy” values that do not depend on pwd and m a anymore
but that are indistinguishable from the real ones, or we derive them based only
on knowing whether or not the passwords pwd and pwd ′ match. In our final
game we then make the transition to let the challenger run internally the ideal
functionality FPAPKE and simulate all messages based merely on the information
he can obtain from FPAPKE.

Let RealZ,A,PAPKE-IC(κ) be the event that the UC environment Z outputs 1
in the FRO-hybrid model with adversary A and protocol PAPKE-IC, and let
IdealZ,SIM,FPAPKE

(κ) be the event that Z outputs 1 when interacting in the ideal
world with simulator SIM and the ideal functionality FPAPKE. Then we will show
that

|Pr [RealZ,A,PAPKE-FO(κ)]− Pr [IdealZ,SIM,FPAPKE
(κ)]|

is negligible. In the following sequence of games, let Gi(κ) denote the event that
Z outputs 1 when interacting with the experiment of Game i.

Game 1: The challenger runs the standard PAPKE-FO scheme in the role of
an honest receiver P and honest senders Qi. It simulates the random oracles
H0,H1 and H2 by running the code of FRO, thereby keeping tables of queries
and responses. These tables allow the challenger to check whether a certain
query was made or look up preimages from previous responses. We have that
Pr [G1(κ)] = Pr [RealZ,A,PAPKE-FO(κ)] .

Game 2 (Setting the CRS): The challenger changes the CRS and sets g2 ← gs1.
Clearly, this change has no impact on the view of the environment. (It will later
enable the challenger to decrypt a password hash from a bad apk∗.) We have
that Pr [G2(κ)] = Pr [G1(κ)] .

Game 3 (Rejecting random-oracle collisions): This game aborts whenever a
collision on one of the random oracles H0 or H1 arises, i.e., whenever there exist
random oracle queries q 6= q′ such that H0(q) = H0(q

′) or H1(q) = H1(q
′). (From

the random oracle H2 we only require the observability property, but no collision-
resistance and thus we do not check for collisions on H2.) Given that p > 2κ−1,
the difference with the previous game for an adversary that makes qH queries is

|Pr [G3(κ)]− Pr [G2(κ)]| ≤ q2H
2κ .

Game 4 (Rejecting double representations): When answering H1 queries, this
game aborts whenever two entries H1(q) = (r1, r2) and H1(q

′) = (r′1, r
′
2) exist
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such that gr11 g
r2
2 = g

r′1
1 g

r′2
2 . Since the response (r1, r2) is chosen at random at the

moment of each hash query, the group element gr11 g
r2
2 is uniformly distributed

over G. The difference between the games is therefore bounded by the probability
that a group element is chosen twice when qH elements are chosen at random,

i.e., |Pr [G4(κ)]− Pr [G3(κ)]| ≤ q2H
2κ . Note that from now on, every ciphertext

c = (c1 = gr11 g
r2
2 , c2, c3) corresponds to a unique (r1, r2) pair, which in turn

corresponds to a unique (R, y1, y2,m) tuple (since we excluded collisions on H1

in Game 3).

Game 5 (Decrypting known ciphertexts via internal records): From now on, the
challenger creates a record (encrec, sid ,m′, c) whenever it is triggered to encrypt
a message m under P’s public key apk and for password attempt pwd ′. The
ciphertext c in this record is the standard PAPKE-FO encryption of m under apk
and pwd ′. When pwd ′ 6= pwd , i.e., encryption is done for a different password
than the challenger has chosen in the creation of apk , it sets m′ ← ⊥ and
m′ ← m otherwise. For decryption of some ciphertext c, the challenger first
checks if a record exists. If so, it retrieves m from there (possibly being ⊥), and
only decrypts normally if no record was found. If more than one record for c
exist, the challenger aborts.

This change is not noticeable to the environment as long as (i) we have at most
one record per ciphertext c, and (ii) PAPKE-FO will always output ⊥ when
decrypting a ciphertext that was created under a wrong password attempt. Re-
call that by Game 4, there can be only one query H1(R, y1, y2,m) = (r1, r2)
such that c1 = gr11 g

r2
2 . Condition (i) can therefore only be violated if the same

value R is chosen twice during honest encryptions, which happens with proba-
bility at most q2E/2

κ. Violating condition (ii) would imply that y2 correspond-
ing to c1 is both Y2/H0(pwd ′) (it is computed this way in ENCRYPT) and
Y2/H0(pwd) (because DECRYPT does not output ⊥) for pwd ′ 6= pwd , mean-
ing that H0(pwd) = H0(pwd ′), which cannot happen because we excluded such

collisions in Game 3. We therefore have that |Pr [G5(κ)]− Pr [G4(κ)]| ≤ q2E
2κ .

