
WWW.BDD-PORTAL.ORG: An Electronic Basis for Cooperative
Research in EDA

Meinel, Christoph
 University of Trier, Germany

Wagner, Arno
Institute for Telematics at Trier, Germany

1. Introduction
Today the Internet offers the possibility of standardized and global communication
without a need for special hardware or expensive infrastructure. While a lot of
resources are available on the World Wide Web (WWW), there is no central place to
access these resources in a convenient way. There are search engines, but they are
indexing only small segments of the web. According to a recent survey1  the search
engine with the best coverage covers only 13 percent of all pages. And even where
search engines reach, the result of their searches are unstructured and often the
user is presented with an all-or-nothing situation, where queries either return far to
many hits or none at all. One solution is the recent notion of so called “portal”-sites,
that organize the WWW contents into categories and in some cases even grade the
quality. But what efforts are underway are mostly targeted at the general public and
relative small groups, like research communities, are not commercially interesting to
existing portals. Another Problem is that the features needed in research portals are
different from other portals. While links to members of the community, lists of events
like conferences or workshops, and material like software or documentation are fairly
standard, research portals might need special content, not commonly found in other
portals.
To address the needs of the (Binary) Decision Diagram 2,3 (BDD) research
community, we have created a specialized portal site for this area. The specific
problem with BDDs is that it is usually impossible to evaluate the performance of a
new BDD algorithm without actually trying it out. On the other hand these algorithms
are very sensitive to the environment they are executed in, consume a lot of
resources when run and are difficult to include in existing software packages. So
comparison of new methods with existing ones is generally problematic. To address
this problem our portal includes a system for the online “publication” of BDD
functionality by allowing the use of tools that contain BDD methods via a WWW
interface. The system is mainly aimed at facilitating the process of determining
whether a BDD method is suitable for a specific application and at allowing easy
comparison between methods. It is open to all researchers who wish to publicise
their results in this way. Because applications using BDDs are usually quite memory
and processor intensive, the system needs to do computation in a distributed way on
a cluster of similar computers. The system represents a major effort and greatly
facilitates the evaluation of research results in BDD algorithms. Given the importance
of BDD in verification, simulation, synthesis and similar uses in circuit design and
other areas, such an effort seems to have been overdue.
The Paper is structured as follows: Section 2 gives an overview about (Binary)
Decision Diagrams and their specific characteristics. Section 3 discusses the system
that allows online usage of BDD methods. Section 4 reviews technical details of the
system and Section 5 gives an overview over the portal site the system is embedded
in. The paper ends with a conclusion in Section 6.

Christoph Meinel, Arno Wagner: 
WWW.BDD-PORTAL.ORG - An Electronical Basis for Cooperative Research in EDA 
in Proceedings of the 5th conference on Current Research Information Systems in Europe (CRIS 2000), Helsinki, Finland, pp. 1-7, 5, 2000.



2. About Decision Diagrams
(Binary) Decision Diagrams (BDDs), most notably in the form of Ordered Binary
Decision Diagrams2,3 (OBDDs), are presently the most important data structure for
the representation of Boolean expressions. They are extensively used for simulation,
modelling and verification of digital circuits, often being orders of magnitude more
powerful than other techniques. But while BDD-based methods perform well in many
cases, the underlying problem of representing subsets of a Boolean vector space is
known to be hard. This means that circuit descriptions given as a relatively small
Boolean formula can have an extremely large BDD representation. Unfortunately
formulas and other compact representations are unsuitable for use in computations
and at present it seems BDDs are the best representation for use in such
computations. BDD representations are sometimes small, when just using a straight-
forward construction. More often they are too large to be represented in computer
memory (e.g. larger than 1000 MB), but can be made significantly smaller by
changing the parameters of the representation while the BDD is being built or
computations are performed. Today, these size optimization techniques are critical
for the size of tasks that can be done efficiently with BDDs. On the other hand the
problem of BDD minimization is not fully understood yet, and there is a lot of
research going on to find better optimization techniques, for special cases as well as
for the general case.
When a new optimization method is found, researchers usually publish tables
containing a limited set of benchmark results, obtained from doing calculations on
publicly known benchmarks. These tables usually list speed and memory needs, as
well as cases where the result could not be computed with the available resources.
While it is possible to get a first impression by looking at these tables, BDD methods
are known to be very sensitive to the actual nature of a computation. A method that
performs better on some benchmark circuits might well have catastrophic
performance on others. Unfortunately it is not possible to make meaningful
predictions about the behaviour from the limited  published information. To make
things even worse, BDD method performance is quite sensitive to the computational
environment used. Practical experience shows that it is often infeasible for someone
other than the creator of a new method to create an experimental environment in
which a new method performs as in the published results. This is due to variations in
the experimental set up and due to details of the actual implementation that where
not described in the publications. This is not a failure on the part of the authors of
such publications. Rather it is extremely difficult to describe a computation
environment with the degree of accuracy needed. A reason is that there are a lot of
characteristics to a computational environment. A second reason is that not all of
these characteristics are obvious. Furthermore some characteristics are unimportant,
while others are not.
For these reasons when a new method is evaluated to decide, whether is should be
used in a software package to replace an older method, comparing the two methods
is very difficult. In essence the only feasible option is to reimplement the new method
within the package and try it out. A process that can take several months and has an
unpredictable outcome. On could argue, that obtaining the code of the new method
would be sufficient to do test runs. Unfortunately this would mean that the old method
would have to be implemented within the tool the new method is contained in.
Because a meaningful evaluation of the performance of a new method takes so
much effort, it is usually not done, greatly hampering scientific cooperation and
use of academic research results into industrial applications.



