
Introducing Hands-On Experience to a Massive
Open Online Course on openHPI

Christian Willems, Johannes Jasper, and Christoph Meinel
Internet Technologies and Systems Group

Hasso Plattner Institute for IT Systems Engineering
Potsdam, Germany

Email: {christian.willems, meinel}@hpi.uni-potsdam.de,
johannes.jasper@student.hpi.uni-potsdam.de

Abstract— Massive Open Online Courses (MOOCs) have be-

come the trending topic in e-learning. Many institutions started
to offer courses, either on commercial platforms like Coursera
and Udacity or using own platform software. While many
courses share the concept of lecture videos combined with
automatically assessable assignments, and discussion forums,
only few courses provide hands-on experience. The design of
practical exercises poses a great challenge to a teaching team and
gets even more challenging if these assignments should be
gradable. In the course Internetworking with TCP/IP on the
German MOOC platform openHPI, the teaching team conducted
an experiment with three practical tasks that were implemented
as assessed bonus exercises. The exercise design was limited by
the constraint that the platform software could not be adapted
for these exercises and that there could be no central training
environment to perform these assignments. This paper describes
the experiment setup, the challenges and pitfalls and evaluates
the result based on statistical data and a survey taken by the
course participants.

Keywords—MOOC, hands-on experience, online assessment,
TCP/IP, e-mail, DNS.

I. INTRODUCTION
Starting from 2011, a new concept of Massive Open Online

Courses (actually xMOOCs, see [2]) emerged from open online
courses at Stanford University, which, like a traditional
university lecture, offers a well-defined body of knowledge. In
general, MOOCs draw on three types of resources for the dis-
semination of this knowledge to a massive audience: (1) video
lectures, mostly segmented into small pieces, and presented in
an engaging and entertaining manner; (2) interactive quizzes
that allow immediate exercise of the learning content; and (3)
communication tools efficiently managed by the learning
community, that allow to highlight, discuss and solve relevant
questions.

openHPI1 is a platform for MOOCs of this type, hosted at
the Hasso Plattner Institute (HPI) in Potsdam, Germany. The
first two courses on this platform have targeted two very
distinct audiences: while the first course, In-Memory Data
Management, was offered in English and dealt with an
advanced topic in database technology, the second course,
Internetworking mit TCP/IP was targeting a German-speaking
non-specialist audience and offered an introduction to

1 accessible at https://openhpi.de/

networking technology. Both courses have met with substantial
interest from the respective target audience: 13,126 learners
registered for the In-memory course, from which 4,068 actively
participated and 2,137 received the graded certificate of
successful completion. The Internetworking course had 9,891
registered learners, with 2,726 active participants, and 1,635
successful completions with graded certificates.

When reviewing the first course, we could observe a
demand for hands-on experience. The teaching team of the In-
Memory course invited the participants to take part in a short
survey. About 440 students answered to a free text question on
feature requests: “Which features did you miss? Would you
propose any additional community features? Please consider
the overall website, as well as the videos, quizzes and the
forum.” A remarkable number of users asked for practical
examples and exercises, which is outlined with the following
example statements:

“Some practical, hands-on exercises on SanssouciDB
would be very helpful [...]”

“More practical examples e. g. run SQL and see [...]
how the statement was processed.”

 “It would be awesome to have practical assignments.”

The teaching team that supervised the second course took up
this suggestion and implemented three bonus exercises that
could only be solved practically. These exercises still build on
the technical capabilities of the openHPI platform; no major
modifications were made to the software.

The paper at hand describes the setup for this experiment as
well as the teaching team’s experience. In the following
sections, we describe the capabilities and limitations of
openHPI assessment tools and motivate the need for hands-on
exercises from an academic point of view. Section II describes
the experiment setup in detail. This covers the design of the
practical assignments as well as the learning objectives.
Concretely, we had exercises on Packet Inspection with Wire-
shark, DNS Resolution, and E-mail Transport with SMTP.
Furthermore, we highlight limitations and possible refinements
of the chosen approach. Section III presents some numbers on
the commitment of the course participants concerning these
hands-on exercises, enriched with results from an evaluation
survey taken by more than 1,000 course participants of the

Internetworking course. Section IV summarizes the results and
gives an outlook on future activities.

