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Abstract. This paper analyses the Secure Remote Password Proto-
col (SRP) in the context of provable security. SRP is an asymmetric
Password-Authenticated Key Exchange (aPAKE) protocol introduced
in 1998. It allows a client to establish a shared cryptographic key with
a server based on a password of potentially low entropy. Although the
protocol was part of several standardization efforts, and is deployed in
numerous commercial applications such as Apple Homekit, 1Password
or Telegram, it still lacks a formal proof of security. This is mainly due
to some of the protocol’s design choices which were implemented to cir-
cumvent patent issues.
Our paper gives the first security analysis of SRP in the universal com-
posability (UC) framework. We show that SRP is UC-secure against
passive eavesdropping attacks under the standard CDH assumption in
the random oracle model. We then highlight a major protocol change
designed to thwart active attacks and propose a new assumption – the
additive Simultaneous Diffie Hellman (aSDH) assumption – under which
we can guarantee security in the presence of an active attacker. Using
this new assumption as well as the Gap CDH assumption, we prove se-
curity of the SRP protocol against active attacks. Our proof is in the
“Angel-based UC framework”, a relaxation of the UC framework which
gives all parties access to an oracle with super-polynomial power. In our
proof, we assume that all parties have access to a DDH oracle (limited to
finite fields). We further discuss the plausibility of this assumption and
which level of security can be shown without it.

1 Introduction

A password authenticated key-exchange protocol (PAKE) [13,17] allows two par-
ties to securely establish a cryptographic session key over an insecure channel
based on their knowledge of a shared low-entropy password. In its asymmetric
version – aPAKE [15,22,36] – one of the parties plays the role of the client while
the other party acts as the server. Upon registering a client, the server stores a
mapping of the password (the password verifier) which is typically some form
of a salted hash of the password. After registration, both parties can engage in
a protocol to establish a common key. To do so, the server uses the password
verifier while the client uses its password. A secure aPAKE protocol leaks no
offline-attackable information about the password or the password verifier in the



key exchange phase, and ensures that both parties agree on a mutually shared
strong cryptographic key only if the passwords match. In the asymmetric setting,
the protocol often also ensures explicit client authentication, meaning that the
server learns whether the client used the correct password in the key exchange.
This allows the server to detect whether a client account is subject to an online
password guessing attack, and apply rate-limiting accordingly.

The idea of aPAKE was first introduced by Bellovin and Merritt [15], and the
desirable security properties were subsequently formalized via game-based defi-
nitions [18], simulation-based definitions [22] and through an ideal functionality
in the Universal Composability (UC) framework [36]. Despite the practical moti-
vation and availability of efficient and simple protocols, most (a)PAKE schemes
have not seen wide-spread adoption yet. This is particularly disappointing for
asymmetric PAKE, which could serve as a significantly more secure replacement
for classic password-based authentication where passwords are transmitted in
plaintext to the server. As an attempt to push (a)PAKE towards real-world
adoption, the Internet Engineering Task Force has recently run a selection pro-
cess to choose (a)PAKE protocols for standardization [58]. This standardization
effort has created renewed attention to the field of password-authenticated key
exchange and also led to formal security proofs of previously proposed yet not
formally analysed protocols [5,63].

However, the currently most widely deployed aPAKE protocol was not in-
cluded in the selection process and still lacks a formal security analysis: the
“Secure Remote Password” (SRP) protocol.

The SRP Protocol. One of the earliest aPAKE protocols is the SRP protocol
developed in 1997 [2] and first described in a paper by Wu [73] in 1998. Wu
introduced the protocol as an instantiation of Asymmetric Key Exchange (AKE)
since at that time the term aPAKE had not been coined yet. SRP is distributed
on Open Source-friendly terms and was specifically designed to avoid export
control [73] and work around existing patents [2] in the area, at a time where
existing PAKE protocols such as EKE [16] and SPEKE [44] were patented. This
enabled it to become one of the most widely deployed aPAKE protocols to this
date: SRP is used for client authentication in various commercial applications
such as the password manager 1Password [35], the ING Diba InsideBusiness
app [42], Telegram’s 2FA protocol [68], SecureSafe’s file manager and password
manager [59], TeamViewer [67], Apple’s iCloud keychain escrow [9] and HomeKit
Accessory Protocol [10] that is deployed on more than a billion Apple devices, or
the secure email system of Proton Mail [23]. In April 2023, Proton also announced
that SRP is used for authentication in their newest product – the password
manager Proton Pass [74]. Additionally, authentication protocols such as TLS
1.2 [66] or AWS’s Amazon Cognito [56] allow incorporating the SRP protocol as
a password-based authentication method.

The two most widely used versions of the SRP protocol are versions SRP-
3 [73] and SRP-6a [71]. SRP-6a is the most recent version and addresses vul-
nerabilities of the SRP-3 protocol. The Stanford SRP homepage [2] also lists
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two prior versions of the protocol (SRP-1 and SRP-2) whose vulnerabilities were
already addressed by SRP-3.

High Level Description of the Protocol. The SRP protocol works in a finite field.
Upon client registration, the server stores a password verifier v = gx using a
primitive element g of the field and the salted hash value x = H(s, pw) of the
client’s password pw. This password verifier is later used in the login phase, to
enable the client and server to establish a strong shared key K if the client uses
the same password as during registration.

On a high level, the login phase of the SRP protocol is a Diffie-Hellman key
exchange with a twist of mixing the password into the public keys. In SRP,
the server’s Diffie-Hellman public key gb is hidden by the password verifier v.
Thus, the server’s message is B = v + gb while the client’s message is a regular
Diffie-Hellman public key A = ga. Both parties compute an ephemeral key1

T = gab+bx. The server computes this value as T = (Av)b, while the client
computes T = (B − gx)a+x where x is derived from the password attempt pw′.
In order for the client to compute x = H(s, pw′), the server must send the salt s
to the client. If the passwords match, both parties will compute the same value
T which is then hashed into the shared key K = H(T ).

SRP-6a additionally ensures mutual explicit entity authentication [57] and
key confirmation by incorporating one round of key confirmation messages into
the protocol. At the end of a successful protocol run, both parties are convinced
that the counterparty holds the same key and since the key can only be derived
with a secret password (file) known by the counterparty, this yields explicit entity
authentication.

Challenging Design Choices & Consequences. Since the SRP protocol uses both
addition and multiplication in the finite field, it is not possible to instantiate
it in a group. As a result, the protocol is deprived of the benefits provided by
elliptic curve cryptography such as smaller key sizes and faster computation
times compared to finite field cryptography [50]. Furthermore, the utilization of
both finite field operations complicates the security analysis of the protocol, and
this is likely the reason why a formal security proof for the SRP protocol has
not been established yet.

Despite not being backed up through provable security, the SRP protocol was
part of standardization processes by respected organizations such as the IETF
(RFC2945 [72], RFC5054 [66]), IEEE (P1363.2 [1]) and ISO (11770-4 [43]) and
continues to be widely used in commercial products.

However, SRP was not included in the latest IETF CFRG PAKE selection,
due to the lack of a formal analysis and the incompatibility with elliptic curve
cryptography. In this IETF process, the OPAQUE [47] protocol was chosen as
the recommended aPAKE. OPAQUE has a formal security proof, can be imple-
mented more efficiently since it does not depend on finite field arithmetic, and
also provides stronger security as it is resistant to precomputation attacks.

1 In SRP-6a this computation includes two scrambling parameters u and k but for the
sake of this overview we ignore these parameters.
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Thus, while currently better aPAKE protocols than SRP exist, we strongly
believe that the real-world dominance of SRP to date demands a thorough in-
vestigation of its provable security guarantees.

UC Security. For password-based schemes, and (a)PAKE in particular, security
in the UC framework [24] is considered the gold standard as it does not make
any assumptions on password distributions, models real-world behaviour such
as password re-use and guarantees secure composition with arbitrary other pro-
tocols. An ideal functionality for aPAKE protocols was introduced by Gentry et
al. [36] and has been refined over the years to address initial oversights. Several
aPAKE schemes, including [36], OPAQUE [47], AuCPace [38], KHAPE [37],
SPAKE2+ [28,63] and OKAPE [34] have been formally proven to be secure
aPAKE protocols in the UC framework.

1.1 Our Contributions

In our work, we give the first formal security analysis of the SRP protocol and
prove the scheme secure in the UC framework.

We first show that both SRP-3 and SRP-6a achieve standard UC-security
in the presence of a semi-passive attacker in the random oracle model [14] and
under standard assumptions. The semi-passive setting of our model extends the
classic eavesdropping attack by additionally allowing the adversary to steal the
password file of the server.

We then provide a thorough discussion of the protocol changes made from
SRP-3 to SRP-6a. In particular, we introduce an assumption under which a
two-for-one-guessing attack – a malicious server being able to make two (or
more) online password guesses in one protocol run [71] – is infeasible in the
SRP-6a protocol variant. The new assumption is called additive simultaneous
computational Diffie Hellman (aSDH) assumption and asks an adversary to si-
multaneously solve two CDH instances in a finite field where the two instances
are linked by a random element.

Finally, we prove security of SRP-6a against active adversaries. This proof is
in the random oracle model and under the (Gap) aSDH and Gap CDH assump-
tion. Our proof additionally requires a helper oracle to be available throughout
the simulation of the protocol to all parties, including the simulator. The required
helper oracle is a DDH oracle which enables us to “extract” passwords from a
malicious client. Roughly, the simulator can check if a maliciously provided T
value is a valid DH value for any of the x = H(s, pw′) values the adversary has
previously obtained from the random oracle. If so, the simulator uses the same
pw′ towards the functionality to learn if the password is correct and adjust its
simulation accordingly.

Whereas a DDH oracle is a commonly made assumption used within a se-
curity reduction in the analysis of PAKE protocols [3,37], our assumption is
different, as we rely on it as a helper oracle for the entire simulation. In the
wider context of UC security proofs, this technique of relying on a (superpoly-
nomial) helper oracle has been studied and used for relaxations as angel-based
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UC security [26,52,54]. Such angel-based UC proofs maintain the composition
guarantees if the helper oracle is globally available to all parties, i.e., includ-
ing the real-world adversary. Offering a global DDH oracle might appear like a
strong limitation then, but it is not – now thanks to the unusual design choice of
the SRP protocol: The DDH oracle is limited to the finite field used by the SRP
protocol where it is known that the DDH assumption does not hold. Thus, the
presence of such an oracle has no impact on security if SRP is combined with
other protocols that rely on the DDH assumption, as they of course will work in
groups in which the assumption holds.

While we believe that relying on this helper oracle assumption is not a signifi-
cant limitation, we also argue about partial security guarantees that can be made
without it: if one assumes an honest-client setting, SRP-6a is UC-secure under
the standard CDH assumption together with the (strong) aSDH assumption.

As a side contribution, we identify a shortcoming of the UC aPAKE security
definition used by Jarecki et al. [37]. A secure aPAKE protocol according to this
definition does not inform the adversary of a failed key exchange between the
client and the server. In aPAKE protocols with explicit authentication where
one party aborts the communication if the authentication fails (as in SRP or
KHAPE [37]), this is not attainable. Our solution is to reintroduce a feature
which was already incorporated in the security definition of Hesse [41] and which
allows to prove security of these protocols.

1.2 Previous Work on the Security of SRP

In [73], Wu argues that SRP-3 is secure against passive eavesdropping attacks
and resistant to offline attacks first described by Denning and Sacco [32]. In this
type of attack, an adversary eavesdrops a session key and uses this either to
impersonate a client or to recover the password via an offline brute force attack.
We argue that his proof of security is flawed, as the reduction assumes a specific
behaviour of the adversary. However, this can be fixed easily, and our proof of UC
security in the semi-passive case confirms his claim that the protocol is secure
against passive eavesdropping attacks. Our proof even shows stronger security
as we consider a semi-passive adversary who is allowed to additionally steal the
server’s password file.

In [71], Wu shows a two-for-one guessing attack on SRP-3. He proposes SRP-
6 which mitigates this attack but does not give a proof on how this change
prevents the attack. We propose an assumption under which the two-for-one-
guessing attack is infeasible and use it to prove security of the SRP-6a protocol
which was presented shortly after SRP-6 [2].

Sherman et al. [61] provided a security analysis of SRP-3 using the Cryp-
tographic Protocol Shapes Analyzer, a software tool designed to assist in the
design and analysis of cryptographic protocols. Since the software tool does not
allow the modeling of both modular addition and multiplication in the finite
field, they modeled the hiding of v to v + gb as an encryption. This is an ide-
alized assumption and does not allow to find attacks which use the algebraic
structure of the finite field. They found that the SRP-3 protocol does not leak
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any secrets to eavesdropping attackers. Our work confirms their computer-aided
proof in a theoretic framework. Additionally, their analysis identified a property
of the protocol which allows a malicious server to fake an authentication session
with a client using only the compromised password verifier and not the client’s
password. While the paper highlights this as a notable weakness, it is actually a
security feature of the SRP protocol. Similar as in the simulation arguments for
zero-knowledge proofs, the ability of a malicious server to simulate the authen-
tication protocol with a client without knowing the client’s password guarantees
that no information about the password can be deduced from the protocol.

De Almeida Braga et al. [31] showed that implementations of SRP are vul-
nerable to offline dictionary attacks using side-channel timing attacks. We em-
phasize that care needs to be taken when implementing the SRP protocol but
the analysis of side-channel attacks is outside the scope of our work.

Hao [39] showed that every protocol run in SRP-6 leaks some knowledge of
the password verifier to an attacker. He exploited the algebraic structure of the
client’s ephemeral key T = (B−gx)a+x (again, we omit scrambling parameters k
and u here) which might fall into a smaller subgroup of the finite field. If it does
not fall into a smaller subgroup, a malicious server (who has not compromised
the database) can rule out four password verifiers in one protocol execution with
the client. While this is a neat attack which shows another side of the small-
subgroup attack, the extra knowledge gained by the adversary is negligible since
the password verifiers are random field elements of a large field and derived from
a hash function of the password.

Roadmap. We describe the standard aPAKE security model and our modifica-
tions in Section 2 and hardness assumptions in Section 3. The SRP-6a protocol
is detailed in Section 4. We then proceed to analyze the security of a simpli-
fied version of SRP in Section 5. We revisit a known attack on earlier protocol
versions in Section 6.1 in order to motivate the introduction of the aSDH assump-
tion under which the SRP-6a protocol is secure. In Section 6.2, we outline the
angel-based UC framework and subsequently provide a security proof of SRP-6a
within this framework. We conclude with a discussion of our assumptions and
their implications in Section 6.3.

