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Abstract. Accurate extraction of biomolecular named entities like genes
and proteins from medical documents is an important task for many clin-
ical applications. So far, most gene taggers were developed in the domain
of English-language, scientific articles. However, documents from other
genres, like clinical practice guidelines, are usually created in the re-
spective language used by clinical practitioners. To our knowledge, no
annotated corpora and machine learning models for gene named entity
recognition are currently available for the German language.
In this work, we present GGTweak, a publicly available gene tagger for
German medical documents based on a large corpus of clinical practice
guidelines. Since obtaining sufficient gold-standard annotations of gene
mentions for training supervised machine learning models is expensive,
our approach relies solely on programmatic, weak supervision for model
training. We combine various label sources based on the surface form of
gene mentions and gazetteers of known gene names, with only partial
individual coverage of the training data. Using a small amount of hand-
labelled data for model selection and evaluation, our weakly supervised
approach achieves an F1 score of 76.6 on a held-out test set, an increase
of 12.4 percent points over a strongly supervised baseline.
While there is still a performance gap to state-of-the-art gene taggers for
the English language, weak supervision is a promising direction for ob-
taining solid baseline models without the need to conduct time-consuming
annotation projects. GGTweak can be readily applied in-domain to
derive semantic metadata and enable the development of computer-
interpretable clinical guidelines, while the out-of-domain robustness still
needs to be investigated.

Keywords: Clinical NLP · Gene Named Entity Recognition · German
Language · Computer Interpretable Guidelines.

1 Introduction

Molecular Tumor Boards (MTBs) become increasingly established in cancer care
and necessitate time-intensive research for the latest scientific evidence [13].
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Einige Fallberichte und –serien berichteten über eine gute Wirksamkeit von Imatinib bei KIT-mutierten 

Schleimhautmelanomen.

Hierbei handelt es sich um einen Hemmstoff mehrerer Rezeptor-Tyrosinkinasen

wie des Fusionsproteins Bcr-Abl, des PDGF-Rezeptors und des Stammzellfaktor-Rezeptors c-KIT.

[..]

Zwischen den Gruppen wurden über einen Zeitraum von einem Jahr die Sterblichkeit, der 

Serumspiegel des Tumormarkers CA125, Nebenwirkungen und Radiologiebefunde dokumentiert.

CIViC, Entrez, OMIM, COSMIC

Protein Families

Entrez Protein, Protein Families Protein Families Entrez

HGNC
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Fig. 1. Examples of gene / protein mentions (bold) in German oncology guidelines
and labelling functions (blue) matching partially overlapping subsets of these mentions.

Therefore, specialized language technology is needed to extract molecular in-
formation from the medical literature and make insights from oncogenetics ac-
cessible in a scalable manner. For most downstream processing, Named Entity
Recognition (NER) is an essential building block [19]. In this work, we consider
the detection of gene and protein mentions, as shown in Fig. 1. We follow common
practice in biomedical text mining and treat these entities interchangeably [6].

State-of-the-art approaches for gene NER typically rely on supervised ma-
chine learning models, trained on text corpora manually annotated by subject-
matter experts. As such strong supervision is expensive to obtain, different
sources of external knowledge, heuristics, and other kinds of noisy labels can
be exploited in addition. Recently, such weakly supervised methods were suc-
cessfully applied for clinical NER and can approach the performance of models
trained with a comparable amount of strong supervision [9].

In this work, we propose German Gene Tagging with Weak Supervision
(GGTweak), the first publicly available NER model for genes and proteins
in German medical text. It is based on large amounts of unlabelled text in the
German Guideline Program in Oncology NLP Corpus (GGPonc) [3] and re-
quires only a minimal amount of hand-labelled data for model selection and
evaluation. We use the skweak framework to implement a range of labelling
functions (LFs), and combine their predictions to train a Transformer-based
NER model [17]. The contributions of this work are: (1) a dataset with novel
gold-standard annotations of gene mentions for a subset of GGPOnc, (2) an im-
plementation and detailed analysis of various LFs for finding gene mentions and
(3) a freely distributable neural model for gene tagging trained on aggregated
weak labels. We make the source code and trained model publicly available [12].

The remainder of this work is structured as follows: In Sect. 3, we share our
weak supervision methodology and incorporated data. In Sect. 4, we evaluate
our LFs and model performance with respect to a small amount of gold-standard
annotations. We discuss our findings in Sect. 5 and conclude our work with an
outlook in Sect. 6.
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Table 1. A selection of biomedical text corpora annotated on the level of molecular
entities as well as the performance of recently published gene taggers evaluated on
these corpora. Note: The annotation schemes vary considerably and may include more
fine-grained distinctions of subclasses than we use.

