
What do Hyperlink-Proposals and
Request-Prediction have in Common?*

Ernst-Georg Haffner1, Uwe Roth1, Andreas Heuer1,
Thomas Engel1, Christoph Meinel1

1 Institute of Telematics, Bahnhofsstr. 30-32,
D-54292 Trier, Germany

{Haffner, Roth, Heuer, Engel, Meinel}@ti.fhg.de

Abstract. This paper focuses on fundamental similarities between proposing
links for hypertexts and predicting user-requests. It briefly outlines the theoreti-
cal background of both categories of problems and, as an example, explores
common implementation strategies for handling them. Even though there are
some important differences between link-proposals and prediction of requests,
we believe that in regarding these categories as special cases of a more general
and abstract mathematical model, improvements on the one side will also result
in advantages for the other.

1 Introduction

Due to the breath-taking growth of the World Wide Web (WWW), the need for high
quality hypertexts is rapidly increasing, and finding appropriate links is one of the
most difficult of tasks. Ultra-modern online authoring systems1 that provide possibili-
ties to check link-consistencies and administrate link management should also propose
links in order to improve the usefulness of the HTML-documents.

Another major problem of today’s Internet applications - and, at first glance, an en-
tirely different one to finding hyperlinks - is the performance of Client/Server com-
munication: servers often take a long time to respond to a client’s request. There are
several strategies to overcome this problem of high user-perceived latencies; one of
them is to predict future requests. This way, time-consuming calculations on the
server’s side can be performed even before a special request is being made. If the
server is ”sure” that certain documents will soon be requested, the associated data can
be sent to the client in advance (or can be pre-fetched by the client) even while the
user is unaware of this process.

The two problem categories discussed here do not seem to have much in common.
In this paper, we mean to show that there are certain, similar, solution strategies to

* In: Proc. International Conference on Advances in Information Systems, ADVIS’2000,

Springer LNCS 1909, Izmir, Turkey, pp: 275-282
1 For instance: Microcosm [12], or Daphne [28]. Multilingual approaches are sketched in [13].

Ernst-Georg Haffner, Uwe Roth, Andreas Heuer, Thomas Engel, Christoph Meinel:
What do Hyperlink-Proposals and Request-Prediction have in Common?
in Proceedings of the First International Conference on Advances in Information Systems (ADVIS 2000), vol. 1909, LNCS, Springer,
Turkey, pp. 285-293, 10, 2000. ISBN: 3-540-41184-4.

take care of both problems. Therefore, we will first have a closer look at hyperlink-
proposals (section 2). Then, we will present a prediction scenario and outline ad-
vanced strategies to foresee future user-requests on a statistical base (section 3). A
comparison and an abstraction of both methodologies will be highlighted in section 4.
Finally, a summary and an outlook on future events will be presented in section 5.

2 Hyperlink-Proposals

The theory of hyperlink-research already has a long history. Hyperlink-research has
been carried out ever since the introduction of the World Wide Web-service to the
Internet. Kaindl et. al. present a compact outline of the progresses made so far and
draw some conclusions [19].

As its final aim, link retrieval research strives to achieve the automatic generation
of hyperlinks. Several systems were built to perform link-proposals. A very promising
description of Chang’s HieNet can be found in [7]. Due to various problems in finding
links for hypertexts Allan distinguishes between three major characteristics of link-
types: manual, automatic and pattern-matching [1]. Every effort in the Hyperlink-
Research can thus be categorized. We will focus on retrieving ”automatic” links on a
statistical base with approved methods (e.g. [27] or [25]).

It is a very complex task to measure the quality of hyperlink-proposal algorithms.
Cleary and Bareiss mention as important factors the recall, the share of appropriate
proposals of all good links and the precision, the share of appropriate proposals of all
proposals [6]. Often, the quality of proposals in detail is only measurable by human
experts. The algorithm for the proposal of hyperlinks in this paper is based on the idea
of case-based reasoning [20] with some improvements concerning efficiency and
complexity.

In order to be able to propose hyperlinks for texts on a statistical base [5] without
any further use of a semantic model, one has to build up a database for possible link
targets first (see also [24] for another insight regarding this topic). Given a straight-
forward case, the targets of hyperlinks are simply the documents of the hyperlink-
management system. In this paper, we mean to present a hyperlink-proposal-system
where all links that are part of any hypertext can be proposed no matter whether the
target document is part of the system or not. Storing the possible hyperlinks is not
enough, though. Of major importance is the fact that the system must store the rela-
tionship between the text and the associated links. This step is called a learning proc-
ess. Therefore, the database can also be called a knowledge base. The quality of this
knowledge base depends on the quality of the learning process: how can the informa-
tion of the texts be combined with appropriate hyperlinks?