2 The aPAKE Functionality

We use the UC framework [24] to analyse security of the SRP protocol. The
UC model has become the de-facto standard when analysing the security of
password-based protocols such as aPAKE, as it requires no assumptions on pass-
word distributions, and ensures security when composed with other protocols.

UC security builds upon the simulation paradigm by introducing the concept
of an external environment. This environment monitors interactions between an
adversary and multiple instances of a protocol Π. A protocol Π is considered
to UC-realize a functionality F , if for every efficient adversary A interacting
with the real protocol Π there is a polynomial time simulator SIM interacting
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only with the ideal functionality F such that the environment cannot distinguish
both worlds. Here, the ideal functionality is an ideal version of the protocol which
captures the protocol’s desired functionality and is secure by design.

The first ideal functionality for aPAKE was introduced by Gentry et al. [36]
and has since been adjusted various times, most recently by Hesse [41] and Gu
et al. [37]. We use a slightly modified version of the ideal functionality FaPAKE

from [37] which models explicit entity authentication and supports multiple
clients. The functionality is shown in Fig. 1.
FaPAKE models the asymmetric password-authenticated key exchange be-

tween a client C and a server S. To register a user account, the server sends
the user account identifier uid and password pw to the StorePwdFile interface of
FaPAKE upon which the functionality creates an internal password file ⟨file,S, uid,
pw⟩. To initiate a key exchange, both parties access the functionality differently.
While the client can input a fresh password for every new CltSession query, the
server indicates the uid of the client in his SvrSession query which points to
the password file ⟨file,S, uid, pw⟩. In both cases, FaPAKE creates internal records
⟨ssid,P,P′, uid, pw, role⟩ where the parameter role is used for explicit authentica-
tion and is set to be 0 for the client and 1 for the server. In a key exchange session
where there is no active attack, the NewKey interface of FaPAKE provides both
parties with a uniformly random session key K if the client’s password matches
the password used by the server during registration, and a rejection symbol ⊥
otherwise. The management of roles allow explicit entity authentication. The
client only receives a key K if the same key K was also sent to the server, and
⊥ otherwise. The functionality also models the following attack scenarios:

Online Guessing Attacks. The functionality FaPAKE models the inevitable online
guessing attack through the TestPwd interface. The adversary can access this
interface using his password guess for party P . If he guesses the party’s password
correctly, the functionality allows him to determine the session key output of P
using the NewKey interface. Otherwise, the internal record stored by FaPAKE will
be set to interrupted and the session key output of P will be ⊥. Since FaPAKE

always uses the server’s registration password in his internal session record for
a SvrSession query, the TestPwd interface also allows to model malicious servers
which do not use the registration password. The functionality only allows one
password guess against every honest party, modeling the fact that password
guessing is an online attack in which the attacker engages in a protocol execution
with an honest party.

Offline Dictionary Attacks. Another real-world threat to aPAKE protocols is
server compromise, i.e., an adversary stealing the password file stored by the
server, which can lead to an offline dictionary attack. FaPAKE models the theft
of a password file with the StealPwdFile interface which changes the internal
status of the password file to compromised. In order to model offline dictionary
attacks, the functionality offers an OfflineTestPwd interface. As opposed to the
strong aPAKE functionality introduced in [47], FaPAKE allows for precomputation
of dictionary attacks. This means the adversary can access the OfflineTestPwd
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interface using his password guess at any time, especially before compromising
the server’s password file. In case the password file is already compromised and
the adversary correctly guesses the password via an OfflineTestPwd query, FaPAKE

notifies him of his correct guess immediately. In case the OfflineTestPwd query
happens before compromise, the guess will be logged by the functionality as
⟨offline,S, uid, pw∗⟩. Then, in the event of a compromise, FaPAKE immediately
informs the adversary of the correct password if he logged a correct guess before.

Server Impersonation Attacks. Additionally, an adversary in possession of the
password file is able to establish a session key with the client on the server’s
behalf. This is called an impersonation attack. After successfully stealing the
password file via a StealPwdFile query to FaPAKE, the Impersonate query allows
the adversary to compromise a session and determine the session key of the client
via a NewKey query if the client uses the same password that was used to create
the password file.

Explicit Entity Authentication. The FaPAKE functionality provides both parties
either with a key K or with a rejection symbol. If the server receives a key
K ̸= ⊥ then there is a corresponding client session with the same password. If
the client receives a key K ̸= ⊥ then there is a corresponding server session with
the same password and the server was sent the same key K. Considering that
parties are authenticated through their knowledge of the shared password (file),
receiving a key is equivalent to authenticating the counterparty’s identity, thus
modelling explicit entity authentication. This feature also allows the server to
implement rate-limiting techniques in the protocol since he is informed whether
a key exchange fails or not.

On the Server Input during Registration. All aPAKE functionalities introduced
so far (e.g. [37,41,47]) abstract the user registration process away from the se-
curity analysis. This is modeled by letting the server input the user password
to the functionality during registration, i.e., the server learns the password in
clear during registration. This might look surprising as most aPAKE protocols
– including OPAQUE and SRP – allow for a registration where the password
remains hidden towards the server. While one could strengthen the functionality
accordingly, we decided to follow the established convention and use the same
model for registration as all other aPAKE works so far.

2.1 Changes to the Functionality

We make the following minor changes to the functionality from [37]. Our version
of the aPAKE functionality is the first to support multiple users and models
explicit authentication in a way that is compliant with the UC framework.

Multi-Client Setting. We adapt the aPAKE functionality to the multi-client
setting, which we consider to be crucial for the targeted application. Initially,
aPAKE functionalities [36,41] did not contain the notion of usernames in their
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model, and instead assumed that each functionality identified through a session
identifier sid is uniquely used by a single client. In the recent work by Gu et
al. [37], this was changed to explicitly include a client-specific username uid as
input to the interfaces and in the handling of the password files. However, this
uid now fully replaced the standard sid, and [37] use sid to reference individual
sub-sessions triggered by the user. That is, the functionality is again only usable
by a single client. We revert to the more established handling of using sid as
the globally unique ID that identifies the functionality, and use ssid to handle
different sub-sessions, which makes the functionality in line with the UC frame-
work with joint state [27]. This allows us to model a multi-client setting: one
functionality with session id sid is tied to one server S and multiple clients C who
each register at the server using an additional input user id uid. Consequently,
when initiating a new session through the CltSession query, the client C needs to
specify the corresponding uid for which the session is being started. For the sake
of brevity, we make the sid not explicit in our functionality, but simply assume
as a writing convention that sid is contained in every input to FaPAKE and used
in all records.

Modelling Explicit Authentication. In aPAKE protocols with explicit authenti-
cation, typically one of the parties sends a failure message ⊥ to the other party,
in case of a failed authentication. A passive adversary observing the network
traffic thus learns that the key exchange failed and will be able to deduce the
session key ⊥. Hence, the ideal functionality F in this case also needs to inform
the adversary of a key exchange failure, in order to be realizable. Hesse [41]
models this by having the functionality send ⊥ to both the adversary and to the
corresponding party in case of a failed session. However, this is technically not
allowed in the UC framework, where a machine cannot invoke more than one
other machine due to the requirement to be a single-threaded execution [24].
In the subsequent work by Jarecki et al. [37] this output was omitted from F ,
but now misses the information that is needed to simulate failed sessions. Our
solution uses the concept of delayed outputs as described in [24]. In our model,
if a session fails, the functionality sends (ssid,⊥) to party P as a public delayed
output. In a public delayed output the adversary decides when the output is sent
to P and learns the output. Otherwise, the key (ssid,K) is sent as a private de-
layed output to P. In a private delayed output, the adversary still decides when
the output is sent to P, but does not learn the output.

3 Preliminaries

Notation. With
r←− we denote uniformly random sampling from a set. With Fp

we denote a finite field of prime order p with p > 2 and with F∗
p we denote

the multiplicative group (Fp \ {0}, ·). Throughout the paper we denote with g a
primitive element of Fp, i.e. a generator of the group F∗

p. With respect to g, we

define cdhg(g
a, gb) := gab and ddhg(g

a, gb, gc) = 1 iff c = ab. We denote with λ
the security parameter.
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Password Registration

– On (StorePwdFile, uid, pw) from S, create record ⟨file, S, uid, pw⟩ marked fresh.

Stealing Password Data

– On (StealPwdFile,S, uid) from A, if there is no record ⟨file, S, uid, pw⟩, return
“no password file”. Otherwise mark this record compromised, and if there is a
record ⟨offline, S, uid, pw⟩ then send pw to A.

– On (OfflineTestPwd, S, uid, pw∗) from A, do:
• If ∃ record ⟨file, S, uid, pw⟩ marked compromised, do the following: If pw∗ =

pw return “correct guess” to A, else return “wrong guess”.
• Else, record ⟨offline,S, uid, pw∗⟩.

Password Authentication

– On (CltSession, ssid, S, uid, pw′) from C, if there is no record ⟨ssid,C, . . .⟩ then
record ⟨ssid,C,S, uid, pw′, 0⟩ marked fresh and send (CltSession, ssid,C, S, uid)
to A.

– On (SvrSession, ssid,C, uid) from S, if there is no record ⟨ssid, S, . . .⟩
then retrieve record ⟨file, S, uid, pw⟩, and if it exists then create record
⟨ssid, S,C, uid, pw, 1⟩ marked fresh and send (SvrSession, ssid,S,C, uid) to A.

Active Session Attacks

– On (TestPwd, ssid,P, pw∗) from A, if there is a record ⟨ssid,P,P′, uid, pw, role⟩
marked fresh, then do: If pw∗ = pw then mark it compromised and return
“correct guess” to A; else mark it interrupted and return “wrong guess”.

– On (Impersonate, ssid,C, S, uid) from A, if there is a record ⟨ssid,C, S, uid, pw, 0⟩
marked fresh, then do: If there is a record ⟨file,S, uid, pw⟩ marked compromised
then mark ⟨ssid,C, S, uid, pw, 0⟩ compromised and return “correct guess” to A;
else mark it interrupted and return “wrong guess”.

Key Generation and Authentication

– On (NewKey, ssid,P,K∗) from A, if there is a record rec =
⟨ssid,P,P′, uid, pw, role⟩ not marked completed, then do:
• If rec is compromised set K ← K∗;
• Else if role = 0, rec is fresh, there is a record ⟨ssid,P′,P, uid, pw, 1⟩ s.t. FaPAKE

sent (ssid,K′) to P′ while that record was marked fresh, set K ← K′;
• Else if role = 1, rec is fresh, there is a record ⟨ssid,P′,P, uid, pw, 0⟩ which is

marked fresh, pick K
r←− {0, 1}λ;

• Else set K ← ⊥.
Finally, mark rec as completed. If K = ⊥, provide public delayed output
(ssid,⊥) to P, otherwise provide private delayed output (ssid,K) to P.

Fig. 1: The ideal Functionality FaPAKE (change to functionality from KHAPE [37] high-
lighted). As a writing convention we assume that the session id sid is contained in every
input to FaPAKE and we do not include it explicitly in our description. The functionality
is tied to a server S, and we assume that S is encoded in sid, e.g. as sid = (S, sid′) for
a unique sid′.
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Cryptographic Assumptions. The security of SRP is based on the hardness of the
well known CDH and Gap CDH assumptions, albeit defined over a finite field.
A formal definition of these assumptions can be found in Appendix A. Here, we
state them informally.

We consider hardness relative to an instance generator G which takes input
1λ and outputs an instance (Fp, p, g), where Fp is a finite field of prime order p
and g is a primitive element of Fp.

CDH assumption Given (Fp, p, g) ← G(1λ) and tuple (g, ga, gb) for a, b
r←−

Zp−1, it is computationally infeasible for every efficient adversary to compute
the element gab.
Gap CDH assumption Given (Fp, p, g)← G(1λ) and tuple (g, ga, gb) for a, b

r←−
Zp−1, it is computationally infeasible for every efficient adversary to compute
the element gab, even with access to a DDH oracle which on input (gx, gy, gz)
returns 1 if gz = gxy.

Note that these are the classical DH-related assumptions restricted to the
multiplicative group F∗

p which has p−1 elements. In order for these assumptions
to be hard, p− 1 needs to have at least one large prime factor, otherwise it can
be efficiently solved using the Pohlig Hellman algorithm [53]. This is achieved if
G samples p as a safe prime, i.e. p = 2q + 1 for a prime number q.

In Appendix A, we also give a definition of the related DDH assumption.
This assumption is known not to hold in finite fields due to an attack using the
Legendre symbol [19,29]. In Section 6.3, we explore this attack and use it to
assess the plausibility of our angel-based security framework, which relies on a
DDH oracle in the finite field Fp.

4 The SRP-6a Protocol

The SRP-6a protocol [71] is the most recent version of the SRP protocol family.
It is an asymmetric PAKE protocol allowing two parties to compute a common
key. SRP-6a uses a variation of the Diffie Hellman key exchange that includes a
password-derived exponent. For our analysis, we use the protocol from [71] with
optimized message-ordering. The protocol is depicted in Fig. 2 and we give a
brief description of the protocol steps here.

The protocol works in a finite field of prime order p with primitive element g
and consists of two phases. In an initialization or setup phase, the server registers
a client with user id uid and password pw by storing the password file (s, v) where
s is a random client-specific salt and v is the client’s password verifier computed
as v := gx where x := H1(s, uid, pw) is a salted hash of the password.

