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Abstract—Single Sign-On (SSO) is becoming an increasingly
popular authentication method for users that leverages a
trusted Identity Provider (IdP) to bootstrap secure authen-
tication tokens from a single user password. It alleviates
some of the worst security issues of passwords, as users no
longer need to memorize individual passwords for all service
providers, and it removes the burden of these service to
properly protect huge password databases. However, SSO
also introduces a single point of failure. If compromised, the
IdP can impersonate all users and learn their master pass-
words. To remedy this risk while preserving the advantages
of SSO, Agrawal et al. (CCS’18) recently proposed a dis-
tributed realization termed PASTA (password-authenticated
threshold authentication) which splits the role of the IdP
across n servers. While PASTA is a great step forward and
guarantees security as long as not all servers are corrupted,
it uses a rather inflexible corruption model: servers cannot
be corrupted adaptively and — even worse — cannot recover
from corruption. The latter is known as proactive security
and allows servers to re-share their keys, thereby rendering
all previously compromised information useless.

In this work, we improve upon the work of PASTA
and propose a distributed SSO protocol with proactive and
adaptive security (PESTO), guaranteeing security as long
as not all servers are compromised at the same time. We
prove our scheme secure in the UC framework which is
known to provide the best security guarantees for password-
based primitives. The core of our protocol are two new
primitives we introduce: partially-oblivious distributed PRFs
and a class of distributed signature schemes. Both allow
for non-interactive refreshs of the secret key material and
tolerate adaptive corruptions. We give secure instantiations
based on the gap one-more BDH and RSA assumption
respectively, leading to a highly efficient 2-round PESTO
protocol. We also present an implementation and benchmark
of our scheme in Java, realizing OAuth-compatible bearer
tokens for SSO, demonstrating the viability of our approach.

1. Introduction
Until today, passwords are still the primary means

of user-authentication towards online services. While
stronger approaches, such as two-factor or key-based au-
thentication have been considered and are partially de-
ployed, passwords are still ubiquitous due to their usability
advantages: users do not have to securely manage crypto-

graphic keys or hardware tokens, but only need to type-in
a human-memorizable phrase.

Unfortunately, password databases are a prime target
of potential attackers and even large companies seem to
struggle to protect this information properly [4], [5], [7].
In fact, server compromise is currently the biggest threat
to password security and has lead to a compromise of
over 1 billion passwords to date [40]. In combination with
user tendencies to re-use passwords at different services,
such data breaches can have a devastating impact for those
affected by the breach.

Using single sign-on services (SSO) alleviates some
of the worst security issues with passwords, and also
enhances the usability aspects for the end user. The SSO
approach centralizes the authentication task via a trusted
Identity Provider (IdP). The user only has to login towards
the IdP which then generates a short-term cryptographic
access token such as a JWT [38] or SAML assertion [3],
allowing the user to authenticate herself towards other ser-
vices. The main advantage of SSO is that it avoids tedious
password handling with every single service provider, and
does not require users to trust each of these providers to
keep their passwords safe. Hence such approaches have
been standardized though frameworks like OAuth [29],
and more concretely through protocols like OpenID Con-
nect (OIDC) [44] based on a JWT [38].

On the negative side, SSO introduces a single point
of failure: an attacker that compromises an IdP can take
over all of the users’ registered accounts and learns their
master passwords. For the latter, even protective measures
such as storing salted password hashes only have rather
limited impact, as any such information is still vulnerable
to offline guessing attacks due to the low entropy of
human-memorizable passwords [6].

1.1. Distributed Single Sign-On
The problem of offline dictionary attacks is inherent in

all solutions where a single server can test the correctness
of passwords: as soon as the server gets compromised,
the attacker can exploit it’s capability to mount massive
guessing attacks against the password hashes. The natural
solution to remedy such attacks is to distribute the task of
password verification over n servers. By carefully splitting
the verification process, security can be guaranteed as long
as not all (or a threshold) of these servers got hacked.
This approach has been used to salvage security for a
number of password-based primitives, such as threshold



password-authenticated key exchange (TPAKE) [30], [39],
[43], [47], threshold password-authenticated secret sharing
(TPASS) [10], [15], [13], [31], as well as plain distributed
password verification [22], [14], [21].

The newest addition to this line of research is
password-based threshold authentication (PASTA) [8]
which allows to split the role of the IdP for SSO. The
PASTA protocol combines distributed password verifica-
tion with a distributed signature scheme, and achieves
many of the properties needed for distributed SSO: If t out
of n servers remain honest, the users’ master passwords
are safe against offline attacks and impersonation attacks
via forged signatures on access tokens are prevented too.

Proactive Security. While PASTA avoids the single point
of failure of standard SSO, it does not provide significantly
stronger security though due to the lack of a recovery
strategy — also known as proactive security. A crucial
feature in distributed protocols is to allow servers to
refresh their keys so that they can securely re-initialize
after a compromise. Without such a recovery mechanism,
it is only a matter of time until all servers have been
hacked and their data can be combined to an offline-
testable password table. For a distributed SSO, one would
probably not want to deploy much more than 2 or 3
servers, i.e., in a static setting the costs and time of an
attack would only double or triple.

UC Security. Another more subtle challenge is that of an
appropriate security model: Agrawal et al. [8] define the
desired security properties in the form of game-based no-
tions. It is well-known that for password-based primitives
this cannot properly capture the way users (mis)handle
passwords [19]. When formulated through games, users
are assumed to choose their passwords at random from
known and independent distributions. The adversary also
only gains access to “perfect” users which always use
the correct password. In reality, however, users share,
re-use, and leak information related to their passwords,
and often make typos when using them which leads to
running the protocol on incorrect yet related passwords. In
the Universal Composability (UC) model, this is modeled
naturally as the environment provides the passwords. That
is, a UC security notion guarantees the desired properties
without making any assumptions regarding the passwords’
distributions, dependencies, or leakages.

Key Management. When aiming for a distributed system,
the key and secret state handling by the individual servers
should be as simple and concise as possible, as any com-
plexity increases the risks of (implementation) mistakes
and the attack surface for adversaries. Translated to the
task of SSO, each server should ideally have a single
secret key (per time epoch) only, whereas the dynamic
user-specific information should be non-sensitive. This
way, the secret key can enjoy stronger protection, e.g.,
through hardware, which is much harder to realize for the
large and dynamic user database. Unfortunately, PASTA
does not satisfy this design criteria, as the servers obtain
dedicated secret key material from each user which needs
to be protected accordingly. In fact, this choice is also one
of the reasons the PASTA protocol is not amendable to
proactive security measures.

Online Attacks. Finally, one reason to move to a dis-
tributed setting for password-based protocols such as SSO,
is to rely on honest servers for detecting and preventing
online guessing attacks. That is, an adversary targets a
dedicated account and tries to guess the users password
to gain access to her account. Honest servers can block
or throttle login attempts for a specific account when they
notice suspicious behaviour and thereby significantly limit
the adversary’s amount of guesses — roughly mimicking
the hardware protection our short 4-digit PIN numbers
for ATM cards enjoy. In the PASTA protocol the servers
do not learn whether a password attempt was successful
though, which restricts their capabilities to detect such on-
line guessing attacks. For instance, an adversary can cam-
ouflage its attack by spreading many password guesses
across a day and gain several hundreds or thousands of
undetected guesses, whereas a system in which servers
learn the outcome of the password verification would have
stopped the attack after a few failed attempts already.

1.2. Our Contributions
In this work we propose a distributed SSO protocol

— PESTO — which achieves all the aforementioned
properties, while still being compatible with existing au-
thentication standards such as OAuth [29] and OIDC [44].
Similar to PASTA, we model SSO through a password-
authentication distributed signature functionality. Therein,
the distributed servers sign messages (uid ,m), i.e., they
bind a user-provided message m to the verified user name
uid . They only do so after they have verified that the
user knows the password which has been setup for uid .
For SSO applications, the message m will contain the
unique ID of the targeted service provider and a nonce
that is usually specified by the provider. We compare the
overall features of PESTO with PASTA, lined up against a
standard, single-server, JWT-based scheme [38] in Fig. 1.

Proactive and UC Security for Distributed SSO. We define
security of PESTO in form of an ideal functionality in the
UC framework, avoiding any unrealistic assumptions in-
herent in game-based definitions. We admit a fine grained
corruption model: first, servers can be corrupted in an
adaptive manner, i.e., the adversary can take control of any
initially honest party at any time. This improves upon [8]
which allows only static corruptions. Second, we allow
both transient and permanent corruptions. Transiently cor-
rupted parties can recover from an attack by going through
a dedicated refresh procedure, whereas permanently cor-
rupted ones cannot recover. Security is guaranteed as long
as not all servers are corrupt at the same time.

Our PESTO Protocol. We propose a protocol that securely
satisfies this strong notion. While our PESTO protocol
uses similar building blocks as PASTA, it significantly
differs in how they are used.

Roughly, we start with a distributed partially-oblivious
PRF (dpOPRF) to let users deterministically derive a
signing key pair from their username and password as
(upk , usk) ← dpOPRF(K, (uid , pw)). Thereby, the key
K is split among n servers and the evaluation is done
partially-blind: the servers learn uid but not pw . Disclos-
ing the uid allows us to use a single dpOPRF key per
server, yet allow user-specific rate limiting.
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Figure 1: Comparison between PESTO (Our Work), PASTA [8], and a standard Json Web Token (JWT) used for SSO.
For efficiency we count the most expensive operations, i.e., exponentiations and pairings per party.

Figure 2: High-level overview of SSO with PESTO

When creating her account, the user sends the derived
upk to all servers which store (uid , upk) along with a
signature on these values that is generated in a distributed
way. This jointly computed signature is crucial to ensure
that an adversary cannot gradually plant malicious public
keys for honest user accounts, when he transiently corrupts
individual servers. In contrast to PASTA, all user-specific
information stored by the servers is not security sensitive.

When asking for a SSO token on a message m for
username uid , the user repeats the dpOPRF part for
a password attempt pw ′ to re-construct her key pair
(upk , usk), and uses usk to sign a fresh nonce towards all
servers. The servers verify the signature against the stored
upk to determine whether the user provided the correct
password. If so, the servers jointly sign (uid ,m) using a
proactively-secure distributed signature scheme DSIG.

Proactively Secure dpOPRF and DSIG. Our protocol is
built from generic building blocks dpOPRF and DSIG we
introduce and which constitute contributions of indepen-
dent interest. For both we first present security models that
capture the strong type of adaptive and transient corrup-
tions, and then propose secure instantiations. The dpOPRF
is based on the classical 2Hash-Diffie-Hellman OPRF
construction [31] and DSIG is realized for a distributed
version of RSA signatures. The challenge in making these
schemes proactively and adaptively secure is to avoid
a loss in security by having to guess corrupted servers
upfront. While this loss can be tolerated once, it would
blow exponentially when moving into a proactive setting
where such a guess needs to be done at every epoch.

We avoid this by ensuring that none of the values
sent by servers commits them to their secret key shares.
To do this efficiently, we rely on a trusted setup that
generates pairwise seeds for all servers from which they
derive consistent blinding values to mask all outgoing
messages. In the security proof, this allows us to choose

a server’s keys only at the moment that it is corrupted,
without having to guess anything upfront. Finally, to allow
servers to recover from transient corruptions we assume
that each server has access to a special backup tape. Such
a backup tape is necessary to allow servers to re-boot with
a clean and uncorrupted state. We also leverage it to run
the refresh in a non-interactive (yet synchronized) manner.

The backup tape is only needed during the refresh
procedure but does not have to (and should not) be online
during normal operations. Transiently corrupted parties
leak their full state to the adversary, but not the content
of their backup tape, and recover with the next refresh.
Our model also supports more damaging attacks which
additionally leak the backup tape to the adversary. Such
parties are considered permanently corrupted and cannot
become uncorrupted again.

Implementation & Efficiency. Using the aforementioned
DDH-based dpOPRF and RSA-based DSIG instantiations,
we obtain an efficient 2-round PESTO protocol which we
test in a proof-of-concept implementation in Java. We use
our protocol to construct standard RSA-signed JWTs, i.e.,
they can be verified by any service provider that accepts
such tokens in an OAuth or OIDC authentication flow. Our
implementation utilizes REST and TLS in order to give
a realistic benchmark on the efficiency to be expected in
a real-world deployment. Overall, our protocol requires 4
exp. and 1 pairing operation per server and authentication
request, which adds only minimal overhead compared
with PASTA yet provides significantly stronger security.
Concretely, a complete sign-in operation is only 124 ms
even when all entities are located in distinct countries.

Distributed vs. Threshold Setting. While our scheme
provides stronger security than PASTA (proactive and
adaptive vs. static security), it does pay a price in terms
of robustness: PESTO is fully distributed, i.e., requires
n-out-of-n servers to participate, whereas PASTA offers
a threshold (t, n) solution. Thus, our solution is more
vulnerable to Denial-of-Service attacks as a single offline
server will result in a shutdown of the entire protocol.

The (n, n) setting is the result of our solution coping
with adaptive corruptions: to avoid that any protocol mes-
sage commits to a server’s secret share, we let each server
add blinding values to their messages which cancel out
when shares of all servers are combined. This approach
seems to inherently conflict with a threshold solution, and
thus it is an interesting open problem how an adaptively
secure and threshold version can be achieved.

A straightforward “solution” to just get a threshold
version would be to downgrade the security model from
adaptive to static corruptions (as in PASTA). This makes
the blinding values, as the main obstacle, obsolete. The



rest of the protocol then needs to use threshold build-
ing blocks that are secure against this weaker attacker.
Currently, PESTO exploits the trusted setup and (n, n)
approach to also bootstrap an efficient non-interactive key
refresh procedure, whereas a (t, n) solution most likely
needs to revert to an adaptive refresh protocol.

1.3. Related Work
Apart from PASTA [8] which we discussed already,

our work takes inspiration from a number of previous
works we detail here. We also refer to [8] for a compre-
hensive overview of concepts related to distributed SSO.

Distributed Password Verification. The use of blinding val-
ues and offline backup tapes to recover from corruptions is
inspired by the distributed password verification protocol
by Camenisch et al. [14], that also aimed at proactive
security in the UC framework. The targeted problems are
different though, as their protocol considers a single login
server that protects it’s password database by relying on
n back-end servers to re-compute the password “hashes”.
The back-end servers in [14] are also fully oblivious: they
neither learn the uid ’s for which they verify a password
nor the result of the verification. Both significantly limit
the servers’ capabilities to prevent online attacks.

Furthermore, we make the proactive security proper-
ties accessible in a more modular and re-usable way, as
we already integrate them in our generic building blocks:
distributed partially-oblivious OPRFs and distributed sig-
natures. Both can be used in a plug-and-play fashion to
enhance security of protocols where their distributed yet
non-proactive versions have been used.

Partially-Oblivious PRF with Key Rotation. The Pythia
protocol [21] introduced the concept of partially-oblivious
PRFs which they used to build a password hardening
service with fine-grained rate limiting. However, Pythia
only uses a single backend PRF server. As a single key
cannot be re-shared, proactive security is achieved through
key rotation instead, i.e., the PRF server switches to a
fresh key and provides a short update token that allows to
update all previous PRF outputs accordingly.

Our work extends these partially-oblivious PRF to
a fully distributed setting, which naturally allows for a
more elegant refresh protocol without the need to update
any previously computed PRF outputs. Further, Pythia’s
approach requires direct access to the algebraic structure
of the OPRF which prevented them of using the outer hash
of the 2Hash-DDH construction and lead to weaker overall
security of the OPRF. Recently, Jarecki et al. [34] pre-
sented a distributed partially-oblivious PRF that achieves
partial blindness in a different and more efficient way.
However, they did not propose a security notion and their
construction inherently does not allow to re-share the key.