Corpus Lang. Sent. NER Model F1 Score Year

CRAFT [1] EN 21K HunFlair [25] 0.722 2020
BC2GM [23] EN 20K DTranNER [14] 0.845 2020
ProGene [8] EN 36K Flair [8] 0.850 2020
JNLPBA [7] EN 19K BioELECTRA [20] 0.802 2021
PharmaCoNER [11] ES 14K BioBERT v1.1 [24] 0.899 2021

2 Related Work

In Tab. 1, we give an overview of corpora annotated with biomolecular entities
and the respective performance of NER taggers. There are a number of English-
language corpora based on scientific articles. In addition to such gold-standard
corpora, silver-standard annotations can improve the performance of fine-tuned
NER taggers when used for transfer learning [10]. Given the large amount of
existing annotated gold-standard corpora for the English language, such silver-
standard annotations can be obtained by applying existing NER taggers to large,
unlabelled corpora. In contrast, non-English corpora with a clinical focus and
annotations of biomolecular entities are scarce, with few exceptions, such as
Spanish-language clinical case reports in PharmaCoNER [11].

For the German language, there is a general shortage of annotated medical
text corpora and none of the few existing ones provides annotations of genes
or proteins [27]. We suppose that the genres of clinical texts used so far (often
discharge summaries) did not contain any particularly rich molecular informa-
tion. Moreover, each additional annotation layer complicates annotation and re-
quires specialized domain expertise. Earlier experiments with dictionary-based
silver-standard annotations for genes on GGPonc 1.0 resulted in an extremely
large number of false positive results [2]. In this work, we aim to alleviate this
shortcoming by combining different sources of weak labels instead and train a
statistical NER tagger on top of them.

Recently, a number of solutions for integrating multiple label sources as pro-
grammatic, weak supervision in structured prediction tasks like NER have been
proposed. Fries et al. use the Snorkel framework to integrate labels obtained
from a large set of medical terminologies [9,21]. Extensions to the generative
label model introduced by Snorkel employ structured probabilistic models, like
HMMs, which allow modelling the dependencies of adjacent token labels [22,17].
For this work, we use the skweak framework, as it employs an HMM to model
dependencies across labelled tokens. Due to its tight integration with spaCy,
the resulting pipeline can be easily shared and integrated into downstream ap-
plications [18].
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Fig. 2. Overview of GGTweak. Rectangular boxes represent datasets, while round-
cornered boxes indicate process steps. Starting from a large unlabelled dataset, we
apply seven LFs that cover subsets of gene mentions. Their outputs are aggregated
using a Hidden Markov Model (HMM), resulting in a weakly labelled dataset, which
is used to train a Transformer-based NER model. A small set of manual annotations
are used as development and test data for error analysis and model selection. For
comparison, we also train a strongly supervised NER model on the gold standard
development set and evaluate it on the test set.

3 Methods

This section describes the used dataset and the weak supervision approach based
on LFs and their aggregation, outlined in Fig. 2.

3.1 Dataset and Annotation

As a dataset, we use the freely distributable GGPonc corpus. Originally, the
complete corpus contains 1,877K tokens in 10.19K documents. For compatibility
with skweak, sentence segmentation and tokenization was carried out again
using the spaCy model de core news md.

We randomly sampled 2,000 sentences from the subset of documents that
contain at least one gene mention according to the silver-standard annotations
in GGPOnc 1.0 [2]. These sentences were then manually annotated with gene
mentions using the INCEpTION tool [15]. Annotation was performed by a
single medical student with extensive experience in linguistic annotation. The
amount of hand-labelled data was chosen a priori such that a single annotator can
annotate it in around one work week. In total, 822 mentions of genes and proteins
were annotated. The manually annotated documents are used as development
and test sets (1,000 sentences each). The remaining 83,624 sentences are labelled
automatically with weak supervision and used as training data.

3.2 Labelling Function Development

We apply the following LFs based on external knowledge bases, naming con-
ventions for gene names, and other heuristics to programmatically annotate the
unlabelled part of the corpus with automatically induced labels. For implemen-
tation details, please refer to the interactive notebooks in our source code repos-
itory [12].
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Gazetteer-based LFs The following LFs are based on gazetteers, i.e., they
match tokens to entries in a list of known gene and protein names.

– CIViC: Gazetteer (case-sensitive) based on canonical gene names in the
Clinical Interpretation of Variants in Cancer database, a community knowl-
edge base of cancer genes and variants (Examples: SMO, VEGF, TP53 ).