In the login phase, both parties perform a Diffie Hellman key exchange with
a twist. First, the server looks up the client’s password file to retrieve the corre-
sponding password verifier and salt. Then he samples a random element b from
Zp−1, computes B := kv + gb and sends it together with the salt to the client.
Here, k is a hash of public parameters. The client also generates a random num-
ber a

r←− Zp−1, sets A := ga and uses the salt he received from the server and his
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Client C with uid Server S

Setup: For security parameter λ and field instance generator G
– (Fp, p, g)

r←− G(1λ) where Fp is a finite field of prime order p with primitive element g

– Hash functions H1 : {0, 1}∗ → Zp−1, H2 : {0, 1}∗ → Fp, H3 : {0, 1}∗ → Fp, H4 : {0, 1}∗ → {0, 1}λ,
H5 : {0, 1}∗ → F∗

p, H6 : {0, 1}∗ → Zp−1

Initialization On input (StorePwdFile, uid, pw):

Phase s
r←− {0, 1}λ, x := H1(s, uid, pw), v := gx

store file[uid] := (s, v)

Login Phase (S1) Input (SvrSession, ssid,C, uid)
Retrieve file[uid] := (s, v)

(C2) Input (CltSession, ssid,S, uid, pw′) � (s,B)
k := H5(p, g), b

r←− Zp−1, B := k·v + gb

x′ := H1(s, uid, pw
′), a

r←− Zp−1, A := ga

k := H5(p, g), u := H6(A,B)

TC := (B − k·gx
′
)a+u·x′

MC
1 := H2(A,B, TC) -(A, MC

1 ) (S3) u := H6(A,B), TS := (Avu)b,

MS
1 := H2(A,B, TS)

if MC
1 ̸= MS

1 , then (MS
2 ,KS) := (⊥,⊥)

else MS
2 := H3(A,MS

1 , TS)
KS := H4(TS)

(C4) MC
2 := H3(A,MC

1 , TC) � MS
2 output (ssid,KS)

if MS
2 ̸= MC

2 , then KC := ⊥,
else KC := H4(TC)
output (ssid,KC)

Fig. 2: The SRP-6a Protocol with UC notation and optimized message ordering as
described in [71]. To avoid confusion with the server S we changed the notation of the
ephemeral session key to be TC for the client and TS for the server. We assume all
messages and inputs to the hash functions are prefixed by the sid, and all messages and
hash function inputs specific to the login phase are further prefixed by ssid. We omit
these values in the description as a writing convention. Removing the shadowed text
yields the SRPbase protocol.

password to compute x′. He is now able to compute an ephemeral session key
TC := (B − kgx

′
)a+ux′

, where u is a hash of protocol messages A and B. The
client then sends his ephemeral public key A together with a key confirmation
message MC

1 to the server. The server can compute the same ephemeral session
key in a different way by calculating TS := (Avu)b and sends key confirmation
message MS

2 to the client. Both parties derive a common session key by hashing
the ephemeral session key if the check of the counterparty’s key confirmation
message is successful. Correctness of the protocol follows from the fact that in
case of matching passwords (pw = pw′) it holds that v = gx

′
, thus

TC = (B − kgx
′
)a+ux′

= (kv + gb − kgx
′
)a+ux′

= gab+bux′

TS = (Avu)b = (Agx
′u)b = (ga+ux′

)b = gab+bux′

and both parties derive the same session key KC = H4(TC) = H4(TS) = KS. If
the password of the client does not match the server’s password it holds that
TS ̸= TC and both parties output a rejection symbol ⊥.
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On the Necessity of a Finite Field. In the description of the SRP protocol, there
is some confusion whether the SRP protocol works in a group, ring or finite field.
In [73], the protocol SRP-3 is described in the context of a finite field while in
version SRP-6 [71], it is claimed that the protocol works in a group. In the line
of SRP literature this confusion persists. The SRP protocol is claimed to either
work in a group [31,40,61], ring [49,69,70] or finite field [60,72]. SRP is always
instantiated in the finite field Zp for p prime, so this confusion merely exists in
the description. We stress that SRP indeed needs to be instantiated in a finite
field because it (a) uses both addition and multiplication operations and (b)
requires a generator of the multiplicative subgroup of all non-zero field elements
in order to sample A and B.

Resistance to Non-targeted Offline Dictionary Attacks. The SRP protocol uses
a client-specific random salt in the creation of the password verifier. This offers
some resistance to precomputation offline dictionary attacks. However, since the
salt is sent in the clear during login, the SRP protocol is still vulnerable to
targeted precomputation offline dictionary attacks where an adversary is able to
build client-specific databases using the salt.

On the Server-Side Creation of the Password Verifier. In the formal analysis of
aPAKE protocols the model usually assumes that the server receives a client’s
password during initialization and uses it to register the client. In practical
applications however, it is common that the client performs the initialization
computations on his device and sends only the password file to the server (as
done in the 1Password implementation [35]). This way, the server never even
sees the password which is clearly beneficial. In this case, the first message must
be sent over a secure channel since it contains the password file and could be
used by an eavesdropping adversary to mount offline dictionary attacks.

UC-fying the protocol. Since the UC model requires unique (sub)session identi-
fiers sid and ssid as input to the protocol, our analysis covers a slightly modified
version of the SRP protocol that incorporates these values. The purpose of the
session identifier sid is to uniquely identify separate protocol instances which
is needed for the composability guarantees in UC. The subsession identifier ssid
serves to distinguish separate login sessions and allows to recognize messages be-
longing to the same multi-round protocol. As the UC functionality expresses its
security guarantees with respect to these subsessions, the ssid must also become
part of the cryptographic protocol and session-specific values need to be bound
to this identifier. We do this by simply including the ssid (and sid) as input
to hash function, which is the standard approach for handling these identifiers.
Further details on the practical implications of incorporating these UC artifacts,
as well as the potential security consequences of their omission, are discussed in
Section 6.3.
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5 Warmup: Security of Simplified SRP

In this section, as a warm-up, we analyse the security of SRP against semi-
passive adversaries which are allowed to eavesdrop on any session and steal the
password files held by the server. First, we argue that the security proof used
in [73] to claim security of SRP-3 against eavesdropping attacks is flawed. We
show how this proof can be fixed and augmented to show UC security of a
simplified version of SRP called SRPbase. This is the most simple version of
SRP that we can show secure against semi-passive adversaries under standard
assumptions. We argue that security of SRPbase implies security of the SRP
versions 3, 6 and 6a. Formally, we show SRPbase secure in the UC framework
using a modified ideal functionality Fpassive

aPAKE.

Flawed Reduction in SRP-3. In [73], the author establishes the security of SRP
against passive eavesdropping attacks by a reduction to the CDH problem. How-
ever, the reduction uses hard-coded values as input to the eavesdropping adver-
sary. Therefore it rules out only adversaries who break the protocol on these
hard-coded values. In the proof of Theorem 1, we use a variation of their re-
duction where we randomize the input to the adversary. We describe the flawed
reduction in more detail in Appendix B.

The SRPbase Protocol. We introduce SRPbase, a simplified version of SRP-6a
where the scrambling parameters u and k are removed. In SRPbase, the inter-
mediary session key is computed as TC = (B − gx

′
)a+x′

by the client and as
TS = (Av)b by the server. The protocol is depicted in Fig. 2.

Passive Security of SRPbase. We show SRPbase secure against semi-passive at-
tacks. The adversary in our model serves as a mere network attacker who ob-
serves all communication between honest parties C and S. On top of that, the
adversary is allowed to compromise the server’s password file and may learn the
password associated to it by offline brute force attacks. This strengthens the
ability of the adversary compared to a passive adversary and models the real
world threat of an adversary obtaining stolen password files through darknet
databases. The adversary is still passive in the sense that he is not allowed to
actively attack any session and engage in a key exchange. In order to capture this
attack model, we introduce a modified functionality Fpassive

aPAKE which is identical to
FaPAKE but with the active session attack interfaces removed.

To show that a protocol securely UC-realizes this ideal functionality, one
needs to show essentially two things:

1. There is a simulator who can produce a transcript of a protocol run between
two honest parties that is indistinguishable from a real transcript without
knowing the passwords of the parties. The simulator only receives the infor-
mation whether the key exchange failed.

2. The simulator can detect offline password tests by the adversary. Further-
more, he can (a) generate an indistinguishable password file if he is informed
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about the correct password upon server compromise or (b) generate an indis-
tinguishable non-committing password file upon server compromise which he
can later adapt to match the correct password of the client.

Theorem 1. Let G be a finite field instance generator. If the CDH problem is
hard relative to G and if the real-world adversary is restricted to semi-passive
attacks, then SRPbase instantiated with G securely UC-realizes the functionality
Fpassive

aPAKE in the random oracle model. In detail, it holds that∣∣∣Pr[RealZ(SRPbase,A)]− Pr[IdealZ(Fpassive
aPAKE,SIM)]

∣∣∣ ≤
l2H1

p
+

l2H2

p
+

l2H3

p
+

l2H4

2λ
+ (lH1

+ 2lH2
+ lH3

) ·AdvCDH
BCDH

(λ) +
lssid
p

where lHi
corresponds to the number of hash queries to Hi for i = 1, ...4, p is

the order of the finite field, λ is the security parameter and lssid is the maximum
number of subsessions between S and uid.

Proof Sketch. The proof follows a sequence of games starting with the real exe-
cution of the protocol where a simulator handles the execution using the parties’
private inputs, i.e. their passwords. This execution is subsequently changed and
ends with an ideal execution of the protocol where the simulator only interacts
with the ideal functionality Fpassive

aPAKE. We show all of these changes to be indistin-
guishable by the environment, from which the UC-security of SRPbase follows.

The main idea of the simulation is to replace protocol values B,MC
1 and

MS
2 with random values sampled from the same domain as the real values, thus

making them independent of the parties’ passwords. To simulate the last flow
of the protocol, the simulator uses the information, whether the functionality
provides a public or a private delayed output after a NewKey query. If the output
is public, the passwords of the parties differ and the simulator sets MS

2 to be
the rejection symbol ⊥. Otherwise MS

2 is chosen as a randomly sampled field
element. We briefly highlight the indistinguishability arguments for the replaced
values:

Indistinguishability of MC
1 ,M

S
2 ,KC,KS: Assuming that the CDH as-

sumption holds relative to G, we argue that no adversary can distinguish whether
these values are computed as in the real world or sampled uniformly at random.
In the real world, it holds that MC

1 = H2(A,B, TC), MS
2 = H3(A,MS

1 , TS),
KC = H4(TC) and KS = H4(TS). Note that the simulator only replaces values
MC

1 and MS
2 with random values while KC and KS are provided as random val-

ues by Fpassive
aPAKE upon a NewKey query. Since MS

2 is only sent in the protocol if
the passwords of both parties match, it holds in this case that MS

1 = MC
1 and

TS = TC. The same holds for KC and KS which are only distinct from ⊥ if the
passwords of both parties match. Replacing all of these values with random val-
ues is then indistinguishable in the random oracle model unless the adversary is
able to query H2 on input (A,B, TC), H3 on input (A,MC

1 , TC) or H4 on TC. In
each of these cases, the adversary has to compute TC := cdhg(Agx

′
, B − gx

′
) for

x′ := H1(s, uid, pw
′) which is hard if the CDH assumption holds relative to G.
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The idea of the reduction is as follows: Let BCDH be an adversary trying to
break a CDH challenge. BCDH plays the role of the simulator. He simulates both
the client and the server and controls the output of the hash oracle, which allows
him to embed a CDH challenge (g, gd, ge) into the protocol. He sets A := gd

and B := ge + gx
′
for the hash value x′ := H1(s, uid, pw

′). For the reduction, we
assume that BCDH knows the password pw′ of the client. Recall that at this point
of the proof, the simulator (and thus BCDH) still knows the parties’ private inputs.
This is subsequently changed until the simulator is able to simulate the whole
protocol execution without knowing the private inputs. In order to distinguish
whether MC

1 ,M
S
2 ,KC,KS are as in the real execution of the protocol or chosen

at random, there must be an adversary A who queries TC := cdhg(Agx
′
, B −

gx
′
) = cdhg(g

d+x′
, ge) = gde+ex′

to one of the random oracles H2, H3 or H4. But
then BCDH can give a solution to the CDH challenge with non-negligible success
probability. To do so, BCDH chooses one of the random oracle inputs from A at
random and outputs TC · ((ge)x

′
)−1 for the corresponding TC value.

Indistinguishability of B: The real world value of B leaks some informa-
tion about the password verifier v since B is set as B := v + gb for a random
b

r←− Zp−1. This equivalents to sampling uniformly at random from Fp \ {v} and
means that B can never be equal to v. In the ideal world, on the other hand, the
simulator samples B uniformly at random from Fp. We argue that the informa-
tion leaked is negligible and does not help an adversary in distinguishing the two
worlds. Furthermore, in the ideal world, B is not further used in the protocol
since MC

1 and MS
2 which were dependent on B in the real world, are also sampled

from random in the ideal world. Thus, both worlds are only distinguishable if
the simulator picks B such that B = v holds. This happens only with negligible
probability, since v is instantiated as v := gx for a uniformly random H1 output
x from Zp−1.

Server compromise: We observe that the simulator is able to detect offline
password tests from queries to the hash function H1. An offline password test for
a client with user account identifier uid corresponds to a query H1(s, uid, pw) us-
ing the client-specific salt s. Upon the first call to either SvrSession or StealPwdFile,
the simulator chooses a random salt and creates a password file file[uid] = (s,⊥).
This allows the simulator to detect offline password tests in queries to H1 and
pass them to the ideal functionality using a OfflineTestPwd query. In case of a
successful offline password guess there are two cases:

1. The adversary has queried the correct password pw before server compromise.
In this case, the functionality informs the simulator about the correct pass-
word in the moment of compromise. This allows the simulator to retrieve the
output of the correspondingH1 query (H1, [s, uid, pw], h) and set the password
verifier to v := gh which is identical to the real world.

2. The adversary queries the correct password pw after server compromise.
In this case, in the moment of server compromise, the simulator chooses a
random x and sets the password verifier to v := gx. When the ideal func-
tionality then informs the simulator about a correct guess upon a successful
OfflineTestPwd query, the simulator uses his ability to program the random
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oracle and sets the output of this query to x. Again this yields a view to the
environment that is identical to the real world execution of the protocol.

Apart from the reprogramming operation in H1, the random oracles are
simulated by lazy sampling of output queries and aborting on a collision. This
explains the first four terms of the bound in the theorem. The fifth term corre-
sponds to the adversary distinguishing the game by computing TC which would
break the CDH assumption in Fp. The last term of the bound corresponds to the
adversary’s ability to distinguish the games if B = v for any subsession between
client and server.

In Fig. 3, we describe common interfaces which are used by the simulator
in this theorem as well as by the simulator for Theorem 2 in Section 6. The
simulation of the login phase is given in Fig. 4, and the full proof is given in
Appendix E.

6 Security Analysis of SRP-6a against Active Adversaries

In this section, we prove security of the SRP-6a protocol against active adver-
saries in the angel-based UC framework. As a stepping stone, we first show why
security of SRPbase can only be shown in the presence of a semi-passive adver-
sary. There are two known attacks involving active adversaries that also apply
to SRPbase. In [73], Wu describes a client impersonation attack on SRP-1 where
an adversary uses a stolen verifier to authenticate as a client and in [71], Wu
describes a two-for-one-guessing attack where a malicious server is able to online
guess two passwords in one protocol run. These attacks led to the introduction of
scrambling parameter u and k. In order to show security of the SRP-6a protocol,
we introduce a new assumption which eliminates two-for-one-guessing attacks.
We motivate this assumption by highlighting the two-for-one-guessing attack,
while the details of the client impersonation attack can be found in Appendix C.