3. Decision Diagrams in the WWW
Our approach of  dealing with these problems is to offer a web based system, where
comparison between different heuristics can be done in a standardized
computational environment. While this does not eliminate the need for individual
evaluation of a method, it allows to do a meaningful comparison of new and older
methods with little effort, enabling parties interested in new methods to select those
for more intensive study that are most likely to fit their needs.
BDD computations take a lot of resources, but do not need very much input
parameters. Usually just one or two data files and some parameters will be enough to
describe complex tasks. We therefore use a simple WWW interface that allows
researchers to request computations, an example can be found in Figure 1.  First the
user optionally gives his email address to be mailed the results (results can also
viewed via the WWW, but as computations may take long, the email feedback is
convenient). Then he chooses some parameters.  In  the example given, these are
the choice between the method in question (here Block Restricted Sifting) and a
comparison method, usually ordinary Sifting. Finally the user transfers a data file
containing the circuit or chooses one of the predefined circuits. After pressing the
submit button a new job is created, queued and executed as soon as the needed
resources become available. During the waiting time the user is being kept updated
about the status of his job.  The status can be waiting, with a certain number of jobs
to be executed before this particular job, or it can be active, meaning currently under
computation.

Figure 1



While the interface presented to the user is simple, there are a number of
requirements the actual system below this interface layer needs to fulfil in order to be
of practical use.
Flexibility and Speed: To achieve an appropriate overall speed it is necessary to
distribute the actual computations on a number of computers. The number of
computers used in the system should be easily adjustable, and it should even be
possible to include computers that are at some other place and are only reachable by
an Internet connection. To maintain comparability of results it is necessary  that the
pool of computers can be divides into groups of machines with the same
characteristics.
Reliability: As computations can take in the order of hours and as there might be a
number of pending computations, there should be mechanisms that guarantee that
jobs submitted will not be lost in case of a crash and will be executed automatically
once the system works again. Restart of the system in case of failure and periodical
self-examination to determine whether the system still works are also important for a
high level of reliability.
Security: Security here means the protection of intellectual property. No designer is
willing to give away his carefully optimized circuits, just to test some new heuristic.
BDDs are a canonical representation of circuits, that don’t contain implementational
details. It is therefore often possible to give encodings of BDDs as input instead of
the circuits themselves. Where this does not work, circuit details can be obscured4,
If a circuit to be used as input to a computation is not secret, it can be used directly of
course.
Ease of Use: The system should be easy to use, not requiring a long learning period.
Ideally the user interface would be so intuitive that almost no explanation how it
works is necessary. We believe our web interface satisfies this condition.

4. Technical Aspects
To achieve the system characteristics described in the last section, we have chosen
the overall system structure shown in Figure 2. To the left side is the user interface.
Currently there is only the web interface. The central component in the middle is the
scheduler, which manages and coordinates every computation done with the system.
The interface(s) communicate with the scheduler via a cleanly defined protocol, at
the moment by using the file system. In case remote interfaces should be included
into the system communication via the Internet is also possible. The scheduler is also
responsible for crash recovery. To allow for automated recovery in most cases, the
state of the scheduler is dumped whenever some significant state change occurs. As
this state is not very large, dumping does not represent a significant overhead. From
these state dumps both automated and manual recovery of the waiting jobs, waiting
queues and other information important for continuing the computations is possible.
In case of automated recovery, for example after a power fail, the computations
resume without any administrator intervention. In case of software related crashes,
several attempts at automatic recovery are made, but naturally there remains the
possibility that the system state is corrupt in a way that cannot be corrected
automatically.  In the latter case the administrator is notified immediately via email.
On the right side of Figure 2 is the cluster of computers performing the actual
computations. Every one of these computers is fitted with a small demon that takes
requests for specific computations from the scheduler and returns results and
diagnostic information in case of failures. The demons also monitor resource
consummation of the tools during the actual computations in order to catch errors
within the tools, that lead to too high memory use or too much use of CPU time. This



monitoring is important, since the tools containing the BDD methods are research
tools that might still contain errors and get out of hand. The computers used are non-
dedicated and other computations are done on them as well. The monitoring ensures
that the computers do not become unavailable because of errors in the tools.
At the moment computations are done on a number of Intel Pentium III 500
Computers running Linux 2.2.