– Entrez: Gazetteer (case-sensitive) based on the aliases of all genes in CIViC
that occur in Entrez Gene, the gene-specific database of the National Center
for Biotechnology Information [5]. Since many gene aliases can also occur as
common German terms in other contexts (e.g., the pronoun “er”), we further
filter by the part-of-speech tag of matched tokens (NOUN, PROPN, or X)
(Examples: p16, B-Raf, HER-2 ).

– OMIM: Gazetteer (case-insensitive) based on the Online Mendelian Inher-
itance in Man database, a comprehensive catalogue of human genes and
genetic disorders (Examples: PALB2, TNF, BRCA1 ).

– COSMIC: Gazetteer (case-sensitive) based on the Catalogue of Somatic
Mutations in Cancer database, a knowledge base of somatic mutations and
additional information associated with cancer in humans (Examples: BTK,
IGHV, BRAF ).

– Proteins: Custom gazetteer (case-sensitive) sourced from the GermanWiki-
pedia overview page of proteins, manually refined by exploration of the unla-
belled training part of the dataset [26] (Examples: PD-L1, Cyclooxygenase,
Uridin-5’-Diphospho-Glucuronosyltransferase).

Rule-based LFs Another type of LF is based on heuristics that take the surface
forms of tokens into account, e.g., a particular composition of uppercase letters
and numbers, as well as specific prefixes and suffixes.

– HGNC: Heuristic derived from the HUGO Gene Nomenclature Committee
naming conventions for genes, using regular expression. As matching short
gene names based on this convention would lead to many false positives, we
instead rely on a case-insensitive lookup in CIViC for these genes (Examples:
CA125, CYP19, mTORC1 ).

– Protein Families: Heuristic based on common suffixes describing groups
of proteins, e.g., “-rezeptor”, “-kinase” or the “-RAS” family
(Examples: Rezeptor-Tyrosinkinasen, MAP-Kinase, k-ras).

3.3 Labelling Function Aggregation

The LFs were designed such that they cover specific subsets of gene mentions in
our corpus (as shown in Fig. 1). Therefore, the partial and potentially conflicting
outputs of these LFs are aggregated using the HMM label model from skweak,
which emits a single label per token, accounting for correlations and conflicts
among the LFs. We fit the HMM on the LF outputs on the training set. The
HMM predictions on the 83.6K sentences of the training set result in more than
5,617 automatic annotations of gene mentions.
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3.4 Named Entity Recognition Models

We can use the trained HMM to predict labels for unseen instances, which we
do for comparison on the development and test set. However, in order to ob-
tain a model that can potentially generalize beyond our LFs, we train another
Transformer-based NER model with the spaCy framework on top of the HMM
output. To this end, we use the aggregated, weakly labelled data for model train-
ing and the gold-standard development set for model selection. The NER model’s
encoder is initialized from the BERT checkpoint bert-base-german-cased,
which was pre-trained on German general domain and legal text. We use an
initial learning rate of 10−5, with 250 warmup steps and linear learning rate de-
cay. For all other hyperparameters, we use the default values provided by spaCy.
The model was trained for 20,000 optimization steps, which takes about 2 hours
on a single Nvidia A40 GPU. As the final model, we choose the checkpoint that
achieves the maximal F1 score on the development set.

For comparison with the traditional setting of building NER taggers, we
train another model with the same architecture and hyperparameters using the
development set as training data, i.e., with just the small amount of available
strongly supervised data. The final evaluation of both models is performed on
our initially defined test set.

4 Results

The results of the incorporated LFs, the HMM and NER models are presented in
Tab. 2. Since we do not have access to ground truth labels on the training set, we
estimate the contributions made by each LFs through coverage and overlap. For
the development and test set, we can compare all LFs and aggregated models to
gold-standard labels.

4.1 Labelling Function Analysis

All LFs achieve high levels of precision and a coverage of up to 40.6% of the
targetted labels. The rule-based LFs show small overlap (38.2% and 36.9%), i.e.,
more than 60% of the mentions they label are unique to these LFs. While the
coverage of the suffix-based LF for protein families is low, it has a non-negligible
recall on the development set (7.6%), that, combined with the uniqueness of its
labels, has a positive impact on the final model.