6.1 Introduction of k: Prevent Two-for-one-Guessing Attack

A corrupt server in an aPAKE protocol can always test one password per protocol
run against the client’s login password. In SRP-3, the server tests a password pw∗

by computing x∗ := H1(s, uid, pw
∗), v∗ := gx

∗
and running the protocol with test

password file (s, v∗). If for the client’s message MC
1 it holds that H2(A,B, TS) =

MC
1 for TS = (A(v∗)u)b, the server has guessed the password correctly.
Due to the symmetry in the creation of B however, in SRP-1 and SRP-

3, a malicious server may test two password guesses in one protocol run. To
understand the attack, first observe that, given B = gx + gb the server can
compute both TS,1 = (A(gx)u)b and TS,2 = (A(gb)u)x. This allows him to test
two passwords pw1, pw2 by setting B := gx1 + gx2 for x1 = H1(s, uid, pw1) and
x2 = H1(s, uid, pw2). Then, the server can compute the values TS,1 and TS,2 and
check if either of them satisfies MC

1 = H(A,B, TS,i). If the condition holds for
one of the values, the server has guessed the password correctly.
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Password Registration

– Convention: First call to SvrSession or StealPwdFile for (S, uid): pick s
r←−

{0, 1}λ and record file[uid] := (s,⊥).
Stealing Password File

– On Z’s permission to do so, send (StealPwdFile, S, uid) to F . If F sends “no
password file”, SIM passes it to A, otherwise declares (S, uid) compromised
and:
1. If F returns pw, retrieve record (H1, [s, uid, pw], h) and set x := h; else,

pick x
r←− Zp−1

2. Set v := gx

3. If k · v = Bssid for some ssid aborts
4. Update file[uid] := (s, v) and send file[uid] to A.

Simulation of Random Oracles

On H1(s, uid, pw) from A:
if this is the first such query, then

if ∃ file[uid] = (s, ∗) send (OfflineTestPwd, S, uid, pw) to F :
upon answer “correct guess”, set h := x

upon answer “wrong guess”, set h
r←− Zp−1 \ {x}

else set h
r←− Zp−1

else set h
r←− Zp−1

if ∃ record (H1, [∗, ∗, ∗], h) abort
store (H1, [s, uid, pw], h) and reply with h

else retrieve record (H1, [s, uid, pw], h) and reply with h

On Hi(m) from A for i ≥ 2:

if this is the first such query, then

pick h
r←− D(Hi)

if ∃ record (Hi, [∗], h) abort
store (Hi, [m], h) and reply with h

else retrieve record (Hi, [m], h) and reply with h

Fig. 3: Common simulation interfaces for the simulators of Theorem 1 and Theorem
2. Bssid denotes the values of B used in subsession ssid. The scrambling parameter k
is only used by the simulator of Theorem 2. The value x in H1 denotes the value SIM
chooses at random when the password file v := gx gets compromised, yet no previous
H1 query (s, uid, pw) for the correct password was made. D(Hi) denotes the output
domain of Hi. Unless specified otherwise, the random oracles are simulated as above.

To mitigate this attack, SRP-6a [71] introduces the value k to remove the
symmetry in the computation of B which is now computed as B := kv+gb. The
above attack would still work if the adversary knows the discrete logarithm of k,
as he can set B = kgx1 + kgx2 and use his knowledge of the discrete logarithm
of kgx2 and kgx1 to test the two passwords. Thus, the original SRP-6 protocol
proposed hardcoding k = 3, but in SRP-6a, k was changed to be the output of
a hash function of public parameters such as p and g.
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Login Phase

(S1) On (SvrSession, ssid, S,C, uid) from F :
(G1) retrieve file[uid] = (s, v). If ∄ file[uid] do nothing and halt

(G4) pick B
r←− Fp

(G4) if (S, uid) is marked compromised and B = v, abort
(G1) send (s,B) to A intended for C

(C2) On (CltSession, ssid,C, S, uid) from F and receiving (s,B) from A:
(G3) pick A

r←− F∗
p, M

C
1

r←− Fp

(G1) send (A,MC
1 ) to A intended for S

(S3) Upon receiving (A,MC
1 ) from A:

(G6) send (NewKey, ssid, S,⊤) to F :
(G6) upon receiving public delayed output (ssid,⊥), set MS

2 := ⊥
(G3) else set MS

2
r←− Fp

(G1) send MS
2 to A intended for C

(C4) Upon receiving MS
2 ) from A:

(G6) send (NewKey, ssid, C,⊤) to F

Fig. 4: Simulator SIM showing that SRPbase realizes F = Fpassive
aPAKE with game numbers

to indicate which game introduces a particular line of code. Fig. 3 describes the sim-
ulation of password registration, server compromise and random oracles. We assume
the simulator forwards all private delayed outputs to the corresponding parties.

The SRP-Two-For-One-Guessing-Problem. We capture the hardness of mount-
ing a two-for-one guessing attack in SRP-6a as the “SRP-two-for-one-guessing-
problem”. Therefore, we assume the adversary plays the role of the server and
engages in a session with protocol values A, k, u. Now, in order to test two
passwords pw1, pw2 with salted hashes x1, x2, the adversary has to find a
value B that allows him to compute the two ephemeral session keys T1 =
cdhg(Agx1u, B − kgx1) and T2 = cdhg(Agx2u, B − kgx2), i.e. T1 = gab1+b1x1u

and T2 = gab2+b2x2u for gb1 := B − kgx1 , gb2 := B − kgx2 and ga := A. Since
the adversary knows x1, x2 and u, we remove the terms gx1u and gx2u in the
formalization of the problem which we state as follows:

Definition 1 (SRP-Two-For-One-Guessing-Problem). We say the SRP-
two-for-one-guessing-problem is hard relative to G if for any PPT adversary A

AdvSRP-2-1
A (λ) := Pr[A(Fp, p, g, A, k, x1, x2) = (B, T1, T2) :

ddhg(A,B − kgx1 , T1) = ddhg(A,B − kgx2 , T2) = 1]

is negligible in λ, where (Fp, p, g)
r←− G(1λ), A r←− F∗

p, k
r←− F∗

p, x1
r←− Zp−1 and

x2
r←− Zp−1.

Note that any adversary solving a “SRP-n-for-1-guessing problem” can be
reduced to an adversary solving a two-for-one-guessing problem, thus the hard-
ness of the two-for-one-guessing problem rules out the existence of any adversary
trying to test multiple passwords in one protocol run.
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The SRP-two-for-one-guessing-problem essentially requires the values in the
second component of the DDH check to differ by a fixed value independent of B
since (B − kgx1)− (B − kgx2) = kgx2 − kgx1 . This motivates the formalization
of the equivalent problem of computing two CDH tuples where the difference
of the second component of both instances equals a randomly chosen value. We
call this the additive simultaneous CDH problem (aSDH):

Definition 2 (Additive Simultaneous CDH Problem (aSDH)). We say
that the aSDH problem is hard relative to G if for any PPT adversary A

AdvaSDH
A (λ) := Pr[A(Fp, p, g,X,∆) = (Y,Z1, Z2) :

ddhg(X,Y, Z1) = ddhg(X,Y +∆,Z2) = 1]

is negligible in λ, with (Fp, p, g)
r←− G(1λ), X r←− F∗

p, ∆
r←− F∗

p.

We formulate two natural extensions of the assumptions, the Strong aSDH As-
sumption, where the adversary additionally has access to a restricted DDH oracle
with fixed input X (i.e. ddhg(X, ·, ·)), and the Gap aSDH Assumption where the
adversary has access to a full DDH oracle ddhg(·, ·, ·). Since the adversary in
the angel-based framework will have access to a full DDH oracle, our proof in
Theorem 2 requires the gap version of the assumption. In Section 6.3, we argue
that with some restrictions on the adversary, security can be shown under the
strong aSDH assumption.

Relation to Known Assumptions. We conject that there is no efficient algorithm
for solving the aSDH problem in finite fields where the CDH problem is hard. In
order to solve this problem, the CDH tuple of X with two values Y and Y +∆
for a random value ∆ needs to be computed. While either Y or Y +∆ can be
chosen such that the discrete logarithm is known for one of these value, it is
intuitively hard to determine the discrete logarithm (or a CDH tuple) for both
of these values. Due to the attacker’s ability to determine Y , we cannot use an
aSDH attacker to solve a CDH problem and it seems there is no other known
problem the aSDH problem can be reduced to since most CDH type assumptions
work only in a group and not in a finite field. aSDH is the first such assumption
that incorporates both field operations into its assumption. In Appendix D , we
elaborate on why existing proof techniques to show hardness in generic models
such as [8,20,45,46,62] cannot be applied to the aSDH assumption.

On the Necessity of the aSDH Assumption. When comparing assumptions across
mathematical structures, aSDH is very similar to the assumption made in the
proof of the PAKE protocols SPAKE1 and SPAKE2 [7] which also rules out
multiple password guesses. Their security relies on a derivative of the chosen-
basis CDH (CCDH) assumption. Here, an adversary is given group elements
X,M,N and has to provide values (Y,Z1, Z2) such that Z1 = cdhg(X,Y ) and
Z2 = cdhg(X/M,Y/N). This is similar to the aSDH assumption as in both
assumptions the adversary has to provide two valid CDH tuples which are con-
nected by a bijective mapping.
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As an alternative approach, it might appear tempting to simply weaken the
ideal functionality to permit two password guesses in the hope of avoiding the
new aSDH assumption. However, we would run into a similar problem in the
security proof where we would have to find a way to provably limit the server
to no more than two password guesses, which would require a similar (or even
more tailored) assumption to the one we introduced.

6.2 UC Security of SRP-6a

In this subsection, we begin by presenting the angel-based UC framework and
subsequently provide a proof that SRP-6a securely realizes the ideal functionality
FaPAKE from Fig. 1, when a DDH-oracle (in finite fields) is available as angel.

Angel-Based UC Security. The UC framework provides strong security guaran-
tees, but its stringent restrictions also limit what can be proven secure. In fact,
for several functionalities, UC-security is provably not attainable [25,48]. To ad-
dress this limitation, several relaxations of UC-security have been introduced.
Superpolynomial-time simulation (SPS) [52] is a relaxation which allows the sim-
ulator to run in superpolynomial time. In angel-based UC security [54] and its
generalization UC security with a superpolynomial-time helper [26], both the sim-
ulator and the adversary run in polynomial time, but have access to a “helper”
oracle (the “angel”) which can perform some pre-determined superpolynomial-
time task such as inverting a one-way function. The latter two frameworks even
preserve the composability features of the UC framework, albeit with the restric-
tion that composability only holds among protocols that are secure with respect
to the same helper oracle.

More precisely, angel-based UC security is identical to standard UC security,
except that all parties have access to a global helper oracle or angel Φ with super-
polynomial resources. A protocol Π is said to Φ-UC-realize functionality F , if
the environment cannot efficiently distinguish between an adversary interacting
with the real protocol Π and a simulator interacting with the ideal functionality
F where both the adversary and the simulator have access to helper oracle Φ.

In our proof of security, we utilize a DDH oracle as global helper oracle. We
emphasize that the DDH oracle used in our proof is limited to the finite field
employed by the SRP protocol. Thus, this DDH oracle cannot be used to break
DDH assumptions in other groups where the DDH assumption is believed to
hold. We discuss the necessity and impact of this additional DDH helper oracle
in more detail in Section 6.3.

Extracting Passwords with the DDH Oracle. We use the DDH oracle in our se-
curity proof in order to extract passwords from adversarial messages. This was
not needed in our proof for Theorem 1 since we considered only semi-passive
adversaries who were not allowed to actively engage in a protocol session. How-
ever, in our security proof for SRP-6a, we extend our analysis to include active
attacks where the adversary can interact with the simulator and inject proto-
col messages. This introduces a significant challenge commonly encountered in

21



proofs within the UC framework: the simulator must extract the adversary’s pri-
vate input used to generate these messages. Once the adversary’s private input
is extracted, the simulator can compare it with the honest party’s input using
the ideal functionality, and adjust the simulation accordingly.

In the proof of the SRP-6a protocol, the simulator requires a DDH oracle
when simulating an honest server2. If an adversarial client sends protocol mes-
sage (A,MC

1 ), the simulator needs to extract the adversary’s password from this
message. To achieve this, the simulator first uses his ability to control the ran-
dom oracle and extracts TC from MC

1 = H2(A,B, TC). He then verifies whether
TC corresponds to a valid DH value cdhg(Agux, B − kgx) for any of the values
x = H1(s, uid, pw

′) which the adversary previously obtained from the random
oracle. If a match is found, the simulator can extract the adversary’s password
pw′ and verify it against the server’s password using the TestPwd interface of the
ideal functionality. If the passwords match, the simulator proceeds to simulate
a successful key exchange, otherwise he simulates key exchange failure.

Proof of Security. We prove SRP-6a secure against active attacks in the angel-
based UC security framework which utilizes a global DDH oracle ΦG (limited to
the finite field output by G). We further make the following assumptions on the
adversary’s capabilities:

– The adversary may actively engage in any session. He is allowed to alter or
drop messages sent by honest parties and inject his own messages. That is,
we do not assume a secure communication channel between client and server.

– Following the approach of previous aPAKE papers [37,47] we assume static
corruption of the parties, that is, parties cannot change their corruption status
throughout the protocol. However, FaPAKE allows the adversary to adaptively
compromise a server via query StealPwdFile during protocol execution. This
creates two separate notions of server corruption. If an honest server has his
password file stolen, we call the corresponding aPAKE instance compromised,
whereas we call a server corrupt if he is controlled by the adversary through
static corruption.

Theorem 2. Let G be a finite field instance generator and let ΦG be a DDH ora-
cle for G. If the Gap CDH problem and the Gap aSDH problem are hard relative
to G, then SRP-6a instantiated with G securely ΦG-UC-realizes the functionality
FaPAKE in the random oracle model w.r.t. static corruption. More precisely, for
every adversary A, there exist adversaries B1, B2, B3 against the Gap CDH and

2 To simplify our proof, the simulator therein also uses the DDH oracle to extract
passwords when simulating an honest client. However, we point out in our discussion
“Security without Angel” in Section 6.3 that this case can be handled without access
to the DDH oracle.
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Gap aSDH problems such that∣∣∣Pr[RealZ(SRP-6a,AΦG )]− Pr[IdealZ(FaPAKE,SIM
ΦG )]
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3
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where lHi denotes the number of Hi queries made by A for i = 1, . . . , 6, p is the
order of the finite field and lssid is the maximum number of subsessions between
S and uid.

