
published as: Thomas Staubitz, Maximilian Brehm , Johannes Jasper, Thomas
Werkmeister, Ralf Teusner, Christian Willems, Jan Renz, and Christoph Meinel:
Vagrant Virtual Machines for Hands-On Exercises in Massive Open Online Courses,
In Proceedings of Smart Education and e-Learning 2016 (KES-SEEL2016), 15-17
June 2016, Puerto de la Cruz



Vagrant Virtual Machines for Hands-On
Exercises in Massive Open Online Courses

Thomas Staubitz1, Maximilian Brehm2, Johannes Jasper2, Thomas
Werkmeister2, Ralf Teusner1, Christian Willems1, Jan Renz1, and Christoph

Meinel1

Hasso Plattner Institute, Potsdam, Germany
1firstname.lastname@hpi.de

2firstname.lastname@student.hpi.de

Abstract. In many MOOCs hands-on exercises are a key component.
Their format must be deliberately planned to satisfy the needs of a more
and more heterogeneous student body. At the same time, costs have to be
kept low for maintenance and support on the course provider’s side. The
paper at hand reports about our experiments with a tool called Vagrant
in this context. It has been successfully employed for use cases similar to
ours and thus promises to be an option for achieving our goals.

Keywords: MOOC, Online Learning, Virtual Machines, Virtualization

1 Introduction

MOOCs are often criticized for being mere distributors of instructional videos
and theoretical quizzes. Real learning, however, requires more than mere in-
struction. According to constructivist theory, learning is not providing ”’true’
representations of an objective environment”, but enabling the construction of a
”relative fit with the world as it is experienced by the learner”–a process called
adaptation [2]. Practical exercises and assignments are an essential element in
this process, providing the possibility for trial and error and thus to construct
knowledge in an active way. More and more courses, particularly in the area of
computer science, are aiming to provide hands-on experience and practice online.
However, distributing and maintaining practical exercises in a scalable environ-
ment poses technical challenges. In this paper we show how existing approaches
satisfy the needs of users and providers, and evaluate a novel technique based on
virtual machines for providing hands-on experience in IT focused online courses.

1.1 Metrics for Hands-On Exercises

To carry out hands-on exercises in MOOCs, the teaching team needs to pro-
vide an exercise environment to the students. As presented in Section 1.2, such
environments can be provided in a variety of ways. To evaluate the different
approaches we defined the following metrics.



Setup costs The amount of effort and time the user has to invest in order to
get started with the exercise.

Support costs The amount of effort and time the course provider has to invest
to deliver the exercise or to help users with the setup.

Hosting costs The amount of money and resources the course provider has to
spend on providing the required infrastructure.

Control The degree to which the course provider can control the behavior of
provided tools or to which it has the ability to help users.

Real world application The degree to which the exercise prepares students
for the use of tools as used by professionals and confronts them with real world
workflows.

Responsiveness The time needed by a tool to react to user input.
Exploration The degree to which the environment allows students to learn and

explore on their own initiative.
Integration How well can the working environment be integrated with the

course platform.
Target audience The user group for which an environment is suited.

1.2 Current Solutions for Hands-On Exercises

Existing approaches usually differ in where applications are installed and how
students interact with them. We evaluated several of the most common scenarios
using the metrics named above. Table 1 gives an overview of this evaluation by
estimating values on a scale from 0 to 10 where 10 indicates the best solution
for the challenge.

Table 1. Comparison of different ways to bring hands-on exercises to the students

Local setup Browser based VM at user VM at prov.

Setup 1 10 7 10
Support Costs 1 9 7 10
Hosting Costs 10 3 9 1
Control 1 10 6 8
Real World App. 9 2 9 8
Responsiveness 10 2 9 9
Exploration 10 2 10 9
Integration 1 10 5 8
Target Audience adv. beg. beg./adv. adv.