One possibility would be the human teacher. A person or a group of persons could
derive the important information of the document manually. This process is very cost-
and time consuming and is not feasible in practice. Most of today's learning algorithms
conquer the problem of high quality knowledge retrieval by extracting some informa-
tion automatically on the basis of advanced heuristics. The learning process itself
evaluates the relevance of the extracted information. At first, the algorithm treats a

text with hyperlinks as if it did not contain any link and derives the relevant informa-
tion. Next, it proposes one or more hyperlinks and compares the result to the hyper-
links that the document in fact contains. By using this method, the learning process
can be carried out without any human teacher. A disadvantage arises from the strong
relationship between the quality of the learning process and the quality of the initial
documents. Furthermore, only those hyperlinks can be proposed that are already
known to the system and at the very beginning of the learning process there are no
links to be proposed at all.

After this learning step has been taken, hyperlinks for new documents can be pro-
posed by using the knowledge base. This phase is also called the classification phase.
The part of retrieving the relevant information is just the same as in the learning
phase, and link-proposals can be calculated. In fact, a learning component can also be
found in this step. In general, the user of the hyperlink-management system accepts or
rejects a proposal of the classification algorithm and thus plays the role of a human
teacher. The learning algorithm can - just as in the learning phase - compare the pro-
posal of the system with the reaction of the human user and thus adapt the relevance
values. Figure 1 shows the described ideas in a graphical form.

Hyperlinks

knowledge-
base

(Hyper-)Text

Link-proposals

classification

learning

Figure 1. Principle structure of a statistical-based hyperlink-proposal algorithm

A straightforward implementation of such a hyperlink-proposal algorithm could be
realized by using mathematical objects such as vectors or matrixes. If the entire
knowledge of the link-proposal systems were to be stored in a relevance-matrix R,
every column would represent all the existing text attributes and every row would
stand for a possible link-proposal. Furthermore, a text (without links) in the classifica-
tion process could be modeled by an attribute vector t where every element corre-
sponds to an - existing or not - textual property. The classification process would then
be a multiplication of the relevance matrix with the vector and the resulting vector r
would contain the probabilities for all existing links in the knowledge-base whether
they are appropriate as hyperlink of the new text or not (1).

r = R⋅ t. (1)

The learning process has to guarantee that a given resulting vector r’, that represents
the really existing hyperlinks in the text t, would just be the result in a classification
step of t. Therefore, the relevance-matrix R has to be adapted. With other words, the
learning process applies a function f on R so that the following equation holds true (2):

r' = f(R)⋅ t. (2)

In practice, the learning and the classification steps are combined so that the system
is able to make proposals even though the knowledge base is still rather small. A de-
scription of an implementation and an evaluation of this principle can be found in [17].

In section 4, we will come back to the main ideas of this approach and we will
show that these algorithms can be improved by drawing parallels for the - at first
glance - quite different field of request-prediction.

3 Request-Prediction

The notion of predicting future events originates from compiler construction (branch
prediction) and is now being applied to Internet applications [18]. Many attempts have
already been made to find the best and most efficient algorithms for fulfilling predic-
tion needs (e.g. [2]). Discrete Markov-Chain-models were used as a basis for the
Web’s first algorithms of prediction [21]. Their conception is to store the frequency of
user-requests and to apply the adequate statistical model. Later, these ideas were ex-
tended to a continuous chain-approach [22] and to path profiling [26] which focuses
on the order of document demands and the resulting request path. By using predic-
tions, average latency and system load may be reduced but several risks may result
from inaccurate data prediction. The negative effects of incorrect predictions are dis-
cussed in [9] and [4]. Performance modeling in general is described in [10].

Our former prediction-approach [14] is based on an idea of Padmanabhan and Mo-
gul [23]. We have improved this straightforward approach to model time and docu-
ment aging [15]. It is within the focus of this paper to verify that these ideas can also
be applied to the hyperlink-proposal concept.