Proof Sketch. We describe the behaviour of the simulator based on the different
corruption settings. The client can be either honest or corrupt while the server
can be honest, corrupt or compromised. If none of the parties are corrupt, we
further distinguish whether all message flows are oracle-generated or not. A flow
is considered oracle-generated if it is sent by an honest party and arrives unal-
tered to the intended party. The simulator’s behavior is described in Fig. 5 and
Fig. 6. The different corruption settings are outlined in Table 1 in Appendix F.
Skipping the case where both parties are corrupt, we start with the setting of
Theorem 1 and introduce with each case new corruption settings. We outline
the simulator behavior and indistinguishability arguments for each case. The
full proof is given in Appendix F.

Case 2 + 3: Honest Client – Honest/Compromised Server – all
flows oracle-generated: This setting is identical to the passive attacker model
used in Theorem 1. Therefore, the main part of the simulation is as in the proof
of Theorem 1. SRP-6a additionally uses the scrambling parameters u and k,
resulting in two differences to the proof of Theorem 1. First, the intermediary
session key in SRP-6a is TC := gab+bux instead of TC := gab+bx, but since the
simulator knows u, the same reduction argument from the proof of Theorem 1
also holds for SRP-6a. Second, the simulator aborts if he chooses B such that
B = kv (instead of B = v) for a compromised (s, v). Following the argumentation
of Theorem 1, it follows that this simulation is indistinguishable under the Gap
CDH assumption. Here, the DDH oracle as a global helper necessitates the use
of the Gap CDH assumption.

Case 4: Corrupt Client – Honest Server: In this case, the simulator has
to simulate the honest server’s protocol messages without knowing the server’s
password. However, the simulator is allowed to guess one password pw∗ per pro-
tocol session via a TestPwd query to FaPAKE. If his guess is correct, the simulator
can determine the session key of the server through a NewKey query. The simu-
lation strategy is thus, to extract the corrupt client’s password from the client’s
messages and check whether it matches the server’s password.

The simulator is able to extract a password guess using the DDH oracle
and his ability to manage the random oracle queries. After receiving message
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Login Phase

(S1) On (SvrSession, ssid, S,C, uid) from F :
(G1) retrieve file[uid] = (s, v). If ∄ file[uid] do nothing and halt

(G7) pick B
r←− Fp

(G7) if (S, uid) is marked compromised and B = kv for k := H5(p, g), abort
(G1) send (s,B) to A intended for C, keep record (ssid,S, s, B).

(C2) On (CltSession, ssid,C, S, uid) from F and upon receiving (s,B) from A:
(G3) pick A

r←− F∗
p, M

C
1

r←− Fp, compute k := H5(p, g)

(G1) send (A,MC
1 ) to A intended for S, keep record (ssid,C, s, B, k,A,MC

1 ).

(S3) Upon receiving (A,MC
1 ) from A:

(G3) if ∃ record (ssid,C, s, B, k,A,MC
1 )∧(S, s, B) send (NewKey, ssid, S,⊤) to F

(G3) upon receiving public delayed output (ssid,⊥), set MS
2 := ⊥

(G3) else set MS
2

r←− Fp

(G5) if ∃ record (impatt, ssid, ∗, A,MC
1 ) abort

(G7) if ∃ record (guess, ssid, pw, T,A,MC
1 ) send (TestPwd, ssid,S, pw) to F :

(G7) upon answer “correct guess”:

(G7) set MS
2 := H3(A,MC

1 , T ) , KS := H4(T )
(G7) upon answer “wrong guess”:

(G7) set MS
2 := ⊥, KS := ⊥

(G7) else set (MS
2 ,KS) := (⊥,⊥)

(G10) send (NewKey, ssid, S,KS) to F
(G1) send MS

2 to A intended for C.

(C4) Upon receiving MS
2 from A:

(G8) Retrieve record (ssid,C, s, B, k,A,MC
1 )

(G8) If ∃ record (H3, [A,MC
1 , T ],M

S
2 ) ∧ if H2(A,B, T ) = MC

1 :
(G8) set KC := H4(T )
(G8) else set KC := ⊥
(G10) send (NewKey, ssid, C,KC) to F .

Fig. 5: Simulator SIM showing that SRP-6a UC-realizes F = FaPAKE, Part 1. The sim-
ulation of password registration, server compromise and the other random oracles are
described in Fig. 3. Numbers indicate which game introduces a particular line of code.
We assume that the simulator forwards all private delayed outputs to the correspond-
ing parties.

(A,MC
1 ), the simulator first extracts the adversary’s ephemeral session key TC

from the random oracle query H2(A,B, TC) = MC
1 . If there is no such query, the

simulator concludes that MC
1 is not constructed as in the protocol and simulates

key exchange failure by setting MS
2 := ⊥. Recall here that H2 is prefixed with sid

and ssid which prevents the adversary from successfully passing off a MC
1 value

obtained from some session ssid′ as valid for session ssid. To see how a password
can be extracted from TC, consider that TC is constructed as in the protocol for
password pw∗. Then it holds that TC = (B−kgx∗

)a+ux∗
= cdhg(Agx

∗u, B−kgx∗
)

for x∗ = H1(s, uid, pw
∗), k = H5(p, g) and u = H6(A,B). The simulator has
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Simulation of H2

On H2(A,B, T ) from A or SIM:

(G1) if this is the first such query, then
(G4) if ∃ record (H5, [p, g], k), (H6, [A,B], u), (H1, [s, uid, pw], x)
(G4) and (H1, [s, uid, pw

′], x′) s.t. ddhg(Agux, B − kgx, T ) = 1 ∧
(G4) ddhg(Agux

′
, B − kgx

′
, T ) = 1, abort

(G4) if ∃ record (H5, [p, g], k), (H6, [A,B], u), (H1, [s, uid, pw], x)
(G4) s.t. ddhg(Agux, B − kgx, T ) = 1:
(G6) if ∃ record (guess, ssid, pw, T ′, ∗, ∗) with T ̸= T ′ abort

(G8/10) if ∃ record (ssid,C, s, B, k,A,MC
1 ) send (TestPwd, ssid,C, pw) to F :

(G8/10) upon answer “correct guess”: set h := MC
1

(G8/10) upon answer “wrong guess”, set h
r←− Fp \ {MC

1 }
(G4) else, pick h

r←− Fp

(G4) in any case, store record (guess, ssid, pw, T,A, h)
(G4) else if ∃ record (H5, [p, g], k), (H6, [A,B], u) and compromised (S, uid)
(G4) with file[uid] = (s, v) s.t. ddhg(Avu, B − kv, T ) = 1:

(G8/10) if ∃ record (ssid,C, s, B, k,A,MC
1 ) send (Impersonate, ssid,C, S, uid) to F :

(G8/10) upon answer “correct guess”, set h := MC
1

(G8/10) upon answer “wrong guess”, set h
r←− Fp \ {MC

1 }
(G4) else, pick h

r←− Fp

(G4) in any case, store record (impatt, T, A, h)

(G1) else if no such records are found set h
r←− Fp

(G2) if ∃ record (H2, ∗, ∗, ∗, ∗, h) abort
(G1) store (H2, [A,B, T ], h) and reply with h
(G1) else retrieve record (H2, [A,B, T ], h) and reply with h

Fig. 6: Simulator SIM showing that SRP-6a UC-realizes F = FaPAKE, Part 2.

access to all these random oracle outputs and uses the DDH oracle to check if
ddhg(Agx

∗u, B − kgx
∗
, TC) = 1 for any combination of them. If this is the case,

the simulator is able to extract the corrupt client’s password from the H1 query.

Using the TestPwd interface of F , the simulator tests the extracted password
against the honest server’s password. If the passwords match, the simulator is
able to continue the simulation with TC = TS, otherwise he simulates key ex-
change failure. This simulation is indistinguishable for the environment unless
the adversary is able to guess the output of the random oracle or TC corresponds
to two password guesses. Both of these events only happen with negligible prob-
ability.

Case 5: Honest Client – Corrupt Server: The simulator in this case
has to simulate the client’s protocol messages without knowing his password.
Again the TestPwd interface of FaPAKE allows the simulator to test one password
per protocol run against the honest client’s password. The simulation becomes
more complex since the client is the first one to commit to a value based on
the password. Hence, the simulator provides a non-committing message (A,MC

1 )
which can later be “backpatched” to match the client’s actual password if both
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parties use the same password. To achieve this, the simulator uses his ability
to control the random oracle. The corrupt server’s password is extracted either
from the messages received by the honest client or from the input to the random
oracles. In detail, this case is handled as follows:

In (C2), the simulator uses random values for (A,MC
1 ) and ensures that

queries to H2 are consistent with these values. An adversarial password guess
relates to a query (A,B, TS) to H2 such that TS is constructed as in the pro-
tocol for password pw∗. With the same argument as in Case 4, the simula-
tor can extract the corrupt server’s password by scanning all RO-outputs and
using the DDH oracle to check whether ddhg(Agx

∗u, B − kgx
∗
, TS) = 1. Us-

ing the TestPwd interface of F , the simulator checks the extracted password
against the server’s password. If the passwords match, he programs the random
oracle output of query (A,B, TS) to match the previously generated MC

1 and
can continue simulation with TC = TS. Since the corrupt server could skip the
test whether MC

1 = H2(A,B, TS) in (S3), there might not be such a query to
H2 from the adversary. In this case, the simulator extracts TS from message
M2 = H3(A,MC

1 , TS) and queries H2 himself on (A,B, TS). If there is no such
query to H3 the simulator concludes that MS

2 is not constructed as per the pro-
tocol and simulates key exchange failure. Similar to case 4, recall that H3 is
prefixed with sid and ssid, which prevents the adversary from passing off a MS

2

value from a session ssid′ as valid for ssid.

This simulation is indistinguishable from the real world unless the adversary
is able to queryH2 on two values TS, T

′
S such that both of these values correspond

to a password guess. In this case, the simulator can only test the password against
the client’s password for the first such query since he is limited to one password
guess per protocol run. In this case, however, the adversary would have provided
(B, TS, T

′
S) such that ddhg(A,B − kgx1 , TS) = ddhg(A,B − kgx2 , T ′

S) = 1 for
two H1 outputs x1, x2. If the Gap aSDH assumption holds, this cannot happen.
Recall that we can set B − kgx1 − B − kgx2 = kgx1 − kgx2 := ∆ and the
adversary can embed aSDH challenge value ∆ into the protocol by programming
RO-output H5(p, g) = k := ∆/(gx1 − gx2).

Case 6: Honest Client – Honest Server – not all flows oracle gener-
ated: In this scenario, the simulator has to simulate the protocol between two
honest parties, while considering the possibility of a Man-in-the-Middle attack
by an adversary who may inject his own messages. If the simulator receives a
message on behalf of an honest party that was not oracle-generated, the sim-
ulator considers it an adversarial message and proceeds with the simulation as
outlined in case 4 or 5.

Case 7: Corrupt Client – Compromised Server: This setting is iden-
tical to the setting of case 4, only that the server is now compromised and the
adversary may know the password file. The simulation is handled exactly as in
case 4. For indistinguishability, we have to argue that knowing the password
verifier, but not the password itself does not allow the adversary to establish a
key on the client’s behalf.
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Here, the challenge value u = H6(A,B) forces the client to prove that he
can calculate a CDH tuple cdhg(v,B − kv) for password verifier v := gx. Using
the Forking Lemma [12], we can show that an adversarial client who is able
to compute the ephemeral session key TC without querying H1 on the correct
password, i.e. without knowing x, can be used to break a CDH challenge. In the
reduction, after the adversarial client has computed T1 = cdhg(Avu1 , B − kv)
for u1 = H6(A,B), the CDH adversary rewinds him and changes the random
oracle output to u2 = H6(A,B) with u2 ̸= u1. In this alternative execution, he
obtains T2 = cdhg(Avu2 , B − kv). Using these values the adversary can embed
his CDH challenge (g, gd, ge) by setting v := gd, B − kv := ge and output

T1/T
1/(u1−u2)
2 = cdhg(v,B− kv) = gde. Note that this rewinding is only used as

an argument in the security proof, and the simulation of the protocol does not
rely on rewinding adversaries which would be incompatible with security in the
UC framework.

Case 8: Honest Client – Compromised Server – not all flows oracle
generated: This setting is identical to case 6 with the added requirement for
the simulator to handle server impersonation attempts. An adversary may have
compromised the server and use the stolen password file to establish a key with
the honest client by injecting his messages. The simulator can detect an imper-
sonation attempt in a similar manner to detecting a password guess in case 5 by
checking queries to the random oracle H2. An adversarial impersonation attempt
is indicated by a query (A,B, TS) to H2 such that ddhg(Av,B − kv, TS) = 1 for
RO-outputs k, u and stolen password verifier v. Whenever the simulator detects
such a query he sends an Impersonate query to F , which informs him whether
the client runs on the same password. If this is the case, he backpatches the
output of the H2 query as outlined in case 5 and continues simulation with TS.
This simulation is indistinguishable from the real execution.

6.3 Discussion of Assumptions

In this subsection, we discuss our approach of using a DDH oracle within the
angel-based UC framework and introducing the new aSDH assumption. We also
discuss the implications and limitations of our approach and what can be shown
without these assumptions.

DDH Oracles in Other PAKE Protocols. In the analysis of previous PAKE pro-
tocols [3,37], the existence of a DDH oracle was utilized, albeit with a slight dis-
tinction. These protocols typically required the existence of a DDH oracle within
a reduction employed in the proof, whereas in our case, we necessitate a DDH
oracle accessible to the simulator for protocol simulation. Our approach aligns
with the angel-based UC framework, whereas the previous approach relied on
the greater power of the adversary within the reduction. A similar consideration
applies to the rewinding technique, which is disallowed for protocol simulation
but can be utilized in a reduction argument presented in the proof. Our ap-
proach therefore differs from previous security analysis of PAKE protocols and
we discuss the impact of our security proof.
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Implications of Angel-based UC Security. In the angel-based UC framework,
composability is only guaranteed when all protocols involved have access to the
same angel. In the case of our SRP-6a protocol, its secure composition is therefore
limited to protocols that remain secure in the presence of a DDH oracle in the
finite field Fp. Consequently, it cannot be securely composed with protocols that
rely on the hardness of the DDH assumption in Fp. Nevertheless, this is not a
significant constraint since it is well known that the DDH assumption does not
hold in Fp due to attacks exploiting the Legendre symbol [19,29].

The Legendre symbol characterizes whether an integer a is a quadratic residue
modulo an odd prime p and is essentially a homomorphism from group elements
to {−1, 1}. It possesses two crucial properties that allow it to break the DDH
assumption: (a) It can be computed efficiently, and (b) it is multiplicative. When
a DDH distinguisher receives a tuple (ga, gb, C), he can compute the Legendre
symbol of ga, gb and C. Since the Legendre symbol of the primitive element g
is −1, the Legendre symbols of ga and gb leak the parity of a and b. If C is
chosen uniformly at random in the group, then with probability of 1/2 its Leg-
endre symbol does not match the parities of a and b. In this case, the adversary
can successfully determine that C ̸= gab. Consequently, the adversary’s success
probability is non-negligible, breaking the DDH assumption.