Figure 2

The scheduler itself was developed object-orientated using EIFFEL, which lead to a
clean structure and easy incorporation of extensions. The dumping mechanism was
added by creating a special class, DUMPAPLE, and having every other class
carrying vital data inherit from this class and implement some dumping features that
DUMPABLE contains in deferred form. Another benefit is that EIFFEL allows a
design method called “design by contract” 5, that is very useful in creating (nearly)
error free code. All the interfaces and the demons supervising the actual
computations where done in PERL6, which is very well suited for this kind of small
applications.
Currently  the following BDD methods are available: Sample Sifting7, Block Restricted
Sifting 8, Linear Sifting9 Simulated Annealing and the Genetic Method within CUDDs10

Nanotrav. Sample Sifting and Block Restricted Sifting within SMV11, and finally Lazy
Group Sifting12 within VIS13. The number of methods will grow further as research
yields new results.

5. The Portal
The structure and components of our BDD portal can be found in Figure 3. The
topmost component is a list of links to homepages of active researchers. “Active”
means that they have at least one refereed publication in the area of (Binary)
Decision Diagrams. This list aims to be a complete representation of the BDD
research community. Where no homepage could be found, an email address is
provided instead.
The second component is a collection of all relevant events like conferences,
workshops and other events. Events can be browsed by date, name, or, if applicable,
submission deadline. The list is frequently updated and kept current.



The third component is a database of literature on BDDs available via the web. This
database contains information about technical reports, papers and other texts with
the possibility of full-text searches, even where the documents are only available in
PostScript or PDF formats. This is a major step upward compared with the
possibilities of conventional search engines. Search results will include the first lines
of text of the documents found, and a link to their original location. The documents in
the database are collected by a specialized robot, that is driven by the links to the
homepages of researchers. The robot also does pre-processing of the documents so
their text can be entered into the database. The robot creates the searchable index
as well.

Figure 3

The fourth component is the active component allowing the use and evaluation of
BDD heuristics via the web. Other material, like links to relevant benchmark circuits,
is available as well.

6. Conclusion
We have explained why conventional text publications are insufficient in the area of
BDD research. To solve this problem, we have created a system that allows the
evaluation and comparison of new BDD methods with little effort and without the
need for specific hard- or software with the user.  Instead an Internet-based approach
was chosen. This approach consists of a central server, coordinating requests and
distributing the actual computations onto a cluster of computers. The system is open
to anyone. Inclusion of further tools and methods into the system is easy and
contribution of that nature by researchers in the area of BDDs are welcome. As there
was previously no satisfactory way to allow researchers and practitioners to
evaluated new methods unless they where willing to do al lot of work, the system
represents a major step forward for the cooperation within this research community.
Furthermore we have built a WWW portal site, for the BDD research community. This
portal links researchers, events and other relevant material. It also includes a
specialized literature search engine, that features a search mechanism superior to
other conventional search engines. The collected information greatly facilitates
retrieving information in the area of BDD research from the WWW. We believe that



our efforts are an important step in improving the usage of the WWW for BDD
research and has exemplary character for other research areas. The portal can be
accessed at http://www.bdd-portal.org.

Abbreviations:
EDA Electronic Design Automation
WWW World Wide Web
BDD (Binary) Decision Diagram
OBDD Ordered Binary Decision Diagram
PDF Portable Document Format
NFS Network File System
TCP Transmission Control Protocol
IP Internet Protocol

Literature:
1. Lawrence, S., Gilles, C. L., Accessibility of information on the web. Nature

Volume 400, Number 6740 1999.
2. Bryant, R. E., Graph Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, C-35 1986 pp 677-691
3. Meinel, Theobald. Algorithms and Data Structures in VLSI Design. Springer,

1998.
4. Hauck, S., Knoll, S., Data security for web based CAD. Proceedings of the 35th

Design Automation Conference, 1998
5. Meyer, Bertrand, Object Oriented Software Construction, Second Edition.

Prentice Hall,1997. 1254 p.
6. Wall, L., Christiansen, T., Schwarz, Programming Perl, 2nd Edition. O’Reilly, 1996.
7. Meinel, C., Slobodová, Sample Methods for Minimization of OBDDs. IWLS’98,

Granlibakken Resort, Lake Tahoe, USA, 1998
8. Meinel, C., Slobodová, Speeding up Variable Ordering of OBDDs. Proceedings of

IEEE ICCD’97, Austin, Texas, USA, 1997.
9. Meinel, C., Theobald, T., Local Encoding Transformations for Optimizing OBDD-

Representations of Finite State Machines. In proceedings FMCAD’96, Springer,
LNCS 1166, 1996, pp 404-418

10. Somenzi, F. Colorado University decision diagram package. Available at
<ftp://vlsi.colorado.edu/pub/>, [referenced  15.3.2000]

11. CMU School of Computer Science. Formal methods – model checking. Available
at <http://www.cs.cmu.edu/~modelcheck/>. [referenced 15.3.2000]

12. Somenzi, F., Higuchi, H., Lazy Group Sifting for Efficient State Traversal.
IWLS’99, Granlibakken Resort, Lake Tahoe, USA, 1999

13. VIS. Available at <http://www-cad.eecs.berkeley.edu/research/vis/>.  [referenced
15.3.2000]

14. Meinel, C., Wagner, A., Evaluation of OBDD-Heuristics via the Internet. IWLS’99,
Granlibakken Resort, Lake Tahoe, USA, 1999