Local setup Setting up applications such as programming environments, IDEs
or other required tools on the students’ machines seems to be the most naive
approach as it is closest to the setup of professional users. It teaches the use of
real tools and guarantees best possible responsiveness. However, the installation



and configuration of such environments goes beyond the capabilities of novice
users and results in high demand of support. Furthermore, the course provider
has no control over the tools and thus cannot handle unexpected behavior.
Browser based environments cover the other extreme of the spectrum. The
user is provided with browser-based tools running the students’ work and test
it on correctness. The provider can tailor the tools to the needs and abilities of
the course participants and remain in control over their behavior. The user has
no setup costs at all and can switch seamlessly between the MOOC environment
and practical exercises. Users do not, however, train with real world tools and
never undergo the associated learning process. For a detailed overview of existing
solutions see [4].
VMs on user machines Virtual machines provide the opportunity to com-
bine benefits of the approaches named above. Course providers can prepare the
machine and install software tailored to their needs, thus preventing setup costs
and other issues with the students. At the same time computation is performed
on the paricipants’ machines, therefore, lowering costs for the provider. Students
use a system as it would be used by a professional, thus, training them for real
world applications. The issue with this approach is that such VM images can
easily take several Gigabytes of memory. Distributing such VMs–in a way that is
both cost-efficient for the provider and comfortable for the user–is the primary
focus of this work.
VMs hosted by the course provider can provide fully functional systems
whose setup would go beyond the scope of a course. An example for courses on
network security was introduced in [7]. These server-side VMs are beyond the
scope of this paper.

2 Related Work

The rising demand for practical assignments in MOOCs is well documented.
Willems et al. [6] describe the introduction of hands-on assignments to openHPI1.
Here, the focus lies on applications installed on the students machine. The in-
herent heterogeneity was used to diversify the assignment and underline the
complexity of distributed applications. The paper does, however, report massive
support efforts and problems and suggests moving to more homogeneous envi-
ronments. Staubitz et al. [5] report about a different approach on the same plat-
form, which provided the students with hands-on coding assignments. Here the
focus lies on cost efficient and easy to set up practice environments by integrat-
ing browser-based third party coding tools into existing MOOC infrastructures
including automated assessment.

Staubitz et al. [4] provide an overview on the wide range of possible ap-
proaches to implement hands-on exercises similar to Section 1.2. While they
focus on coding assignments and the use of web-based editors, they do provide
deep insights into various testing and assessment methods.

1 https://open.hpi.de



Participant / 
Client

MOOC 
Provider

Pre- 
configured 

VM

Request

Download

Operating 
System

IDE

VCS

Fig. 1. Downloading a preconfigured VM–including operating system, integrated de-
velopment environment, and version control system–from the MOOC provider’s server.

Participant / 
Client

MOOC 
Provider

Download

Request

OS 
Provider

IDE 
Provider

VCS 
Provider

Operating 
System

IDE

VCS

Participant 
/ Client

Request

Download
Request

Download Request
Download

Vagrant 
file

Vagrant 
file

Control

1

2

Fig. 2. (1) Downloading the Vagrantfile from the MOOC provider’s server. (2) Down-
loading the required tools from their original location.

There have been few courses and research projects exploring the use of virtu-
alization software on the user side. E.g. a course on software defined networking
was conducted by Princeton University on Coursera2, which was based on the
Mininet VM [3]. In another course on Coursera, Audio Signal Processing for
Music Applications3 a VM was provided with the required open source software
pre-installed. Berger et al. [1] conducted a course on database systems using
VMs as an optional means for the assignments. They suggest that VMs could
not only be helpful for reducing setup and support costs for hands-on exercises,
but also for collecting data on the learning process.

3 Virtualization Software and Vagrant

As suggested in Section 2, virtual machines can, and have been, successfully em-
ployed to form the basis for realistic hands-on exercises in MOOCs. The question

2 https://www.coursera.org/course/sdn1
3 https://class.coursera.org/audio-002

https://www.coursera.org/course/sdn1
https://class.coursera.org/audio-002


that remains is how to deploy such VMs to the participants. Traditionally, VMs
are distributed through proprietary file formats that contain a description of the
virtual machine and its state including its hard drive.

While this meant that every machine is virtually identical, such files rapidly
grow to multiple Gigabytes, which makes them hard (respectively expensive) to
distribute (see Figure 1). With Vagrant4 a relatively new technique was estab-
lished to deploy virtual machines. In contrast to traditional VMs–where the VM
is created, preconfigured, stored, and then distributed–a Vagrant box is defined
only by a text file called Vagrantfile (see Figure 2). Using this file, Vagrant cre-
ates a virtual machine on the host system using existing VM providers such as
VirtualBox.