While this attack shows that the DDH assumption does not hold in Fp, it
does not imply the existence of an efficient DDH oracle for all values. Using
the Legendre symbol technique, the DDH challenge can only be solved in case
of mismatching parities. If the parities of a, b and C match (which occurs with
probability 1/2), the attacker has no advantage in deciding whether C = gab.

Thus, assuming the existence of an efficient DDH oracle gives the adversary
and simulator an additional capability that captures the absence of the DDH
assumption but also goes beyond what is currently known to be efficiently com-
putable. We note that a similar approach is often used in security proofs of
BLS type-3 pairings (see e.g. [21,30,64]) where it is sometimes assumed that the
adversary has access to an isomorphism oracle that computes an isomorphism
which is not efficiently computable.

Further, we emphasize again that the DDH oracle utilized in our proof is
limited to the finite field Fp employed by the SRP protocol. This DDH oracle
cannot be used to break DDH assumptions in other groups where the DDH
assumption is believed to hold. In conclusion, we believe that the angel-based
UC security of the SRP-6a protocol provides valuable composability guarantees.

Security without Angel. The simulator uses the DDH oracle as a superpoly-
nomial time helper in order to extract adversarial password guesses. Without
access to such an oracle, our proof only works in a setting where the client
is always assumed to be honest. Thus, our proof would still allow the server
to be actively corrupted and compromised, but the client needs to be honest.
Note that for extracting adversarial password guesses from the server, no ex-
ternal DDH oracle is necessary: the simulator knows the ephemeral key a of
A = ga and can use this value to efficiently test for ddhg(g

agxu, B − kgx, T ) for
the server’s queries (A,B, T ) to H2, thereby finding the password used by the
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malicious server. In this case, also the strong aSDH assumption would suffice,
since the simulator can use a restricted DDH oracle to simulate the client after
embedding the aSDH challenge into the protocol. Such a partial DDH oracle
that allows to test for DDH tuples w.r.t. a fixed X has been added to several
DL-based assumptions [4,5] and can be implemented efficiently if x for X = gx

is known.
An alternative method of weakening the security model is to use an ideal

functionality which allows for late password tests [3], i.e., allowing the simulator
to submit the extracted password after a session terminates. However, this is not
useful in the SRP protocol, as the late password trick is only helpful when the
client, from which we need to extract the password, makes another (observable)
computation that depends on his password and which happens after receiving
the server’s message. Since this is not the case in SRP, there is no benefit in
waiting and providing a late password interface.

Another idea to avoid the DDH oracle is to analyse SRP in a game-based
security model for aPAKE. As the oracle is merely needed to extract passwords
of malicious clients – such extractability is one of the core technical subtleties
imposed by most UC functionalities – we expect that a security proof that does
not require extractability also does not need permanent access to a DDH oracle.
We opted for an analysis in the UC framework, as this has become the defacto
standard for (a)PAKE protocols, and we believe that our security proof still
provides sufficient insights into the UC security of SRP.

The aSDH Assumption. It is not very surprising that the SRP protocol needs a
tailored assumption, based on its unique design choices and given the historical
context of its development when very few cryptographic hardness assumptions
had been established. Historically, all security proofs of protocols that were de-
signed for a new kind of mathematical structure, required new and tailored as-
sumptions such as the DH [33], RSA [55] and LRSW [51] assumptions. Currently,
we are also unaware of other protocols which rely on this assumption. However,
we strongly believe in the benefit of reducing the security of the SRP protocol to
a simple mathematical assumption. The security now relies on a static and clean
assumption that can be studied and analyzed, which is significantly simpler than
analyzing the UC security of an interactive protocol against active adversaries
from scratch.

Without the aSDH assumption (but with access to an DDH oracle), the proof
still holds if we assume the server to be honest, in which case no two password
guesses for one protocol run can occur.

UC Artifacts and Real-World SRP. Our analysis covers a UC-fied version of
the SRP protocol which includes (sub)session identifiers sid and ssid. Here, we
discuss the real-world mechanisms by which parties establish these values, and
how security is impacted when they are missing.

First, recall that the session identifier sid is a static value tied to a server
instance S in the form of sid = (S, sid′) for a unique sid′. It is used to distinguish
separate protocol instances and must be known to all users. In fact, a technical
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minor – yet practically important – change we made in the aPAKE definition,
is that we model a multi-user functionality where a single sid is shared by all
users. This allows a more realistic setup and distribution of this value, compared
to previous works where every user had to know and remember their unique
sid: the sid can now be part of the server’s certificate or part of the distributed
protocol implementation.

The real-world SRP protocol does not have such an sid though. Protocols
that don’t use the sid no longer benefit from the composability guarantees of UC.
However, the security properties of the stand-alone protocol are still guaranteed
– at the same level as a security proof for a game-based property that does not
provide any composability guarantees either.

The lack of an sid is nothing specific to the SRP protocol or our analysis, but
a general gap between theory and practice of UC-secure protocols. For instance,
OPAQUE [47] the state-of-the-art aPAKE protocol which is proven secure in
the UC model, omits the sid in the practical implementation as described in the
IRTF draft [49].

The second UC artifact is the sub-session identifier ssid that is assumed to be
a unique input used to distinguish multiple login-sessions. A common method
to establish an ssid in practice, is to let the client and server generate fresh
nonces, and use the concatenation of both values as ssid (see e.g. [11,38]). As the
UC definition requires that keys established through aPAKE are strictly bound
to such an ssid, we include this identifier as prefix to all hash computations
where session keys are derived. Without this prefix, an adversary could re-use
key contributions from a session ssid in another session ssid′.

In the real-world protocol there are no sub-session identifiers, and conse-
quently there is no need for such a hash prefix either. The session key in the
standard SRP protocol is derived by hashing the exchanged values A,B along
with the locally computed DH-value. This combination will be unique in ev-
ery session where at least one of the parties is honest. Thus, even without the
ssid, the established keys are bound to the particular session uniquely identified
through the protocol transcript.

Again, this ssid-matter is nothing specific to the SRP-protocol or our analysis,
but a general UC artifact. For instance, while the provably-secure version of
OPAQUE uses ssids and the same hash prefixing approach to bind keys to ssids,
the real-world specification omits both [49].

Overall, this might bear the question why we used the UC model for our anal-
ysis in the first place. We strongly believe that despite these artifacts, the UC
functionality is the best available security model to analyze an aPAKE protocol
such as SRP. The main benefit is that it naturally captures leakage, distribu-
tion bias and re-use of passwords, which a game-based definition can not reflect
properly.
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Definition 3 (Computational Diffie Hellman Assumption over Fp (CDH)).
We say that the CDH problem is hard relative to G if for any PPT adversary A,

AdvCDH
A (λ) := Pr[A(Fp, p, g, g

a, gb) = gab]

is negligible in λ, where (Fp, p, g)
r←− G(1λ), a r←− Zp−1, b

r←− Zp−1.

Definition 4 (Decisional Diffie Hellman Assumption over Fp (DDH)).
We say that the DDH problem is hard relative to G if for any PPT adversary A

AdvDDH
A (λ) :=|Pr[A(Fp, p, g, g

a, gb, gab) = 1]

− Pr[A(Fp, p, g, g
a, gb, gc) = 1]|

is negligible in λ, where (Fp, p, g)
r←− G(1λ), a r←− Zp−1, b

r←− Zp−1, c
r←− Zp−1.

Definition 5 (Gap CDH Assumption over Fp (GapCDH)). We say that the
Gap CDH problem is hard relative to G if for any PPT adversary A

AdvGap-CDH
A (λ) := Pr[Addhg(·,·,·)(Fp, p, g, g

a, gb) = gab]

is negligible in λ, where (Fp, p, g)
r←− G(1λ), a r←− Zp−1, b

r←− Zp−1 and ddhg(g
x, gy,

gz) = 1⇔ xy = z.

B Flawed Reduction in SRP-3

In [73], the author establishes the security of SRP against passive eavesdropping
attacks by a reduction to the Computational Diffie Hellman problem. The re-
duction they provided is correct but it cannot be used to argue anything about
the security of the SRP protocol.

They argue that if there exists an efficient adversaryQ (in the paper described
as oracle) that can compute the SRP session key given all public information and
the user’s password, then this adversary can be used to construct an adversary
winning the CDH challenge. Their adversary for SRP accepts values A,B, u, g, p,
and x and computes the intermediary session key T = gab+bux.

Q(ga, gb + gx, u, g, p, x) = gab+bux

Then they claim that given a CDH challenge (g, ga, gb) they can solve it using
adversary Q with inputs u = 2 and x = (p − 1)/2. Thus, for the adversary Q′

defined as

Q′(A,B, g, p) = Q
(
A,B + g(q−1)/2, 2, g, p, (p− 1)/2

)
it holds that Q′(ga, gb, g, q) = gab and the adversary wins the CDH game.

While this reduction works, it only rules out the existence of an efficient
adversary Q who can compute the session key for hardcoded inputs u = 2 and
x = (p − 1)/2. This says nothing about the security of the SRP protocol. In
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fact, an adversary who aborts after receiving value x = (p − 1)/2 but outputs
K = gab+bux for any other value of x cannot be used for this reduction but clearly
breaks the security of the SRP protocol. We can circumvent this problem by, after
receiving CDH challenge ga, gb, querying Q on input (ga, gb + gx, u, g, p, x) for
randomly sampled u, x and multiplying the output gab+bux of Q with ((gb)ux)−1,
obtaining gab and thus winning the CDH experiment. We use this modified
reduction in our security proof of SRPbase.

C Preventing Client Impersonation Attack with Value u

As highlighted in [73], in SRPbase and SRP-1 it is possible to impersonate a client
by knowing only the password verifier v = gx. That is, after server compromise
no offline attack on the password is needed in order to establish a common shared
key with the server on the client’s behalf. The client impersonation attack works
as follows: In Fig. 2 (C2), the malicious client AC who knows the password
verifier v, chooses a random a and sets A := gav−1. This cancels out the “v
term” in the server’s session key calculation and the shared ephemeral key is
TS := (Av)b = (gav−1v)b = gab which the client can compute without knowledge
of x = H1(s, uid, pw). Thus, no offline dictionary attack is needed to impersonate
the client. This violates the security guarantees of the ideal functionality FaPAKE

which states that a client must know the correct password in order to derive a
shared key with the server.

To mitigate this attack, a “challenge” value u was introduced in SRP-3 [73]
and the intermediary key is calculated as TS := (Avu)b, and TC := (B−gx)a+ux,
respectively. This does not prevent the attack yet, as the adversary could now
set A := gav−u. To ensure that the adversary cannot tweak the A value in such
a way, the challenge value u is computed by hashing the protocol messages A
and B together: u := H(A,B). Thus, in order to execute the same attack as
before, the adversary must find a value u for which u = H(gav−u, B) holds.
This explicit attack is infeasible if the hash function is preimage resistant. In
order to rule out any kind of impersonation attack using a stolen verifier, we
model the hash function as a random oracle in the security proof of Theorem
2 and relate the probability of an adversary performing a client impersonation
attack to the hardness of the CDH problem in F∗

p.

D On Proving Hardness of the aSDH Assumption

To show the soundness of the aSDH assumption, one would ideally relate this
new assumption to existing ones or prove hardness in a generic model. In this
section, we elaborate on the challenges for both of these approaches in regards
to the aSDH assumption.

Relation to CCDH and CDH. As explained in the main body, the aSDH assump-
tion is structurally similiar to the CCDH assumption proposed by Abdalla and
Pointcheval [7]. They are able to show that the CDH and CCDH assumption are
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equivalent using a reduction which utilizes the multiplicativity of the CDH tuple,
namely (Y/N)x = Y x/Nx. However, when it comes to the aSDH assumption, a
similar reduction cannot be applied due to the fact that (Y +∆)x ̸= Y x +∆x

with overwhelming probability for given values of Y , ∆, and x.
It is worth mentioning that a variant of the CCDH assumption, known as

the Chosen-Basis DDH assumption [6], was later found to be vulnerable to at-
tacks [65]. However, this does not undermine the validity of the original CCDH
assumption, as the Chosen-Basis DDH assumption is a decisional variant that
involves two rounds of interaction, rather than a computational assumption.
Furthermore, the Chosen-Basis DDH assumption bears no resemblance to the
aSDH assumption we are considering, and the attack proposed against it cannot
be leveraged to break the aSDH assumption.

Hardness in a Generic Model. Another approach to show the validity of the
aSDH assumption could involve showing the hardness in a generic model such
as the black-box field model introduced by Boneh and Lipton [20]. In this model,
the generic field is modeled as a black box where the field operations – addi-
tion, multiplication and equality tests – are performed by accessing an ora-
cle. In the literature, there is no proof of hardness for any assumption in the
generic field model, and Boneh and Lipton even show, albeit using an unproven
number-theoretic assumption, that the Black Box Field Problem – the generic
equivalent of the discrete logarithm problem – can be solved by an algorithm in
sub-exponential time.

The next thought would be to study the hardness of the aSDH assumption
in the generic ring model. Most of the research in this area such as [8,45] has
focused on relating the hardness of a problem to factoring or using the generic
model for reductions to other CDH type problems. Since the order of the ring
contained in Fp is not related to factoring two large prime numbers and since
there is no known assumption that we can reduce aSDH to, the known proof
techniques cannot be used to show the hardness of the aSDH assumption.

The most promising research regarding generic algorithms has been in the
generic group model (see e.g. [46,62]). However, since the aSDH assumption
incorporates both addition and multiplication in the field, the generic group
model is not valid for our case. Additionally, as pointed out in [45] the proof
techniques from the generic group model are not applicable to proofs in the
generic ring model.

We identify the analysis of hardness assumptions in a generic field model as
future work. Although this is no proof of soundness, the SRP-6a protocol has
been around for almost 20 years and there has been no evidence of a successful
two-for-one guessing attack after the introduction of the value k. This further
strengthens our believe in the soundness of the assumption.

E Proof of Theorem 1

In order to show that the protocol UC-realizes the functionality Fpassive
aPAKE, we need

to show that for all environments and all adversaries, we can construct a simula-
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tor such that the interactions, from the one hand between the environment, the
players (C and S) and the adversary (the real world), and from the other hand
between the environment, the ideal functionality and the simulator (the ideal
world), are indistinguishable for the environment. In this proof, we incremen-
tally define a sequence of games starting with the real execution of the protocol
and ending up with game 6, which we prove to be indistinguishable from the
ideal experiment. Note that these games are sequential and built on each other.
We only describe the changes that occur when changing from Game Gi to Game
Gi+1. We assume that the rest of Game Gi+1 behaves exactly as in Game Gi.
Let RealZ(SRP,A) be the event that environment Z with adversary A and an

execution of SRP outputs 1 and IdealZ(Fpassive
aPAKE,SIM) be the corresponding event

in the ideal execution with ideal functionality Fpassive
aPAKE. Additionally in the anal-

ysis of the games let Gi denote the event that the environment Z outputs 1 in
game Gi.