A. Tests and Assessment in openHPI Courses
The current (and first) version of the openHPI platform

software is a massively modified fork of the open-source
learning management system Canvas2. While we customized
many parts of the platform, removed lots of functionality and
added own components, the original quiz environment
remained nearly untouched.

The sophisticated environment allows for easy creation of
automatically verifiable quizzes that we use for self-tests,
homework assignments and the final examination. Each of the
lecture videos, which build the central part of the course
contents, is associated with a self-test covering its topic. These
tests should allow the learners to verify their understanding and
to monitor their learning progress. Thus, self-tests can be taken
as often as necessary; the results do not count in for the overall
course score. One homework assignment is issued each course
week and has to be solved until the beginning of the following
week. These homework assignments have a strict time limit
(e.g. one hour) and can only be submitted once. The user
frontend of the platform’s quiz environment implements the
enforcement of these limitations. Homework assignments come
with points that count for the overall score. Precisely, on
openHPI the cumulative homework assignments for 6 course
weeks are awarded with the same amount of points as the final
examination. Course participants must gain at least 50% of the
overall maximum score to qualify for an openHPI certificate.

Due to the large number of participants in our courses, all
assignments must be assessable in an automatic manner. This
constraint limits the possible question types to multiple
choice/multiple answer, true-false, pop-up/drop-down, fill-in
the blanks, matching, and ordering (plus variants). These types
of questions allow for a very limited degree of freedom
concerning the answers. In contrast, questions with answers in
essay style provide way more flexibility but can only be graded
manually. Other MOOC platforms provide facilities for peer
reviewing (e.g. Coursera, see [4]), where students revise each
other’s essay submissions in a double-blind review process.
Due to the high number of inactive enrolled students, the
difficulty to formulate objective criteria for consistent review
quality, and other issues [5], openHPI currently abandons this
option.

B. Hands-On Learning and E-Assessment
The implementation of systems that allow the assessment

of practical exercises can be a great challenge for course and
platform designers. There are numerous solutions for courses
and online laboratories in the domain of programming (e.g.
Codeacademy3, CodingBat4, or several Coursera offerings on
programming5), and databases (e.g. Stanford’s online course
Introduction to Databases, known as DB-Class6).

2 see https://github.com/instructure/canvas-lms
3 see http://www.codeacademy.com/
4 see http://codingbat.com/
5 see e.g. „An Introduction to Interactive Programming in Python“,

available at https://www.coursera.org/course/interactivepython
6 see http://class2go.stanford.edu/db/

The programming classes usually provide the possibility to
code in a browser environment, where an interpreter or com-
piler runs on the server and provides feedback to the user. The
feedback can also be enhanced with hints or explanations that
help the students to understand what went wrong. Assessment
can be done by

• automatic inspection of the submitted code fragments,

• evaluation of the program output when being compiled
and/or executed,

• running the submitted code against unit tests,

or a combination of several of these methods. Database classes
can follow a similar design for the practical training
environment but would replace interpreters and compilers by
an SQL command prompt, e.g. of a lightweight SQLite
database. Running these training environments in a cloud-
driven infrastructure allows easy adoption of resources for
MOOC-scale classes.

These kinds of assessable hands-on exercises are limited to
specific domains of computer science. More general
approaches for laboratory environments from the past years
usually build on virtualized computer labs that provide remote
access to virtual machines running on a central server
(respectively the cloud) or are distributed on removable media.
These labs can provide pre-configured machines with operating
systems and installed software or even computer networks.
Examples for this kind of training environments are summa-
rized in [1]. Nevertheless, the majority of the research projects
on virtual lab environments for education do not cover the
question of automatic assessment of practical exercises. The
authors of [3] for example implemented a service that allows
the students to evaluate their practical work by means of a
scripted test procedure: if the assigned task was about
configuring a firewall to restrict the access on certain ports, the
test script would run a port scan against the student’s lab VM
and then parse the port scanner’s output for open and closed
ports. In [7], the authors propose a more generic approach for
the automatic assessment of hands-on exercise assignments:
the lab management system asserts a student- and task-specific
pre-condition that is configured inside a training machine
before the student can get access. During the exercise, the
student can reveal a “secret” that is affected by the pre-
condition and thus proof the successful completion of the
practical task by submitting the unique secret value to a quiz
environment.