Game 6 (Decrypting unknown ciphertexts via the random-oracle history): When
the challenger (in the role of P) receives a ciphertext c = (c1, c2, c3), it looks
for values R, y2, and m such that an entry H1(R, y1, y2,m) = (r1, r2) exists,
where y1 is the value included in apk , such that c1 = gr11 g

r2
2 . By Game 4, at

most one such query exists. If no such entry exists, it sets pwd∗ = m = ⊥, which
with overwhelming probability is a correct response because the probability that
a future H1 query will return (r1, r2) such that gr11 g

r2
2 = c1 for any of the qD

decryption queries is at most qD/2
κ−1.

Letting h = Y2/y2 where Y2 is the group element included in apk , it then checks
whether a query H0(pwd∗) = h was made. By Game 3, at most one such entry
exists, and the probability that any future random-oracle response hits h is at
most qD/2

κ−1. If it exists, the challenger further tests whether it holds that
c1 = gr11 g

r2
2 and c2 = yr11 y

r2
2 · R and c3 = H2(R) ⊕ m. If so, and if moreover

pwd∗ = pwd , then the challenger creates a record (encrec, sid ,m, c), otherwise
it creates a record (encrec, sid ,⊥, c). Subsequent decryptions of c are performed
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simply by looking up m from there. The difference with the previous game is
|Pr [G6(κ)]− Pr [G5(κ)]| ≤ qD

2κ−1 + qD
2κ−1 = qD

2κ−2 .

Game 7 (Dummy ciphertexts for real apk): In this game, when the challenger
is asked to generate a ciphertext for a message m and password pwd ′ under the
real apk , it returns a random tuple c ←R G × G × {0, 1}n. We show that any
adversary distinguishing this game from the previous one can be used to solve
the CDH problem in G.

If c = (c1 = gr11 g
r2
2 , c2 = yr11 (Y2/H0(pwd ′))r2 ·R, c3 = H2(R)⊕m) is a ciphertext

that the challenger in Game 6 generated for the real public key apk = (y1, Y2)
and some password pwd ′, then let us refer to H1(R, y1, Y2/H0(pwd ′),m) and
H2(R) as the “crucial” hash queries for c. It is easy to see that if the adversary
does not make a “crucial” hash query for c, then due to the random choice of
R ←R G, the ciphertext c is uniformly distributed over G × G × {0, 1}n. Any
adversary that does make a “crucial” hash query can be turned into a solver B
for the CDH problem in G:

The algorithm B, on input (g,A,B), follows the code of the game challenger ex-
cept the followings: It responds to each random-oracle query H0(pwd ′) by choos-
ing spwd′ ←R Zp and returning Aspwd′ . It sets g1 ← g, y1 ← A, Y2 ← As ·H0(pwd),
apk ← (y1, Y2), where s = logg1 g2 as has been the case since Game 2. Finally, it
picks i←R {1, . . . , qE} (a guess for the order of encryption in which A makes the
“crucial” hash query on the randomness R) and generates the i-th ciphertext for
a message mi on the real apk for a password pwd ′i by choosing s1,i, s2,i ←R Zp,
and returning (c1,i = Bs1,iBs·s2,i , c2,i ←R G, c3,i ←R {0, 1}n). Note that the
challenger thereby implicitly uses randomness r1,i = bs1,i and r2,i = bs2,i for the
first part of the ciphertext. A crucial hash query for the i-th ciphertext must
therefore contain the value for R such that c2,i = R · yr1,i1 (Y2/H0(pwd ′i))

r2,i =

R·Abs1,i(As−spwd′
i )bs2,i , so B picks R←R {R′|H1(R

′, ·, ·, ·) or H2(R) is queried} (a

guess for R used in the i-th encryption) and outputs (c2,i/R)
1/(s1,i+s2,i(s−spwd′

i
))

as the CDH solution. It is easy to see that B simulates A’s view perfectly un-
less and until A makes the “crucial” hash query (and then B outputs the CDH
solution immediately, so there is no need to simulate anymore), and B’s output
is correct if both of its guesses on i and R are correct. Therefore, it outputs
the correct solution with probability at least 1/qHqE. We therefore have that
|Pr [G7(κ)]− Pr [G6(κ)]| ≤ qHqE ·Advcdh

G,B(κ) .