Game G0: The real protocol execution. This is the real world in which
the adversary may eavesdrop on messages sent by the real parties and obtain
the password file stored by the server.

Pr[RealZ(SRP,A)] = Pr[G0]

Game G1: Introducing the simulator. This game converts the real pro-
tocol into a simulated environment where the random oracles are implemented
by lazy sampling.

Changes to the simulation: We move the whole execution of the protocol
into one machine and call it the simulator SIM. For clarity, sometimes we write
SIMS, whenever SIM acts on behalf of the server and SIMC if SIM acts on behalf
of the client. Note that SIM still runs the protocol execution with the actual
passwords as input. In later iterations of the games the simulation will work
without the passwords as input. We simulate the passive eavesdropping ability
of the adversary by sending the protocol messages to A intended for the other
party. The adversary has to relay them unchanged to the other party, otherwise
the simulation aborts.

Changes to the random oracle: SIM implements the random oracles H1, H2,
H3 and H4 by lazy sampling of the output values, i.e. every new query to Hi is
answered with a randomly sampled value from the output domain of Hi.

Indistinguishability argument: The changes are only syntactical and thus, the
games are indistinguishable.

Pr[G1] = Pr[G0]

Game G2: Abort on collisions of the random oracles. In this game
the simulator aborts on collisions of the random oracle. This ensures that two
honest parties who follow the protocol but don’t have matching passwords will
output (ssid,⊥), whereas honest parties with matching passwords who follow the
protocol will output the same session key (ssid,KC) = (ssid,KS).
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Changes to the random oracle: The simulator aborts if a collision occurs in
H1, H2, H3 or H4, i.e. if SIM samples an answer for a fresh query that he already
gave before.

Indistinguishability argument: An adversary can only distinguish the two
games if an abort occurs. But, due to the birthday bound, the probability of an
abort happening is negligible in λ. Let lHi

denote the number of queries made
to Hi for i = 1, 2, 3, 4. Then,

|Pr[G2]− Pr[G1]| ≤
l2H1

p− 1
+

l2H2

p
+

l2H3

p
+

l2H4

2λ

Game G3: Simulate all protocol values after (S1). In this game, we
simulate the protocol messages after (S1) and the session keys using random
values. This makes them independent of the passwords provided by the environ-
ment. After (S1) the simulation’s only dependence on the password is the check
whether the passwords match which determines whether the values MS

2 ,KS,KC

are each a rejection symbol ⊥ or sampled uniformly at random. This password
check will be performed using the NewKey interface of the ideal functionality in
a later game.

First, SIMC sends a random MC
1

r←− Fp to SIMS, then SIMS checks if the
parties’ passwords match and either sets (MS

2 ,K) = (⊥,⊥) (if pw ̸= pw′) or

MS
2

r←− Fp,K
r←− {0, 1}λ (if pw = pw′). SIMS sends MS

2 to SIMC and outputs
(ssid,K) to both parties. This change is only noticeable if the adversary can
compute a CDH challenge.

Changes to the simulation: In (C2), SIMC samples (A,MC
1 ) uniformly at

random from F∗
p×Fp. Since this prevents SIMS from checking whether MC

1 = MS
1

in (S3), SIMS introduces a password check to see if both parties’ password match.
In case of matching passwords, MS

2 and KS are taken uniformly at random from
Fp and {0, 1}λ, respectively, otherwise they are both set to ⊥. In (C4), in case
of matching passwords, SIMC sets KC := KS, otherwise he sets KC := ⊥.

Indistinguishability argument: The only way for an adversary to distinguish
the two games is by noticing the difference in the creation of protocol values
A,MC

1 ,M
S
2 ,KC and KS. A is indistinguishable since we only removed the sim-

ulator’s knowledge of a such that A = ga. The other values are outputs of the
random oracles H2, H3 and H4 in game 2 while they are uniformly random
values sampled from the same domain in game 3. Thus, in order to distinguish
them, the adversary has to compute the value T = cdhg(Agux, B − kgx) and
query one of the random oracles on the correct input, i.e. H2 on (A,B, T ), H3

on (A,MC
1 , T ) or H4 on T . Note that in case of mismatching passwords, the ad-

versary can only distinguish the games using MC
1 since the other values are set

to ⊥. We show that the adversary can compute the value T only with negligible
probability if the CDH assumption holds in Fp even if he knows the parties’
secret inputs pw and pw′.

Therefore, we construct an efficient CDH adversary BCDH interacting with Z.
Let (g, gd, ge) denote a CDH challenge. BCDH embeds the challenge in the game

as follows: BCDH samples x′ r←− Zp−1 and sets (H1, [s, uid, pw
′], x′) where pw′ is
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the client’s password. Note that BCDH receives both parties’ passwords as input.
Then, BCDH sets A := gd and B := ge + kgx

′
for k = H5(p, g). Now we consider

the two cases:

1. pw = pw′: If the passwords of both parties match, BCDH samples s
r←− {0, 1}λ,

MC
1

r←− Fp, M
S
2

r←− Fp, K
r←− {0, 1}λ and simulates the protocol with tran-

script (s,B,A,MC
1 ,M

S
2 ) and output (ssid,K) for both parties. Note that in

this case it holds that TS = TC = (B − kgx
′
)d+x′

= gde+ex′
. Let ℓR denote

the number of records of the form (H2, [A,B, ∗], ∗), (H3, [A,MS
1 , ∗], ∗) or

(H4, [∗], ∗). Note that lR is (polynomially) bounded by lH2
+ lH3

+ lH4
. BCDH

picks one of these records at random, extracts T ∗ from the corresponding
query and outputs T ∗ · ((gd)x)−1. If T ∗ = gde+dx, then BCDH’s output equals
gde and BCDH wins in the CDH experiment.

2. pw ̸= pw′: If the passwords of both parties don’t match BCDH samples s
r←−

{0, 1}λ,MC
1

r←− Fp and simulates the protocol with transcript (s,B,A,MC
1 ,⊥)

and output (ssid,⊥) for both parties. Again, in a real execution of the pro-
tocol C would compute TC = (B − gx

′
)d+x′

= gde+ex′
and it would hold

that MC
1 = H2(A,B, TC). Let lH2

denote the number of records of the form
(H2, [A,B, ∗], ∗). lH2

is (polynomially) bounded by lH2
. BCDH picks one of

those record uniformly at random. Let this record be (H2, [A,B, T ∗],M∗
1 ).

BCDH outputs T ∗ · ((ge)x′
)−1. If T ∗ = gde+ex′

, then BCDH’s output equals g
de

and BCDH wins in the CDH experiment.

Thus, if an adversary successfully distinguishes the two games, he can win the
CDH experiment with non negligible probability. We thus have

|Pr[G3]− Pr[G2]| ≤ (lH1
+ 2lH2

+ lH3
) ·AdvCDH

BCDH
(λ)

Game G4: Change B to be independent of the password file. In this
game we make B independent of the password file v by picking a random field
element for B. This change makes all protocol values independent of the parties’
passwords.

Changes to the simulation: In (S4), B is computed by sampling B
r←− Fp.

Indistinguishability Argument: No protocol value depends on B anymore so
we only have to check that B is indistinguishable in both games. In game 3, B
is chosen as B := v+gb for a uniformly random b

r←− Zp−1. Thus, B is a uniform
random element from Fp \ {v}. In game 4, B is a uniform random element from
Fp. The games are thus distinguishable if B = v in game 4, especially since the
adversary might know the server’s password file. Since v = gx for the randomly
sampled H1-output x in game 3, the probability of an abort is negligible.

|Pr[G4]− Pr[G3]| ≤
1

p− 1

Recap of the changes so far: We recap the changes made to the protocol
thus far. We have replaced all values of a protocol execution with random ele-
ments. Hence, no protocol value depends on the parties’ secret inputs anymore.
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The only dependence on the passwords is when creating a password file which
will be removed next.

Game G5: Change Password File Creation and StealPwdFile in-
teraction. The password file is only completely generated upon a StealPwdFile
query. For a login session only the client-specific salt is needed. When generat-
ing v for a stolen password file, the consistency of v is crucial. Therefore, after
receiving a StealPwdFile query, if the correct password was queried to H1 before,
x is set to be the output of the corresponding query. Otherwise a random x is
taken and v = gx sent to the adversary. In order to make sure that future queries
to H1 are consistent with x, if H1 is queried for (s, uid, pw) on the client’s salt
s and the correct password pw after compromise, the output of this query is set
to x.

Changes to the simulation: On the first call to either SvrSession or StealPwdFile
from F , SIMS picks a random salt s and records file[uid] = (s,⊥). The whole
password file is only generated upon receiving query (StealPwdFile,S, uid) as fol-
lows: (S, uid) is marked compromised and, if there is a record (H1, [s, uid, pw

∗], x)
where s matches the salt in the password file, and pw∗ = pw, then SIMS retrieves
x. Otherwise a random xuid

r←− Zp−1 is chosen. If gxuid = Bssid
S , that is, if the ver-

ifier matches the B value of a previous session, the simulator aborts. Otherwise,
the password file (s, v) with v = gxuid is sent to the adversary.
Changes to the random oracles: H1 is changed as follows: For every query
(s, uid, pw) such that s matches the salt used for uid, SIMS does the following: If
S is marked compromised and the password is correct, sets x = xuid where xuid

was used to simulate the password verifier upon compromise. This ensures the
output of the random oracle query to be consistent with the password file sent
to the adversary. If S is marked compromised and the password is not correct,
the simulator sets x

r←− Zp−1 \ {xuid}. In any other case a random x is chosen to
answer the query.

Indistinguishability argument: If there is no abort, the games are indistin-
guishable. The probability of an abort is bounded by the maximum number of
subsessions for the same party S. Let lssid denote this number. Thus it holds that

|Pr[G5]− Pr[G4]| ≤ lssid
1

p

Game G6: Introduce F , password check is handled by F In this game,
we introduce the functionality F = Fpassive

aPAKE and let SIM communicate with F .
The functionality handles the password check for online and offline sessions and
sends the protocol output to the parties after being instructed to do so by SIM.

Changes to the simulation: SIM is triggered by receiving a CltSession or
SvrSession message from F instead of receiving these messages directly from the
parties. The simulator does not receive the parties’ secret inputs anymore. The
password check in (S3) and (C4) is replaced by a NewKey query to F , which
informs SIM if the passwords don’t match by responding with a public delayed
output (ssid,⊥). If the passwords match, a random key is generated and sent to
the parties by F instead of SIM. After receiving a StealPwdFile query from A,
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SIM forwards this query to F who informs SIM if the password was queried to
H1 with the correct combination of s and uid before.

Changes to the random oracles: For every query (s, uid, pw) such that s
matches the salt used for some S, SIM sends an OfflineTestPwd query to F who
checks if (S, uid) is compromised and if the password matches the password of S.
If SIM receives “correct guess”, he sets the output of this query to be x = xuid

S ,
if he receives “wrong guess”, he sets the output of this query to be x ̸= xuid

S . In

every other case, SIM picks a random element x
r←− Zp−1.

Changes to the functionality: The full functionality F = Fpassive
aPAKE is added.

Indistinguishability Argument: The changes are only internal with the main
difference being in case of matching passwords where both players now receive
a random key chosen by F instead of SIM. This is indistinguishable and thus,

Pr[G6] = Pr[G5] = Pr[IdealZ(Fpassive
aPAKE,SIM)]

This game is identical to the ideal execution with Fpassive
aPAKE, which concludes the

proof.

F Proof of Theorem 2

Table 1: The different corruption cases for the proof of Theorem 2. The client can
either be honest or corrupt while the server can be honest, corrupt or compromised. In
case none of the party is corrupted we distinct whether all flows are oracle-generated
or not.

Case Client Server all flows oracle-generated

(1) corrupt corrupt –
2 honest honest yes
3 honest compromised yes
4 corrupt honest –
5 honest corrupt –
6 honest honest no
7 corrupt compromised –
8 honest compromised no

We start with the real execution of the SRP-6a protocol with an adversary
A and gradually modify it, ending up with the ideal execution FaPAKE with
simulator SIM. The changes will go unnoticed by an environment Z interacting
with the parties and the adversary.

Let RealZ(SRP-6a,A) be the event that the environment Z with adversary
A and an execution of SRP-6a outputs 1 and IdealZ(FaPAKE,SIM

ΦG ) be the
corresponding event in the ideal execution with simulator SIM and functionality
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FaPAKE depicted in Fig. 1. Additionally in the analysis of the games let Gi denote
the event that the environment Z outputs 1 in game Gi.

Game G0: The real protocol execution. This is the real world where
the adversary interacts with real players and may (statically) corrupt parties. He
may view, modify and drop messages sent by honest parties and send messages
on behalf of corrupted parties. Additionally, the adversary is allowed to steal an
honest server’s password file.

Pr[RealZ(SRP-6a,AΦG )] = Pr[G0]

Game G1: Introducing the simulator. In this game we move the whole
execution into one machine and call it the simulator SIM. For clarity, in some
cases we write SIMC if the simulator simulates the behaviour of an honest client
and SIMS if he simulates an honest server’s behaviour. We model the adversarial
interference by sending honest party’s messages to the adversary A intended for
the other party. The adversary can alter the message before sending it to the
other party or drop the message, i.e. not send the message at all. This game
change also implies that SIM implements the random oracles H1 −H6 and runs
the execution with actual passwords as input. We will change the simulation
to work without passwords in the upcoming games. In this game the random
oracles are simulated by lazy sampling of output values. That is, for any new
input query to Hi (i = 1, . . . , 6,) SIM answers with a value chosen uniformly at
random from the output domain D(Hi) of Hi. No re-programming operation is
yet needed. The changes are only syntactical and thus

Pr[G0] = Pr[G1]

Game G2: Abort on collisions of a random oracle. For i = 1, . . . , 6,
the simulator aborts if a collision occurs in Hi, i.e. if SIM samples an answer for
a fresh Hi query that he already gave before. Note that without collisions two
honest parties will always output matching (respectively differing) session keys
if both, passwords and party identifiers, match (respectively differ). Z can only
make a polynomially bounded number lHi

queries to each hash function Hi and
the size of the output domain is p− 1 for H1, H5 and H6, p for H2 and H3, and
2λ for H4. Since p ≈ 2λ, the probability of an abort is therefore negligible in λ
by the birthday bound. Thus, G2 is computationally indistinguishable from G1:

|Pr[G2]− Pr[G1]| ≤
l2H1

p− 1
+

l2H2

p
+

l2H3

p
+

l2H4

2λ
+

l2H5

p− 1
+

l2H6

p− 1

Game G3: Simulate protocol execution between two honest parties.
In case both parties are honest and no message gets altered by the adversary,
the simulator uses random protocol values to simulate the protocol similar to
the simulator in SRPbase.