For the practical exercises in openHPI, we follow a similar
approach, but do not implement a centralized training lab –
openHPI students had to perform the exercises on their own
computers.

II. INTRODUCING HANDS-ON EXERCISES IN OPENHPI
The general idea of hands-on exercises for the Internet-

working course on openHPI was motivated by the teaching
team’s experience with on-campus courses and seminars. The
instructional elements of the course (lectures, slides, textbook
excerpts) give an abstract view on the technical aspects of e.g.
network protocols. These can easily be transferred to the real
world just by inspecting the messages that are sent over a

network. This applies for all layers of the TCP/IP reference
networking stack: when knowing about the protocols and their
headers it is straightforward to actually “read” realistic
Ethernet packets or ARP messages on the low level, as well as
high level protocols like SMTP (for mail transfer) or Domain
Name resolution messages.

The teaching team designed three practical exercises, which
were about using tools and interpreting real life Internet mes-
sages. The exercise design included a quiz for each assignment
that could only be solved after the practical tasks had been per-
formed. Due to the experimental character of these exercises,
they were treated as voluntary bonus exercises. The points for
these exercises (one third of the points for a regular homework
assignment) did actually count for the overall course score.
However, they were not needed to reach 100% of the overall
score, giving the participants the opportunity to make up for
missing points from regular homework assignments. In the
following, we describe each of the three bonus exercises in
detail.

A. Exercise 1: Wireshark and the IP Identification Field
In this exercise the students were supposed to find out how

the identification field of IP packets is determined on their
system.

The IP identification field (also called IP-ID) is a number
stored in every datagram using the Internet protocol (IP). Its
purpose is to uniquely identify packets in a transmission. This
is necessary when packets need to be fragmented due to size
limitations of the underlying LAN technology. In the process
of reassembling the original packet, all its fragments are accu-
mulated. The IP-ID is used to identify the fragments belonging
to the same original IP packet. The number therefore needs to
be unique to distinguish fragments of different packets. This is
specified in the standard RFC 791 [8]:

“The originating protocol module of an internet
datagram sets the identification field to a value that
must be unique for that source-destination pair and
protocol for the time the datagram will be active in the
internet system.”

It does not, however, specify how this uniqueness is to be
achieved.

The number in the identification field can either be picked
randomly or generated by incrementing the IP-ID of the last
sent packet. This implementation is integrated into the
operating system. The correct answer for this question there-
fore varies, and depends on the system used by the students.
The operating systems we took into consideration for this task
were Microsoft Windows, Apple OS X, Linux and openBSD.
While Windows and Linux increment the IP- ID of outgoing
packets, Mac OS X and BSD-Unix variants pick the numbers
randomly. In this specific task we made use of the
inhomogeneity of the students’ systems to emphasize one of
the learning objectives, which was to demonstrate that
standards can be object to interpretation, and that there can be a
discrepancy between different implementations of the same
specification.

The students were advised to use the packet sniffer Wire-
shark7. A packet sniffer (also called network analyzer) is a tool
capable of capturing data packets that are exchanged on the
local network and of examining their internal structure. The
introduction of this tool gave the students the opportunity to
gain first hand insight into the workings of their local network.
Another learning objective of this task was to show that the
structures and processes introduced theoretically in the lecture
are well applicable to the Internet. A tutorial showing the
required range of functionality of Wireshark and its basic use
was published beforehand in form of a screencast. We offered
tutorials and individual assistance in installing and configuring
the application on the students’ computers. Furthermore, the
students helped each other with technical problems using
openHPI’s discussion forum. The structure of IP datagrams
including the mechanisms of fragmentation and reassembly as
well as the IP-ID header field was explained in the lecture.

In order to solve the task, we expected the participants to
observe packets sent by their computers and create traffic if
necessary. The students had to apply filter rules in order to
reduce the displayed packets to outgoing IP datagrams of one
connection. Thereupon, they were able to examine the header
information of several IP datagrams and look for patterns in the
change of the identification field.

For each combination of the four considered operating
systems and the two possible implementation strategies we
offered a multiple-choice answer. The actual question was How
is the IP identification field value of subsequent packets chosen
on your system? The answer options for each operating system
were incremental and random.

