Hasso-Plattner-Institut
 
    • de
 

Proceedings

Detecting Maximum Inclusion Dependencies without Candidate Generation

Inclusion dependencies (INDs) within and across databases are an important relationship for many applications in data integration, schema (re-)design, integrity checking, or query optimization. Existing techniques for detecting all INDs need to generate IND candidates and test their validity in the given data instance. However, the major disadvantage of this approach is the exponentially growing number of data accesses in terms of the number of SQL queries as well as I/O operations. We introduce Mind2, a new approach for detecting n-ary INDs (n > 1) without any candidate generation. Mind2 implements a new characterization of the maximum INDs we developed in this paper. This characterization is based on set operations defined on certain metadata that Mind2generates by accessing the database only 2 x the number of valid unary INDs. Thus, Mind2 eliminates the exponential number of data accesses needed by existing approaches. Furthermore, the experiments show that Mind2 is significantly more scalable than hypergraph-based approaches.
2016_Shaabani_DEXA.pdf
Weitere Informationen
Tags Data_analysis Data_integration Data_mining Data_profiling Inclusion_dependency Mind2 its
BibTeX

Ausgewählte technische Berichte

  • 02-07 Vorwerk / Jiang / Meinel
    Generieren von diagnostischen 3D-Objekten aus deformierten 2D-DICOM Bildern
  • 01-07 Gollan / Vorwerk / Birkel / Meinel
    Studie Teleradiologie: Umfrage unter Akut-Krankenhäusern Baden-Württemberg 2000/2001
  • 01-06 Vorwerk / Meinel
    Die Bedeutung des DICOM Standards für das europäische Gesundheitswesen
  • 00-09 Vorwerk / Losemann
    Modell für den Einsatz von Java Cards im Gesundheitswesen

Telemedizinführer Deutschland