The prediction of user-requests in general aims at reducing user-perceived latency.
The first concept models a group of requests as a session. Even though the session
cannot be justified on the basis of the standard WWW protocol HTTP2, it is very im-
portant to group several requests together. In general, a session is regarded as a time
period of about 30 minutes [26]. During such a session, a user can request several
documents (or other kinds of data packets). The main goal of prediction aims at fore-
seeing some of the upcoming requests during the same session on the base of the re-
quests that have already been made. Therefore, the prediction-algorithm generates
relative probabilities for future document requests on the basis of the relative frequen-
cies of requests in the past. Certainly, there are also some other approaches, but the
perhaps most straightforward one simply stores the actual user-requests at first and
then calculates probabilities for future request wishes. The former process is a (rather

2 Hpertext Transfer Protocol

simple) kind of learning phase, while the latter one can be called a classification
phase.

If we do not take care of maintaining the correct request order, a straightforward
mathematical conception of a session will lead to a vector s. Every request of a docu-
ment corresponds to an element of s. The size of the vector corresponds to the number
of documents that should be part of the prediction algorithm (predictable documents).
Details about finding the appropriate documents and criterions whether prediction
should be made can be found in [14] and [16].

To store the relative frequencies of requests, e.g. the number of requests for every
document depending on the requests of all the other documents, we need - at least - a
quadratic matrix with the dimension of the number of predictable documents. We call
this matrix the Memory Matrix M. In the case where the request order is irrelevant, the
matrix M is also symmetric. For efficiency, the relative probabilities are not stored
directly in M, but they are calculated from the relative frequencies at the moment
when they are needed. If the function g retrieves the relative probabilities from the
according frequencies, the classification of the (not completed) session sn to the pre-
dicted final session s’ can be described as (3):

s’ = g(M)⋅sn. (3)

Again, the learning process can compare the results of the classification step (s’) to
the real user behavior that leads to the (completed) session s. The function g must be
adapted by using a heuristic function h so that the following equation will be true (4):

s = h°g(M)⋅ sn. (4)

Additionally, the Memory Matrix M must be adapted to M’ after every new request
during a user session so that it still represents the relative frequencies (5).

. (5)

A very critical point in generating request-prediction is to take care of the different

costs. Not only the system costs for the prediction itself must be taken into account,
but also the network load and the server load for wrongly predicted documents. These
considerations are very important especially for making pre-fetches. In this paper,
cost-aspects are not part of the focus. Detailed information about this topic can be
found in [3] and [8].

4 Abstraction and Generalization

Closer analysis of the categories finding hyperlink-proposals and predicting user-
requests leads to astonishingly similar results. The core function of both solution-
algorithms is the storage and classification of information and the completion of par-
tially given information in a foreseeing-step by calculating probabilities which are



 =∧=+

==
otherwise:

1s 1s iff:1
)’(’

ji
ij

ij

ij

M

M
MM

based on statistical data. Moreover, mathematically speaking, existing information can
be stored in a (dynamically adapted) matrix, and the classification step is executed by
multiplying a vector with this matrix. Differences arise when the matrix and the vector
elements are modeled. When searching for hyperlinks, this is a very difficult task: in
this case, extracting appropriate keywords to retrieve important text attributes for later
classification steps is rather delicate. Too many keywords will result in a very large
matrix and thus in a long duration of the process of calculation. Too few or even false
keywords, though, may lead to a wrong classification and inappropriate link-
proposals. In the case of predicting user-requests, the modeling of a session-vector is a
very simple and straightforward task. Nevertheless, calculation of costs for incorrectly
predicted and pre-fetched data is highly complex. And even though wrongly proposed
hyperlinks are somehow disturbing, wrongly predicted data can cause enormous net-
work and system load and thus presents a much higher danger than the one mentioned
before.

Table 1 shows a short and abstract characterization of the main tasks in predicting
user-requests and proposing hyperlinks for texts as presented in the sections 2 and 3.
In both cases, the core data structure is a matrix that stores the entire knowledge. The
major difference is in the methods and the complexity of modeling the problem in
order to gain vectors.