Password-Authenticated Secret Sharing. Finally, the first
part of our protocol essentially can be seen as a
proactively-secure version of password-authenticated se-
cret sharing (TPASS) [10], [31], [32], [33] and might
provoke the question why we need the second protocol
step and distributed SSO at all: the user could simply use
the reconstructed signing key pair (usk , upk) to directly
authenticate to the service providers in a secure, password-
less manner. However, using TPASS for such user au-
thentication would lead to a full loss of security when the

user’s device gets compromised during key reconstruction.
As the adversary then learns the user’s master key it
can impersonate the user towards all service providers. In
our PESTO approach, a compromised device or password
alone is not sufficient to gain access to the user’s accounts.
All servers need to sign every single access token, which
provides a second line of defense: They can refuse to
complete these requests when they notice suspicious ac-
cess patterns, and the user can block her account with the
online servers when she suspects a breach of her device —
thereby rendering the compromised information useless.

2. Preliminaries

We denote with [k] the set {1, . . . , k} and say that a
non-negative function f(n) is negligible in n, or f(n) ≤
ε(n), if for every polynomial p(X) there exists a bound
t such that ∀t′ ≥ t : f(t′) ≤ 1

|p(t′)| . We denote the
computational security parameter throughout this work as
τ and the statistical security parameter as s.

2.1. Bilinear Groups

Definition 1 (Asymmetric Pairing). Let G1,G2,GT be
cyclic groups of order p with generators g1, g2, gT , re-
spectively. Furthermore, let e : G1 × G2 → GT be an
efficiently computable non-degenerate function such that
∀a, b ∈ Zp : e(ga1 , g

b
2) = gabT . Then e is called an

asymmetric pairing. G = (p, g1, g2, gT ,G1,G2,GT , e) is
called an asymmetric bilinear group setting, or bilinear
group for short.

We formulate two assumptions on G. The first as-
sumption is the standard DDH-generalization groups with
asymmetric pairings and has been used e.g. in [20].

Definition 2 (Bilinear DDH Assumption). Let τ ∈ N be a
security parameter and G = (p, g1, g2, gT ,G1,G2,GT , e)
be a bilinear group where log(p) = poly(τ). We say that
the Bilinear Decisional Diffie-Hellman (BDDH) assump-
tion holds for G if for any PPT (in τ ) algorithm A∣∣∣∣ Pr[A(G, gar , gbs, gct , R) = 1]−

Pr[A(G, gar , gbs, gct , e(g1, g2)abc) = 1]

∣∣∣∣ ≤ ε(τ)

where a, b, c are uniformly random in Zp, r, s, t ∈ {1, 2}
and R is uniformly random in GT .

For the second assumption we first define the follow-
ing experiment with an algorithm A:

Experiment ExpGA,Gapom-BDH(τ):
k ←R Zp, qC ← 0, X1 ← ∅, X2 ← ∅.
{(xi, yi, zi)}i∈[`] ← AOG-1,OG-2,OD-help,OC-help(G, gk2 )
return 0 if

0 ≤ `− 1 < qC or
∃i ∈ [`] : (xi 6∈ X1 ∨ yi 6∈ X2) or
∃i, j ∈ [`], i < j : (xi = xj ∧ yi = yj)

return 1 if ∀i ∈ [`] : e(xi, yi)
k = zi and 0 otherwise.

where the experiment uses the following oracles:

OG-r()
return ⊥ if r 6∈ {1, 2}
x←R Gr
Xr ← Xr ∪ {x}
return x

OC-help(m)

return ⊥ if m 6∈ GT
qC ← qC + 1
return mk



OD-help(m,w,m
′, w′)

return ⊥ if either m,w,m′, w′ not in GT
return 1 if logm(w) = logm′(w

′) and else 0

To win, A needs to find pairs (x, y, e(x, y)k) without
querying e(x, y) to OC-help and where A could not re-
randomize previous such pairs as it does not know the
discrete logarithm of any x, y (enforced by sampling them
at random using OG-r). A is equipped with a DDH oracle
OD-help in the group GT . The game Gapom-BDH follows
the definition in [21].

Definition 3 (Gap One-More BDH Assumption). Let
τ ∈ N be a security parameter and G =
(p, g1, g2, gT ,G1,G2,GT , e) be a bilinear group with
log(p) = poly(τ), then we then say that the Gap One-
More Bilinear Diffie-Hellman (Gapom-BDH) assumption
holds for G if for all PPT adversaries A there is a
negligible function ε(·) such that Pr[ExpGA,Gapom-BDH(τ) =
1] ≤ ε(τ).

2.2. Digital Signatures

We use a signature scheme SIG, consisting of al-
gorithms SIG.Setup(1τ ) →R pp, SIG.KGen(pp; r) →R

(sk , pk),SIG.Sign(sk,m) →R σ and SIG.Vf(pk,m, σ) →
{0, 1}. Note that we sometimes make the randomness r
used in key generation explicit. When used on the same in-
put and randomness, SIG.KGen behaves deterministically.

It is required that except with negligible probability
over τ , for a key pair (pk, sk), where sk output by
SIG.SKGgen(pp) and pk output by SIG.PKGgen(pp, sk),
it holds that SIG.Vf(pk,m, SIG.Sign(sk,m)) = 1 for
every message m ∈ {0, 1}∗ (for implicit pp generated
by SIG.Setup).

Security of a signature scheme is defined through the
standard unforgeability experiment ExpSIGA,forge(τ).

Experiment ExpSIGA,forge(τ):
pp←R SIG.Setup(1τ ), (sk, pk)←R SIG.KGen(pp)
(m∗, σ∗)←R AOSign(pk)

where OSign(m):
add m to Q, return SIG.Sign(sk ,m)

return 1 if SIG.Vf(pk,m∗, σ∗) = 1 and m∗ /∈ Q

Definition 4. A signature scheme SIG is existentially
unforgeable under adaptive chosen-message attacks, if for
all PPT adversaries A, there is a negligible function ε(·)
such that Pr[ExpSIGA,forge(τ) = 1] ≤ ε(τ).

3. Proactively Secure Distributed Signatures
In this section we formalize the notion of a proactively

secure distributed signature and present an instantiation
of it based on RSA signatures. A distributed signature
scheme DSIG is a tuple of polynomial-time algorithms
(Setup,KGen,Sign,Comb,Vf,Refresh) such that:
DSIG.Setup(1τ , 1s)→R pp: Given a computational secu-

rity parameter 1τ and a statistical security parameter 1s,
outputs public parameters pp.

DSIG.KGen(pp, n)→R (pk , (sk i)i∈[n], (bk i)i∈[n]): Given
public parameters pp and the number of parties n,
output a public key pk, secret signing key shares
sk1, . . . , skn and backup key shares bk1, . . . , bkn.

DSIG.Sign(sk i,m, `)→ σi: Given a key share ski, mes-
sage m, and query label `, output a signature share σi.

DSIG.Comb(σ1, . . . , σn)→ σ: Given signature shares
σ1, . . . , σn, output signature σ or ⊥.

DSIG.Vf(pk ,m, σ)→ b: Given a public key pk , a mes-
sage m and a signature σ, output a bit b such that b = 1
means valid and b = 0 means invalid.

DSIG.Refresh(bk i)→R (sk ′i, bk
′
i): Given a backup key

bk i, output new keys sk ′i and bk ′i.
We assume that the server’s index i can be efficiently

recovered from sk i and bk i, and that the public parameters
pp are available to all algorithms.

The Sign algorithm generates a signature share on a
message m and an additional parameter `, while verifi-
cation only requires m. The parameter ` is used to bind
signature shares to a query label `. The label ensures that
signature share σ1, . . . , σn can only be combined if all
where received for the same `, i.e., even shares for the
same message cannot be combined if they were derived
for ` 6= `′. This will prevent so-called “mix-and-match”
attacks.

Correctness. We define correctness of DSIG in
terms of providing the required functionality
of a signature when used as intended. Let
(sk

ep
i , bk

ep
i )← DSIG.Refreshep(bki) result from applying

DSIG.Refresh(. . . (DSIG.Refresh(bki)) for ep times where
bk0
i = bk i. DSIG is correct if for every ` ∈ {0, 1}∗,

ep ∈ N+ and n > 1, it follows that Vf(pk,m, σ) = 1
with overwhelming probability over the randomness of
Setup,KGen,Refresh; where σ = Comb(σ1, . . . , σn),
pp ← Setup(1τ ), σi ← Sign(sk

ep
i ,m, `) and

(pk, (sk i)i∈[n], (bk i)i∈[n])← KGen(pp, n).

3.1. Proactive Security Model for DSIG

We now present the desired security definitions for
DSIG capturing proactive security against adaptive cor-
ruptions, and allowing the adversary to corrupt servers in
both a transient and permanent way.

We formalize three security properties: proactive un-
forgeability, which can be seen as the strengthening of
standard unforgeability to the proactive setting, share
simulatability and signature indistinguishability. The latter
two are needed to give us the strong simulation-based
security needed prove UC security for PESTO. The se-
curity games in the remainder of this section require us
to explicitly keep track of the different epochs using an
extra variable ep. This is done to express the adversaries
knowledge: for each epoch, the adversary may obtain a
different subset of keys skepi and different sets of signa-
tures shares. Our security properties must hold as long
as the adversary does not corrupt all servers at the same
epoch. The security experiment thus has to keep track of
which information the adversary gets at which time.

Proactive Unforgeability. This notion generalizes standard
(strong) unforgeability to the proactive, distributed setting.
It is defined with oracles given in Fig 3 which allow the
adversary A to obtain signature and key shares (either
sk i or (sk i, bk i) depending on the corruption mode) at
will. The adversary can also trigger honest and transiently
corrupted servers to refresh their keys, thereby moving the
epoch forward and turning all transiently corrupted parties



into honest ones. He wins if he successfully forges a valid
signature without either corrupting all parties or requesting
signature shares for the same message m and query label
` for all uncorrupted parties in one epoch.

Definition 5 (Proactive Unforgeability). A distributed sig-
nature scheme DSIG is proactively unforgeable if for all
PPT adversaries A, there is a negligible function ε(·) such
that Pr[ExpDSIG,n

A,forge(τ, s) = 1] ≤ ε(τ, s).

Experiment ExpDSIG,n
A,forge(τ, s):

pp←R DSIG.Setup(1τ , 1s), set ep← 0, Ct,ep, Cp,ep ← ∅
(pk , (sk i)i∈[n], (bk i)i∈[n])←R DSIG.KGen(pp, n)
(m∗, σ∗)←R AOsign,Ocorrupt,Orefresh(pk)
return 0 if DSIG.Vf(pk,m∗, σ∗) = 0 or
∃ep where |Ct,ep ∪ Cp,ep| = n or
∃ep, ` s.t. DSIG.Comb(σ1, , . . . , σn) = σ∗

where ∀i /∈ Ct,ep ∪ Cp,ep (ep, i,m∗, `, σi) ∈ Q
and ∀i ∈ Ct,ep ∪ Cp,ep σi ← DSIG.Sign(i, skepi ,m

∗, `)
else return 1

Share Simulatability. The second property is needed to use
DSIG as a building block in a UC-secure protocol (aiming
at proactive security and allowing adaptive corruptions), as
therein security is proven by constructing a simulator that
mimics the ideal functionality in a way that is not notice-
able to the environment. The notion of share simulatability
expresses exactly that and ensures that we can simulate
signature and key shares of honest parties in a security
game without knowledge of the actual signing key. The
definition follows the simulation paradigm and either gives
the adversary access to real signature and key oracles (the
same ones we used in our unforgeability definition above)
or simulated ones. Share simulatability is satisfied when
the adversary cannot distinguish between both worlds.

Definition 6 (Share Simulatability). A distributed
signature scheme DSIG is share simulatable if for all
PPT adversaries A, there exists a stateful PPT algorithm
SIM with input pk and a negligible function ε(·) such that∣∣∣Pr[ExpDSIG,n

A,sim,1(τ, s) = 1]− Pr[ExpDSIG,n
A,sim,0(τ, s) = 1]

∣∣∣ ≤ ε(τ, s).

Experiment ExpDSIG,n
A,sim,b(τ, s):

pp←R DSIG.Setup(1τ , 1s)
(pk, (ski)i∈[n], (bk i)i∈[n])←R DSIG.KGen(pp, n)
set ep← 0, Ct,ep ← ∅, Cp,ep ← ∅
b∗ ←R AOsign,Ocorrupt,Orefresh(pk)

if b = 0: left oracles as in Fig 3
if b = 1: right oracles as in Fig 3 (for SIM(init, pk))

return 1 if b∗ = b and ∀ep: |Ct,ep ∪ Cp,ep| < n

Roughly, A interacts with DSIG when b = 0, while for
b = 1 the signature and key shares are simulated by SIM.
The simulator thereby has no information about the under-
lying secret key shares. We have to be careful to be prevent
trivial wins though: Eventually, signature shares can be
completed into a full signature by A and verified against
the public key. Thus, we have to keep track when SIM is
about to reveal enough information (either via signatures
or key shares) that allow A to complete a signature. If
so, we generate the full signature A is about to learn
via σ ← Comb(Sign(sk1,m, `), . . . ,Sign(skn,m, `)) and
give σ as advice to SIM.

There are two scenarios where this can occur: in a
signature or in a corruption query. For the former, we use
a function compSigQ,Ct,Cp(ep, i,m, `)→ {σ,⊥} that tests
whether answering a signing query for (i,m, `) would,

together with the information already revealed to A (con-
tained in Q, Ct, Cp,), allow him to complete the signature.
If so, it returns the full signature σ for m.

For corruption queries, we use a similar function
compListQ,Ct,Cp(e, i) → L which checks which previ-
ously answered sign queries (ep, j,m, `) the adversary can
complete after corrupting party i in epoch ep. For each
such query, the function computes the corresponding full
signature and returns a set L of tuples (ep, j,m, `, σ).

For sake of brevity, we also sometimes omit the
subindex Q, Ct, Cp from the name of these func-
tions. The functions compSigQ,Ct,Cp(ep, i,m, `) and
compListQ,Ct,Cp(ep, i) are defined as follows:

compSigQ,Ct,Cp(ep, i,m, `):
if ∀j /∈ Ct,ep ∪ Cp,ep ∪ {i} ∃(ep, j,m, `) ∈ Q

get σi ← (DSIG.Sign(skepi ,m, `) for i ∈ [n]
return σ ← DSIG.Comb(σ1, . . . , σn)

else return ⊥
compListQ,Ct,Cp(ep, i):

set L ← ∅
for all (ep, j,m, `) ∈ Q:

if ∀j∗ /∈ Ct,ep ∪ Cp,ep ∪ {i} ∃(ep, j∗,m, `) ∈ Q
get σi ← (DSIG.Sign(skepi ,m, `) for i ∈ [n]
set σ ← DSIG.Comb(σ1, . . . , σn)
and set L ← L ∪ (ep, j,m, `, σ)

return L
Signature Indistinguishability. Our last definition also
covers some simulation-based aspects and guarantees
that signatures generated in a distributed way can-
not be distinguished from directly computed ones.
The notion guarantees that algorithms Sign∗,Comb∗

exist, such that Sign∗(Comb∗(sk1, . . . , skn),m) ≈
Comb(Sign(sk1,m, `), . . .Sign(skn,m, `)).

Signature indistinguishability can again be seen as an
artifact of using DSIG in a UC-protocol: therein the func-
tionality produces signatures generated by Sign∗, while the
simulator has to mimic our distributed signature scheme
where each party runs Sign locally.

Definition 7 (Signature Indistinguishability). A
distributed signature scheme DSIG is signature
indistinguishable if for all PPT adversaries A,
there is a negligible function ε(·) such that∣∣∣Pr[ExpDSIG,n

A,ind,1(τ, s) = 1]− Pr[ExpDSIG,n
A,ind,0(τ, s) = 1]

∣∣∣ ≤ ε(τ, s).