B. Exercise 2: Understanding DNS Resolution
In this exercise the students were supposed to retrieve

information about the Domain Name System from a real live
example.

The Domain Name System (DNS) is a service that provides
a naming scheme for online resources [9]. It enables users to
work with meaningful domain names instead of technical
qualifiers, i.e. IP addresses. The Domain Name System has a
hierarchic structure, in which every level specifies the target
host or service in more detail. The DNS provides a format for
storing associations of domain names and IP addresses in so
called resource records. Servers that are the official owner of a
domain name are called authoritative name servers for their
respective resource record. Other non-authoritative name
servers can temporarily cache this resource record in order to
increase the overall performance of the Domain Name System.
The resolution of a domain such as www.google.com involves
multiple name servers. Each name server either has the
necessary resource record available in its memory and returns
it, or it refers to another name server that is lower in the
hierarchy. If neither applies the requested domain name does
not exist.

At this point one has to differentiate between two types of
name resolution, namely iterative and recursive resolution.
When receiving a query to which it does not have a matching

7 see http://www.wireshark.org/

resource record, a name server working iteratively returns a
reference to another name server. The user then has to repeat
the query to this new name server. A name server working
recursively, in contrast, queries the new name server itself and
only returns the result to the user. Therefore, in a recursive
resolution the user is not able to keep track of the resolution.

Even though the result of a DNS query – the IP address of
the requested resource – is usually constant over time, the
process of resolving a domain name is highly flexible and
depends on numerous factors. The specification of the DNS
offers a variety of flags [9], each inducing slightly different
behavior. Furthermore, a wide range of tools exists for the
various operating systems, each with a different set of features.
Most importantly, the state of the name servers, especially their
caches, is not reproducible. Therefore, an exercise in which the
participants created a DNS query themselves would have led to
incomparable results. Instead, we provided the students with a
file including a stream of packets captured with the sniffer
Wireshark, as introduced in exercise 1 (see II-A). The file
could be opened in Wireshark in order to restore the recorded
stream.

The captured packets were created during the resolution of
the domain name www.google.com. The query was sent
from within the network of the Hasso Plattner Institute. It had
two noteworthy characteristics. On the one hand, the resolver
was instructed to work iteratively, to ensure that all
intermediate steps in the process of the resolution were visible
to the students. On the other hand, the query’s DNS header had
the Authoritative Answer (AA) flag set, which instructs the
resolver to ignore any non-authoritative answers. This prevents
name servers other than the ones from Google (such as servers
within the Hasso Plattner Institute) to provide the requested IP
address.

The captured packets showed that the local resolver initially
required the IP address of a root name server and queried the
name server of the Hasso Plattner Institute. Such a root name
server (a.root-servers.net) then was queried for the IP
address of www.google.com. It returned a reference to an
authoritative name server for the .com top-level domain such as
a.gtld-servers.net. After being queried for
www.google.com, this server returned a reference to a
Google name server (ns1.google.com). This name server is
authoritative for the domain google.com and provided the
user with the required resource record.

The specific questions to the students were the following:

What domain name is resolved in this example? By
inspecting the numerous DNS queries in the recorded stream,
the students were able to see that the Domain Name System
was used to resolve the domain name www.google.com. All
other queries were intermediate steps.

Is the resolution performed iteratively, recursively or
both? As explained above, a recursive resolution is invisible to
the user as it is performed by the name servers themselves. The
fact that every intermediate step of the resolution is visible
within the stream of captured packets indicates that the
resolution was performed iteratively.

In which order are the following name servers involved
with the resolution of the domain name?

• Google’s name servers

• Verisign’s name servers

• the name servers within the Hasso Plattner Institute

• a DNS root name server

As described before, the resolver fist asks the local name server
for a DNS root server. In private networks the local name
server assigned by the Internet service provider. In larger
networks though, there are often private name servers, as is the
case with the Hasso Plattner Institute. In a next step, the DNS
root servers are queried. These refer to name servers
authoritative for the required top-level domain. In this example
Verisign8 runs the servers holding resource records for .com
domains. Those name servers are not authoritative for the
domain either and refer to Google’s name servers. At last, the
name servers run by Google are authoritative for the queried
domain name www.google.de and return the required IP
address.