Phase Step Hyperlink-Proposals Request-Prediction

Retrieval of
knowledge

Keyword extraction of
hypertexts and attached
links

Different document requests
during the same session (with or
without taking care of the order)

Learn-
ing
phase

Storing of
knowledge

Vectorization of keyword
attributes and storage of
values in a relevance
matrix (idea of case-based
reasoning [20])

Transforming sessions into
(mostly binary) vectors and stor-
ing their values in a memory
matrix

Recognition
of informa-
tion

Generating attributes
(keywords) from texts
(without considering link
information)

Interpreting the first client request
as ignition for calculation of rela-
tive frequencies

Classi-
fication
phase

Calculation
of (likely)
candidates

Multiplying the relevance
matrix with the new at-
tribute vector and thus
getting link-relevance-
probabilities � generating
link-proposals

Multiplying the memory matrix
with the current session-vector
and thus getting relative prob-
abilities for other documents to be
requested soon � generating
request-prediction

Table 1. Similarities between hyperlink-proposal and request-prediction algorithms

Still, the question remains: what is the advantage of recognizing similarities between
link-proposals and request-prediction? Obviously, knowledge of the one can improve
evolution steps of the other.

We will try to illustrate this through the following example. In [15], an advanced
prediction model is shown where time and document aging is applied3. The evaluation
of the usefulness of this approach is also confirmed. A time function ft is applied to
change the elements of the memory matrix M to model document aging (6) (corre-
sponds to equation 4).

st = h°g°ft (M)⋅ sn. (6)

But how can algorithms for the proposal of hyperlinks be improved by this percep-
tion? Time and aging also play an important role in the latter task as the relevance of
former attributes changes. Analogously, the same time function can be used to change
the relevance matrix in order to improve the learning and classification phases of the
hyperlink-proposal algorithm (7).

rt’ = f°ft(R)⋅ t. (7)

The usefulness of this idea is currently being evaluated by the authors and the first
results are very promising. Figure 2 shows briefly the improvement-results for the
introduction of the timing factor to the area of hyperlink-proposing algorithms after
the initial tests.4

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100

percentage of test proposals

q
u

al
it

y
o

f
p

ro
p

o
sa

ls

standard algorithm

with time-function

Figure 2. Improvements of hyperlink-proposal efficiency by using time-functions to
model document aging

The quality of hyperlink-proposals rises for higher degrees of knowledge-base load.
Using time-factor modeling the highest qualities can be increased about 10 percent
above the standard values. Thus - presented as an example - ideas of prediction can
help to improve the efficiency of proposing hyperlinks.

3 General information on the topic of document aging can also be found in [11].
4 More detailed results on that special topic will follow soon.

5 Summary and Outlook

In this paper, we presented two different problem categories of special modern Inter-
net applications. The task of proposing hyperlinks for texts should help the author of a
hypertext to improve the quality of his/her work by adding additional link information
automatically. The prediction of requests aims at reducing the user perceived latency
while waiting for an answer from the server.

Both problems - even though very different at a first glance - could be proved as
similar during a closer analysis. We presented two mechanisms to solve these prob-
lems by learning and classifying and we elaborated their common properties.

With this knowledge, improvements on the one side should help to make progress
on the other side as well. As an example of this idea we briefly outlined how to apply
the concepts of modeling time and document aging of request-prediction to the area of
proposing hyperlinks. The first results were very promising.

In the near future, besides evaluating exactly the advantages of time-modeling for
the area of proposing hyperlinks, we will try to find several further aspects of the one
side to improve the other and vice versa. Perhaps, it makes sense to use a single algo-
rithm to solve both problem categories. Thus, we could try to find further areas that
fulfill the same pre-conditions as prediction and link-proposals. Even though the com-
parison of different topics of modern Internet applications is very useful and advanta-
geous, we should not forget that differences always remain and that the most difficult
parts of problem aspects are, as a rule, quite unique.

References

1. J. Allan. Automatic hypertext link typing. In Proceedings of the Seventh ACM Conference
on Hypertext (Hypertext ’96), 1996

2. A. Bestavros, Speculative Data Dissemination and Service to Reduce Server Load, Network
Traffic and Service Time in Distributed Information Systems, Proceedings of ICDE’96, New
Orleans, Louisiana, March 1996

3. P. Cao, S. Irani, Cost-Aware Proxy Caching Algorithms, 1998
4. R. Cáreres, F. Douglis, A. Feldmann, G. Glass, M. Rabinovich, Web Proxy Caching: The

devil is in the details, Workshop on Internet Server Performance, June 1998, Madison, WI
5. R. J. Chitashvili, R. H. Baayen. Word frequency distributions of texts and corpora as large

number of rare event distributions. In Quantitative text analysis, (Quantitative linguistics,
Vol. 52), 1993. WVT Trier