Experiment ExpDSIG,n
A,ind,b(τ, s):

pp←R DSIG.Setup(1τ , 1s)
(pk, (ski)i∈[n], (bk i)i∈[n])←R DSIG.KGen(pp, n)
sk ← DSIG.Comb∗(pk, sk1, . . . , skn)
b∗ ←R AOchallb (pk, (sk1, . . . , skn), (bk1, . . . , bkn))

where Ochallb(σ1, . . . , σn,m):
σ∗0 ← DSIG.Comb(σ1, . . . , σn)
σ∗1 ← DSIG.Sign∗(sk,m)
abort if DSIG.Vf(pk,m, σ∗0) = 0
else return σ∗b

return 1 if b∗ = b

3.2. Our RSA-DSIG Instantiation
We now describe an instantiation of a proactively

secure distributed signature scheme. Our construction is
a distributed variant of RSA signatures where the secret
key is distributed among the n parties; it also uses two
hash functions H, H̃ , modeled as random oracles in the
security proof, necessary to achieve proactive security. The



Osign(i,m, `)

abort if i ∈ Ct,ep ∪ Cp,ep
σi ← DSIG.Sign(i, skepi ,m, `)
add (ep, i,m, `, σi) to Q
return σi

Orefresh()
for all i /∈ Cp,ep:
DSIG.Refresh(bkepi )→ (skep+1

i , bkep+1
i )

set ep← ep + 1, Ct,ep ← ∅, Cp,ep ← Cp,ep−1

Ocorrupt(i,mode)

if mode = trans:
abort if i ∈ Cp,ep
set Ct,ep ← Ct,ep ∪ {i}
return skepi

if mode = perm:
set Cp,ep ← Cp,ep ∪ {i}
return (skepi , bk

ep
i )

Osign(i,m, `)

abort if i ∈ Ct,ep ∪ Cp,ep
σ ← compSig(ep, i,m, `)
σ∗i ←R SIM(sign, i,m, `, σ)
add (ep, i,m, `, σi) to Q
return σ∗i

Orefresh()
invoke SIM(refresh)
set ep← ep + 1, and
Ct,ep ← ∅, Cp,ep ← Cp,ep−1

Ocorrupt(i,mode)

get L ← compList(ep, i)
if mode = trans:

abort if i ∈ Cp,ep
set Ct,ep ← Ct,ep ∪ {i}
sk∗i ←R SIM(corr,trans, i,L)
return sk∗i

if mode = perm:
set Cp,ep ← Cp,ep ∪ {i}
(sk∗i , bk

∗
i )←R SIM(corr,perm, i,L)

return (sk∗i , bk
∗
i )

Figure 3: Left: Oracles for our unforgeability and share-simulatability experiment (for b = 0). Right: simulated oracles for share-
simulatability and b = 1. Note that compSig used in the simulated sign-oracle will only return σ 6= ⊥ when the adversary is about
to complete the signature. Also, we omit the epoch or any previously computed output of SIM as explicit input to the simulator, as
SIM can simply keep track of that information itself.

reason we chose RSA and not ECDSA is that even without
proactive security, signing requires interaction between
the servers [?]. Thus the latency of executing this over
WAN would overshadow the local computation time of
generating an RSA signature.

Generation and Refresh of Key Shares. The signature
scheme during KGen generates both the RSA modulus
N and the keys d, e as in regular RSA signatures. Next, it
generates n shares of d over the integers. This is necessary
as the multiplicative order ϕ(N) of the underlying group
must be unknown. The algorithm generates two different
levels of shares of key for each party, namely “offline”
key shares di and “online” shares fi.

First, it chooses di from an exponentially larger inter-
val than what the value d can have, which hides d even
when the adversary has shares di of n − 1 parties by a
standard argument. This “master” share di is stored per
party inside its backup key bk i, which is only used during
refresh and the adversary gets it only when he permanently
corrupts a certain party i. The actual signing share per
party and epoch is fi which each party derives by adding
an epoch-specific share of 0 to their di share. We again
choose fi to be from an exponentially larger interval than
di, thus hiding the “master” share from bk i for any A
only accessing sk i.

The adding of additive (pseudorandom) shares of 0
is done in a non-interactive way by relying on pairwise
exchanged seeds mk i,j which the servers can apply lo-
cally. These seeds, generated during key generation in a
consistent manner, are stored as part of the backup key
and used to obtain a fresh fi at every epoch.

Blinding of Signature Shares. To achieve proactive and
adaptive security servers should not commit to their key
shares. We achieve this by applying fresh shares βi of 1
to each signing share. We use a similar trick for the fi
values to do this in non-interactive manner: All servers
share pairwise seeds si,j that are generated during key
generation and every refresh. The blinding βi is derived
through a random oracle call on these seeds and a fresh
label `. The random oracle gives the flexibility we need
in the security proof, and the uniqueness of ` ensures that
we use every blinding value at most once. These blinding
values also prevent mix-and-match attacks, i.e., combining
shares for different labels `, as required by the proactive
unforgeability notion, as the βi values only cancel out
when the user combines signature shares for the same `.

Detailed RSA-DSIG Description. The algorithms for
our distributed and proactively secure signature scheme
RSA-DSIG are defined as follows. To ease presen-
tation, we define the function a : Zn → Z as
a(i, {xj}j∈[n]r{i}) =

∑
j∈[i−1] xj −

∑
j∈[i+1,n] xj .

We also stress that we assume that all servers use each
label ` only once, this can be ensured, e.g., by letting all
servers contribute to ` before using it. In fact, when using
DSIG in our PESTO protocol, the label will simply be
the ssid which is assumed to be unique for every call.

RSA-DSIG.Setup(1τ , 1s): Output pp ← (H, H̃) where
H : {0, 1}∗ → {0, 1}τ and H̃N : {0, 1}∗ → [N ].

RSA-DSIG.KGen(pp, n):
1) Pick random primes p, q of length τ/2, set N ← p·q.
2) Let e be a prime ≥ 3 and set d← e−1 mod ϕ(N).
3) Choose random γi,j , δi,j for i, j ∈ [n], i 6= j:

• γi,j ←R [−nN2s, nN2s] for i < j
• δi,j ← [−n2N22s,+n2N22s] for i < j
• γj,i ← γi,j , δj,i ← δi,j for i > j

4) For i ∈ [n − 1] set di ← a(i, γi,1, . . . , γi,n) while
dn ← a(n, γn,1, . . . , γn,n−1) + d . Furthermore, set
fi ← a(i, δi,1, . . . , δi,n) + di for all i ∈ [n].

5) Pick random blinding seeds si,j and master keys
mki,j for all i, j ∈ [n], i 6= j:
• si,j ←R {0, 1}τ , mk i,j ←R {0, 1}τ for i < j
• sj,i ← si,j , mk j,i ← mk i,j i > j

6) Output pk = (N, e) and sk i = (fi, {si,j}j∈[n]r{i}),
bk i = (di, {mki,j}j∈[n]r{i}) for every i ∈ [n].

RSA-DSIG.Sign(sk i,m, `):
1) Parse (fi, {si,j}j∈[n]r{i})← ski.
2) Let ∆i,j = 1 if i > j and else −1.
3) Compute βi =

∏
j∈[n]r{i} H̃N (`, si,j)

∆i,j mod N .
4) Output σi = H(m)fi · βi mod N .

RSA-DSIG.Comb(σ1, . . . , σn):
Output σ =

∏n
i=1 σi mod N .

RSA-DSIG.Vf(pk,m, σ): Parse (N, e) ← pk. Output
b = 1 if σe = H(m) mod N and b = 0 otherwise.

RSA-DSIG.Refresh(bki):
1) Parse (di, {mki,j}j∈[n]r{i})← bki.
2) Compute (mk′i,j , s

′
i,j , δi,j)← PRG(mki,j) for every

j ∈ [n]r{i} such that mk′i,j ∈ {0, 1}τ , s′i,j ∈ {0, 1}τ
and δi,j ∈ [−n2N22s,+n2N22s].

3) Set fi = di + a(i, δi,1, . . . , δi,n). Then output sk′i =



(fi, {s′i,j}j∈[n]r{i}) and bk′i = (di, {m′i,j}j∈[n]r{i}).

Theorem 1. Assuming hardness of RSA and modeling H̃
as a random oracle, the distributed signature RSA-DSIG
satisfies proactive unforgeability, share simulatability and
signature indistinguishability.

Towards correctness, note that
∑n

i=1 a(i, γi,1, . . . ,
γi,n) =

∑n
i=1 a(i, δi,1, . . . , δi,n) = 0, and thus

∑n
i=1 di =∑n

i=1 fi = d. Signature indistinguishability follows as the
fi form an additive sharing of d and from the uniqueness
of the (combined) signatures for each m.

For share simulatability we can generate all bk i with-
out knowledge of d as a secret-sharing of 0, which also
sets the fi to be a 0-sharing. This is ok because in order
to win, an adversary can obtain at most n − 1 of these
shares for which the secret-sharing is statistically hiding.
All but one of the signatures σi for a certain epoch ep
and input(m, `) can then be generated from the dummy fi
shares, whereas the last signature has to be made fit such
that σ =

∏
i σi. To make this consistent with transient or

permanent corruptions we exploit the programmability of
H̃ — and the fact that all labels ` will only be used once
per server — in the construction of βi.

Proactive unforgeability follows from the unforgeabil-
ity of the basic RSA signature scheme for one party
together with the share simulatability and signature in-
distinguishability argument.

The full proof can be found in Appendix A.

Comparison to other Threshold RSA Signatures. Early
works on threshold RSA were only proven secure against
static corruptions [23], [45], [26], [28]. Later, after the
introduction of the proactive security model [41] this was
extended to ‘static-proactive’ security, where the adversary
may corrupt parties only in the onset of each operational
phase [25], [24], [42], [37]. These works were strength-
ened towards security for adaptive-proactive corruptions
in [18], [27], [36], [9]. However, note that all those works
use a different definition for proactive security than ours:
they do not assume an inaccessible storage for temporarily
corrupted parties whereas our approach, following [14],
does (in the form of backup tapes). This allows us to
technically distinguish between corruptions inside and
outside the refresh phase, leading to different treatment of
permanent and transient corruptions. Our use of a backup
tape also means that the refresh is completely local, which
is not just highly efficient but also means that the overall
corruption bound is always optimal. Previous works had
to allow for a “cooling-down” after refresh of corrupted
parties, leading to non-optimal corruption threshold right
after parties got “uncorrupted”.

4. Proactively Secure Distributed Partially-
Oblivious PRF

In this section we provide both the ideal functionality
as well as a construction of a distributed partially-blind
oblivious PRF (dpOPRF). Both functionality and protocol
run in the presence of an arbitrary number of users as well
as n servers S1, . . . , Sn. For each dpOPRF evaluation
there will only be one user present and we denote this
user as U . The dpOPRF is partially blind in the sense
that in addition to the user input xpriv (which remains

hidden towards the dpOPRF servers) the evaluation is also
parameterized by a public value xpub.

4.1. Functionality FdpOPRF

We follow the previous line of work [32], [33], [35]
and model security for our dpOPRF via an ideal function-
ality FdpOPRF in the UC framework [16]. The function-
ality allows evaluation of a random function on chosen
inputs (xpriv, xpub), given all servers S1, . . . , Sn agree to
participate. Implementing a partially-oblivious function,
FdpOPRF tells the servers xpub before they have to make
their decision. The adversary may also evaluate the func-
tion on arbitrary inputs, but crucially requires participation
of all servers. Note that our FdpOPRF does not contain an
adversarial interface for offline evaluations, i.e., without
all servers participating, as is the case for other OPRF
functionalities [32], [33], [35]. We do not need such an
interface since we are only interested in security when
less than n servers are corrupted concurrently.

To model servers deviating from the protocol, FdpOPRF

allows A to modify the PRF key if not all servers are
honest. This is implemented by letting A input a label lbl
and FdpOPRF maintaining a different random function for
each lbl. Lastly, our FdpOPRF provides strong guarantees
by preventing "mix-and-match" attacks, where participa-
tion agreement of servers can be collected among differ-
ent evaluation requests (as possible in, e.g., [32], [33]).
FdpOPRF prevents such attacks by maintaining evaluation
ticket counters ctr[U, xpub] that are increased only when
all servers agree to participate in an evaluation initiated
by U using xpub as public input. Neither can other parties
"steal" those evaluation tokens, nor can U later decide to
instead evaluate on a different public input value.

Corruption and Proactive Security. FdpOPRF is designed to
work with adversaries performing adaptive permanent (of-
ten called standard or Byzantine) and transient corruptions
of servers Si. Transient corruptions are a special type of
corruption that we use to model proactive security. Upon a
transient corruption, a party’s internal state is given to the
adversary and he gains control over the party’s actions.
However, the adversary can decide to "uncorrupt" all
transiently corrupted parties. FdpOPRF is informed about
such corruption recovery via an input Refresh from
one of the servers. The detailed functionality is given in
Figure 4. For brevity, we use the following conventions:

Writing Conventions for FdpOPRF (and FPESTO).
1) The functionality considers a specific session sid =

(S1, . . . , Sn, sid
′) and only accepts inputs from servers

Si that are contained in the sid .
2) We assume sub-session identifiers ssid to be unique.

All interfaces that take as input an ssid will only
accept one input per party and such ssid .

3) When the functionality is supposed to retrieve an
internal record, but no such record can be found, then
the query is ignored.

4) We assume private delayed outputs and inputs,
i.e., the adversary can schedule their delivery but
not learn the private content. E.g., for calls to
“(Eval, sid , ssid , payload) from a party P ”, the ad-
versary receives (Eval, sid , ssid , P ) i.e., he learns all
meta-data but not the payload.



The functionality is parametrized by a security parameter τ . It interacts with servers S := {S1, ..., Sn} (specified in the sid ), arbitrary
other parties and an adversary A. FdpOPRF maintains a table T (lbl, xpub, xpriv) initially undefined everywhere, counters ctr[U, xpub]
initially set to 0 and sets Ct, Cp initially set to ∅. The label lbl is an arbitrary string {0, 1}∗, where hon denotes the “honest” label.

Key Generation
• On receiving (KeyGen, sid) from Si:

– Ignore if the sid is marked ready.
– If (KeyGen, sid) was received from all Si, mark sid as ready, and give output (KeyConf, sid) to all Si.

Evaluation
• On receiving (Eval, sid , ssid , xpub, xpriv) from any party U (including A):

– Record (eval, sid , ssid , U, xpub, xpriv), and send output (Eval, sid , ssid , xpub) to every Si.

• On receiving (EvalProceed, sid , ssid) from Si:
– Retrieve record (eval, sid , ssid , U, xpub, xpriv).
– If (EvalProceed, sid , ssid) has been received from all Si, set ctr[U, xpub]← ctr[U, xpub] + 1.

• On receiving (EvalComplete, sid , ssid , lbl∗) from A:
– Retrieve record (eval, sid , ssid , U, xpub, xpriv), only proceed if ctr[U, xpub] > 0, set ctr[U, xpub]← ctr[U, xpub]− 1.
– Set lbl← hon if all servers are honest, and lbl← lbl∗ else.
– If T (lbl, xpub, xpriv) is undefined, then pick ρ←R {0, 1}τ and set T (lbl, xpub, xpriv)← ρ.
– Output (EvalComplete, sid , ssid , T (lbl, xpub, xpriv)) to U .

Corruption and Refresh
• On receiving (Corrupt, sid , Si,mode) from A with Si ∈ S and mode ∈ {trans,perm}:

– If mode = trans, set Ct ← Si ∪ Ct; if mode = perm, then set Cp ← Si ∪ Cp.

• On receiving (Refresh, sid) from a server Si:
– Set Ct ← ∅, abort all ongoing Eval processes, reset all counters ctr[∗]← 0 and output (Refresh, sid) to A.