Considering synonyms from Entrez Gene drastically improves coverage on
the training set compared to CIViC, at the expense of a small decrease in
precision. Likewise, OMIM as the biggest database has high coverage and only
50.0% overlap with other LFs. In contrast, CIViC and COSMIC both share
high overlap but rather low coverage. After aggregation, the combined labels
from the HMM result in a slightly lower precision compared to the individual
LFs, but provide a better recall and F1 score.
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Table 2. Performance metrics of each LF and derived statistical models (coverage =
number of tokens labelled by one LF divided by the number of tokens labelled by all
LFs, overlap = number of tokens labelled by one LF that are also labelled by any other
LF divided by the total number of tokens labelled by this LF). The strongly supervised
model was trained on the development set and is therefore only evaluated on the test
set.

Training Development Test
Coverage Overlap Pr. Rec. F1 Pr. Rec. F1

Gazetteers
CIViC .210 .980 .944 .465 .624 .841 .473 .606
Entrez .406 .686 .902 .503 .646 .890 .608 .722
OMIM .344 .500 .926 .524 .670 .818 .493 .616
COSMIC .223 .930 .928 .436 .594 .854 .473 .608
Proteins .137 .699 .934 .120 .212 .975 .112 .200

Rule-based
HGNC .365 .382 .833 .305 .446 .836 .280 .420
Protein Families .018 .369 1.000 .076 .142 .250 .012 .022

HMM - - .841 .680 .752 .789 .689 .736
GGTWEAK - - .855 .720 .782 .819 .718 .766
Strong Supervision - - - - - .558 .758 .642

4.2 Evaluation Against Gold-Standard Annotations

The final GGTweak NER model achieves an F1 score of 78.2% on the develop-
ment set and 76.6% on the held-out test set. Moreover,GGTweak performs 12.4
percent points better than the model trained with strong supervision in terms of
F1 score. While the strongly supervised model has slightly higher recall (+4 pp.),
GGTweak shows dramatically higher precision (+26.1 pp.). GGTweak also
outperforms the HMM consistently by a margin of 3 pp., highlighting the added
value of transfer learning through pre-trained Transformer weights.

5 Discussion and Limitations

The foundation of our work is GGPOnc, a corpus of German oncology guide-
lines. While extensive in volume, it is imbalanced regarding the presence of
molecular entities, i.e., most sentences do not contain mentions of genes or pro-
teins. We note that the HMM implementation provided by skweak is particu-
larly sensitive to false positives. For these reasons, it is challenging to develop
high-precision LFs while maintaining high coverage. Although we have not per-
formed exhaustive ablation experiments, we notice that additional LFs increase
the recall of the final model, usually at the expense of decreased precision.

Interestingly, the performance of the final model drops only slightly when
evaluating it on the test set in comparison to the development set, although the
latter was used during LF development. This indicates a certain generalizability
of the model beyond the scope of the LFs. However, we note that the considered
text genre provides only a partial representation of the different notations for
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gene names that may occur in clinical documents. Both aspects impact the
generalization performance of our model and need to be further investigated.

There still remains a performance gap to state-of-the-art gene taggers for
English biomedical literature, which often achieve F1 scores significantly larger
than 80% (see Tab. 1). However, we have to bear in mind that the research com-
munity has had access to annotated English-language corpora for a much longer
time. Furthermore, the underlying problem might be intrinsically harder for the
German language due to its grammatical intricacies, such as the prevalence of
compound nouns. We rely on several upstream components in spaCy for basic
linguistic tasks, such as tokenization and POS tagging. Although these general-
domain solutions appear to work reasonably well onGGPOnc, errors introduced
by them might influence the performance of our LFs. Lastly, we have not per-
formed any optimization of hyperparameters of both the HMM label model and
the Transformer-based NER training, which would likely have a positive impact
on model performance.

6 Conclusion and Future Work

In this work, we presented a novel approach for gene tagging in German medical
text. With an F1 score of 76.6%, we could demonstrate the viability of weak
supervision for this task with substantially decreased demand for labels from
human experts. Importantly, GGTweak outperforms a model that was trained
on the same amount of gold-standard labels that we used for model selection
only.

As future work, we plan to add more diversely targetting LFs and explore
other Transformer checkpoints, e.g., domain-specialized models for the German
[16,4] or other languages, as shown by Sun et al. [24]. An important downstream
task is the normalization of gene mentions to identifiers in knowledge bases, such
as Entrez Gene [5]. We expect that this will be challenging, as German terms
relating to genes and more generally to groups of genes might not have easily
identifiable aliases in such knowledge bases.

We believe that more annotated language resources in conjunction with weak
supervision can support the development of high-quality gene taggers for clinical
documents. Our findings should be readily applicable to other languages, as
clinical guidelines are a widely available text genre and most of our LFs do not
rely on language-specific resources.
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