3.1 Vagrantfile

An exemplary Vagrantfile is displayed in Figure 3. The VM on the users machine
is created and configured according to the description given in this file (see also
Figure 2 (2)). The first commands define which base box should be used and some
network settings. The commands in the block config.vm.provider include settings
specifically directed at VirtualBox. With config.vm.provision the provisioning
steps are defined. These steps are executed after the setup of the machine and are
used to install software or configure the system. It is this provisioning step where
the VM is tailored to the needs of the MOOC it is used in. To deploy a basic
setup only a small text file has to be provided on the MOOC platform. All other
resources are pulled from their original locations on the internet. If additional
custom content has to be deployed, Vagrant can pull this from any location on
the internet, e.g. the MOOC platform, or cloud storage. Thus hosting costs, for
storage and traffic, on the MOOC provider’s side are kept at a minimum.

3.2 Customization of Vagrantfiles

As Vagrant builds on nothing but the Vagrantfile, customizing a machine requires
a mere substitution. Willems et al. [6] suggest using heterogeneity to diversify the
learning process or tailor it to specific users. Vagrant promises to enable teachers
to achieve the goal of per user customization more easily. Rather than providing
a single Vagrantfile, individual Vagrantfiles could be generated on demand from
a template by substituting single system variables. Customization on a per user
level also has the distinct advantage that user specific information such as access
tokens can be embedded in the VM. This could be put to use for the hand-in
procedure as discussed in Section 4. As a proof of concept we implemented a
tool that writes arbitrary content into a Vagrantfile template depending on the
user it is supposed to be delivered to.

4 https://www.vagrantup.com/

https://www.vagrantup.com/


Fig. 3. Basic Vagrantfile

3.3 Using Graphical Applications

Vagrant virtual machines are usually accessed via command line ssh sessions,
more specifically with the Vagrant specific command vagrant ssh. Standard Va-
grant boxes in their default configuration do not come with a graphical user
interface (GUI). Access via ssh would pose a great challenge to the novices, who
are our main target group. As one of our intended use cases involves graphical
applications such as Integrated Development Environments (IDEs)we examined
several methods for GUI access to a Vagrant box. The traditional approach for
coding within Vagrant is to use a locally installed editor while the VM serves
only as the execution environment. The simplest approach would be to use a
shared folder that is accessible both by the host and the guest system. However,
since the idea of our approach is to deliver a fully preconfigured environment,
this option misses the point.

Alternatively, the GUI of an application running in the VM can be forwarded
to the host system using X11. After connecting to the Vagrant box with vagrant

ssh one may simply launch GUI applications and display them at the local X
Server. However, as Windows does not support X Server natively, additional
setup is required. This way we only replace one complexity with another.

Finally, Virtual Box can be configured to deactivate the headless mode and
launch a window showing the whole desktop. This method works on all operating
systems with low configuration overhead. We therefore favor this option when
targeting a wide audience. To improve the performance of the VM, we selected



the LUbuntu operating system as it comes with the lightweight LXDE desktop
instead of a more standard Unity, Gnome, or KDE desktop.

4 Implementation

In this paper we consider two different scenarios: A Java programming course
at an intermediate level and a security lab in an Internet security course. Those
two courses are very different in nature and each has its own requirements and
challenges. Both courses have already been taught in a similar form on openHPI.
The problems that have been reported by some participants with setting up the
required environments on their own have been a main inspiration for the paper
at hand. Next to the bare setup, we will consider the tasks of downloading new
exercises, updating faulty exercises and submitting solutions.

4.1 Java Programming Course

The envisioned Java course is a follow-up to an introductory hands-on Java pro-
gramming course. After basics of the language have been taught using a browser-
based learning environment, this course teaches the use of real world tools, par-
ticularly the Eclipse IDE, by having the participants apply their knowledge in
a Java programming project. It requires a JDK, the Eclipse IDE, and git to be
installed and configured correctly. For novices this can be a serious challenge.
Using Vagrant we can reduce the frustrating setup procedures to installing Vir-
tualBox and Vagrant and deliver a perfectly configured course environment to
the student. Throughout the course students download weekly assignments onto
their virtual machines, solve them and submit the results back to the course
provider. All of the following automated solutions might benefit from templated
Vagrant files as described in Section 3.2. Those templated Vagrant files could
introduce user IDs and authentication tokens as environment variables into the
VM.