Figure 4: Ideal functionality FdpOPRF

5) Calls to all interfaces other than (KeyGen, sid) will
only be processed after KeyGen is completed.

4.2. Our DH-dpOPRF Construction
We now describe our protocol DH-dpOPRF, which

has at its core the distributed 2HashDH protocol for com-
puting H ′(xpriv, H(xpriv)

K) [31], but combines additional
features inspired by other works: partial obliviousness
using pairings [21], and proactive security [14].

In the 2HashDH protocol, the user blinds his input xpriv
with randomness r and sends x̄← H1(xpriv)

r to the server,
which she can remove again after receiving x̄K from the
server. The protocol can be made distributed by simply
setting K ←

∑
i∈[n] ki where ki are the individual server

keys and letting the user multiply the individual PRF
shares she receives. To achieve partial blindness, servers
contribute e(x̄, H2(xpub))

ki with an asymmetric pairing e
and a public input xpub obtained from the user in the clear.
Overall, our protocol computes y ← PRFK(xpriv, xpub)
with:
y = H4

(
xpriv, xpub, e (H1(xpriv), H2(xpub))

∑
i∈[n] ki

)
Setup. For our construction, we assume a bilinear group
(p, g1, g2, gT ,G1,G2,GT , e) and hash functions H1 :
{0, 1}∗ → G1, H2 : {0, 1}∗ → G2, H3 : {0, 1}∗ → GT ,
and H4 : {0, 1}∗ ×GT → {0, 1}τ .

Key Generation. For simplicity we assume the existence of
a trusted dealer that generates master keys for the servers.
Each server disposes of an offline backup tape that can
be plugged in for performing read and write operations
on it. A server Si, upon input (KeyGen, sid), sends
(KeyGen, sid) to the trusted dealer. The trusted dealer,
upon the first message (KeyGen, sid) for a particular sid
from a server Si, generates the signing keys for all n
servers in sid = (S1, . . . , Sn, sid

′). More precisely, the
dealer generates the secret key shares ki of an implicit
joint PRF key K ←R Zq, seeds si,j for blinding factors
as well as master keys mk i,j as follows:

• For all i ∈ [n]: choose ki ←R Zq
• For all i, j ∈ [n], i 6= j:

– si,j ←R {0, 1}τ , mk i,j ←R {0, 1}τ for i < j
– sj,i ← si,j , mk j,i ← mk i,j for j > i

It sends (ki, {si,j}j∈[n]\{i}, {mk i,j}j∈[n]\{i}) to Si over
a secure channel. Note that the seeds si,j = sj,i and
master keys mk i,j = mk j,i will be known only to
the servers Si and Sj , i.e., each pair of servers will
share a common master key and blinding seed that
is unknown to all other servers. For all further mes-
sages (KeyGen, sid) from the other servers Sj con-
tained in sid , the dealer simply responds with the al-
ready generated key shares for that server. Upon re-
ceiving (ki, {si,j}j∈[n]\{i}, {mk i,j}j∈[n]\{i}), Si stores
(ki, {si,j}j∈[n]\{i}) as the current epoch key, stores
(ki, {mk i,j}j∈[n]\{i}) on the backup tape and erases any
mk i,j from the memory.

Evaluation. The detailed protocol is given in Figure 5 and
lets the user U and all n servers jointly and (partially)
blind compute the function PRFK(xpriv, xpub) stated above
for private input xpriv and public input xpub. For achieving
proactive and adaptive security it is again important to
avoid any commitment to secret key shares. We use the
same approach as in our RSA-DSIG construction and
let servers mask all messages with a blinding value βi
which is a pseudorandom multiplicative share of 1 that is
constructed from the pairwise shared si,j-values and the
(unique) ssid . Similar as in RSA-DSIG the purpose of the
servers’ blinding values βi is two-fold as they also prevent
mix-and-match attacks, i.e., combining shares from differ-
ent sub-sessions ssid , as required by our functionality.

Refresh. The refresh is triggered when a server Si re-
ceives the input (Refresh, sid), upon which it sends
(Refresh, sid) over a secure broadcast channel to all
other servers Sj ∈ S\Si which now perform their updates
in a synchronized manner. They first retrieve their values
(ki, {mk i,j}j∈[n]\{i}) from the backup tape and then use



USER U SERVER Si : (ki, {si,j}j∈[n]\{i})

upon input (Eval, sid , ssid , xpriv, xpub)
r ←R Zq, x̄← H1(xpriv)

r -sid , ssid , xpub, x̄ output (Eval, sid , ssid , xpub)
upon input (EvalProceed, sid , ssid) :
y′i ← e(x̄, ti) for ti ← H2(xpub)

ki

βi ←
∏
j∈[n]\{i}H3(sid , ssid , si,j)

∆i,j

where ∆i,j = 1 if i > j, and ∆i,j = −1 else
upon receiving ȳi from all Si: � sid , ssid , ȳi ȳi ← y′i · βi
ȳ ←

∏
i∈[n] ȳ

1/r
i , y ← H4(xpriv, xpub, ȳ)

output (EvalComplete, sid , ssid , y)

Figure 5: Evaluation protocol of our DH-dpOPRF construction.

a PRG to derive a new master key, fresh seeds s′i,j for
the blinding values, and seeds δi,j for their update share.
The latter is used to refresh the PRF key share, which is
simply done by updating the old share ki with a share of 0.
Relying on δi,j which are deterministically derived from
their pairwise exchanged master keys mk i,j , the servers
can compute these shares of 0 in a non-interactive fash-
ion. More precisely, each server Si (either triggered via
(Refresh, sid) or by receiving (Refresh, sid) from a
server Sj ∈ S) runs the following update procedure:
• Retrieve (ki, {mk i,j}j∈[n]\{i}) from the backup tape.
• For all j ∈ [n] \ {i}: (mk ′i,j , s

′
i,j , δi,j)← PRG(mk i,j).

• Set k′i ← ki +
∑n

j=1,j 6=i ∆i,jδi,j mod q, where ∆i,j is
∆i,j = 1 if i > j, and ∆i,j = −1 else.

• Store (k′i, {s′i,j}j∈[n]\{i}) as the current epoch key and
(k′i, {mk ′i,j}j∈[n]\{i}) on the backup tape.

• Securely delete ki,mk i,j ,mk ′i,j , si,j , δi,j for all j ∈
[n] \ {i} from the memory, and (ki, {mk i,j}nj=1,j 6=i)
from the backup tape.

Note that retrieving an uncorrupted ki from the
backup tape is necessary to recover from transient cor-
ruptions, as the adversary may have altered ki.

4.2.1. Security of DH-dpOPRF. For our analysis, we
require that transiently corrupted parties are always "un-
corrupted" before plugging in their backup tape, such
that transient corruptions never reveal the backup tape
to the adversary. Formally, this is handled by defining a
corruption model for UC where, upon sending Refresh,
the adversary neither controls nor observes the state of
any formerly transient corrupted party anymore, and all
these parties are considered honest again. As a result, they
give inputs and receive outputs directly to/from FdpOPRF

instead of sending them via the adversary. For this cor-
ruption modeling to be meaningful, we assume that the
adversary can corrupt servers at any time, but if he does
so during KeyGen or Refresh, then he must perform a
permanent corruption.

We assume private and server-sided authenticated
channels between each user and each server. Such a
channels can be implemented, e.g., using TLS.

Theorem 2. The protocol DH-dpOPRF securely realizes
FdpOPRF in the random oracle model if PRG is secure and
the Gapom-BDH assumption holds in G, w.r.t environ-
ments corrupting at most n− 1 servers concurrentlyusing
adaptive permanent and transient corruptions.

The Gapom-BDH assumption (Def 3), stated in Sec-
tion 2, is a generalization of the assumption introduced by
[21] which in turn is the bilinear variant of the one-more

DDH assumption that underlies the standard 2HashDH
construction. The overall proof idea is similar to the one
by [33], extended to our partially-blind and proactive
setting. An informal proof is given in Appendix B.

5. Proactively-Secure Distributed SSO
We now present our approach for proactively-secure

distributed SSO (PESTO). We start by describing the
high-level functionality and desired security properties.
In Section 5.1 we then present our formal security for
PESTO and give our protocol in Section 5.2.

High-Level Idea. From a user perspective, PESTO should
work just as standard SSO, but simply interacting with n
servers instead of only one. The servers hereby possess a
joint public verification key vk .

First, the user can create a user account for a certain
user name uid and a chosen password pw . Note that he
only uses one password to register with all n servers.
Upon successful registration, the user can request joint
signatures of all servers on messages m of his choice.
To do so, the user must authenticate under uid and a
password attempt pw ′. If the provided password matches
the one used at account creation for uid , the user receives
a signature σ, that was created by all servers for (uid ,m),
i.e., they bind the message to the verified user name. For
SSO applications, the message will contain the unique ID
of the targeted service provider and a nonce that is usually
specified by the provider. Finally, the signature σ can be
verified by everyone against the public key vk . We want
PESTO to satisfy the following security properties:
Offline-Attack Resistance: An adversary corrupting at

most n−1 servers must not be able to run offline attacks
against the users’ account passwords.

Unforgeability of Tokens: An adversary corrupting at
most n − 1 servers cannot forge signatures that verify
under the joint public key vk . The only way to receive a
valid signature for an honestly created uid and adversar-
ially chosen message m∗ is by guessing the associated
password and getting the remaining honest server(s) to
explicitly approve the signature request.

Server-Controlled Rate Limiting: The servers have
strong control over the user accounts, meaning that
passwords can only be verified if all servers explicitly
agree to do so for the given uid . That is, servers can
prevent further verification when they detect online
guessing attempts against a certain user, or the user
asked to block or pause her account. Furthermore, the
servers explicitly learn at every signing request whether
the provided user password was correct or not (w/o
violating the offline-attack resistance) such that they



can base their further actions on this information, e.g.,
blocking accounts after 10 failed attempts.

Adaptive and Proactive Security: For modelling realis-
tic attacks, we allow the adversary to corrupt servers in
an adaptive fashion, i.e., he can take control of any ini-
tially honest party at any time. We further allow transient
corruptions as detailed in Section 4.2.1, ensuring that
our protocol features proactive security and the above
properties hold even when all servers get corrupted, as
long as not all of them are corrupted at the same time.

5.1. Security Model
In this section we present our formal security for

PESTO in form of an ideal functionality FPESTO in the
UC framework. The main entities in our system are a set
of servers S := {S1, ..., Sn} which are specified in the
sid = (S1, . . . , Sn, sid

′), where sid ′ is a unique string.
We now briefly discuss the interfaces our functionality
provides and how they enforce the desired security prop-
erties sketched above. The detailed definition is given in
Figure 6. For the sake of brevity, our FPESTO definition
assumes the writing conventions from Section 4.

Key Generation. The functionality is parametrized by
algorithms (KGen,Sign,Verify), and internally generates
a key pair (vk , sk) ← KGen(1τ ) when all servers
have explicitly triggered key generation by sending
(KeyGen, sid). From then on, FPESTO accepts calls to
the other interfaces and will guarantee unforgeability of
signatures w.r.t. vk . We stress that we will not rely on any
security properties of these algorithms but only use them
to let FPESTO output well-formed cryptographic values.

Account Creation. The creation of a new account for user-
name uid and password pw is initiated by a user on input
(Register, sid , ssid , uid , pw). To distinguish between
several account creation (and signing) sessions, we use
unique sub-session identifiers ssid . If uid has not been
registered yet, all servers S1, . . . , Sn are notified about
the request (but without learning the password) and must
approve it by sending (ProceedReg, sid , ssid , uid). The
functionality internally stores (uid , pw) and from then
on allows signing requests for uid . We flag accounts
created by malicious users, as the adversary will have
more control over these when signing.

Password-Authenticated Distributed Signing. After an ac-
count for uid was created, a user can request password-
authenticated signatures for a message m by sending
(Sign, sid , ssid ′, uid ,m, pw ′) where pw ′ denotes the
password attempt the user is logging in with. The servers
are notified — again without learning the password pw ′

— and the functionality only proceeds with the pass-
word verification when all servers have responded with
(ProceedSign, sid , ssid ′, uid).

Awaiting explicit approval of all servers gives each
the opportunity to block a session if they detect some
suspicious behaviour, or they have been asked by the
user to suspend her account. This is crucial to prevent
offline attacks against the password, as well as to detect
and stop online guessing attacks. Note that this implicitly
implements our rate limiting requirement: servers will not
send the ProceedSign command when they suspect
malicious activities, e.g., a certain number of failed lo-
gin attempts. By not specifying the exact method how

servers come to the decision on whether to proceed or
not, our model remains flexible, i.e., it can support any
rate limiting policy.

When given approval, the functionality now checks
whether pw ′ matches the original password pw the user
has created her account with. If all servers and the user are
honest, the decision bit is simply set to b← (pw = pw ′).
If malicious parties are involved, the adversary has a bit of
wiggle room: If at least one server is corrupt, the adversary
can always make a correct login fail and enforce b ← 0
but not vice versa, i.e., he cannot make a mismatch of the
passwords look like a match. If the user account for uid
has been corrupted, either because it was created by the
adversary or the adversary correctly guessed the password
of an initially honest account, A now can freely set the
decision bit, modeling the fact that he has full control over
the account anyway. These capabilities of the attacker are
modeled by first telling A whether login was successful
via output match-ok, and then asking A for a bit b∗.
The functionality enforces its influence according to the
corruption setting. All servers receive the decision bit via
an output (Match, sid , ssid ′, b).

Finally, when the password was determined to
be correct, the signature is created. FPESTO gener-
ates σ ← Sign(sk , (uid,m)) and stores a record
(sigrec, uid ,m, σ, vk ,true) that will allow successful
verification of σ. Note that the record also contains uid
which enforces that the signature is only valid for that
particular user. The user receives the computed signature
via the output (Signature, sid , ssid ′, σ).

Verification. Everyone can check the validity of signa-
tures by sending (Verify, sid , uid ,m, σ, vk ′). If vk ′ =
vk , i.e,. verification is requested for the verification
key associated with sid , then FPESTO uses its internal
records to determine whether σ is valid for (uid ,m).
The output is set to f ← true only if a record
(sigrec, uid ,m, σ, vk ,true) exist. As such records
only get created through successful signing requests, the
desired unforgeability is enforced. For other verification
keys, the functionality uses the Verify algorithm to deter-
mine f . Allowing such verification for “incorrect” public
keys is necessary to avoid that FPESTO must realize a
trusted certification authority too.

Corruptions and Refresh. We use the same transient cor-
ruption model in UC as in Section 4.2.1, and thus FPESTO

provides the same corruption interfaces Corrupt and
Refresh for corrupting servers as FdpOPRF.

We note that the functionality does not prevent the
adversary from calling Refresh when he has corrupted
a server. Since a refresh models "cleaning" of all tran-
siently corrupted servers, it does not seem desireable for
a corrupted server to call Refresh: if the calling server
is transiently corrupted, such a request will only result in
the adversary being booted from that server.
FPESTO does not provide a specific interface for adap-

tive user corruption, but nonetheless captures such attacks:
It does not perform any checks based on the user’s “iden-
tity” U , i.e., an account created by an honest user can
later be accessed through the adversary if it knows the
correct password, which models adaptive corruption of a
user’s device. Note that there is no long-term secret stored
by the user and that password guessing and corruption is



The functionality is parametrized by algorithms (KGen,Sign,Verify) and security parameter τ . It interacts with servers S :=
{S1, ..., Sn} (specified in the sid ), as well as arbitrary users, verifiers and an adversary A. Let Ct, Cp denote initially empty sets.

Key Generation
• On receiving (KeyGen, sid) from server Si:

– Ignore if a record (key, sk , vk) already exists.
– If (KeyGen, sid) was received from all Si:
∗ Create a record (key, sk , vk) with (vk , sk)← KGen(1τ ) and output (KeyConf, sid , vk) to all Si.