The major learning objective in this task was to understand
the internal workings of the Domain Name System. The
students had the opportunity to examine a DNS query, which is
usually performed in the background by the operating system.
The use of a packet sniffer enabled them to experience the
technical implementation of the theoretic principles learned in
the lecture.

C. Exercise C: Inspecting E-Mail Headers
In this exercise the students were supposed to read and

interpret the source code of an e-mail. The e-mail was sent
from within the network of the Hasso Plattner Institute to every
person enrolled in this course.

The first part of this exercise addresses the transfer of
messages on the Internet.

The transfer of electronic mail is specified in the Simple
Mail Transfer Protocol (SMTP) [10]. To read and write
messages, the user interacts with a Mail User Agent (MUA),
usually incorporated in an e-mail application. In order to send
mail, the MUA hands it over to the user’s Mail Transfer Agent
(MTA). Using the Domain Name System, the MTA searches
for another MTA closer to the receiver and forwards the
message via SMTP. Note that during the transfer of an e-mail,
it may pass several MTAs before reaching its final destination.
The endpoint is the receivers Mail Delivery Agent (MDA)
where the e-mail can be downloaded. Concerning the process
of forwarding, RFC 5321 specifies the following [10]:

“When forwarding a message into or out of the
Internet environment, a gateway MUST prepend a
Received: line, but it MUST NOT alter in any way a
Received: line that is already in the header section.”

Every MTA forwarding the message leaves a line in the e-mail
header, indicating its identity. Thus, a message’s route from

8 http://www.verisign.com

sender to receiver can be retraced by inspecting the individual
Received: lines in its source file.

Provided with the source code of an e-mail, the students
were asked how many MTAs the message passed within the
network of the Hasso Plattner Institute. Additionally, they were
supposed to find out the name of the MTA that accepted the
message from the MUA.

As explained above, the header-field of an e-mail gives
insight into the path it took. The relevant lines are depicted in
Listing 1. In order to reconstruct the route of a message one has
to read the Received: lines from bottom to top. Each MTA
identifies itself with the keyword by and its host name or its IP
address. Listing 1 shows that the first MTA that accepted the
message called itself webuniVM82. To find out how many
MTAs the message passed within the network of the Hasso
Plattner Institute one has to count the Received: lines, that
refer to the HPI’s domain name. As the assignment states, the
message was sent from within the HPI, webuniVM82 is
therefore known to be part of the network. The MTAs
identified in lines 9, 12 and 15 of Listing 1 each have the HPI-
specific domain name .hpi.uni-potsdam.de. Thus, the
message passed 4 MTAs within the HPI.

Listing 1. Excerpt of an e-mail header-field. The Received: lines show the

route the message took

Note that the first part of each message’s route lays within
the same network. Therefore, even though the messages take
different routes to each user and therefore a different set of
MTAs is involved in the transfer, the critical part of the
messages’ route is constant for each participant. Thus the task
was automatically assessable despite the inhomogeneous
routes.

The second part of this exercise covers the e-mail’s content,
rather that its transfer.

SMTP, as defined in RFC 5321 [10], was designed to
supports the 7-Bit ASCII character set. This does not, however,
allow language specific characters or non-text attachments, as
they are very common nowadays. The Multipurpose Internet
Mail Extensions (MIME) introduces a means to overcome this
restriction [11]. It defines new header fields describing the
structure and the content of the message. The Content-Type
field describes the media type of the message’s body. With the

type multipart/mixed, MIME allows e-mails to be split in
several parts, separated by a custom boundary. Each part of the
message declares its own content, also using the Content-Type
header field. By default this is text/plain, indicating a text-
message. It can, however, also indicate novel types such as
image/jpeg. This field enables the user agent to adjust to the
submitted content and display it correctly. Another important
MIME header field is the Content-Transfer-Encoding. This
indicates how the submitted content is encoded to match the
specifications of the transfer protocol (7-Bit ASCII as is the
case with SMTP).

Listing 2. MIME header fields of an exemplary e-mail (excerpt)

In this part of this exercise the students were supposed to
identify the Content-Type and Content-Transfer-Encoding of
the received e-mail. For this purpose, they had to open the e-
mail’s source code and find the lines defining the MIME
header fields. They read as depicted in Listing 2. The actual
content of this message is the text beginning in line 8, the
Content-Type of this part is text/html, as can be seen in line
5. The following line declares it’s Content-Transfer-Encoding
as Quoted-printable.