Task Retrieval & Update Assignments should be delivered to the users’ ma-
chines on a regular basis. Also, a method for updating buggy or incomplete
assignments needs to be in place as mistakes tend to occur even with an op-
timal preparation. Often, students download assignment files into a folder of
their choice. As the manual transport of files into the VM can be tedious, we
recommend having a clickable script that downloads the newest versions inside
the VM. These scripts might be customized with the user’s ID or a token to au-
thenticate with the course provider. In the simplest form, the scripts download
the files as a zip and unpack them into the user’s Eclipse workspace. Hash sums
can guarantee that the scripts download new or updated files only. Somewhat
more complex, the scripts can retrieve the assignment files using VCS software,
such as git. These tools might save resources using incremental updates over the
zipped solution if the assignment files are very large.



Solution Upload After working on an assignment, students need to upload
solutions to the course provider. It is important that the upload happens in
an automated fashion, because file transfer between the host and the VM can
be error prone. Again, the simplest solution might be zipping the assignment
solution and sending it to the course provider for grading via a simple HTTP
upload. If course providers and students are interested in keeping a history of
the uploaded solutions it makes sense to use an VCS tool for uploading. It comes
at cost of hosting a repository for every student, however.

4.2 Security Labs

The requirements of a security lab are very different from those of a programming
course. Usually, a security lab involves multiple machines with a specific network
configuration and configured services. Oftentimes, instead of producing a piece of
software the assignment is to obtain information by intercepting communication
or breaking into systems (penetration test). Security labs can involve software
that is difficult to obtain on users machines and that can cause harm if used
improperly. Usually, these two challenges have been tackled by giving the user
access to remotely hosted virtual machines. Using virtual machines at the users
side reduces hosting cost for the organizers, but introduces the concern of users
obtaining the information or cheating by introspection of the local machines. In
the following, if there are multiple machines involved, the term attacker machine
refers to the VM that is equipped with the required penetration testing tools
for the student. Accordingly, the term defender machine refers to a VM that
exposes exploitable vulnerabilities.

Multiple machines can be configured in a single Vagrant file. Afterwards, net-
work configuration is a matter of assigning IP addresses and naming the virtual
networks. Multi-host environments include scenarios, such as remote exploita-
tion with one attacker and one defender machine or man in the middle attacks
with one attacker and two defenders.

Separation from the Outside World To provide a safe learning environment
for the student we want to prevent accidental attacks of uninvolved targets.
Those uninvolved targets can be machines on the learners local network or hosts
on the the internet. For a proof of concept, we use Linux’ standard firewall
iptables and the extension Conntrack. First, we disallow any traffic leaving the
machine to the outer network by using iptables to prevent any new outgoing
connections on Vagrant’s default NAT adapter. Conntrack now helps to allow
an exception: Only outgoing traffic of connections that were initiated from the
outer world to our machine is allowed to leave. Hence, users can establish an ssh
connection to the machine and have a two way communication, but they cannot
open a new connection from inside of the machine to the outside. The shown
provisioning steps have to be executed for every VM of the scenario.
Task Retrieval & Update Assignments might require exploitation of various
services and operating systems. Hence, security labs need to be carried out using
assignment specific VMs. This reduces the reusability of the provisioned VMs.



For each assignment that requires a new set of VMs a new Vagrant file must
be downloaded and in turn the VMs must be provisioned. After that, users can
attempt to solve the assignment.

Task Submission Often, users have to obtain information or so called flags in
security labs. Those flags might be a password, a user name or a random string.
They can be obtained from various activities, such as password cracking, reverse
engineering or exploiting services. Given that they are only strings, submitting
flags can be as simple as pasting them into a browser form. The feasibility of
this approach has been demonstrated by Staubitz, et al. [5] for a different use
case but would work here exactly the same way.