Account Creation
• On receiving (Register, sid , ssid , uid , pw) from user U :

– Proceed only if no record (account, uid , ∗) exists. Create record (register, ssid , U, uid , pw).
– Send a delayed output (Register, sid , ssid , uid) to all Si ∈ S.

• On receiving (ProceedReg, sid , ssid , uid) from server Si:
– Retrieve record (register, ssid , U, uid , pw). If (ProceedReg, sid , ssid , uid) has been received from all Si:
∗ Record (account, uid , pw); if U is corrupt, mark uid corrupted.
∗ Send a delayed output (Registered, sid , ssid , uid) to U .

Signing Request and Verification
• On receiving (Sign, sid , ssid ′, uid ,m, pw ′) from party U :

– Proceed only if a record (account, uid , pw) exists. Create record (sign, ssid ′, U, uid ,m, pw ′, b) with b← ⊥.
– Send a delayed output (Sign, sid , ssid ′, uid ,m) to all Si ∈ S.

• On receiving (ProceedSign, sid , ssid ′, uid) from server Si:
– Retrieve records (sign, ssid ′, U, uid ,m, pw ′, b) and (account, uid , pw).
– If (ProceedSign, sid , ssid ′, uid) has been received from all Si:
∗ If U is corrupt and pw = pw ′, mark uid corrupted and set b← 1.
∗ Send (match-ok, sid , ssid ′, b) to A and receive back (match-ok, sid , ssid ′, b∗).
∗ Update the sign record by (re-)setting the password verification bit b:
· If U and uid are corrupted, set b← b∗.
· Else, if all servers are honest set b← (pw = pw ′). If at least one Si is corrupt, set b← b∗ ∧ (pw = pw ′).

∗ Send a delayed output (Match, sid , ssid ′, b) to all Si ∈ S.
∗ Only proceed if b = 1, retrieve (key, sk , vk) and create the signature:
· Send (sign-ok, sid , ssid ′) to A and receive back (sign-ok, sid , ssid ′)
· Create σ ← Sign(sk , (uid,m)), abort if (sigrec, uid ,m, σ, vk ,false) exists.
· Record (sigrec, uid ,m, σ, vk ,true) and output (Signature, sid , ssid ′, σ) to U . (Correctness)

• On receiving (Verify, sid , uid ,m, σ, vk ′) from party V :
– If (sigrec, uid ,m, σ, vk ′, f ′) exists, set f ← f ′ (Consistency)
– Else, create a record (sigrec, uid ,m, σ, vk ′, f) where f is determined as follows:
∗ If vk = vk ′, set f ← false (Strong Unforgeability), else set f ← Verify(vk ′, (uid ,m), σ).

– Output (Verified, sid , uid ,m, σ, vk ′, f) to V .

Corruption and Refresh
• On receiving (Corrupt, sid , Si,mode) from A with Si ∈ S and mode ∈ {trans,perm}:

– If mode = trans, set Ct ← Si ∪ Ct; if mode = perm, then set Cp ← Si ∪ Cp.

• On receiving (Refresh, sid) from server Si:
– Set Ct ← ∅, abort all ongoing Register and Sign processes and output (Refresh, sid) to A.

Figure 6: Ideal functionality FPESTO for proactively-secure distributed SSO

captured by the UC model, as the environment can leak
passwords of honest users to the adversary.

5.1.1. SSO-specific Modeling Choices. Apart from bind-
ing the username uid to signed messages, there is an-
other subtle SSO-related aspect to our model. Essentially,
FPESTO can be seen as a complex signature functionality.
The common approach for UC signature definitions [17] is
to let the adversary provide the signature values σ (either
directly or by imputing algorithms with hardcoded signing
keys). FPESTO instead generates signatures within the
functionality for a key that is unknown to the adversary.
While this might seem like a benign modeling choice
— unforgeability does not depend on σ but the records
FPESTO maintains — it makes a big difference for our
SSO application: Allowing the adversary to determine and
learn signatures of honest users would render the SSO
aspect useless where signatures serve as authentication
tokens! The internal approach taken by FPESTO ensures
that only the affected user learns her signature, but also
makes proving security much more challenging.

5.2. Our PESTO Construction
On a high level, our protocol ΠPESTO combines a

distributed partially-oblivious PRF dpOPRF, a distributed
signature scheme DSIG and standard signature SIG. The
dpOPRF is evaluated on the username uid (public) and
password (private), and the PRF value is interpreted as
long-term secret signing key usk of SIG. Servers store the
corresponding verification key upk in the user’s account.
When the user later requests a signature for message m
and uid , she re-derives usk and signs a session-specific
nonce to convince the servers of her possessing the right
password. Servers then jointly sign the message (uid ,m)
using the distributed signature scheme DSIG.

The distributed building blocks are as defined in Sec-
tions 3 and 4, and SIG is a conventional signature scheme
consisting of algorithms (SIG.KGen,SIG.Sign,SIG.Vf). In
our construction we will make the randomness r used
in SIG.KGen explicit, and assume that key generation
behaves deterministically when using the same r.

Key Generation. We assume a trusted dealer that pro-



USER U SERVER Si
(sk i, vk), {(uid `, upk `, σreg,`)}

Upon input (Register, ssid , uid , pw) -reg, ssid , uid abort if (uid , ∗, ∗) already exist; output
(Register, ssid , uid), only continue upon
input (ProceedReg, ssid , uid)

-(Eval, ssid , uid , pw) -(Eval, ssid , uid)
FdpOPRF

� (EvalProceed, ssid)If EvalProceed was received
from all Si, compute
“y ← PRF(k, (uid , pw))”

� (EvalComplete, ssid , y)

(upk , usk)← SIG.KGen(y)
σU ← SIG.Sign(usk , (uid , ssid)) -ssid , σU , upk abort if SIG.Vf(upk , (uid , ssid), σU ) = 0

σreg,i ← DSIG.Sign(sk i, (0, uid , upk); ssid)
broadcast σreg,i to all servers Sj ∈ S\Si
upon receiving σreg,j from all Sj :
σreg ← DSIG.Comb(σreg,1, . . . , σreg,n)
abort if DSIG.Vf(vk , (0, uid , upk), σreg) = 0

upon receiving ok from all Si ∈ S, output
(Registered, ssid , uid)

� ssid ,ok store (uid , upk , σreg)

Upon input (Sign, ssid ′, uid ,m, pw ′): -sign, ssid ′, uid ,m abort if no record (uid , upk , σreg) exist or
DSIG.Vf(vk , (0, uid , upk), σreg) = 0; output
(Sign, ssid ′, uid ,m), only continue upon
input (ProceedSign, ssid ′, uid)

-(Eval, ssid ′, uid , pw ′) -(Eval, ssid ′, uid)
FdpOPRF

� (EvalProceed, ssid ′)If EvalProceed was received
from all Si, compute
“y ← PRF(k, (uid , pw ′))”

�(EvalComplete, ssid ′, y)

(upk , usk)← SIG.KGen(y)
σ′U ← SIG.Sign(usk , (uid , ssid ′)) -ssid ′, σ′U if SIG.Vf(upk , (uid , ssid ′), σU ) = 0 output

(Match, ssid ′, 0) and end;
else compute
σi ← DSIG.Sign(sk i, (1, uid ,m); ssid ′)

upon receiving σi from all Si ∈ S: � ssid ′, σi and output (Match, ssid ′, 1)
σ ← DSIG.Comb(σ1, . . . , σn)
abort if DSIG.Vf(vk , (1, uid ,m), σ) = 0;
else output (Signature, ssid ′, σ)

Figure 7: Registration and sign procedures of ΠPESTO. For concise notation, we omit the sid from all in- and outputs.

vides all servers with their initial key shares and
backup keys. That is, when a server Si receives input
(KeyGen, sid) it checks that sid = (S1, . . . , Sn, sid

′). It
sends (KeyGen, sid) to FdpOPRF and (keygen, sid) to
the trusted dealer of the DSIG scheme.

The trusted dealer, upon first message (keygen, sid)
for a particular sid from a server Si generates the signing
keys for all n servers as (pk, {ski}i∈[n], {bk i}i∈[n]) ←R

DSIG.KGen(pp, n). It sets vk ← pk and returns
(vk , ski, bk i) over a secure channel to Si. For all further
messages (keygen, sid) from the other servers in sid ,
the dealer responds with the already generated key shares.
Each server stores (sid , sk i, vk) as the online signing key,
and keeps bk i on a secure and offline backup tape.
Account Creation. A user can create an account for user-
name uid and password pw with all n servers, by running
the protocol depicted in Figure 7. Roughly, the servers
perform a partially blind FdpOPRF evaluation where the
uid is the public and pw the blinded input. From the
received FdpOPRF output y, the user deterministically de-
rives a key pair usk , upk of a standard signature scheme,
and sends upk and a signature computed from usk back
to the servers. The servers now check the validity of the
upk and user signature, and then use their distributed sig-

nature scheme to sign (0, uid , upk). The jointly computed
signature σreg on these values ensures that an adversary
cannot gradually plant malicious public keys for honest
user accounts, when he transiently corrupts individual
servers. Prepending the 0-bit to the signed message is
done to enforce domain separation from the messages the
servers are signing for the users later on (using the same
distributed signature scheme). The account information
stored by each server is (uid , upk , σreg).

Signature Request & Verification. When an account has
been created successfully, the user can request signatures
for messages m of his choice, and authenticating as
uid using a password attempt pw ′. If the servers have
valid account information stored for uid and agree to
proceed, they first blindly compute the FdpOPRF output for
uid , pw ′. The user then (re-)derives its key pair usk , upk ,
where usk will be the matching secret key to the pub-
lic key stored by the servers. This is tested by letting
the user sign a fresh value, which is simply the query
identifier ssid ′, with its usk . Each server then verifies the
received signature to check if the user provided the correct
password. If that check passes, each server provides the
user with a signature share σi for (1, uid ,m). That is, the



servers sign the user’s message and bind it to its verified
username uid . Again, the prefix bit 1 serves for domain
separation. The user combines all shares into the final
signature. The detailed protocol is given in Figure 7.

Refresh. If a server Si receives input (Refresh, sid)
it broadcasts (refresh, sid) to all other servers Sj ∈
S\Si, and sends (Refresh, sid) to FdpOPRF. It then
updates its signature key share with the help of the secure
backup key, and securely deletes the old keys.
• retrieve backup key bk i
• get (sk′i, bk

′
i)←R DSIG.Refresh(bki)

• set ski ← sk′i and bk i ← bk′i
Server Sj receiving (refresh, sid) from Si, runs the

same update of the signature key shares described above.
Note that only the key shares change, but vk and the
signatures computed under the old keys remain valid.

The servers could now also engage in a protocol to
recover from potential loss or compromise of their states
(as the user accounts are not contained in the trusted
backup). That is, each server could first check if they
have records {(uid `, upk `, σreg,`)} for the same set of
users, and whether these tuples contain valid signatures
σreg,` under vk . If not, they can ask the other servers to
send their stored information. As long as one server is
honest, the others will receive the correct information and
can recover from state loss or compromise. Also note that
the signature σreg,` is computed with the distributed and
proactively secure DSIG scheme, thus malicious servers
cannot distribute incorrect yet valid account information.

We do not make such a recovery process explicit in
our protocol, and instead check the validity of the user
account at each login session.

5.2.1. Security of our PESTO Construction. We assume
private and server-sided authenticated channels between
each user and each server, e.g., using TLS. Further, we
assume a private and authenticated broadcast channel with
guaranteed delivery among the n servers and which is used
only when a new user is registered. We further assume a
trusted dealer during setup and key generation. All servers
possess secure backup tapes that are assumed to be not
corruptible via transient corruptions (cf. Section 4.2.1).

In the following theorem we slightly abuse notation
and let Comb∗ ◦ DSIG.KGen denote the algorithm that
first runs (vk , (sk i)i∈[n], (bk i)i∈[n]) ← DSIG.KGen(1τ ),
discards all bk i from the output and obtains sk ←
Comb∗(vk , sk1, . . . , skn) (with Comb∗ being the algo-
rithm from the signature indistinguishability of DSIG).
Theorem 3. Consider protocol ΠPESTO from Figure 7
and Section 5.2. If SIG is an existentially unforgeable
signature scheme, DSIG a distributed signature scheme
that is proactively unforgeable, signature indistinguish-
able w.r.t algorithms Comb∗,Sign∗ and share simulatable,
then ΠPESTO securely realizes FPESTO with algorithms
(Comb∗ ◦ DSIG.KGen,Sign∗,DSIG.Vf) in the FdpOPRF-
hybrid model, w.r.t adaptively corrupting environments
controlling at most n− 1 servers concurrently.

To prove the above theorem we need to show that
for any environment Z and adversary A there exists an
efficient ideal-world adversary algorithm, called simulator
S, such that the view of Z interacting with ΠPESTO and
A is indistinguishable from the view that FPESTO and S
provide. The detailed proof is in Appendix C.

Proof. (Sketch) Before describing the simulation strategy,
we first point to some challenges we face in the proof.
• While S has control over the trusted dealer, signature

tokens are verified w.r.t vk chosen by FPESTO. S has to,
e.g., simulate signing key shares upon server corruption
that "look like" belonging to vk . We stress that S even
needs to simulate "full sets" of n signature shares that
Z observes through a corrupted user, and that combine
to a signature verifying under vk .

• As discussed in Sec. 5.1.1 FPESTO differs from standard
UC signature definitions in that it generates signatures
itself for a key that is unknown to S. S needs to provide
a view that is consistent with these internally generated
signatures and the public verification key.

• Modeling a password-authenticated primitive, FPESTO

protects against offline dictionary attacks and admits to
S only one online password guess (via the match-ok
message). S has to simulate the protocol transcript from
only this one guess.

Honest server & corrupted user: S needs to simulate
signature shares of honest servers towards the corrupted
user, as well as key shares when a server gets corrupted.
The simulator has to manage this without knowing any
key shares, yet remain a consistent view w.r.t. the vk of
FPESTO which allows to verify (simulated) signatures.
For this, we introduced and proved a special property of
the DSIG scheme called share simulatability (cf. Def. 6),
which guarantees the availability of a simulator SIM that
produces signature and key shares indistinguishable from
real ones. In case Z sees a "full set" of signature shares,
it can test whether they combine to a signature verifying
under vk . Right before revealing a final share for such
a set, the SIM algorithm requires a valid completed
signature as auxiliary input (which allows to set the final
share correctly). Fortunately, in case of a corrupted user,
S receives such a signature from FPESTO and thus can
full advantage of the simulation that SIM provides.

Honest user & corrupted server: The challenge is to
simulate messages from an honest user, e.g., attempting
to get a signature token for uid ,m, towards a corrupted
server, without S knowing her password pw ′. However,
the simulator (playing the role of corrupt servers towards
FPESTO) learns the necessary information just in time
via the match-ok output which reveals whether pw ′

matches the password stored with uid ’s account. Thus S
knows whether to simulate a successful login or not.

Input Extraction: In UC, the simulator needs to provide
inputs of corrupted parties to the ideal functionality. In
protocols where inputs are supposed to be hidden — like
the passwords in FPESTO — this is often challenging to
realize, as it requires to extract secrets from adversarially
generated messages. In our proof, extraction of a password
from a corrupted user’s messages is easy due to the usage
of the hybrid FdpOPRF simulated by S.

5.2.2. Adding Privacy to ΠPESTO. In our protocol, all n
servers learn the message m which in the SSO context
will contain the identity of the service provider the user
wishes to access. Learning this information might be
useful as it allows the servers to deploy additional security
checks. For example, they could refuse to sign access
requests towards blacklisted service providers, or identify



unreasonable access patterns. However, this also means
that all servers can track the online behavior of the user.