The major learning objectives for this task was to under-
stand the internal workings of electronic mail, one of the oldest
Internet applications. The exercise demonstrated how Internet
standards are adjusted to changing demands and technical
innovation. Furthermore, the students got the opportunity to
read an e-mail’s source code which is usually hidden by the e-
mail application.

D. Challenges and Pitfalls with the Hands-On Exercises
As explained in the previous sections, the exercises were

supposed to be solved on the students’ personal computers.
This created a challenging inhomogeneity amongst the
involved machines, operating systems and network
infrastructures.

Many support requests and forum discussions focused on
the first hands-on exercise (as described in chapter II-A), in
which the students had to examine local network traffic using
the packet sniffer Wireshark. Most problems emerged during
the installation of Wireshark. The provided tutorial offered
hints on where to find installers for all supported operating
systems. In some cases however, further instructions were
necessary. As the tool accesses the network controller,
administrative privileges had to be granted in order to install
and run the packet sniffer. Users with little experience in
computer administration or users that installed Wireshark on
machines at their workplace received further assistance –
which mainly came from the community, where experienced
users helped out with hints and troubleshooting.

Received: by 10.58.189.9
 Fri, 30 Nov 2012 8:16:21 -0800 (PST)
Received: by 10.204.136.207
 Fri, 30 Nov 2012 8:16:20 -0800 (PST)
Received: from mail3.hpi.uni-potsdam.de
 by mx.google.com
 Fri, 30 Nov 2012 08:16:20 -0800 (PST)
Received: from owa2.hpi.uni-potsdam.de
 by mail3.hpi.uni-potsdam.de
 Fri, 30 Nov 2012 17:16:19 +0100 (CET)
Received: from webuni-piwik.hpi.uni-potsdam.de
 by owa2.hpi.uni-potsdam.de
 Fri, 30 Nov 2012 17:16:18 +0100
Received: from [10.210.0.199]
 by webuni-piwik.hpi.uni-potsdam.de
 Fri, 30 Nov 2012 17:16:18 +0100
Received: from openhpi
 by webuniVM82

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

MIME-Version: 1.0
Content-Type: multipart/mixed;
 Boundary="mimepart_50b8dbd12afa"
--mimepart_50b8dbd12afa
Content-Type: text/html; charset="utf-8"
Content-Transfer-Encoding: Quoted-printable

<p>Dear Students,</p> [...]
--mimepart_50b8dbd12afa--

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Another challenge was posed by the various network
infrastructures. Several participants, for example, reported
problems when connecting to the Internet with a mobile UMTS
adapter. Other users (especially in enterprise settings) had
problems due to restrictive firewall settings.

Apart from technical issues, some users raised legal
concerns, especially related to the intrusion into other peoples’
privacy. Besides an admonition to only use the tool in their
own private networks and with consent of all other participants,
we gave advice on how to protect personal communications
from eavesdropping.

In the process of validating the expected answers for the
first hands-on assignment, we found that the effects observed
with Wireshark strongly depend on how network traffic is
generated. Linux for example, assigns an IP-ID of 0 if the
Don’t Fragment (DF) flag is set in the IP packet header.
Students who generated network traffic without paying
attention to the DF flag might be lead to wrong conclusions.
Further, we expected Linux to increment the IP-ID by 1 in each
new packet. It turned out though, that this is only the case for
packets of the same connection (identified by a pair of hosts).
The initial start value for each connection is picked randomly.
As this circumstance was not specified in the assignment, we
accepted both possible answers from Linux users.

Further problems emerged in the third hands-on exercise.
As described in section II-C, the students were supposed to
read and interpret the header field of an e-mail. Several
students, however, reported problems with getting access to the
unaltered source code of their e-mails. This applied to users of
some browser-based mail applications, but also local e-mail-
clients posed challenges. The popular Microsoft Outlook, for
example, reduces the header fields of incoming e-mails to those
entries crucial for displaying e-mails, thus making it impossible
to retrace them, unless a certain registry value is not explicitly
set. Even if this value is set, it only applies to newly received e-
mails but not to those, which had already been fetched9. As a
reaction, we published an unaltered copy of the mail on our
course’s site.