Game 8 (Dummy ciphertexts for bad apk ′ 6= apk): In this game, we also cre-
ate dummy ciphertexts when a bad key apk ′ 6= apk is used in encryption and
the password pwd∗ embedded in apk ′ does not match the password pwd ′ used
by the encryptor. That is, the environment provided an apk ′ 6= apk , to which
he potentially also knows the secret key. However, if apk ′ is constructed for a
password pwd∗ which does not match the password attempt pwd ′ of the honest
encryptor, we argue that he cannot distinguish honestly computed ciphertexts
from dummy ones.

First, the challenger has to determine the password pwd∗ embedded in apk ′,
which he does by decrypting the ElGamal ciphertext apk ′ = (y1, Y2) as K =
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Y2/y
s
1. We now check whether K = H0(pwd ′). If so, we encrypt the message m

normally under pwd ′ and apk ′ (so there is no change in this case). However,
if the passwords did not match, or K is not a random oracle output, then we
generate c as a random value in G×G× {0, 1}n.
Suppose K 6= H0(pwd ′). Let H0(pwd ′) = gu1 and K = gv1 for some u, v ∈ Zp.
Recall that the first two parts of the ciphertext are formed as c1 = gr11 g

r2
2 and

c2 = yr11 (Y2/H0(pwd ′))r2 = g
xr1+(sx+v−u)r2
1 for random r1, r2. The values of s, x,

u, and v are uniquely determined by g2, y1, H0(pwd), and K, respectively, so the
system of equations r1 + s ·r2 = logg1 c1 and x ·r1 + (sx+v−u) ·r2 = logg1 c2 is
a system of two equations in two unknowns r1 and r2. The equations are linearly
independent because the determinant of the system is (sx + v − u) − sx 6= 0 if
v − u 6= 0. For any value of logg1 c1 and logg1 c2, this system therefore has a
unique solution (r1, r2), or in other words, for any value of c1, c2, there exists
exactly one choice for r1, r2 such that the encryption of m under apk ′ yields c1
and c2. The value of R is therefore information-theoretically hidden from the
adversary, so that c3 = H2(R) ⊕m is also uniformly distributed. We therefore
have that Pr [G8(κ)] = Pr [G7(κ)] .

Game 9 (Dummy apk): Whereas until now the key generation was performed
honestly as apk = (y1 = gx1 , Y2 = gx2 · H0(pwd)) for secret key (x, y1, y2 =
gx2 ) with x ←R G, we now let the challenger replace y1 and Y2 with random
group elements y1, Y2 ←R G and set apk = (y1, Y2). Since the value of x is no
longer used to answer decryption queries, this change does not have any effect
of the rest of the game. It is easy to see that any environment Z that can
tell the difference with the previous game can be turned into a DDH-solving
algorithm B′ by, on input DDH problem instance (A,B,C), running Z with a
game where g2 ← A, y1 ← B, and Y2 ← C · H0(pwd). We therefore have that
|Pr [G9(κ)]− Pr [G8(κ)]| ≤ Advddh

G,B′(κ) .

Game 10 (Challenger interacts with FPAPKE): In our final game we let the game
challenger run the simulator SIM described in Section 5.2 in interaction with the
ideal functionality FPAPKE. As one can verify, this is merely a re-organization of
code, so that Pr [G10(κ)] = Pr [G9(κ)] = Pr [IdealZ,SIM,FPAPKE

(κ)] .

Adding all the probability differences between the games above yields

|Pr [IdealZ,SIM,FPAPKE
(κ)]− Pr [RealZ,A,PAPKE-FO(κ)]|

≤ qHqE ·Advcdh
G,B(κ) + Advddh

G,B′(κ) +
2q2H + q2E + 4qD

2κ
.

As the hardness of the CDH problem is implied by the hardness of the DDH
problem, Theorem 4 follows.

51