To increase user’s privacy, one could simply let servers
sign a commitment h = H(m, r) instead of m, where
r is randomly chosen by the user and only revealed in
the final signature. Note that signing a commitment to
m hides the message in the signing process but is not a
full-blown blind signature, as it does not guarantee the
unlinkability of the produced signature. However, in our
SSO application there is no unlinkability anyway as the
servers must still learn and sign the username uid along
with h to provide the expected user authentication.

6. Implementation & Deployment

We now report on our proof-of-concept implementa-
tion of PESTO and further deployment considerations.

Implementation & Benchmarks. Our implementation of
PESTO is open-source and available online [1]. The im-
plementation is in Java and uses the MIRACL-AMCL
library [46] for pairing computations and Java’s Big-
Integer class for implementing DSIG. We use BLS-
461 [12] for the pairings, DSIG is RSA with 2048 bits
and for SIG we chose ECDSA with secp256r1. Our
hash function of choice is SHA-256, and we used Java’s
KeyPairGenerator class for non-distributed key gen-
eration and signing. We chose to use ECDSA instead of
RSA for non-distributed signing since its key generation
algorithm is significantly faster than RSA. In fact, pre-
liminary numbers showed that the RSA key generation
contributed an average of 95 ms to the client execution
time, whereas for ECDSA it was at most 1 ms. Further-
more, ECDSA signatures are smaller than RSA signatures
so the choice also limits bandwidth usage.

We ran our implementation on AWS Elastic Compute
Cloud (EC2) on m5.xlarge instances. That is, machines
running on Intel Xeon Platinum 8000 series CPU with 4
virtual CPUs, 16 GiB of RAM1, solid state storage and
with up to a 10 Gbps network. We ran our servers (and
user machine) on different data centers throughout Europe
to simulate a realistic deployment setting. Alternatively
we could have deployed all servers in the same data
center on the same physical machine as done in [14].
However we do believe that deploying machines at dif-
ferent physical locations (that could be run by different
providers) increases the security significantly to merit the
small overhead in runtime from the communication to
different data centers.

We show the benchmarks of our ΠPESTO protocol in
Tab. 1, using a two server setup with one in England, one
in Ireland and a user in Germany. We note that the latency
of a ping between the user and the slowest server is 22ms.
All of our tests were repeated 30 times, after 30 dummy
iterations to make sure the JVM is properly “warmed up”.
Our implementation utilizes a full REST stack with a TLS
connection in place through Jetty - which closer emulates
the setting we imagine our scheme to be deployed in. This
of course gives a penalty on efficiency, which can be seen
by comparing the latency with the micro benchmarks.

1. We note that the memory requirements of our implementation is
far, far below that offered by the server.

THROUGHPUT (OPS/S) LATENCY (MS)
mean mean std

Registration 51 138 8.0
Sign in 60 124 5.8

dpOPRF
OTHER LOCAL COMPUTATION

REGISTRATION SIGN IN

mean std mean std mean std
Server 31.1 6.4 8.3 2.1 1.8 0.6
Client 28.5 1.9 2.2 0.4 1.9 0.7

Table 1: Benchmark of full execution of ΠPESTO (upper table),
and sub-parts (lower table) for n = 2.

We note that our server implementation is single
threaded. The reason for not implementing a multi-
threaded version is that the bottleneck of the implemen-
tation is the underlying computation of pairings and stan-
dard signatures, which we did not implement as this has
not been the focus of our work. We computed our through-
put benchmarks for the servers only and excluded network
communication for these numbers. Concretely we forced
an instance of our program to run on a single core through
taskset and interpolated the throughput for the amount
of available cores. The numbers for latency express the
entire time it takes for the user from beginning to end
of the protocol, including network latency, establishing a
TLS connection and waiting for server replies.

The micro benchmark numbers only include local
computation, in particular for the dpOPRF, which is the
same for both registration and sign in. It also expresses
the other local computation required for the registration,
respectively the sign in, in particular key generation,
signature verification and distributed signing. The micro
benchmarks do not include any of the overhead of the
REST/TLS communication stack.

Comparison. For comparison we note that PASTA [8]
takes 94.6 ms for sign in when comparing to the most
equivalent setting (WAN with 2 servers using an RSA
signature). Although for fairness we note that the latency
in their WAN setting is 80 ms whereas for us it is 22 ms.
However, our implementation also includes constructing
a full TLS connection which theirs (to the best of our
knowledge) doesn’t. For further comparison we also ran
benchmarks for the construction of a JWT token (based
on RSA) using the our code base. This execution took an
average of 30.4 ms. We can thus conclude that PESTO
does add some overhead compared to previous schemes,
in particular due to the pairing operations. However we
believe that the added overhead is still small enough,
in absolute terms, for the scheme to be practical, in
particular when considering its security benefits over the
competition.

SSO Integration. PESTO is designed for “user-centric”
SSO authentication flows, i.e., where the IdP sends the
time-constrained bearer token to the user who then relays
the token to the SP. This specific flow is used by OpenID
Connect (OIDC) [44], and is also one of the supported
flows in the OAuth standard [29], which specifies a
general SSO framework. Whereas OAuth supports many
different formats for the token, e.g., JSON Web Token



(JWT) or signed XML, OIDC works exclusively with
JWT and also specifies the content of the token.

For compatibility with these standards, our implemen-
tation focuses on OAuth, with JWTs signed using RSA.
Our protocol generates standard JWTs, which we verify in
our tests using the Auth0 library. By simply selecting the
appropriate claim/value pairs to be included in the JSON
message, our implementation becomes fully compatible
with OIDC.

Because of these choices, and the fact that our PESTO
protocol lets the user combine the signature shares into a
standard RSA signature, only the IdPs and the clients need
to run PESTO-specific code, whereas the SPs adhere to
the normal JWT standard. The user part of the protocol
is relatively lightweight: 4 exponentiations in total with
only one being in the target group of the bilinear map.
As our benchmark shows, this can be done efficiently in
Java, and we envision client deployment via, e.g., a simple
Android app or browser plugin. The user part could also
be implemented entirely in Javascript, but this setup has
inherent disadvantages as it requires to trust the code that
is fetched on demand.

We also note that other SSO authentication flows in
OAuth exist, e.g., where the SP directly contacts the IdP
on behalf of the user, or where the IdP sends the signed
token directly to the SP, such as in Shibboleth [2]. Such
protocols will not be directly compatible with PESTO as
there the (distributed) IdPs must send the signed token
directly to the service provider, thus requiring the SP to
run custom code to combine the partial tokens first.

6.1. Deployment Considerations

Finally, we address further considerations for the real-
world deployment of our scheme.

Implementing the backup tape. First, for key refreshing
our scheme uses “offline” backup tapes that are assumed
to be harder to corrupt than the online server itself. There
are multiple realizations for this assumption in practice.
A simple one is to store a USB-stick containing the re-
spective data in a safe. Each server administrator will then
use her stick to run the refresh procedure. Furthermore,
modern cloud computing platforms such as Openstack
have an architecture that is compatible with the backup
tape approach: they strongly separate between the virtual
machines that are “online”, and the cloud management
interfaces that run in a protected environment, which can
also function as backup tape.

Password administration. Second, our protocol focuses
solely on the account generation and login. In practice,
users also want to change or reset their password. Reset-
ting could be done in the classic way by simply sending
a password reset link to the stored user’s email address.
With PESTO this will trigger a new run of the Registration
procedure, overwriting the previously stored password
information. For changing a password, one could use a
PESTO-generated SSO token to let the user first authenti-
cate to all PESTO servers (with the current password)
and then establish a new password by re-running the
Registration procedure.
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Appendix A.
Proof of Theorem 1 (Security of RSA-DSIG)

The proof mainly relies on using “noise drowning”
techniques that hide a value s using an added x that
comes from an exponentially larger interval. This can be
formalized as follows:

Lemma 1. Let `, B, β ∈ N such that B > β. Further-
more, let χ be a random variable on Z whose outputs are
bounded by β. Then the following holds:

1) Let x← [−B,B] and s← χ. Then any (potentially
computationally unbounded) algorithm A can distin-
guish x from x+s with probability at most 4s+4

2B+2s+1 .
2) Let x1, . . . , x` ← [−B,B] and s ← χ. Then any

(potentially computationally unbounded) algorithm B
can distinguish

∑
i∈[`] xi from s +

∑
i∈[`] xi with

probability at most 4s+4
2B+2s+1 .

Proof. Consider the random variable X being input to A
which is either sampled as x or x+ s. We can see that X
must be bounded by B + s. By the bound on s it holds
that Pr[X ∈ [−B + β,B − β] | X = x + s] = Pr[X ∈
[−B + β,B − β] | X = x], so in that case the output of
A on X must be identically distributed. Thus A can only
distinguish the cases when X falls outside this interval,
which happens with probability at most 4s+4

2B+2s+1 .
Assume that there exists an algorithm B which can

distinguish the second experiment with probability at least
ε. Then, knowing B, we can take the random variable X
as defined above for the first experiment for A, sample
x2, . . . , x` ← [−B,B] and set Y ← X + x2 + · · · + x`,
which implies that the distribution of Y exactly matches
the input distribution from the second experiment - here,
X = x translates into the setting where Y = x + 1 +
· · · + x` while X = x + s translates into Y = x1 +
· · · + x` + s. Thus, we have constructed a distinguisher
for X which succeeds with the same probability ε. By the
aforementioned argument, we must have ε ≤ 4s+4

2B+2s+1 .

Proof. The aforementioned Lemma can now be used in
the proof of Theorem 1, which we present below for the
individual security properties.

Signature Indistinguishability. Algorithm
DSIG.Comb∗(pk, sk1, . . . , skn) parses
(fi, {si,j}j∈[n]r{i}) ← ski and computes sk =

∑n
i=1 fi

mod N . Algorithm DSIG.Sign∗(sk,m) outputs H(m)sk

mod N . Now, since the {fi}i form an additive sharing
of sk = d over the integers, the result of running
DSIG.Comb∗ on the secret keys to produce a single
secret key and then DSIG.Sign using that resulted secret
key is equivalent to running DSIG.Sign individually with
every ski to produce partial signatures and then running
DSIG.Comb on the partial signatures. The outputs of both
processes are identical by the linearity in the exponent.

Share Simulatability. We now describe the simulator SIM
and will afterwards argue indistinguishability.

Upon first call SIM will sample “shadow” sk
0

i , bk
0

i . It
therefore generates both keys according to Steps 3-6 of
DSIG.KGen, except that SIM will not add d to dn and not
add di to fi.



On query (Sign,m, `, σ), if σ = ⊥ then use
sk

ep

i to generate σi honestly. If σ 6= ⊥ then output
σ/(
∏
j∈[n]r{i} σj) where σj = DSIG.Sign(j, sk

ep

j ,m, `).
On query refresh, for all i ∈ [n] run

DSIG.Refresh(i, bk
ep

i ) → (sk
ep+1

i , bk
ep+1

i ) on all
keys that SIM generated.

On query (corr,mode, i,L), with mode ∈
{trans, perm}, the list L contains all those signatures
of the current epoch ep for which SIM has to ‘adjust’ the
output of the random oracle H̃N for key sk

ep

i . This is done
as follows: For each row (ep, i,m, `, σ) ∈ L, we already
have that the equation σ =

∏
j∈[n] σj holds, but we need

to adjust the computation of σi appropriately as we need
to reveal to the adversary either sk

ep

i such that σi =
H(m)fi ·

∏
j 6=i H̃N (`, si,j) = σ/

(∏
j 6=i σj

)
or bk

ep

i with
the same properties. Therefore, we can pick the smallest
k ∈ [n]r(Cp,ep∪Ct,ep) and program H̃N as H̃N (`, si,k) =

σ/
((∏

j 6=i σj

)
·H(m)fi ·

∏
j 6=i,k H̃N (`, si,j)

)
mod N . Observe that such a k must always exist
unless i is the last uncorrupted party, in which case SIM
will only output sk i, bk i = ⊥. If the random oracle
has been programmed on H̃N (`, si,k) already then by
linearity of the above expression it must have been
programmed to the same value.

We now argue why SIM’s output is indistinguishable.
First, observe that we only program the random oracle on
inputs where the key si,j has not yet been revealed before.
Therefore, we in the following assume that the adversary
has not queried H̃N on this input before since si,j has
length τ bits and is either chosen uniformly at random or
as the output of a PRG on a (by assumption) uniformly
random input of the same length.

In the generation of the bk i we generate mki,j as
before, but now sample dn differently, namely without
adding d. By Lemma 1 we have that the distributions of
dn are statistically indistinguishable due to the gap on the
bounds of d, dn.

Furthermore, by Lemma 1 it also follows that each sk i
is statistically indistinguishable from its real counterpart
generated by KGen, due to the gap of the bound of di and
fi.

For the generation of the σi we have that due to the
factor hi they are distributed uniformly at random in the
protocol, subject to the constraint that their product is σ
which is preserved by SIM.

When corrupting the last party, SIM will output ⊥
whereas the real experiment would output the correct
keys. Observe that in such a setting A cannot win the
experiment anymore, so the output of SIM can be arbitrary.

Unforgeability. First, consider the standard RSA signature
scheme SIG1 which generates σ(m)← H(m)d and veri-
fies by checking that H(m) = σe. Here sk = d and pk =
(e,N) and d is also chosen such that d ·e = 1 mod ϕ(N).

We show that the existence of an adversary An such
that ExpDSIG,n

An,forge
(τ) = 1 implies an adversary A1 such

that ExpDSIG,1
A1,forge

(τ) = 1 with essentially the same success
probability. That is, the existence of an adversary who
forges a signature in a setting where there are n signers
implies the existence of an adversary in a setting with
only one signer. Now, since the case with one signer is
identical to a standard signature scheme SIG, this means

that by existential unforgeability of SIG implies existential
unforgeability of DSIG.
A1 participates in experiment ExpDSIG,1

A1,forge
(τ) from

which it obtains the public key pkown = (N, e) and runs
An internally such that An participates in a simulation of
ExpDSIG,n
An,forge

(τ). To do so, A1 simulates DSIG.KGen(pp, n)
as in the proof of share simulatability to obtain (sk i, bk i)
for all i ∈ [n] where sk i = (fi, {si,j}j∈[n]r{i}) and
bk i = (di, {mki,j}j∈[n]r{i}) and public key pk = pkown.
A1 initializes ep ← 0, Ct,ep ← ∅, Cp,ep ← ∅ and

forwards pk to An. In addition, A1 simulates the oracles
responses to An by executing their code exactly as it
appears in Figure 3 except in the case in which the
requested signature is from the only party remaining for
which the adversary does not have a signature already
(or a potential to generate one). In that case A1 would
generate the output as in SIM.

Thus, the view of An in the internal simulation is
distributed identically to its view in a real experiment
assuming share simulatability, meaning that An wins in
ExpDSIG,n
An,forge

(τ) with the same probability that it wins in
the simulation, meaning that A1 wins ExpDSIG,1

A1,forge
(τ) with

the same probability as An.

Appendix B.
Proof of Theorem 2 (Security of DH-dpOPRF)

Informal proof. We show security through a hybrid argu-
ment with indistinguishability between a real execution
and the ideal execution through a simulator which is
allowed to “fail” in certain cases. We then modify the
simulator such that it uses an instance of Gapom-BDH
internally, arguing indistinguishability between the first
and second simulator and then showing that if “fail”
occurs then the adversary has actually been able to win
the experiment. We note that we also allow the simulator
to abort, but argue that it will only be allowed to do so
in events that have negligible probability. Concretely, only
if the adversary is able to either guess or find a collision
on random oracle queries on inputs of at least τ bits of
entropy.

We start by constructing our simulator to run
simulated versions of users and each Si for i ∈ [n]
until the real world adversary A corrupts one. Let the
set of corrupt parties be denoted by C := Ct ∪ Cp and
C̄ := [n] \ C. Because of the proactive security the size
and parties in C and C̄ can change.