The baseline of problems that arose during the experiment
is that inhomogeneous training environments make it close to
impossible to identify all possible results of a practical task and
all potential issues for single users during the exercise design.
The active community in the online course helped to handle
many of these issues, while the flexibility and goodwill of the
teaching team made it possible to still provide a satisfying
hands-on experience to the learners.

III. EVALUATION OF THE HANDS-ON EXERCISES
As already mentioned in section II, the hands-on exercises

were completely voluntary – students could reach a score of
100% without working on the practical tasks. Furthermore,
these exercises were “priced” with relatively few points per
handling time compared to the regular homework assignments.
While a homework assignment gained 15 points for 20-40

9 several articles on the web describe this issue with Microsoft Outlook
and offer solutions, e.g. http://superuser.com/questions/390806/ how- can- i-
view- the- entire- source- code- of- an- email- in- outlook- 2010

minutes of work, the practical tasks gave 5 points for 1-2 hours
of work, where especially bonus exercise 1 was quite elaborate
and could easily consume 3 or 4 hours for computer novices.
Nevertheless, the participation rate in the practical tasks was
considerably high, as shown in table I. The relative number of
participants is in relation to the number of submitted home-
work assignments in the course week where the respective
practical exercise was due: exercise 1 took place in week 3
with 1,928 homework submissions, exercises 2 and 3 was in
week 6 with 1,797 homework submissions.

TABLE I. STUDENT PARTICIPATION IN PRACTICAL EXERCISES

Exercise Participants
(absolute)

Participants
(relative)

Average
Score

#1 1,534 79.6% 4.26 / 5

#2 1,516 84.4% 2.51 / 5

#3 1,444 80.4% 3.26 / 5

We take the relatively low average score for exercise 2 in
conjunction with the low exit rate from exercise 2 to exercise 3
as indicator that students were not scared off by the difficulty
of exercise 2, but see the importance of the hands-on
assignments. The impression given by the participation ratio –
that prac- tical tasks are of major importance for the openHPI
students – is also backed up by results from a survey we
conducted among our participants after the course finished.
The survey was taken by 1,046 students and dealt with various
topics on platform functionality as well as on course design.

When we asked “How useful do you consider the practical
bonus exercises for your learning outcomes?”, approximately
4 out of 5 students answered with either “very useful” or
“rather useful” (see table II).

TABLE II. USEFULNESS OF PRACTICAL EXERCISES FOR
LEARNING OUTCOME

Options Answers
(relative)

very useful 43.6%

rather useful 35.2%

rather not useful 18.9%

not useful at all 2.2%

We also asked for different kinds of learning material
offered in the course (e.g. lecture videos, tutorial videos, self-
tests, homework assignments, practical assignments, etc.): “Of
which kind of learning material would you like to see more (or
less) items in the course content?” While 58.1% of the answers
indicated the wish for more practical exercises, only 2.4% of
the students10 said they wanted less of this kind, which is the
highest approval rate for more content among all kinds of
offered learning material (see table III).

10 The question had three answer options: besides “more” and “less” the

participants could also choose “neutral”.

TABLE III. PARTICIPANTS’ DEMAND FOR MORE ITEMS OF DIFFERENT
LEARNING MATERIAL TYPES

Material type Answered “more”
(relative)

Lecture videos 17.6%

Tutorial videos 51.5%

Discussion 4.8%

Readings 29.9%

Self-tests 41.0%

Homework assignments 17.0%

Practical assignments 58.1%

Furthermore, there is a considerably high number of free-
text comments that explicitly expressed the wish for more
practical exercises when we asked “Which additional types of
learning material or communication channels would you like to
see in future courses?” 70 survey participants left comments
on practical exercises, while the next most named content type
got 24 comments. Many participants also expressed their wish
for more hands-on experience in the open “I like, i wish”
question that concluded the survey.

IV. CONCLUSIONS AND OUTLOOK
This case study shows that even graded hands-on assign-

ments for massive open online courses can be provided without
the need for major adoptions to the learning platform and
without the provision of a resource intensive centralized train-
ing environment infrastructure. However, these assignments
inherently come with a number of limitations:

• The assignment design is difficult, not every in-
structive practical task can be fit into the challenge-
response scheme (as introduced in [7]).