6. C. Cleary, R. Bareiss. Practical methods for automatically generating typed links. In Pro-
ceedings of the Seventh ACM Conference on Hypertext (Hypertext ’96), ACM, 1996

7. D. T. Chang. HieNet: A user-centered approach for automatic link generation. In Proceedings
of the Fifth ACM Conference on Hypertext (Hypertext’93), ACM, 1993

8. E. Cohen, B. Krishnamurthy, J. Rexford, Improving End-to-End Performance of the Web
Using Server Volumes and Proxy Filters, 1998

9. M. Crovella, P. Barford, The Network Effects of Prefetching, IEEE Infocom 1998
10.S. Erickson, D. Yi, Modelling the performance of a Large Multi-Tiered Application, Ameri-

can Management Systems, AMS Center For Advanced Technology, 1999

11.J. Griffioen, R. Appleton, The design, Implementation, and Evaluation of a Predictive Cach-
ing File System, CS-Department University of Kentucky, CS-264-96, 1996

12.W. Hall, H. Davis, G. Hutchings. Rethinking Hypermedia: The Microcoms Approach. Klu-
wer Academic Publishers, 1996

13. A. Heuer, E.-G. Haffner, U. Roth, Z. Zhang, T. Engel, C. Meinel. Hyperlink management
system for multilingual websites. In Proceedings of the Asia Pacific Web Conference (AP-
Web ’99), 1999. http://www2.comp.polyu.edu.hk/~apweb99/

14.E.-G. Haffner, U. Roth, T. Engel, Ch. Meinel, A Semi-Random Prediction Scenario for User
Requests, Proceedings of the Asia Pacific Web Conference, APWEB99, 1999

15.E.-G. Haffner, U. Roth, T. Engel, Ch. Meinel. Modeling Time and Document Aging for
Request Prediction - One Step further. Symposium on Applied Computing, SAC2000, Como,
Italy, 2000

16. E.-G. Haffner, U. Roth, T. Engel, Ch. Meinel. Optimizing Requests for the Smart Data
Server. Applied Informatics, IASTED AI2000, Innsbruck, Austria, 2000

17.E.-G. Haffner, A. Heuer, U. Roth, T. Engel, Ch. Meinel. Advanced Studies on Link-
Proposals and Knowledge-Retrieval of Hypertexts with CBR. Proceedings of the Interna-
tional EC-Web Conference, ECWeb2000, Greenwich, United Kingdom, LNCS, Springer-
Verlag, 2000

18. Z. Jiang, L. Kleinrock, An Adaptive Network Prefetch Scheme, IEEE J Sel Areas Commun,
1998

19. H. Kaindl, S. Kramer. Semiautomatic generation of glossary links: A Practical Solution. In
Proceedings of the Tenth ACM Conference on Hypertext (Hypertext ’99), ACM, 1999

20.J. Kolodner, D. Leake. A tutorial introduction to Case-Based Reasoning. In Case-Based
Reasoning. AAAI Press, the MIT Press, 1995

21.Achim Kraiss, Gerhard Weikum, Vertical Data Migration in Large Near-Line Document
Archives Based on Markov-Chain Predictions, Proceedings of the 23rd VLDB Conference,
1997

22.A. Kraiss, G. Weikum, Integrated document caching and prefetching in storage hierarchies
based on Markov-chain predictions, The VLDB Journal, Springer-Verlag, 1998

23.V.N. Padmanabhan, J.C. Mogul, Using Predictive Prefetching to Improve World Wide Web
Latency, Computer Communication Review, 1996

24. F. J. Ricardo. Stalking the paratext: speculations on hypertext links as second order text. In
Proceedings of the Ninth ACM Conference on Hypertext (Hypertext ’98), ACM, 1998

25. J.H. Rety. Structure analysis for hypertext with conditional linkage. In Proceedings of the
Tenth ACM Conference on Hypertext (Hypertext ’99), ACM, 1999

26. Schechter, Krishnan, Smith, Using path profiles to predict HTTP requests. In Proceedings
of the World Wide Web Conference, 1998

27. J. Tebbutt. Finding links. In Proceedings of the Ninth ACM Conference on Hypertext (Hy-
pertext ’98), ACM, 1998

28. Z. Zhang, E.-G. Haffner, A. Heuer, T. Engel and C. Meinel. Role-based Access Control in
Online Authoring and Publishing Systems vs. Documentation Hierarchy. In Proceedings of
the SIGDOC ’99, ACM, 1999