Key Generation: S simulates the trusted third party
and constructs the long term keys (ki, {mk i,j}j∈[n]\{i})
along with epoch keys {si,j}j∈[n]\{i} for all i ∈ [n] s.t.
mk i,j = mkj,i and si,j = sj,i. Define k =

∑
i∈[n] ki

mod p.

Random Oracles: Every oracle stores a table of each
query which is used to answer repeat queries.

A new query H1(xpriv) is answered by the value x̃←
gv1 for v ←R Zp. The simulator then stores 〈H1, xpriv, v, x̃〉.

A new query H2(xpub) is answered by the value
c ← gw2 for w ←R Zp. The simulator then stores
〈H2, xpub, w, c〉.



A new query H3(sid , ssid , si,j) is answered by
a random di,j ←R Zp. The simulator then stores
〈H3, di,j , sid , ssid , si,j〉.

A new query to H4 on input (xpriv, xpub, ȳ) is han-
dled as follows: Check if tuples 〈H1, xpriv, v, x̃〉 and
〈H2, xpub, w, c〉 exist. If not, pick and return a ran-
dom value y ←R {0, 1}τ , otherwise look up all tuples
〈lbll, ∗, ∗, ỹl〉, then check if ỹl = ȳ1/(vw) for any l and
abort if it holds for multiple l’s. If there is such an index
then let lbl← lbll, otherwise pick a new random label lbl.
Sample a new ssid ′ and call (Eval, sid , ssid ′, xpub, xpriv)
and delay the message (Eval, sid , ssid ′, xpub) other-
wise returned to all honest parties by the environment.
Then call (EvalComplete, sid , ssid , lbl) to get the
message (EvalComplete, sid , ssid , y) and learn y ←
T (lbl, xpub, xpriv). S then stores 〈lbl, x̃, c, ȳ〉. Return y as
output to the query. In case the ideal functionality does
not return (EvalComplete, sid , ssid , y) from the call,
then S outputs fail.

The simulator aborts if a collision is detected for any
of the oracles.

The idea is that H4 will verify consistent malicious
behavior by checking if consistent keys (exponent) have
been used by an adversary. If so, the ideal functionality
will return a previously stored result, if not the ideal
functionality will return a new result on a different label.
It will later become apparent that fail will only occur
when the adversary has not received shares from all
“honest” parties.

Evaluation: We consider two scenarios: the querying
party U is honest and the querying party U is dishonest.

U is honest: In this setting the simulation starts
when S receives (Eval, sid , ssid , U, xpub) from
the ideal functionality and it must then simu-
late the query of an honest U . It does so by
emulating a query to H1, thus constructing the
value x̃ ← gv1 for v ←R Zp and storing
〈H1, ·, v, x̃〉. It then sends (Eval, sid , ssid , xpub, x̃)
to each Si ∈ C. When S has received
(EvalComplete, sid , ssid , Si, ȳi) from A for all
Si ∈ C and (EvalProceed, sid , ssid , Si) from the
ideal functionality on behalf of Si ∈ C̄ it must ask
the ideal functionality to give output to the honest
user which must be consistent with previous queries
in case the adversary has used different keys for
the malicious servers. It does so by simulating the
honest servers’ part of the computation by com-
puting ȳ =

(∏
Si∈C ȳi

)
·
(∏

Si∈C̄ ·
∏
Sj∈C d

∆i,j

i,j

)
·(∏

Si∈C̄ e(x̃, c)
ki
)

where ∆i,j = 1 if i > j
and ∆i,j = −1 otherwise. The values di,j are
found by looking up 〈H3, di,j , sid , ssid , si,j〉. (If
they don’t exist or 〈H2, xpub, w, c〉 does not ex-
ist then emulate the oracle calls.) If the adversary
has acted honestly (or is lucky) then ȳ1/(vw) =

e(x̃, c)v
−1w−1·

∑
i∈[n] ki = e(g1, g2)

∑
i∈[n] ki . If that is

the case we let lbl = hon, otherwise we look up the
tuples 〈lbll, ∗, ∗, ỹl〉 and check if ỹl = ȳ1/(vw). If we
find a label lbll where this holds let lbl← lbll, other-
wise let lbl be a new random label, then call the ideal
functionality with (EvalComplete, sid , ssid , lbll).

Receive back (EvalComplete, sid , ssid , y) and
store 〈lbl, x̃, c, ȳ1/(vw)〉.2

U is dishonest: The message (Eval, sid , ssid , xpub, x̄)
is received by A on behalf of U towards some
Si ∈ C̄. Look up tuple 〈H2, xpub, w, c〉. If
it doesn’t exist, construct it. Pick a random
dummy value xpriv ←R {0, 1}τ then S sends
the query (Eval, sid , ssid , xpub, xpriv) to the ideal
functionality and asks it to give delayed output
(Eval, sid , ssid , xpub) to Si.
Each time S receives (EvalProceed, sid , ssid , Si)
from a Si ∈ C̄ from the ideal functionality it ig-
nores it if it cannot find (eval, sid , ssid , xpub, x̄)
for this ssid and Si. Otherwise it looks up the
values 〈H2, xpub, w, c〉 and 〈H3, di,j , sid , ssid , si,j〉
(and emulating the construction of these if they don’t
exist), computes the value ȳi like in the real proto-
col. Send (EvalComplete, sid , ssid , Si, ȳi) to A
as values returned to U from honest Si. Note that
the rest of the simulation for dishonest U is handled
by calls to H4.

Refresh: During refresh the simulator computes
(mk ′i,j , s

′
i,j , δi,j) ← PRG(mk i,j) for all j ∈ [n] \ {i}

for all permanently corrupted servers where mk i,j was
the master key given to the adversary when permanently
corrupting the server Si. For the honest, and previously
transiently corrupted servers it picks s′i,j , δi,j uniformly
at random and computes the new state for the honest
parties like in the real protocol.

Corruption: When A transiently corrupts a server Si
then S can hand over current epoch keys and transcript
as it knows the entire epoch state.

If an adaptive corruption happens of a user U then
the simulator must explain the user’s true input, xpriv,
and choice of nonce r′ where the simulator previously
sent a value x̃. See if there is an entry 〈H1, xpriv, v, g

v
1〉,

otherwise construct such an entry for xpriv. Then construct
a simulated nonce as r′ ← r/v and use this to return to
A, thus x̄ = H1(xpriv)

r′ = g
v·r/v
1 = gr1 .

When A permanently corrupts a server Si then S
picks mk i,j ←R {0, 1}τ (consistent with previously
picked keys) and use this to simulate the construction of
the current epoch keys, si,j . See that the backup keys
mk i,j don’t define the keys of the current and previous
epoch keys, si,j because of the generation through the
PRG. Thus the epoch keys used in the simulation for the
previous epochs can easily be given to the adversary as
transcript.

Indistinguishability: It is easy to see that the ran-
dom oracles all return random values and that the key
generation is done like in the real execution. When U is
dishonest then everything sent to A is computed like in the
real execution. There are a few places where the simulator
emulates the oracles. Emulated calls to H2 do not pose a
problem since they are queried on the public value xpub
and thus whether we define the output when an adversary

2. Note that the ideal functionality will always return, even if lbl =
hon.



performs a query or the first time the simulator needs it
does not matter. In regards to H3 we notice that this is
again only emulated for a query the adversary knows how
to issue, based on si,j .

Finally notice that in relation to oracle H4 the
simulator will only query the ideal functionality in case
of a corrupt user and thus we don’t have the problem of
the simulator’s query being leaked to the environment
through the output to an honest user. In particular this is
so since if A queries H4 without corrupting the user then
even if A uses the correct xpriv (given by the environment)
it cannot return a correctly computed value ȳ since it
does not know the honest user’s randomization exponent,
r, which it cannot guess with non-negligible probability.
Furthermore we see that if U has been corrupt then the
only time where the ideal functionality will not return
(EvalComplete, sid , ssid , y) to the simulator is if
(EvalProceed, sid , ssid) has not been received from
all the honest Si for the same amount of concurrent
queries of U on xpub as the adversary has started. This is
is the only time fail will be output.

Reduction to the Gap om-BDH Problem: Suppose
we are given a PPT adversary A and a PPT environment
Z that can cause fail to happen. We now show how to
use these to construct an algorithm B that solves the gap
om-BDH problem with essentially the same probability. B
is given G and gk2 from the Gapom-BDH experiment and
also access to the oracles OG-1,OG-2, OD-help and OC-help.
We use this to implicitly define keys ki s.t. k =

∑
i∈[n] ki

mod p. However, since we don’t know k we can at most
explicitly define n− 1 of these. Each of these along with
the blinding seeds, si,j will only be fixed once a party
gets corrupted. Thus we avoid having B needing to guess a
server that will remain uncorrupted in each epoch. The key
observation in the following is then to notice that B never
needs to simulate values for all ki, because otherwise the
fail event will not occur since B will need to be missing at
least one share ȳi from an honest server to make it occur.

Key Generation is handled the same as before.
However at the beginning we also store the tuple
〈hon, g1, g2, e(g1, g

k
2 )〉 For the random oracles we now

use the OG-1,OG-2 oracles to sample random elements
for H1 and H2, x̃, respectively c. B then stores tuples
〈H1, xpriv, ·, x̃〉 and 〈H2, xpub, ·, c〉 now, since it does not
know the discrete logarithm of x̃, respectively c.

A new query to H4 on input (xpriv, xpub, ȳ) is now
handled as follows: B checks if tuples 〈H1, xpriv, ·, x̃〉 and
〈H2, xpub, ·, c〉 exist. If not, pick and return a random value
y ←R {0, 1}τ , otherwise look up all tuples 〈lbll, x̃l, cl, ỹl〉,
and query 1 ←? OD-help(e(x̃, c), ȳ, e(x̃l, cl), ỹl) to try to
find an index l where this holds. If that happens then
let lbl ← lbll, otherwise pick a new random label lbl.
Sample a new ssid ′ and call (Eval, sid , ssid ′, xpub, xpriv)
and delay the message (Eval, sid , ssid ′, xpub) other-
wise returned to all honest parties by the environment.
Then call (EvalComplete, sid , ssid , lbl) to get the
message (EvalComplete, sid , ssid , y) and learn y ←
T (lbl, xpub, xpriv). B then stores 〈lbl, x̃, c, ȳ〉. Return y as
output to the query. In case the ideal functionality does not
return (EvalComplete, sid , ssid , y) from the call, then
S outputs fail and adds (x̃, c, ȳ) to the list of solutions to
the experiment.

Note that we are here able to complete the check on
the stored tuples without knowing the discrete log of x̃ and
c because we have access to the DDH oracle instead. We
see that the check will verify if there is any tuple stored
with the same exponent to the query e(x̃, c), which should
be the base if ȳ is constructed correctly. Furthermore we
see that we can also detect when this occurs for the true
key k because we have stored a tuple for the base e(g1, g2)
since we got gk2 from the experiment.

Now consider the simulation for evaluation. Again we
have two cases; U is honest and U is dishonest.
U is honest: Simulate like before except for when

receiving the message (EvalComplete, sid ,
ssid , Si, ȳi) from the adversary. In that case do as
before when constructing the variable ȳ. However
since we don’t have the honest parties’ key shares,
instead use the oracle e(x̃, c)k ← OC-help(e(x̃, c)).
Add (x̃, c, e(x̃, c)k) to the list of solutions
to give to the Gapom-BDH experiment. Next
compute ȳ =

(∏
i∈C ȳi

)
·
(∏

i∈C̄ ·
∏
j∈C d

∆i,j

i,j

)
·(

e(x̃, c)k
)−∑

i∈C ki . Then look up the tuples
〈lbll, x̃l, cl, ỹl〉 and use the OD-help to compute
1 ←? OD-help(e(x̃, c), ỹ, e(x̃l, cl), ỹl). If we find a
label lbll where this holds let lbl ← lbll, otherwise
let lbl be a new random label, then call the ideal
functionality with (EvalComplete, sid , ssid , lbll)
and then stores 〈lbl, x̃, c, ȳ〉. The user U then receives
back (EvalComplete, sid , ssid , y) from the ideal
functionality.

U dishonest: On receiving (EvalProceed, sid ,
ssid , Si) from all, except the last honest party Si ∈
C̄, simply return (EvalComplete, sid , ssid , Si, ȳi)
for ȳi ←R GT . We see that this is fine, because
there will be at least one value di,j unknown in
this case. For the last honest party we need to
make things consistent. To do so use the oracle
e(x̄, c)k ← OC-help(e(x̄, c)) using x̄ already received
and c from the H2 table. Based on this compute

ȳi ←
(
e(x̄, c)k

)−∑
j∈C kj ·

(∏
j∈C d

∆i,j

i,j

)−1

·
∏
i∈C̄ ȳi

and return (EvalComplete, sid , ssid , Si, ȳi). Fur-
thermore add (x̄, c, e(x̄, c)k) to the list of solutions
to give to the experiment Gapom-BDH. Note that
multiple values for x̄ may have been received. In
that case use the one sent to the last honest party.

Corruption and refresh: When A corrupts Si
then B chooses a random key ki and blinding seeds
{si,j}j∈[n]\{i} (unless already defined) at random. It then
defines the outputs of oracle H3 to match the simulated
random values sent, that is to ensure that ȳi = e(x̄, c)ki ·∏
j∈[n]\{i}H3(sid , ssid , si,j)

∆i,j (if U was dishonest of
that specific query). This is trivial as long as there is at
least one si,j unknown to the adversary, i.e. if there are at
least two honest parties. If there is only one honest party
remaining then notice that its value ȳi (when U is corrupt)
was defined such that it is consistent with the random
values picked for all the other honest parties. Next see
that if we need to simulate the response for honest servers
when U was honest (that is when the simulator didn’t
construct the values ȳi) the simulator can again simply



hand out random values as long as one si,j is unknown
and then for the last values simulate like in the case when
U is dishonest, using the value ȳ already defined internally
in the simulator.

If A permanently corrupts Si then B additionally
chooses random master keys mk i,j for j ∈ [n] \ {i} to
simulate the backup tape. When a transiently corrupted
server is refreshed then B takes back control and forget
all previously chosen keys for that server.

CDH Solutions: When fail occurs then B adds
one more CDH solution to the list of solutions than
the number of times it invoked the oracle. Specifically
note that the oracle is only invoked when B must sim-
ulate values from all honest servers (when the message
(EvalProceed, sid , ssid) is given to B by the ideal
functionality on request from Z). There B wins the
experiment by returning a list of values that wins the
Gapom-BDH experiment.

Appendix C.
Proof of Theorem 3 (Security of PESTO)

We restrict the analysis to static user corruptions,
although our protocol is adaptively secure. This works
because users delete all secret values after usage (e.g., y
and usk ), and the adversary does not gain any advantage
from corrupting a user ITI after the protocol started. For
this, note that party identifiers are meaningless besides
providing routing information, and thus we can assume
that Z chooses a fresh user party for every fresh subses-
sion. Therefore, statically corrupting a user who attempts
to log in with a previously honestly uid naturally models
adaptive user corruptions.

Game 1: Real execution. This is the real protocol exe-
cution running with adversary A and hybrid functionality
FdpOPRF.