• The heterogeneous training environments (students’
local computers) cause a wide range of hardly pre-
dictable problem sources. Troubleshooting on individ-
ual users’ computers can be very tricky and time-
consuming.

• Customization of the exercises per student is hardly
possible (at least not in a generic way). Every student
basically gets the same assignment, which is prob-
lematic in terms of cheating. This applies particularly
for a social learning platform, where sharing infor-
mation between users belongs to the basic concepts.

Nonetheless we managed to use the heterogeneity of the
training environments to introduce at least some rudimentary
customization (especially for exercise 1). Despite these
limitations, the conducted experimental ap- proach can be
considered successful. The high participation rates, the
feedback in the discussion forum, and the interpre- tation of the
survey results show a broad consent concerning the practical
assignments that were introduced to the course
“Internetworking with TCP/IP”. Furthermore, the high demand
for more exercises of this kind highlights the importance of
hands-on experience for the individual learning experience and

outcome. The design and implementation of suitable general-
purpose computer laboratory environments for massive open
online courses poses important challenges for future research
and development. Some requirements for these “massive open
online labs” can be derived from the experiment presented in
this paper:

• The lab should provide a homogenous, but flexible
environment for hands-on training sessions as well as
for practical assignments.

• The lab should provide functionality that allow for
automatic evaluation of a conducted practical task.

• Lab instances for individual users should be customiz-
able. Customization should be as generic as possible
and must be carried out automatically to scale for a
massive number of students.

• The lab must scale for a huge number of users, possibly
through the exploitation of cloud resources.

Besides the research on such a general computer lab
environment, openHPI will also investigate in the integration
of centralized lab environments for special purposes, i.e.
server- side SQL shells for classes on database technology or
coding environments for programming classes. The ability to
offer classes with a high share of practical tasks and
assignments will have a crucial impact on the success of
competing MOOC platforms.

REFERENCES
[1] A. Gaspar, S. Langevin, and W. D. Armitage. “Virtualization technolo-

gies in the undergraduate IT curriculum”, in IT Professional, Vol. 9(4),
IEEE Computer Society, 2007, pp. 10–17.

[2] P. Hyman. “In the Year of Disruptive Education” in Communications of
the ACM, 55(12), p. 20–22, ACM Press, 2012.

[3] J. Keller, R. Naues. “A Collaborative Virtual Computer Security Lab”,
in Proc. 2nd IEEE International Conference on e-Sciece and Grid
Comput- ing (e-Science ’06), IEEE Computer Society, Amsterdam,
Netherlands, 2006.

[4] A. Ng, D. Koller. “The Online Revolution: Education at Scale” in 2012
conference of the American Association for the Advancement of Artifi-
cial Intelligence (AAAI-12), Toronto, Canada, 2012. (Unpublished).

[5] G. Ulm (2012, October 18). “A Critical View on Coursera’s Peer
Review Process” [Online]. Available: http://gregorulm.com/ a- critical-
view- on- courseras- peer- review- process

[6] K. Webb, M. Hibler, R. Ricci, A. Clements, J. Lepreau. “Implementing
the Emulab-PlanetLab Portal: Experience and Lessons Learned” in
Workshop on Real, Large Distributed Systems (WORLDS), San Fran-
cisco, USA, 2004.

[7] C. Willems, C. Meinel. “Online Assessment for Hands-on Cyber Secu-
rity Training in a Virtual Lab” in Proceedings of the Global Engineering
Education Conference (IEEE EDUCON) 2012, Marrakech, Morocco.
IEEE Press, 2012.

[8] J. Postel. “Internet Protocol”, IETF RFC 791, September 1981. Avail-
able: http://tools.ietf.org/html/rfc791.

[9] P. Mockapetris. “Domain Names – Implementation and Specification”,
IETF RFC 1035, November 1987. Available: http://tools.ietf.org/html/
rfc1035.

[10] J. Klensin. “Simple Mail Transfer Protocol”, IETF RFC 5321, October
2008. Available: http://tools.ietf.org/html/rfc5321

[11] N. Freed, N. Borenstein. “Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies”, November
1996. Available: http://tools.ietf.org/html/rfc2045