Cheating Many concerns about cheating arise if the defending machines are
run by the students themselves. There are several ways to obtain the informa-
tion in unrighteous ways. Students might try to get access to the machines by
guessing login credentials, using hypervisor functionality or mounting the virtual
machines hard drives to another machine. There are technical remedies for some
of these back doors, but it is ultimately very difficult to protect an application
from the user running it. Also, these remedies introduce technical complexity.
While course providers can prevent students from mounting the hard drives by
encrypting them and hiding the key on the boot partition, this introduces a new
source of errors and lowers reusability. A more feasible way of preventing cheat-
ing might be embedding the submission of flags into a quiz of the respective
learning section. Students can prove that they rightfully obtained the flag by
demonstrating knowledge of the involved techniques, tools, and steps.

5 Evaluation

Assuming that VMs can reduce local setup issues for practical tasks in a MOOC
environment, we prototypically have set up two basic scenarios: a penetration
testing setting in an Internet Security course and a programming environment
in a Java course. With this experiment we have shown that the heterogeneity of
different environments, maintenance, and support efforts for the teaching teams
can be reduced by employing VMs. We have also shown that the benefits of
employing VMs are differing from scenario to scenario. For the Java program-
ming environment described in Section 4.1 we recorded a number of metrics5.
The Ubuntu base image accounts for 378 MB which have to be downloaded and
stored locally. The required packages add another 498 MB to download. The fully
built VirtualBox VM has a size of 3598 MB. Provisioning the box, not counting
the time required for downloading the base box, took 11:37 minutes. In com-
parison, an Ubuntu box without a GUI and having some lightweight tools only
takes up roughly 1500 MB. This shows that providing Vagrantfiles instead of
fully pre-configured VMs can reduce the costs of a MOOC provider significantly.

5 The machine that has been employed was a standard PC with 8 GB RAM, i5 CPU
2.67 GHz, SSD running Windows 7



6 Future Work

We intend to employ this approach in one of our upcoming courses and evaluate
its acceptance among the participants and its perceived usefulness in terms of
the defined learning outcomes.

7 Conclusion

In this paper, we examined the use of Vagrant as a tool to deploy preconfigured,
hands-on learning environments to our online students. Vagrant provides the
opportunity to deliver customizable and cheap to host VMs that create realistic
and responsive hands-on environments. Furthermore, we introduced eight rele-
vant metrics to evaluate the different solutions for hands-on tasks in MOOCs
and assess their benefits and shortcomings. We have shown that Vagrant reduces
the friction for creation, distribution, setup and update of Virtual Machines. We
demonstrated the use of Vagrant in the context of different scenarios and dis-
covered and discussed several challenges in carrying out hands on assignments
using virtual machines. In summary, we can say that the use of Vagrant, in com-
plex server scenarios, can reduce hosting costs, improve the user experience for
learners compared to traditional virtualization software and thus reduce support
efforts on the course provider’s side.

References

1. Berger, O., Gibson, J.P., Lecocq, C., Bac, C.: Designing a virtual laboratory for a
relational database mooc. In: Proceedings of the 7th International Conference on
Computer Supported Education. pp. 260–268 (2015)

2. von Glasersfeld, E.: Learning and adaptation in the theory of constructivism. Com-
munication and Cognition 26(3/4), 393–402 (1993)

3. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks. p. 19. ACM (2010)

4. Staubitz, T., Klement, H., Renz, J., Teusner, R., Meinel, C.: Towards practical
programming exercises and automated assessments in massive open online courses.
In: International Conference on Teaching, Assessment, and Learning for Engineering
(TALE). pp. 23–30. IEEE (2015)

5. Staubitz, T., Renz, J., Willems, C., Jasper, J., Meinel, C.: Lightweight ad hoc as-
sessment of practical programming skills at scale. In: In Proceedings of IEEE Global
Engineering Education Conference (EDUCON). pp. 475–483. IEEE (2014)

6. Willems, C., Jasper, J., Meinel, C.: Introducing hands-on experience to a massive
open online course on openhpi. In: International Conference on Teaching, Assess-
ment and Learning for Engineering (TALE). pp. 307–313. IEEE (2013)

7. Willems, C., Meinel, C.: Tele-lab it security: an architecture for an online virtual it
security lab. International Journal on Online Engineering (iJOE) 4, 31–37 (2008)


	Vagrant Virtual Machines for Hands-On Exercises in Massive Open Online Courses