Changes to the simulation: In (C2), if all flows are oracle-generated, the
protocol messages A and MC

1 are sampled uniformly at random from F∗
p and Fp,

respectively. The simulator distinguishes oracle-generated messages from non-
oracle-generated messages by keeping record of his simulated messages. In (S3),
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if all flows are oracle-generated he performs a password check using his knowledge
of both parties’ private inputs. If their passwords match, he chooses MS

2 and KS

uniformly at random from the corresponding domains, otherwise he sets them
both to ⊥. In (C4), if SIMC receives an oracle-generated flow MS

2 ̸= ⊥, he sets
KC := KS.

Indistinguishability argument: We only change the simulation in case there
is no active corruption. The behaviour of honest parties is the same in both
games, so the only way for an adversary to distinguish the two games is by
noticing the difference in the creation of protocol values A,MC

1 ,M
S
2 ,KC and KS.

A is indistinguishable since we only removed the simulator’s knowledge of a such
that A = ga. The other values are outputs of the random oracles H2, H3 and H4

in G2 while they are uniformly random values sampled from the same domain in
G3. Thus, in order to distinguish them, the adversary has to compute the value
TC = cdhg(Agux, B − kgx) and query one of the random oracles on the correct
input, i.e. H2 on (A,B, TC), H3 on (A,MC

1 , TC) or H4 on TC. Note that in case of
mismatching passwords, the adversary can only distinguish the games using MC

1

since the other values are set to ⊥. We show that the adversary can compute
the value TC only with negligible probability if the Gap-CDH assumption holds
relative to G even if the adversary knows the parties’ secret inputs pw and pw′.

Therefore, we construct an efficient Gap CDH adversary B1 interacting with
Z. Let (g, gd, ge) denote a CDH challenge. B1 embeds the challenge in the game

as follows: B1 samples x′ r←− Zp−1 and sets (H1, [s, uid, pw
′], x′) where pw′ is the

client’s password. Note that B1 receives both parties’ passwords as input. Then,
B1 sets A := gd and B := ge + kgx

′
for k = H5(p, g). Now we consider the two

cases:

1. pw = pw′: If the passwords of both parties match, B1 samples s
r←− {0, 1}λ,

MC
1

r←− Fp, M
S
2

r←− Fp, K
r←− {0, 1}λ and simulates the protocol with tran-

script (s,B,A,MC
1 ,M

S
2 ) and output (ssid,K) for both parties. Note that in

this case it holds that TS = TC = (B − kgx
′
)d+x′

= gde+ex′
. Now for every

record of the form (H2, [A,B, T ], ∗), (H3, [A,MS
1 , T ], ∗) or (H4, [T ], ∗), B1

uses the DDH oracle to check whether ddhg(g
d, ge, T · ((ge)x′

)−1) = 1. If this

is the case, that is, if T = gde+ex′
, then B1 outputs T · ((ge)x′

)−1 and wins
in the Gap CDH experiment.

2. pw ̸= pw′: If the passwords of both parties don’t match, B1 samples s
r←−

{0, 1}λ,MC
1

r←− Fp and simulates the protocol with transcript (s,B,A,MC
1 ,⊥)

and output (ssid,⊥) for both parties. Again, in a real execution of the pro-
tocol C would compute TC = (B− gx

′
)d+x′

= gde+ex′
and it would hold that

MC
1 = H2(A,B, TC). B1 checks for every record of the form (H2, [A,B, T ], ∗)

whether ddhg(g
d, ge, T · ((ge)x′

)−1) = 1 and outputs T · ((ge)x′
)−1 if this is

the case for T . Thus, if the adversary has queried T = gde+ex′
, then B1 wins

in the Gap CDH experiment.

Hence, if an adversary successfully distinguishes the two games, he can win the
Gap CDH experiment with non negligible probability. We thus have
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|Pr[G3]− Pr[G2]| ≤ AdvGap−CDH

BΦG
1

(λ)

Game G4: Store possible password candidates and impersonation
attempts in H2, limit number of password guesses for client. Whenever
the simulator detects an adversarial password guess or impersonation attempt
in the input to H2, the simulator keeps a record of this. These records will be
used to test the simulated party’s password in a later game. The game aborts
if an input (A,B, T ) to H2 corresponds to two password guesses for different
passwords. This essentially limits the client to one password guess per login
phase in a later game, as he commits to one value T in the protocol.

Changes to the random oracle: While simulating the random oracle H2,
the simulator keeps records for adversarial password guesses and impersonation
attempts. Adversarial password guesses are detected by scanning all records
(H1, [s, uid, pw], x), (H5, [p, g], k) and (H6, [A,B], u). If the simulator finds a com-
bination of these records such that ddhg(Agxu, B − kgx, T ) = 1, he keeps record
(guess, ssid, pw, T,M1) where M1 is his answer to the H2 query. If the simula-
tor finds more than one such combination, the simulation aborts. This ensures
that every T value corresponds to at most one password guess. Additionally, the
simulator keeps records for adversarial impersonation attempt. Therefore, if the
server with file[uid] = (s, v) is compromised, he scans all records (H5, [p, g], k)
and (H6, [A,B], u) to find a combination with ddhg(Avu, B−kv, T ) = 1. If this is
the case, the simulator keeps record (impatt, ssid, pw, T,A,M1) where pw is the
password used by the server during registration and M1 is again the simulator’s
answer to the H2 query.

Indistinguishability argument: This change is only internal unless an abort
happens. The probability of an abort is negligible since in that case it holds that
T = cdhg(Agx1u, B−kgx1) = cdhg(Agx2u, B−kgx2) for two passwords pw1, pw2

with x1 = H1(s, uid, pw1) and x2 = H1(s, uid, pw2). This is the case if

(ga+ux1)DLg(B−kgx1 ) = (ga+ux2)DLg(B−kgx2 )

⇔ a+ ux1

a+ ux2
=

DLg(B − kgx2)

DLg(B − kgx1)

where DLg denotes the discrete logarithm to base g. Since x1 and x2 are chosen
uniformly at random from Zp−1, the probability of this happening is negligible.
Thus,

|Pr[G4]− Pr[G3]| ≤ (lH1
)22−q

Game G5: Abort on impersonation attempt of the client. If the client
tries to login using a stolen password verifier v for which he has not correctly
guessed the password through an offline dictionary attack, the game aborts.

Changes to the simulation: If the simulator receives a non-oracle-generated
flow (A,MC

1 ) in (S3) such that there is a record (impatt, ssid, pw, T,A,MC
1 ) he

aborts the simulation.
Indistinguishability argument: Game 5 is indistinguishable from Game 4 un-

less an abort happens. We show that the probability of an abort happening
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is negligible. The abort happens if there is a compromised password file (s, v),
and the adversary A computed T = cdhg(Avu, B − kv) for u = H6(A,B) and
k = H5(p, g) without querying H1 on (s, uid, pw) for the correct password pw.
The probability of this happening is negligible if the CDH assumption holds in
Fp.

To show this, we construct an efficient CDH adversary B2 interacting with
Z. Let (g, gd, ge) denote a CDH challenge. B2 embeds the challenge in the game
by setting v = gd and B = ge + kgd. Note that in this scenario the adversary
never queries H1 on the correct password, so the simulation is indistinguishable
from G5 even though the reduction does not know d. Assume that there is an
adversary who can compute T1 = cdhg(Avu1 , B−kv) for u1 = H6(A,B). By the
Forking Lemma [12], the adversary on the same random tape can also compute
T2 = cdhg(Avu2 , B − kv) for different random oracle output u2 = H6(A,B).
B2 can then combine both intermediary session keys to extract a CDH tuple as
(T1/T2)

1/(u1−u2) and win the CDH challenge. If B2 chooses one of the queries
to H2 at random to extract Ti in each case, then B2 wins the CDH challenge
with non-negligible probability. Thus, the probability of an abort happening is
negligible under the CDH assumption.

|Pr[G5]− Pr[G4]| ≤ l2H2
·AdvCDH

BΦG
2

(λ)

Game G6: Limit number of password guesses for server. In this game,
the simulator aborts if there is more than one password guess from the adversary,
which limits the server to one password guess per login phase.

Changes to the random oracle: The simulator aborts if there are two records
(guess, pwi, Ti, ∗, ∗) and (guess, pwj , Tj , ∗, ∗) such that Ti ̸= Tj for the same ses-
sion.

Indistinguishability argument: The change is only noticeable if the simulator
aborts. We show that this happens only with negligible probability if the aSDH
assumption holds in Fp. Therefore, we construct an efficient aSDH adversary
B3 interacting with Z. Let (g,X,∆) denote an aSDH challenge. B3 embeds the
challenge in this game as follows: B3 randomly chooses two out of all H1 queries
made by the adversary. Let xi := H(s, uid, pwi), xj := H(s′, uid, pwj) be the
simulator’s output to these queries (note that s = s′ is possible, and pwi, pwj

are the two password guesses of A). The simulator then sets k := ∆/(gxi − gxj )
as output to query H5(p, g) and sets A := X as the honest client’s message
in the protocol. The simulation aborts if there are two values Ti, Tj (which the
adversary captures through its DDH oracle) such that Ti = cdhg(Agxiu, B−kgxi)
and Tj = cdhg(Agxju, B − kgxj ). Defining Y := B − kgxi , it holds that Ti =
cdhg(Xgxiu, Y ) and Tj = cdhg(Xgxju, Y + ∆), hence the adversary wins the
aSDH experiments with output (Y, Z1, Z2) where Z1 = Ti/cdhg(g

xiu, Y ) and
Z2 = Tj/cdhg(g

xju, Y +∆). The probability of this event happening is therefore
negligible if the aSDH assumption holds in Fp. Thus it holds that

|Pr[G6]− Pr[G5]| ≤ (lH1
)2AdvGap−aSDH

BΦG
3

(Fp)
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Game G7: Simulate honest server. In this game, the simulator uses the
records stored in game 4 to extract a password from the received messages and
test it against the server’s password.

Changes to the simulation: In (S1) the simulator picks B as a random ele-
ment from Fp and aborts if B = kv for k := H5(p, g). In this game, the sim-
ulator still knows the correct value of v and can trigger the abort. In a later
game, the simulator is only able to trigger the abort if the server is compro-
mised in which case he knows v. However, the probability of an abort is negli-
gible. After receiving (A,MC

1 ) in (S3), the simulator checks if there is a record
(guess, ssid, pw, T,A,M1). If this is the case and if the password matches the
server’s password he sets MS

2 := H3(A,MC
1 , T ) and KS := H4(T ). In every other

case, he sets (MS
2 ,KS) := (⊥,⊥).

Indistinguishability argument: If (A,MC
1 ) is constructed as per the protocol,

the simulator is able to extract the adversary’s password and simulate the pro-
tocol indistinguishably. If (A,MC

1 ) is not constructed as per the protocol, then
the simulator sets (MS

2 ,KS) := (⊥,⊥) which is also an indistinguishable simula-
tion of the protocol. Recall here that the sid and ssid are prefixed to H2 inputs,
which prevents the attacker from passing off a valid MS

2 from a different ssid′.
Hence, G6 and G7 are indistinguishable unless an abort happens. Since v = gx

is initialized with a random x
r←− Zp−1 chosen by the simulator, the probability

that B = kv and therefore an abort in game G7, is negligible. Thus, it holds
that

|Pr[G7]− Pr[G6]| ≤
1

p

Game G8: Simulate honest client. In this game, the simulator makes use
of the records stored in game G4 to simulate the client. By using these records
he can extract a password guess or detect an impersonation attempt from the
messages received. This password check is actually performed in a H2 query.
The simulator can test the extracted password against the client’s password and
adjust the output of the H2 query accordingly.

Changes to the simulation: In (C2), the simulator samples random values
A,MC

1 also in the case that the message received in (C2) is non-oracle generated.
In (C4), upon receiving a non-oracle-generated flow MS

2 the simulator checks if
there is a record (H3, [A,MC

1 , T ],M
S
2 ) and if H2(A,B, T ) = MC

1 . If this is the
case, the simulator sets KC := H4(T ), and KC := ⊥ otherwise.

Changes to the random oracle: If there is a query to H2 where the simulator
would store a record (guess, ssid, pw, T, ∗), the simulator first checks if he needs
to “backpatch” the output of the random oracle query to match the client’s
randomly chosenMC

1 . If the client’s password matches the password pw extracted
from the query he programs the output to MC

1 , otherwise he picks a different
MC

1 uniformly at random. The same backpatching is also performed for records
(impatt, ssid, pw, T, ∗, ∗).

Indistinguishability argument: The handling of H2 queries ensures that the
games are indistinguishable unless the adversary manages to guess the output of
one of the hash functions without querying the random oracle. The probability of
this happening is negligible. Furthermore, recall that the sid and ssid are prefixed
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to H3 inputs, which prevents the attacker from passing off a valid MS
2 from a

different ssid′. Thus, it holds that

|Pr[G8]− Pr[G7]| ≤ negl(λ)

Game G9: Change password file creation and StealPwdFile inter-
action.

Changes to the simulation: This change is identical to the change made in
G5 of the proof for Theorem 1.

|Pr[G9]− Pr[G8]| ≤ lssid · 2−q

Game G10: Introduce F , password check is handled by F , simulator
does not receive private inputs. In this game we add an ITI F external to
the simulator. F has all interfaces of FaPAKE and manages all password checks
in the protocol. Furthermore, the ideal functionality provides the session keys to
the parties. We thus remove the simulator’s access to the parties’ private inputs.

Changes to the simulation: We introduce functionality F who handles all
password checks via TestPwd queries for passwords that were extracted from
messages and NewKey queries in the simulation of honest parties with all flows
oracle-generated. An Impersonate query is used to check the password for records
impatt. The simulator sends out the keys to the parties via NewKey queries and
does not receive the private inputs of the honest parties. The records impatt are
stored without the passwords.

Indistinguishability argument: The changes are only internal, and thus

Pr[G9] = Pr[G10] = Pr[Ideal(FaPAKE,SIM
ΦG )]

G10 is identical to the ideal execution which concludes the proof.
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