Game 2: Adding F with KeyGen and Register. We
regroup the real execution into one ITI called simulator or
S (S now includes A,FdpOPRF, trusted dealer and private
backup tapes of servers). We add an ITI F with all in-
terfaces of FPESTO except ProceedSign and Verify,
modified s.t. F discloses passwords to A. For KeyGen,
we let F read n, the number of servers, from sid . Then,
F runs pp ← DSIG.Setup(1τ ), (vk , sk1, . . . , skn) ←
DSIG.KGen(pp, n) and sends sk1, . . . , skn to S (we stress
that we take away these keys from S in a later game).
S uses key shares sk1, . . . , skn to simulate honest

servers and answer corruption queries of Z . S sends the
KeyConf output of an honest server to F . S delivers
outputs as soon as the corresponding message is delivered,
or instantaneously if it was already delivered. Correspon-
dances are as follows:
• message (Register, sid , ssid , uid) sent ←→

deliver (Register, sid , ssid , uid) to Si
• message (Sign, sid , ssid , uid ,m) sent ←→

deliver (Sign, sid , ssid , uid ,m) to Si
• message (sid , ssid ,ok) sent ←→

deliver (Registered, sid , ssid , uid) to U
S directly acknowledges all inputs and starts simulating
the corresponding messages:

• input (Register, sid , ssid , U) ←→
ack. and simulate (reg, sid , ssid , uid)

• input (ProceedReg, sid , ssid , Si) ←→
acknowledge and simulate FdpOPRF usage

• input (Sign, sid , ssid , U) ←→
acknowledge and simulate (sign, sid , ssid , uid ,m)

Simulate corrupted parties’ inputs to F : whenever
A sends an input (Eval, sid , ssid , uid , pw)
through a corrupted user U to FdpOPRF, if A sent
(Register, sid , ssid , uid) to any Si before, S sends
an input (Register, sid , ssid , uid , pw) to F on behalf
of U . Else, if A sent (Sign, sid , ssid , uid ,m) to any
Si before, S sends (Sign, sid , ssid , uid , pw) to F on
behalf of U . In case of a corrupted server Si, S sends
inputs KeyGen and ProceedReg to F on behalf of Si
as soon as A sends a key request to the trusted dealer
or (EvalProceed, sid , ssid) to FdpOPRF, respectively,
where the latter query’s identifier ssid was formerly
received within an input (Sign, sid , ssid , ...) from F .
As a last change in this game, we add dummy parties
between F and Z , namely one per real party.

Considering indistinguishability, the output pattern of
F matches the protocol and F starts working in all
corruption scenarios thanks to S’s inputs to F . Regarding
completeness of inputs note that servers do not input any
secret values into FPESTO - the only secret input value is
pw provided by U . If U is corrupted, S learns pw when
U queries FdpOPRF.

If furthermore key generation and user registration
is equally successful in both games and all real-world
protocol aborts can be enforced by S via F , then outputs
are equally distributed in both games (since they come
unmodified from the real execution). For key generation,
in the real execution all honest servers react only on the
first KeyGen input and output vk obtained from FDKG,
which is exactly what happens in Game 2. For user regis-
tration, we have to argue that U outputs Registered in
Game 2 if and only if U outputs Registered in Game
1. This holds by correctness of SIG and DSIG and lists
given above showing how S can abort the protocol run in
Game 2 appropriately for all protocol messages.

Game 3: Abort upon SIG forgery. Whenever
Z sends a message (sid , ssid , upk , σU ) to a
server on behalf of a corrupted user with
SIG.Vf(upk , (uid , ssid), σU ) = 1, where there was al-
ready a query (sid , ssid ′, uid ′, upk , σ′) with ssid 6= ssid ′

and a message (Registered, sid , ssid ′, uid ′) from F
to some honest user U delayed by S, then S aborts.

Similarly, S aborts whenever Z sends a message
(sid , ssid , uid , σ′U ) to a server on behalf of a corrupted
user with SIG.Vf(upk , (uid , ssid), σ′U ) = 1 and upk being
the public key registered with an uncorrupted uid (i.e., a
uid for which S never received (match-ok, sid , ssid , 1)
from F for a session ssid run with a corrupted user).

The first case corresponds to Z maliciously registering
a user uid with public key upk , where upk of another
honest user uid ′. Z does not know the corresponding usk
and thus a verifying σ would constitute a forgery.

The second case corresponds to Z impersonating an
honestly registered uid during signing. Since uid was
honestly registered, Z does not know the corresponding



usk . As before, unforgeability of SIG signatures is enough
to argue computational indistinguishability in this case.

Game 4: Abort when forged DSIG signa-
ture is verified. We let S abort if Z sends
(Verify, sid , uid ,m, σ, vk) to any party V where
Verify(vk , (uid ,m), σ) = 1 and σ was never contained
in any former Signature output, nor could it be assem-
bled using keys of corrupted parties and signature shares.

We construct an adversary B winning the proactive
unforgeability experiment ExpDSIG,n

B,forge (τ) (cf. Def. 5) with
non-negligible probability given a distinguisher D be-
tween Game 4 and Game 3. B uses outputs from his
oracles to emulate either one of the consecutive games.
B gets as input pk and works as follows:
• Whenever F outputs (KeyConf, sid , vk), B over-

writes this with (KeyConf, sid , pk).
• Whenever F generates an output containing σ ←
Sign(sk , (uid ,m)) within a ProceedSign query
with ssid , B obtains σi ← Osign(i, (uid ,m), ssid)
for all i ∈ [n] with Si being honest, and generates
σi ← DSIG.Sign(sk i, (uid ,m); ssid) using sk i for
all corrupted Si. Then B overwrites the output with
σ ← DSIG.Comb(σ1, . . . , σn).

• Similarly, B overwrites signatures σreg in uid records
stored at a server receiving a (Corrupt, sid , Si, ∗)
query, using his Osign oracle and DSIG.comb() in the
same way as above.

• Whenever a server sends an input (Refresh, sid)
to F , B calls his Orefresh oracle once.

• Whenever Z issues (Corrupt, sid ,Si,mode) for a
currently honest Si, B queries k ← Ocorrupt(i,mode)
and sets k to be the key(s) of Si.

• Whenever an honest server Si generates a DSIG
signature share on message m to send it to either
a corrupted server or a corrupted user, i.e., within a
ProceedSign or ProceedReg query with ssid ,
B queries Osign(i,m, ssid) and sets the answer σi to
be the signature share send by the honest server.

This emulation is exactly a UC execution of Game
3 and Game 4, the only difference being that the DSIG
key pair is generated by the oracles of B instead of being
created within F . For this, it is crucial to see that the
above is a complete list of all key-related values that Z
can observe from the execution of Game 3 or Game 4.

A distinguisher D between both consecutive games
can only be successful if he causes the execution in Game
4 to abort, so if he submits a signature σ∗ on message m∗
for verification with the properties described above. Since
σ∗ cannot be assembled from secret key shares, we know
that there is no e such that |Ct,e ∪ Cp,e| 6= n. Since σ∗

was also never output by FPESTO nor could be assembled
by combining signature shares (obtained through a cor-
rupted party or using known key shares), there is also no
epoch in which B requests Osign(i,m

∗, ssid) for all honest
servers Si and some ssid . By this, we see that (m∗, σ∗)
constitutes a forgery in B’s proactive unforgeability game.

Game 5: Abort when DSIG forgery is stored
with user account. S aborts if Si overwrites a
record with (uid , upk , σreg) in some epoch e, where
DSIG.Vf(vk , (0, uid , upk), σreg) = 1 and where there
was a (Corrupt, sid , Si,trans) query in epoch e.

We use the same reduction to proactive unforgeability
as in Game 4, i.e., the same adversary B to emulate an ex-
ecution of Game 4 and Game 5. Due to the changes made
in this game and usage of a secure broadcast channel, in
every execution all honest servers that do not abort during
a signing procedure are guaranteed to have the same user
signing key upk stored for each account uid .

Game 6: Simulate DSIG key shares. We let S
generate and refresh secret key shares (to give them to Z
upon corruption) and signature shares (simulating
honest servers) using algorithms SIM(refresh),
SIM(corr, ...) and SIM(sign, ...) as in Figure 3.
Whenever the two latter algorithms are used to
compute the last key or signature share missing to
let Z compute signatures using only DSIG.Sign()
and DSIG.Comb(), S uses key shares sk1, . . . , skn
forwarded by FPESTO to compute all those signatures as
DSIG.Comb(DSIG.Sign(sk1, ·), . . . ,DSIG.Sign(skn, ·))
and feed them to the SIM() algorithms. Else, S simply
runs SIM(sign, ·, ·, ·,⊥) or SIM(corr, ·, ·, ∅).

We show that if DSIG is share simulatable (cf. Def. 6),
then Game 6 and Game 5 are indistinguishable. The ad-
versary B running with experiment ExpDSIG,n

A,sim,b(τ) obtains
pk and works as follows:
• Whenever F outputs (KeyConf, sid , vk), B over-

writes this with (KeyConf, sid , pk).
• Whenever a server sends an input (Refresh, sid)

to F , B calls Orefresh().
• Whenever Z issues (Corrupt, sid , Si,mode) for a

currently honest Si, B queries k ← Ocorrupt(i,mode)
and sets k to be the key(s) of Si.

• When an honest Si generates a DSIG signature share
on message m, i.e., within a ProceedSign or
ProceedReg query with ssid , B overwrite this
share with σi ← Osign(i,m, ssid).

We need to argue that B using oracles from Figure 3
emulates the execution in Game 5, while B using oracles
from Figure 3 emulates the execution in Game 6.

For the former, we observe that the oracles from
Figure 3 follow the protocol instructions, e.g., signature
shares are computed using DSIG.Sign(sk i, ·, ·), which
matches Game 5. For the latter, S uses the simulation
algorithms in the same way as the oracles from Figure 3,
and using knowledge of the true sk1, . . . , skn he can com-
pute the auxiliary inputs to these algorithms as done by the
compList, compSig algorithms. Thus, indistinguishability
of this and the previous game follows from the share
simulatability of DSIG.

Game 7: F generates, records and verifies signatures.
We add interfaces ProceedSign and Verify to F . For
this, we first let F assemble a single signing key sk ←
Comb∗(sk1, . . . , skn) from the key shares generated as
detailed in Game 2. Then, F sets Sign() := Sign∗() and
no longer forwards sk1, . . . , skn to S. (Note that F 6=
FPESTO since S still obtains passwords).

The simulation is changed as follows: S acknowledges
ProceedSign for Si directly and then starts simulating
usage of FdpOPRF. S sends ProceedSign to F on be-
half of corrupted users whenever A sends EvalProceed
for an ssid from an earlier Sign input. S sets b∗ = 1 if all
of the (sid , ssid ′, σ′U ) messages delivered to the n servers
have SIG.Vf(upk , (uid , ssid ′), σ′U ) = 1; else S sets b∗ =



0. S replies to a (match-ok, sid , ssid , b) message from
F with (match-ok, sid , ssid , b∗). Lastly, whenever S
receives output (Signature, sid , ssid , σ) (where σ is a
verifying signature on message m) towards a corrupted U ,
S sets σ to be the result of compSig(ep, i,m, ssid), where
ep is the current epoch computable from the number of
times S called SIM(refresh), and i is the last index missing
an entry (ep, ·,m, ssid) in Q for an honest Si. If Si is
corrupted, then S adds σ to the output of compList(ep, i).
Our indistinguishability argument will be split in four
cases. The first three argue indistinguishability of outputs
generated upon (Verify, ...) and (Sign, ...) queries, and
the latter argues that values computed by S are distributed
as in the preceding game.

First, in Verify queries, F overwrites protocol out-
puts according to sigrec records, or when no sigrec
record exists and vk = vk ′. The former is indistinguish-
able from Game 6 since (1) when sigrec contains
true, then b = 1 (honest signing & verifying signature).
(2), when sigrec contains false, then the record was
created by a verification request (i.e., no regular signing
procedure was completed for the signature to be verified).
Such a query resulted in V outputting false already in
Game 5 due to the changes made in that particular game.

Secondly, consider U not outputting a signature. In
Game 6 this happens when password authentication failed
(due to wrong password or A tampering with message
delivery). In Game 7 Signature output depends on
sigrec recording, which in turn only happens when
b = 1 (assuming that all servers participate and A always
continues with ok messages). Thus, we need to argue
that b = 0 in Game 7 whenever U was not outputting
Signature in Game 6. By the protocol code (cf. Figure
7), the latter happens if SIG.Vf(upk , (uid , ssid ′), σ′U ) = 0
for at least one of the messages sent by U to a server.
But in that case, the above simulation ensures S sending
b∗ = 0 and F adopting this bit by setting b← b∗ (due to
either a corrupted server or a corrupted user).

Thirdly, consider the case where U outputs a signature.
We have to argue that signatures σ ← Sign(sk , (uid ,m))
generated by F in Game 7 are indistinguishable from
signatures generated as DSIG.Comb(σ1, . . . , σn), as done
in Game 6. This follows from the signature indistinguisha-
bility of DSIG (cf. Definition 7).

Lastly, regarding outputs of S, it is enough to verify
that S in Game 7 obtains all signatures from F that he
would compute in Game 6 within compSig and compList.
But this follows from the fact that Z cannot corrupt all
servers. Z can thus compute signatures not only from
secret key shares, but needs to observe signature shares
sent via secure channels. Thus, Z can only compute
signatures on behalf of corrupted users. And since F
sends (Signature, ..., σ) outputs for corrupted users
directly to S, S obtains a signature from F in case Z
can reconstruct it using DSIG.Comb(). Notably, S never
has to simulate the "last" signature or signing key share
before seeing the full signature.

Game 8: Simulate without pw in honest case. We let
S use a dummy password pwS in every Register or
Sign input to an honest user.

Usage of secure channels makes simulation of the
transcript trivial in the honest case. Regarding outputs F

will create and output a verifying signature in Game 8
(i.e., a sigrec records with f = true. However, in
case of everybody being honest, in Game 7 a Sign query
only leads to a signature output to Z in case of matching
passwords (otherwise F will ignore all ProceedSign
queries), and in this case it will be a verifying signature
since secure channels prevent A from tampering with
signature shares.

Game 9: Simulate user’s transkript without pw in
case of corrupted servers. We consider the case where
some servers are corrupted. Opposed to the all-honest
case, we now have to provide a transkript of messages of
honest users, but generated without knowing passwords.
We change the simulation in case of an honest Sign, uid
input, where (account, uid , ∗) is already registered in
F . Let upk denote the public key corresponding to uid
that was generated in the protocol simulation during regis-
tration, usk the corresponding secret key and lbl the label
that was sent by A in the corresponding FdpOPRF session
(i.e., lbl represents the pseudo-random function that was
evaluated during the registration of uid ). Upon receiving
an output (Match, sid , ssid , b) for a corrupted Si and a
session ssid invoked by an honest user U , if b = 1 then S
sends (sid , ssid , σ′U ) on behalf of U to all Si in the pro-
tocol simulation, where σ′U ← SIG.Sign(usk , (uid , ssid)).
If b = 0, S sends a random non-verifying σ′U .
In case of receiving (Eval, sid , ssid , uid , pw) from
a corrupted U intended to FdpOPRF, in case S re-
ceived (match-ok, sid , ssid , 1) from F , he sends
(EvalComplete, sid , ssid , y) to the corrupted U where
y is the former output of FdpOPRF from registration of uid
if A sent (EvalComplete, sid , ssid , lbl) (i.e., using the
same label lbl as during registration) and a freshly drawn y
otherwise. In case of receiving (match-ok, sid , ssid , 0)
from F , S answers to U with a freshly drawn y.

Regarding indistinguishability, let us first emphasize
again why we do not have to adjust the simulation to
simulate honest servers. Namely, the protocol simulation
is already a perfect simulation of honest servers since F
keeps no secret server inputs from S. If an honest U
attempts to sign, only the message (sid , ssid , σ′U ) has to
be simulated. Since S obtains the information of whether
σ′U should be a verifying signature of (uid , ssid) from
F via a Match output towards a corrupted server, this
message is equally distributed as in the previous game. If
U is corrupted, we only need to argue that simulation of
FdpOPRF is indistinguishable in both games. For this, we
have to argue that the match-ok message by F actually
provides S with the crucial information of whether to
adjust FdpOPRF outputs to the corresponding output in
the registration session of uid . To see this, note that
match-ok leaks whether input passwords matched or
not in case of a corrupted user.

Since S does not use the password provided by F
anymore, we remove its forwarding and now have F =
FPESTO. This concludes the proof of Thm. 3.


